1
|
Cui L, Deng G, Wu J, Ding F, Wang W, Yu H, Song Z, Rui C, Han H, Yuan H. Fabrication of nanogels to improve the toxicity and persistence of cycloxaprid against Diaphorina citri, the vector of citrus huanglongbing. J Adv Res 2024:S2090-1232(24)00379-5. [PMID: 39245339 DOI: 10.1016/j.jare.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
INTRODUCTION Diaphorina citri is the most serious pest of citrus worldwide because it is the natural insect vector of huanglongbing. Cycloxaprid (Cyc) was highly toxic to D. citri. However, the poor solubility and stability had limited its development. OBJECTIVES In order to improve the insecticidal effect and stability to harsh climatic conditions of Cyc. METHODS Cyc was chosen as the representative pesticide, 4,4'-methylenebis (phenyl isocyanate), PEG-600 and n-butanol were used to prepare sustained-release nano-gelation particles (Cyc@NGs). RESULTS Cyc@NGs enhance the toxicity of Cyc more than 3 folds. Furthermore, Cyc@NGs showed excellent anti-rain and anti-UV capacity. After being exposed to ultraviolet light for 12 h, Cyc decreased by 100 %, while the insecticide content of Cyc@NGs only decreased by 25 %. Additionally, Cyc@NGs possessed better wettability on citrus leaves, mainly benefitting from its lower contact angle on citrus leaves. Moreover, FITC-labeled nano-gelation particles (FITC-NGs) exhibited high capability to penetrate and enrich in citrus leaf tissue and D. citri midgut. Consequently, NGs promoted the translocation and durability of insecticides, thereby, increasing the insecticidal activity. The results suggested that nano-gelation particle is a promising platform to deliver insecticides and Cyc@NGs would be the suitable candidate for the effective management of D. citri.
Collapse
Affiliation(s)
- Li Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Guiyun Deng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghong Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Ding
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjie Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Haiyang Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhiyong Song
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changhui Rui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Heyou Han
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huizhu Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
2
|
Luo Z, Lin ZY, Li ZF, Fu ZQ, Han FL, Li EC. Next-generation neonicotinoid: The impact of cycloxaprid on the crustacean decapod Penaeus vannamei. CHEMOSPHERE 2024; 358:142150. [PMID: 38679174 DOI: 10.1016/j.chemosphere.2024.142150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Cycloxaprid, a new neonicotinoid pesticide, poses ecological risks, particularly in aquatic environments, due to its unique action and environmental dispersal. This study investigated the ecotoxicological effects of various concentrations of cycloxaprid on Penaeus vannamei over 28 days. High cycloxaprid levels significantly altered shrimp physiology, as shown by changes in the hepatosomatic index and fattening. Indicators of oxidative stress, such as increased serum hemocyanin, respiratory burst, and nitric oxide, as well as decreased phenol oxidase activity, were observed. Additionally, elevated activities of lactate dehydrogenase, succinate dehydrogenase, and isocitrate dehydrogenase indicated disrupted energy metabolism in the hepatopancreas. Notably, analyses of the nervous system revealed marked disturbances in neural signaling, as evidenced by elevated acetylcholine, octopamine, and acetylcholinesterase levels. Transcriptomic analysis highlighted significant effects on gene expression and metabolic processes in the hepatopancreas and nervous system. This study demonstrated that cycloxaprid disrupts neural signaling and oxidative balance in P. vannamei, potentially affecting its growth, and provides key insights into its biochemical and transcriptomic toxicity in aquatic systems.
Collapse
Affiliation(s)
- Zhi Luo
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Zhi-Yu Lin
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Zhen-Fei Li
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Zhen-Qiang Fu
- School of Marine Science, Sun Yat-sen University, Zhuhai, Guangdong, 519082, China
| | - Feng-Lu Han
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Er-Chao Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
3
|
Gong Y, Cheng S, Xiu X, Li F, Liu N, Hou M. Molecular Evolutionary Mechanisms of CYP6ER1vA-Type Variant Associated with Resistance to Neonicotinoid Insecticides in Field Populations of Nilaparvata lugens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19935-19948. [PMID: 38083901 DOI: 10.1021/acs.jafc.3c03167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The evolution of insecticide resistance has threatened the control of Nilaparvata lugens. Research on mechanisms behind neonicotinoid resistance in N. lugens remains incomplete. This study examined P450-mediated resistance to neonicotinoids in a resistant N. lugens strain (XA-2017-3G). The overexpression of CYP6ER1 in the XA-2017-3G strain plays a role in neonicotinoid resistance, as confirmed by RNA interference. Phenotypic analyses of CYP6ER1-mediated resistance in strains, including laboratory-susceptible, field-collected, and imidacloprid-laboratory further-selected strains, revealed that the vA-type/vL-type genotype exhibited greater resistance to neonicotinoids compared to the vA-type/vA-type genotype. The mRNA expression levels of CYP6ER1vA-type were closely correlated with the levels of neonicotinoid resistance in N. lugens strains, in which CYP6ER1vA-type overexpression is in part attributed to increased copy numbers of CYP6ER1. CYP6ER1vA-type-mediated neonicotinoid resistance was further confirmed by a CYP6ER1vA-type transgenic Drosophila melanogaster line. Taken together, our findings strongly suggest that the overexpression of CYP6ER1vA-type, which can be partially attributed to copy number variations, plays a crucial role in N. lugens resistance to neonicotinoids.
Collapse
Affiliation(s)
- Youhui Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Shiyang Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiaojian Xiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Fei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama 36849, United States
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
4
|
Wei Y, Su Y, Han X, Guo W, Zhu Y, Yao Y. Evaluation of Transgenerational Effects of Sublethal Imidacloprid and Diversity of Symbiotic Bacteria on Acyrthosiphon gossypii. INSECTS 2023; 14:insects14050427. [PMID: 37233055 DOI: 10.3390/insects14050427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Symbiotic bacteria and hormesis in aphids are the driving forces for pesticide resistance. However, the mechanism remains unclear. In this study, the effects of imidacloprid on the population growth parameters and symbiotic bacterial communities of three successive generations of Acyrthosiphon gossypii were investigated. The bioassay results showed that imidacloprid had high toxicity to A. gossypii with an LC50 of 1.46 mg·L-1. The fecundity and longevity of the G0 generation of A. gossypii decreased when exposed to the LC15 of imidacloprid. The net reproductive rate (R0), intrinsic rate of increase (rm), finite rate of increase (λ), and total reproductive rate (GRR) of G1 and G2 offspring were significantly increased, but those of the control and G3 offspring were not. In addition, sequencing data showed that the symbiotic bacteria of A. gossypii mainly belonged to Proteobacteria, with a relative abundance of 98.68%. The dominant genera of the symbiotic bacterial community were Buchnera and Arsenophonus. After treatment with the LC15 of imidacloprid, the diversity and species number of bacterial communities of A. gossypii decreased for G1-G3 and the abundance of Candidatus-Hamiltonella decreased, but Buchnera increased. These results provide insight into the resistance mechanism of insecticides and the stress adaptation between symbiotic bacteria and aphids.
Collapse
Affiliation(s)
- Yindi Wei
- College of Agriculture, Tarim University, Aral 843300, China
| | - Yue Su
- College of Agriculture, Tarim University, Aral 843300, China
| | - Xu Han
- College of Agriculture, Tarim University, Aral 843300, China
| | - Weifeng Guo
- College of Agriculture, Tarim University, Aral 843300, China
| | - Yue Zhu
- College of Agriculture, Tarim University, Aral 843300, China
| | - Yongsheng Yao
- College of Agriculture, Tarim University, Aral 843300, China
| |
Collapse
|
5
|
Zhang Y, Xu X, Wang J, Shao X, Liu Z, Li Z. Molecular Mechanism of Action of Cycloxaprid, An Oxabridged cis-Nitromethylene Neonicotinoid. Int J Mol Sci 2023; 24:ijms24087511. [PMID: 37108674 PMCID: PMC10139173 DOI: 10.3390/ijms24087511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Cycloxaprid, an oxabridged cis-nitromethylene neonicotinoid, showed high insecticidal activity in Hemipteran insect pests. In this study, the action of cycloxaprid was characterized by recombinant receptor Nlα1/rβ2 and cockroach neurons. On Nlα1/β2 in Xenopus oocytes, cycloxaprid acted as a full agonist. The imidacloprid resistance-associated mutation Y151S reduced the Imax of cycloxaprid by 37.0% and increased EC50 values by 1.9-fold, while the Imax of imidacloprid was reduced by 72.0%, and EC50 values increased by 2.3-fold. On cockroach neurons, the maximum currents elicited by cycloxaprid were only 55% of that of acetylcholine, a full agonist, but with close EC50 values of that of trans-neonicotinoids. In addition, cycloxaprid inhibited acetylcholine-evoked currents on insect neurons in a concentration-dependent manner when co-applied with acetylcholine. Cycloxaprid at low concentrations significantly inhibited the activation of nAChRs by acetylcholine, and its inhibition potency at 1 µM was higher than its activation potency on insect neurons. Two action potencies, activation, and inhibition, by cycloxaprid on insect neurons provided an explanation for its high toxicity to insect pests. In summary, as a cis-nitromethylene neonicotinoid, cycloxaprid showed high potency on both recombinant nAChR Nlα1/β2 and cockroach neurons, which guaranteed its high control effects on a variety of insect pests.
Collapse
Affiliation(s)
- Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingting Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
6
|
Kaleem Ullah RM, Gao F, Sikandar A, Wu H. Insights into the Effects of Insecticides on Aphids (Hemiptera: Aphididae): Resistance Mechanisms and Molecular Basis. Int J Mol Sci 2023; 24:ijms24076750. [PMID: 37047722 PMCID: PMC10094857 DOI: 10.3390/ijms24076750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
With the passage of time and indiscreet usage of insecticides on crops, aphids are becoming resistant to their effect. The different classes of insecticides, including organophosphates, carbamates, pyrethroids and neonicotinoids, have varied effects on insects. Furthermore, the molecular effects of these insecticides in aphids, including effects on the enzymatic machinery and gene mutation, are resulting in aphid resistance to the insecticides. In this review, we will discuss how aphids are affected by the overuse of pesticides, how resistance appears, and which mechanisms participate in the resistance mechanisms in various aphid species as significant crop pests. Gene expression studies were analyzed using the RNA-Seq technique. The stress-responsive genes were analyzed, and their expression in response to insecticide administration was determined. Putative insecticide resistance-related genes, cytochrome P450, glutathione S-transferase, carboxylesterase CarEs, ABC transporters, cuticle protein genes, and trypsin-related genes were studied. The review concluded that if insecticide-susceptible aphids interact with ample dosages of insecticides with sublethal effects, this will result in the upregulation of genes whose primary role is to detoxify insecticides. In the past decade, certain advancements have been observed regarding insecticide resistance on a molecular basis. Even so, not much is known about how aphids detoxify the insecticides at molecular level. Thus, to attain equilibrium, it is important to observe the manipulation of pest and insect species with the aim of restoring susceptibility to insecticides. For this purpose, this review has included critical insights into insecticide resistance in aphids.
Collapse
Affiliation(s)
- Rana Muhammad Kaleem Ullah
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Fukun Gao
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Aatika Sikandar
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Haiyan Wu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Yuan GR, Chen ML, Peng ML, Lei W, Meng LW, Dou W, Wang JJ. Knockdown of a Nicotinic Acetylcholine Receptor Subunit Gene Bdorβ1 Decreases Susceptibility to Oxa-Bridged trans- instead of cis-Nitromethylene Neonicotinoid Insecticides in Bactrocera dorsalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13554-13562. [PMID: 36224100 DOI: 10.1021/acs.jafc.2c04709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate the fast action of acetylcholine in synaptic cholinergic transmissions. Insect nAChRs are the target of several classes of insecticides. Here, the full-length cDNA encoding a nAChR beta1 subunit (Bdorβ1) was identified and characterized from a destructive pest, Bactrocera dorsalis. The amino acid sequence of Bdorβ1 shows high identities to other insect nAChRs β1 subunits. Double injection of dsBdorβ1 reduced the expression of Bdorβ1 and in turn significantly decreased susceptibility to oxa-bridged trans- instead of cis-nitromethylene neonicotinoids. Our results support the involvement of Bdorβ1 in the susceptibility of B. dorsalis to oxa-bridged trans- instead of cis-nitromethylene neonicotinoids and imply that these two classes of neonicotinoids might be acting at different nAChR subtypes.
Collapse
Affiliation(s)
- Guo-Rui Yuan
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Meng-Ling Chen
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Meng-Lan Peng
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wei Lei
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Li-Wei Meng
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wei Dou
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| |
Collapse
|
8
|
Dong W, Yang H, Wang C, Li H, Shang J, Chen Z, Zhang H, Liang P, Gao X, Shi X. Cross-Resistance and Fitness Costs of the cis-Nitromethylene Neonicotinoid Cycloxaprid Resistance in Melon Aphid, Aphis gossypii (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1668-1675. [PMID: 35899798 DOI: 10.1093/jee/toac112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 06/15/2023]
Abstract
The melon aphid, Aphis gossypii Glover, is an important pest on various vegetables around the world and has developed resistance to neonicotinoids in fields. Cycloxaprid is a novel cis-nitromethylene configuration neonicotinoid insecticide that is different from trans-configuration neonicotinoids like imidacloprid and thiamethoxam. Herein, the cross-resistance to the other seven insecticides and fitness costs were investigated in the cycloxaprid-resistant A. gossypii strain (Cpd-R), which has developed 69.5-fold resistance to cycloxaprid. The results showed that the Cpd-R strain had very low levels of cross-resistance to imidacloprid (4.3-fold), acetamiprid (2.9-fold), thiamethoxam (3.7-fold), nitenpyram (6.1-fold), flupyradifurone (2.2-fold), and sulfoxaflor (4.5-fold), while it exhibited a cross-resistance to dinotefuran (10.6-fold). The fitness of the Cpd-R strain by life table analysis was only 0.799 compared to the susceptible strain (Cpd-S). This Cpd-R strain exhibited significantly reduction in fecundity, oviposition days, and developmental time of nymph stage compared to the Cpd-S strain. Moreover, the expression levels of some genes related to the development and reproduction, including EcR, USP, JHAMT, and JHEH were significantly up-regulated, while Vg was down-regulated in the Cpd-R strain. This study indicates that the Cpd-R strain possessed a certain fitness cost. The above research results are useful for rational application of cycloxaprid and implementing the appropriate resistance management strategy for A. gossypii.
Collapse
Affiliation(s)
- Wenyang Dong
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Hengli Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Cuicui Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hongbao Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jiao Shang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhao Chen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Huihui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Pei Liang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xueyan Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
9
|
Yang B, Ma W, Wang S, Shi L, Li X, Ma Z, Zhang Q, Li H. Determination of eight neonicotinoid insecticides in Chinese cabbage using a modified QuEChERS method combined with ultra performance liquid chromatography-tandem mass spectrometry. Food Chem 2022; 387:132935. [DOI: 10.1016/j.foodchem.2022.132935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 11/04/2022]
|
10
|
Qu X, Wang S, Lin G, Li M, Shen J, Wang D. The Synergistic Effect of Thiamethoxam and Synapsin dsRNA Targets Neurotransmission to Induce Mortality in Aphis gossypii. Int J Mol Sci 2022; 23:ijms23169388. [PMID: 36012653 PMCID: PMC9408958 DOI: 10.3390/ijms23169388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Sublethal doses of insecticides have many impacts on pest control and agroecosystems. Insects that survive a sublethal dose of insecticide could adapt their physiological and behavioral functions and resist this environmental stress, which contributes to the challenge of pest management. In this study, the sublethal effects of thiamethoxam on gene expression were measured through RNA sequencing in the melon aphid Aphis gossypii. Genes regulating energy production were downregulated, while genes related to neural function were upregulated. To further address the function of genes related to neurotransmission, RNA interference (RNAi) was implemented by transdermal delivery of dsRNA targeting synapsin (syn), a gene regulating presynaptic vesicle clustering. The gene expression of synapsin was knocked down and the mortality of aphids was increased significantly over the duration of the assay. Co-delivery of syn-dsRNA and thiamethoxam reversed the upregulation of synapsin caused by low-dose thiamethoxam and resulted in lethality to melon aphids, suggesting that the decreased presynaptic function may contribute to this synergistic lethal effect. In addition, the nanocarrier star polycation, which could bind both dsRNA and thiamethoxam, greatly improved the efficacy of lethality. These results increase our knowledge of the gene regulation induced by sublethal exposure to neonicotinoids and indicated that synapsin could be a potential RNAi target for resistance management of the melon aphid.
Collapse
|
11
|
Zhang L, Zhang J, Wang C, He Y, Wen X, Xu Z, Wang C. Toxicological, Behavioral, and Horizontal Transfer Effects of Cycloxaprid Against Formosan Subterranean Termites (Blattodea: Rhinotermitidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1240-1250. [PMID: 35583241 DOI: 10.1093/jee/toac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 06/15/2023]
Abstract
Cycloxaprid, 9-((6-chloropyrid-3-yl)methyl)-4-nitro-8-oxa-10,11-dihydroimidazo-[2,3-a]-bicyclo-[3,2,1]-oct-3-ene, is a cis-configuration neonicotinoid insecticide. In the present study, the lethal and sublethal effect of cycloxaprid against Formosan subterranean termites, Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae), was evaluated and compared with fipronil. Toxicity bioassays showed that cycloxaprid had slightly lower toxicity than fipronil. The minimum cycloxaprid concentration in sand and soil that causes 100% termite mortality was 100 ppm. Similar to fipronil, cycloxaprid significantly reduced wood consumption and tunneling activities of termites. In the tunneling-choice tests, termite tunneling activity measured in both length and area was significantly lower in sand treated with cycloxaprid (10 or 100 ppm) than that in untreated sand. In the aggregation-choice tests, cycloxaprid exhibited inhibition to termite aggregation starting from 100 ppm. In addition, cycloxaprid exhibited significant horizontal transfer effect at 10 ppm. In conclusion, our study showed that cycloxaprid is slightly less toxic than fipronil and more repellent to C. formosanus than fipronil. Future studies are needed to evaluate the effectiveness of cycloxaprid against subterranean termites in the field.
Collapse
Affiliation(s)
- Lang Zhang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianlong Zhang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Changlu Wang
- Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yinghao He
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xiujun Wen
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Biological Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cai Wang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Zhang L, Wang L, Chen J, Zhang J, He Y, Lu Y, Cai J, Chen X, Wen X, Xu Z, Wang C. Toxicity, horizontal transfer, and physiological and behavioral effects of cycloxaprid against Solenopsis invicta (Hymenoptera: Formicidae). PEST MANAGEMENT SCIENCE 2022; 78:2228-2239. [PMID: 35192738 DOI: 10.1002/ps.6847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The red imported fire ant, Solenopsis invicta Buren, is a significant urban, agricultural, and medical pest with a wide distribution in the world. Surface or mound treatment using contact insecticide is one of the main methods to control S. invicta. In the present study, cycloxaprid, a newly discovered neonicotinoid insecticide, was evaluated for S. invicta control and compared with two referent insecticides, imidacloprid and bifenthrin. RESULTS Surfaces or sand treated with cycloxaprid, imidacloprid, or bifenthrin caused high mortality of S. invicta workers, and the action of cycloxaprid or imidacloprid was slower than bifenthrin. Like imidacloprid and bifenthrin, cycloxaprid can be horizontally transferred from corpses or live donor ants to recipient ants. In addition, cycloxaprid- or imidacloprid-treated surfaces significantly induced the activities of acetylcholinesterase (AChE) and detoxification enzymes; nevertheless, they had no significant effect on the foraging behaviors of S. invicta workers. Also, sand treated with cycloxaprid or imidacloprid did not negatively affect the digging activities of ants. Interestingly, S. invicta workers excavated significantly more sand containing 0.01 mg/kg cycloxaprid than untreated sand in the no-choice digging bioassays. In addition, extensive nesting activities (sand excavation and stacking) were observed in the flowerpots containing untreated sand or sand treated with cycloxaprid or imidacloprid. On the contrary, bifenthrin significantly reduced the foraging, digging, and nesting activities of S. invicta workers. CONCLUSION Cycloxaprid is a slow-acting and nonrepellent insecticide against S. invicta workers, and its contact and horizontal toxicities are slightly higher than imidacloprid. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lang Zhang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Lei Wang
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jian Chen
- Biological Control of Pests Research Unit, Agricultural Research Service, US Department of Agriculture, Stoneville, MS, USA
| | - Jianlong Zhang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yinghao He
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yongyue Lu
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jiacheng Cai
- Department of Mathematical Science, Salisbury University, Salisbury, MD, USA
| | - Xuan Chen
- Department of Biology, Salisbury University, Salisbury, MD, USA
| | - Xiujun Wen
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Biological Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Cai Wang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Cheng X, Zhang S, Shao S, Zheng R, Yu Z, Ye Q. Translocation and metabolism of the chiral neonicotinoid cycloxaprid in oilseed rape (Brassica napus L.). JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128125. [PMID: 34971988 DOI: 10.1016/j.jhazmat.2021.128125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Neonicotinoids have been banned in some countries because of increased nontarget resistance and ecological toxicity. Cycloxaprid is a potentially promising substitute, but its metabolism in plants is still poorly understood. The study aims to clarify the translocation of cycloxaprid, identify its metabolites, propose possible metabolic pathways and compare differences between enantiomers in oilseed rape via 14C tracing technology and HPLC-QTOF-MS. The results showed that most cycloxaprid remained in the treated leaves, and only a small amount translocated to the anthers. Seven metabolites were identified, and the possible metabolic pathway was divided into two phases. Phase Ⅰ metabolism included two metabolites obtained via cleavage of the oxa-bridged seven-membered ring. Phase II metabolism was responsible for glucose conjugate formation. The possible metabolic pathways revealed that the proportion of phase I metabolites gradually decreased over time, and the phase II metabolites transformed from monosaccharide and disaccharide conjugates to trisaccharide and tetrasaccharide conjugates. The levels of metabolites were significantly different between the enantiomers. In particular, the main metabolite was M4, which has confirmed biological toxicity. M2 was the only metabolite detected in rapeseed. The results will promote the scientific application of cycloxaprid in agriculture and could have implications for assessing environmental risk.
Collapse
Affiliation(s)
- Xi Cheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Siyao Shao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Ruonan Zheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
14
|
Shang J, Yao YS, Chen LL, Zhu XZ, Niu L, Gao XK, Luo JY, Ji JC, Cui JJ. Sublethal Exposure to Deltamethrin Stimulates Reproduction and Alters Symbiotic Bacteria in Aphis gossypii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15097-15107. [PMID: 34902254 DOI: 10.1021/acs.jafc.1c05070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In aphids, hormesis and symbiotic bacteria are the drivers for the development of pesticide resistance. However, the related mechanism remains unclear. Here, we evaluated the sublethal and transgenerational effects of the extensively used pyrethroid pesticide deltamethrin (DMT) on the population dynamics in Aphis gossypii and tested its influence on symbiotic bacterial communities. The leaf-dip bioassay revealed that DMT was highly toxic to A. gossypii, and at a low lethal concentration of DMT, the intrinsic (r) and finite rates of increase (λ) of the initially exposed aphids (G0) significantly decreased. Intriguingly, the r, λ, and net reproductive rate (R0) of G1 and G2 significantly increased, but the r and λ decreased in G3. The adult and total preoviposition period increased in G3 but decreased in G4. Additionally, the diversity of the bacterial community decreased, while the abundance values of Buchnera, Pseudomonadaceae, and Burkholderiaceae increased after 24 h of exposure to LC30 DMT in G0 aphids, and the latter two decreased in G1 but increased in G2. In summary, sublethal DMT has intergenerational hormesis effect on cotton aphids in G1-G2 and remarkably altered their symbiotic bacterial community and abundance. These results broaden our understanding of the relationship of hormesis and symbiotic bacteria in aphids under insecticide exposure.
Collapse
Affiliation(s)
- Jiao Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001 Henan, China
- College of Plant Science, Tarim University/Key Laboratory of Production and Construction Corps of Agricultural Integrated Pest Management in Southern Xinjiang, Aral 843300 Xinjiang, China
| | - Yong-Sheng Yao
- College of Plant Science, Tarim University/Key Laboratory of Production and Construction Corps of Agricultural Integrated Pest Management in Southern Xinjiang, Aral 843300 Xinjiang, China
| | - Lu-Lu Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052 Xinjiang, China
| | - Xiang-Zhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000 Henan, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000 Henan, China
| | - Xue-Ke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001 Henan, China
| | - Jun-Yu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001 Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000 Henan, China
| | - Ji-Chao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001 Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000 Henan, China
| | - Jin-Jie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001 Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000 Henan, China
| |
Collapse
|
15
|
Jie M, Gao Y, Kuang D, Shi Y, Wang H, Jing W. Relationship between imidacloprid residues and control effect on cotton aphids in arid region. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1941-1952. [PMID: 33201396 DOI: 10.1007/s10653-020-00776-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
In this case, the dissipation and residues of imidacloprid as well as its control efficacy against aphids (Aphis gossypii Glover) in cotton cropping system were reported. After the final spray at the rates of 10.5-42.5 g a.i. ha-1, the initial deposits were 0.59-2.25 mg kg-1 with half-lives of 2.12-2.84 days on leaves and 0.06-0.21 mg kg-1 with half-lives of 1.51-4.20 days in soil, respectively. The initial residues were significantly higher with longer persistence in the upper position of the leaf than in middle and lower positions. The different application dosages could induce a significant difference in the initial deposits, but not show consistent correlation with the dissipation rate. The repeated applications of imidacloprid could alter its residue levels and dissipation rates. The long-term residue concentrations of imidacloprid (60 days after the final application) reached to the nondetectable level in soil. Combined with the control efficacy results, it was considered that the recommended dose of imidacloprid on cotton could be used effectively and safe in this arid area from the view of crop protection and environmental contamination.
Collapse
Affiliation(s)
- Menglei Jie
- Applied Chemistry Laboratory, College of Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Youhua Gao
- College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Daihong Kuang
- College of Mathematics and Physics, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yingshuang Shi
- Applied Chemistry Laboratory, College of Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Huanhuan Wang
- Applied Chemistry Laboratory, College of Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.
| | - Weiwen Jing
- Applied Chemistry Laboratory, College of Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
16
|
Ma K, Tang Q, Liang P, Li J, Gao X. UDP-Glycosyltransferases from the UGT344 Family Are Involved in Sulfoxaflor Resistance in Aphis gossypii Glover. INSECTS 2021; 12:insects12040356. [PMID: 33923504 PMCID: PMC8072560 DOI: 10.3390/insects12040356] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The cotton aphid, Aphis gossypii Glover, is a notorious pest in cotton and cucurbit fields. The control of A. gossypii has typically relied on the application of chemical insecticides. Sulfoxaflor is the first commercially available sulfoximine insecticide, which exhibits great efficacy against sap-feeding insect pests and has been applied as an alternative insecticide for controlling of A. gossypii in China. Consequently, A. gossypii quickly developed resistance to this insecticide. Hence, in this study, to clarify the potential detoxifying roles of UGTs (one of the phase II detoxification enzymes) in resistance of A. gossypii against sulfoxaflor, the synergistic effects of two synergists (sulfinpyrazone and 5-nitrouracil) against sulfoxaflor were investigated using the susceptible and laboratory-established sulfoxaflor resistant strain (SulR), and the expression levels of 15 UGT genes were determined by qRT-PCR. Furthermore, the involvement of highly upregulated UGTs in sulfoxaflor-resistant strain was functionally tested by RNA interference (RNAi). Our results suggest that overexpression of UGTs contributes to sulfoxaflor resistance in A. gossypii, which should be useful for understanding sulfoxaflor resistance mechanisms. Abstract UDP-glycosyltransferases (UGTs) are major phase II detoxification enzymes that catalyze the transfer of glycosyl residues from activated nucleotide sugars to acceptor hydrophobic molecules and play very important roles in the biotransformation of various endogenous and exogenous compounds. Our previous studies demonstrated that UGTs participated in the detoxification of insecticides in Aphis gossypii. However, the potential roles of UGTs in A. gossypii resistance to sulfoxaflor are still unclear. In this study, two inhibitors of UGT enzymes, sulfinpyrazone and 5-nitrouracil, significantly increased the toxicity of sulfoxaflor to a resistant strain of A. gossypii, whereas there were no synergistic effects in the susceptible strain. Based on the transcriptome sequencing results, the expression levels of 15 UGTs were analyzed by quantitative real-time PCR, and we found that seven UGT genes were highly over-expressed in a sulfoxaflor-resistant strain compared to the susceptible strain, including UGT344B4, UGT344C5, UGT344A11, UGT344A14, and UGT344L2. Further suppressing the expression of UGT344B4, UGT344C5, and UGT344A11 by RNA interference significantly increased the sensitivity of resistant aphids to sulfoxaflor, indicating that the overexpression of UGT genes is potentially associated with sulfoxaflor resistance. These results could provide valuable information for further understanding the mechanisms of insecticide resistance.
Collapse
Affiliation(s)
- Kangsheng Ma
- Department of Entomology, China Agricultural University, Beijing 100193, China; (K.M.); (Q.T.); (P.L.)
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Qiuling Tang
- Department of Entomology, China Agricultural University, Beijing 100193, China; (K.M.); (Q.T.); (P.L.)
| | - Pingzhuo Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China; (K.M.); (Q.T.); (P.L.)
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China; (K.M.); (Q.T.); (P.L.)
- Correspondence: ; Tel.: +86-010-6273-2974
| |
Collapse
|
17
|
Potential of Cucurbitacin B and Epigallocatechin Gallate as Biopesticides against Aphis gossypii. INSECTS 2021; 12:insects12010032. [PMID: 33466501 PMCID: PMC7824822 DOI: 10.3390/insects12010032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary The Aphis gossypii is a global problem for its pesticide resistance with substantial economic and ecological cost and a wide host range, including cotton and cucurbits. The development of insecticide resistance is rapid and widespread and threatens crop productivity. Biopesticides have emerged as a better alternative for pest control. Cucurbitacin B (CucB) and epigallocatechin gallate (EGCG) are the major secondary metabolites of host plants cucurbits and cotton. In this study, we used cotton- and cucurbit-specialized aphids (CO and CU) as a study system to better understand the effects of CucB and EGCG on cotton aphid. Our study showed that CucB and EGCG can significantly reduce the population-level fitness of A. gossypii, affect their ability to adapt to nonhost plants and alter the levels of some detoxifying enzymes, which showed a potential to be developed into new biopesticides against the notorious aphids. Abstract Aphis gossypii (Glover) is distributed worldwide and causes substantial economic and ecological problems owing to its rapid reproduction and high pesticide resistance. Plant-derived cucurbitacin B (CucB) and epigallocatechin gallate (EGCG) are known to have insecticidal and repellent activities. However, their insecticidal activity on cotton- and cucurbit-specialized aphids (CO and CU), the two important host biotypes of A. gossypii, remains to be investigated. In the present study, we characterized, for the first time, the effects of these two plant extracts on the two host biotypes of A. gossypii. CucB and EGCG significantly reduced the A. gossypii population-level fitness and affected their ability to adapt to nonhost plants. Activities of important detoxification enzymes were also altered, indicating that pesticide resistance is weakened in the tested aphids. Our results suggest that CucB and EGCG have unique properties and may be developed as potential biopesticides for aphid control in agriculture.
Collapse
|
18
|
Singh A, Leppanen C. Known Target and Nontarget Effects of the Novel Neonicotinoid Cycloxaprid to Arthropods: A Systematic Review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:831-840. [PMID: 32592520 DOI: 10.1002/ieam.4305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/05/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoids are the most widely used insecticide class worldwide, and unfortunately, the widely used neonicotinoid imidacloprid is problematic for pollinators and other nontarget organisms. These nontarget impacts and the development of resistance prompt the ongoing development and testing of new neonicotinoids. The novel neonicotinoid cycloxaprid was described in 2011 and registered in China in 2015. Studies investigating its use and effect on target and nontarget species are recent and ongoing, and empirical evidence has not yet been collectively considered. Therefore, a systematic review was performed to identify and summarize data associated with target and nontarget, lethal and sublethal impacts of cycloxaprid for its use as a new insecticide. We performed keyword literature searches in Web of Science, PubMed, Academic Search Complete, and Google Scholar and explored citations used in identified articles. The search strategy yielded 66 citations; 25 citations fulfilled eligibility criteria and were included in the review. Under experimental conditions, cycloxaprid reduced populations of plant-feeding insect pests, suppressed populations of sucking and biting insect pests, and affected reproduction, development time, longevity, growth, gene regulation and expression, and phloem-feeding behavior of various life stages of certain insects. Studies focus on pest control efficacy and comparison with imidacloprid. Five nontarget organisms have been evaluated: Apis mellifera, Chrysoperla sinica, Harmonia axyridis, Daphnia magna, and Eisenia fetida. Variation in study design, to date, precludes a metaanalysis. However, these results provide valuable insight into possible effects to target and nontarget arthropods. Because cycloxaprid is a new insecticide, additional research is needed to clarify the mechanism of action of cycloxaprid and its metabolites, and to determine if it harms natural enemies or other nontarget organisms, if resistance develops, and if it exhibits cross-resistance with other insecticides. Although research on target arthropods will inform some effects on nontarget organisms, studies focusing explicitly on impacts to nontarget organisms are needed. Integr Environ Assess Manag 2020;16:831-840. © 2020 SETAC.
Collapse
Affiliation(s)
- Anisha Singh
- Department of Public Health, University of Tennessee, Knoxville, Tennessee, USA
| | - Christy Leppanen
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
19
|
Ullah F, Gul H, Tariq K, Desneux N, Gao X, Song D. Fitness costs in clothianidin-resistant population of the melon aphid, Aphis gossypii. PLoS One 2020; 15:e0238707. [PMID: 32925934 PMCID: PMC7489515 DOI: 10.1371/journal.pone.0238707] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/14/2020] [Indexed: 01/20/2023] Open
Abstract
Clothianidin is a second-generation neonicotinoid insecticide, widely used against sap-sucking insect pest including melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae). This pest causes severe economic damage to Cucurbitaceae plants worldwide. In this study, we investigated clothianidin resistance development under continuous selection pressure. Moreover, the age-stage, two-sex life table approach was used to evaluate the impact of clothianidin resistance on the fitness of A. gossypii. A clothianidin resistant strain (CT-R) with a 23.17-fold resistance level was developed from a susceptible strain (CT-S) after continuous selection for 24 generations. Life table results showed a significant reduction in the relative fitness (0.847) of CT-R strain compared to the CT-S strain of A. gossypii. The developmental duration, oviposition days, total pre-oviposition period (TPOP), longevity, and fecundity of CT-R strain were found to be significantly lower when compared to CT-S strain. The demographic parameters, including the intrinsic rate of increase (r), finite rate of increase (λ), net reproductive rate (R0), and mean generation time (T) were also significantly decreased in CT-R strain compared to the CT-S strain. Both the reproductive and survival rates were affected by clothianidin resistance in CT-R strain compared with the CT-S strain of A. gossypii. Overall, our results demonstrate that in-depth knowledge about the trade-off at play between resistance degree and fitness cost might be useful to design resistance management strategies against A. gossypii.
Collapse
Affiliation(s)
- Farman Ullah
- Department of Entomology, China Agricultural University, Beijing, China
| | - Hina Gul
- Department of Entomology, China Agricultural University, Beijing, China
| | - Kaleem Tariq
- Department of Agriculture Entomology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
- Entomology and Nematology Department, Steinmetz Hall, University of Florida, Gainesville, Florida, United States of America
- USDA/ARS, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, Florida, United States of America
| | | | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Dunlun Song
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Effects of Sublethal Doses of Methyl Benzoate on the Life History Traits and Acetylcholinesterase (AChE) Activity of Aphis gossypii. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Safer alternatives to synthetic pesticides are essential for sustainable agriculture. Methyl benzoate (MB) is a volatile essential oil found in several plants. Recent reports of the toxicity of MB to arthropod pests suggest that MB may be a useful alternative insecticide. The present study assessed the effects of a sublethal concentration of MB (LC30, 0.22%) on the life history and reproductive characteristics of the cotton aphid, Aphis gossypii Glover, in both a treated parental generation (F0) and untreated progeny (F1). MB treatment significantly decreased longevity and fecundity in both the F0 and F1 generations, and prolonged the developmental duration of each immature instar of the F1 generations, compared with controls. The intrinsic rate of increase (r), finite rate of increase (λ), and net reproductive rate (R0) of the F1 generation were significantly reduced, compared to controls. The mode of action of MB is not known, but in aphids treated with LC30 MB, the activity of the enzyme acetylcholinesterase (AChE) decreased by more than 65%, compared with untreated controls. AChE activity was rapidly inhibited within 1 h, and remained inhibited for 6 h after in vivo exposure to MB. Moreover, molecular docking analysis revealed that MB had a strong affinity with the catalytic site of AChE, with a binding energy value of −6.2 kcal/mole. Our results suggest that MB targets AChE, and that a sublethal dose of MB can have adverse transgenerational effects on cotton aphids.
Collapse
|
21
|
Cui L, Wang Q, Wang Q, Wang L, Yuan H, Rui C. Cycloxaprid: a novel cis-nitromethylene neonicotinoid insecticide to control Bemisia tabaci. PEST MANAGEMENT SCIENCE 2020; 76:1705-1712. [PMID: 31758644 DOI: 10.1002/ps.5693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Bemisia tabaci is a worldwide insect pest with high ability to develop resistance to many insecticides. Cycloxaprid is a novel cis-configuration neonicotinoid insecticide that is effective against a wide range of imidacloprid-resistant pests. RESULTS The lethal and sublethal effects of cycloxaprid on B. tabaci B were estimated. Cycloxaprid showed higher toxicity against adult, nymph and egg of B. tabaci B than imidacloprid. And cycloxaprid provided better efficacies against B. tabaci than imidacloprid in fields. Moreover, cycloxaprid was similarly toxic to the relatively susceptible and imidacloprid-resistant populations. The LC50 of cycloxaprid against the resistant adult, nymph and egg were 6.2, 11.5 and 111.3 mg L-1 , respectively, while they were 5.7, 8.9 and 129.4 mg L-1 for the susceptible population. In addition, when resistant adult of B. tabaci B was treated with LC30 of cycloxaprid (3.2 mg L-1 ), the net reproductive rate and female ratio of F1 generation B. tabaci were reduced. Moreover, the age-specific fecundity demonstrated the highest fecundity sharply decreased in cycloxaprid (7.0 offspring/ day) treated group compared with the control (26.0 offspring/ day). CONCLUSIONS Our results indicated that cycloxaprid is a promising insecticide for the management of B. tabaci and insecticide-induced resurgence might not occur after exposure of B. tabaci to low sublethal concentrations of cycloxaprid. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiyuan Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinqin Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huizhu Yuan
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Wang L, Wang Q, Wang Q, Rui C, Cui L. The feeding behavior and life history changes in imidacloprid-resistant Aphis gossypii glover (Homoptera: Aphididae). PEST MANAGEMENT SCIENCE 2020; 76:1402-1412. [PMID: 31622011 DOI: 10.1002/ps.5653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Imidacloprid (IMI) is a major neonicotinoid insecticide used to control Aphis gossypii Glover. However, resistance to IMI developed rapidly in A. gossypii. The feeding behavior and life history changes associated with IMI resistance were studied in A. gossypii. RESULTS The resistant population with a point mutation (R81T) in the nAChR β1 subunit showed an IMI resistance ratio of 58.12. This IMI-resistant A. gossypii became more active in finding an appropriate position for feeding. They made more intercellular apoplastic stylet pathway events (C) than the susceptible population. Moreover, the probing and feeding behavior of two aphid populations were dramatically altered by IMI. The phloem ingestion (E2) duration was significantly longer for IMI-resistant aphids on IMI-treated plants (WDI: 208.70 ± 17.38 min) than on control plants (WDI: 133.80 ± 16.37 min). However, IMI statistically reduced the ability of susceptible aphids to find and feed from the phloem. The number and duration of phloem-related activities were sharply decreased for the susceptible aphids treated with IMI. In addition, the resistant population showed an increased relative fitness of 1.36. The fecundity of IMI-resistant adults was dramatically higher than that of the susceptible population. This difference also led to an increase in the net reproductive rate (R0 ) for the IMI-resistant A. gossypii. CONCLUSIONS Imidacloprid provoked phloem-feeding more rapidly and effectively in IMI-resistant A. gossypii, but significantly suppressed the feeding of susceptible A. gossypii. Therefore, the resistance to IMI can result in stimulated feeding and fecundity and subsequent population outbreaks, which make the control of IMI-resistant A. gossypii more challenging. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinqin Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiyuan Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Chamuene A, Araújo TAD, Lopes MC, Ramos Pereira R, Berger PG, Picanço MC. Investigating the Natural Mortality of Aphis gossypii (Hemiptera: Aphididae) on Cotton Crops in Tropical Regions Using Ecological Life Tables. ENVIRONMENTAL ENTOMOLOGY 2020; 49:66-72. [PMID: 31840750 DOI: 10.1093/ee/nvz148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Studies on the natural factors contributing to pest regulation are fundamental to developing efficient integrated pest management programs. Chemical control is the main management method used for pests [e.g., Aphis gossypii (Glover)]. The studies of pest management with chemical control provide information that can be incorporated into integrated pest management programs to promote more sustainable pest control approaches. Here, we report the critical stages of A. gossypii and its abiotic and biotic natural mortality factors in cotton crops as a function of plant phenology using a life table. The critical stages of A. gossypii were the first and fourth instars. Together, the abiotic and biotic factors caused 94.31% of the mortality in the A. gossypii populations in cotton crops with plants in the vegetative, flowering, and fruiting stages. The key mortality factors were rainfall and predation. Syrphidae Allograpta exotica (Wiedemann) (Diptera: Syrphidae) and Chrysopidae Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) larvae, many Coccinellidae species Cycloneda sanguinea (L.) (Coleoptera: Coccinellidae), Eriopsis connexa (Germar) (Coleoptera: Coccinellidae), Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), Hippodamia convergens (Guérin-Meneville) (Coleoptera: Coccinellidae), Scymnus rubicundus (Erichson) (Coleoptera: Coccinellidae) and Stethorus punctillum (Weise) (Coleoptera: Coccinellidae), one Anthocoridae species Orius insidiosus (Say) (Hemiptera: Anthocoridae), and individuals from the Araneidae family were responsible for the predation of A. gossypii. The results obtained in this study provide support for the idea that efforts to preserve natural enemies (e.g., predators) and rainfall monitoring should be adapted due to their importance for the regulation of A. gossypii populations in all the phenological stages of cotton in tropical regions.
Collapse
Affiliation(s)
- António Chamuene
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Qi H, Liu T, Lu Q, Yang Q. Molecular Insights into the Insensitivity of Lepidopteran Pests to Cycloxaprid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:982-988. [PMID: 31909997 DOI: 10.1021/acs.jafc.9b06959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cycloxaprid (CYC) is effective in the control of hemipteran pests, but its bioactivity against lepidopteran pests is still unclear. Here, the bioactivity of CYC against lepidopteran pests was found to be much worse than that against hemipteran insects. To reveal the mechanism, the transcriptomes of CYC-treated and untreated Ostrinia furnacalis larvae were compared. Among the top 20 differentially expressed genes, 11 encode proteins involved in cuticle formation, while only one encodes a detoxifying enzyme. Thus, the cuticle appears to be important for the insensitivity of O. furnacalis to CYC. A pretreatment of O. furnacalis larvae with methoprene enhanced the bioactivity of CYC by 1.12-fold. Moreover, mixtures of CYC with graphene oxide increased the bioactivity of CYC by 1.88-fold. Because lepidopteran and hemipteran insects often harm crops at the same time, the work can help make full use of CYC and reduce the environmental impacts of using multiple pesticides.
Collapse
Affiliation(s)
- Huitang Qi
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
| | - Tian Liu
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
| | - Qiong Lu
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
| | - Qing Yang
- School of Bioengineering , Dalian University of Technology , Dalian 116024 , China
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| |
Collapse
|
25
|
Ullah F, Gul H, Wang X, Ding Q, Said F, Gao X, Desneux N, Song D. RNAi-Mediated Knockdown of Chitin Synthase 1 ( CHS1) Gene Causes Mortality and Decreased Longevity and Fecundity in Aphis gossypii. INSECTS 2019; 11:insects11010022. [PMID: 31888020 PMCID: PMC7023125 DOI: 10.3390/insects11010022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022]
Abstract
Chitin is a vital part of the insect exoskeleton and peritrophic membrane, synthesized by chitin synthase (CHS) enzymes. Chitin synthase 1 (CHS1) is a crucial enzyme in the final step of chitin biosynthetic pathway and consequently plays essential role towards insect growth and molting. RNA interference (RNAi) is an agent that could be used as an extremely target-specific and ecologically innocuous tactic to control different insect pests associated with economically important crops. The sole purpose of the current study is to use CHS1 as the key target gene against the cotton-melon aphid, Aphis gossypii, via oral feeding on artificial diets mixed with dsRNA-CHS1. Results revealed that the expression level of CHS1 gene significantly decreased after the oral delivery of dsRNA-CHS1. The knockdown of CHS1 gene caused up to 43%, 47%, and 59% mortality in third-instar nymph after feeding of dsCHS1 for 24, 48, and 72 h, respectively, as compared to the control. Consistent with this, significantly lower longevity (approximately 38%) and fecundity (approximately 48%) were also found in adult stage of cotton-melon aphids that were fed with dsCHS1 for 72 h at nymphal stage. The qRT-PCR analysis of gene expression demonstrated that the increased mortality rates and lowered longevity and fecundity of A. gossypii were attributed to the downregulation of CHS1 gene via oral-delivery-mediated RNAi. The results of current study confirm that CHS1 could be an appropriate candidate target gene for the RNAi-based control of cotton-melon aphids.
Collapse
Affiliation(s)
- Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Hina Gul
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Xiu Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Qian Ding
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Fazal Said
- Department of Agriculture, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Nicolas Desneux
- Université Côte d’Azur, INRA, CNRS, UMR ISA, 06000 Nice, France;
| | - Dunlun Song
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
- Correspondence:
| |
Collapse
|
26
|
Mostafiz MM, Hassan E, Shim JK, Lee KY. Insecticidal efficacy of three benzoate derivatives against Aphis gossypii and its predator Chrysoperla carnea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109653. [PMID: 31526922 DOI: 10.1016/j.ecoenv.2019.109653] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Plant-derived benzoates are known to have insecticidal and repellent activities, however, these effects have been evaluated thoroughly in only a few groups of insects. In this study, the insecticidal activities of three commercially available benzoates, methyl benzoate (MB), ethyl benzoate (EB), and vinyl benzoate (VB), were assessed against the cotton aphid, Aphis gossypii Glover, and its lacewing predator, Chrysoperla carnea Stephens. MB showed the highest contact toxicity against nymphs and adults of A. gossypii, as compared to those of EB and VB. Treatments with 1% MB, EB, and VB were 100.0%, 93.0% and 60.0% effective, respectively, against third-instar nymphs and 100.0%, 69.0%, and 39.0% effective, respectively, against adults of A. gossypii, as evaluated 24 h after application. A mixture of MB + EB showed higher efficacy than other benzoate combinations against A. gossypii. The efficacy of MB, EB, and VB against A. gossypii on cucumber plants under greenhouse conditions was 93.7%, 68.5%, and 56.6%, respectively. In addition, treatments with 1% MB, EB, and VB were 20.0%, 24.0%, and 12.0% effective, respectively, against first-instar larvae and 6.7%, 13.3%, and 6.7% effective, respectively, against adults of C. carnea at 24 h after treatment. Our results showed that the tested benzoates were less toxic to the predator C. carnea than to the pest A. gossypii. In addition, the aphid population was significantly lower in a treatment combining predation by C. carnea followed by use of 1% MB, compared with treatments of either 1% MB or predators alone. This study suggests that plant-derived benzoates are potential biopesticides for aphid control and are compatible with natural enemies in integrated pest management.
Collapse
Affiliation(s)
- Md Munir Mostafiz
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Errol Hassan
- School of Agriculture and Food Sciences, The University of Queensland Gatton, Queensland, 4343, Australia
| | - Jae-Kyoung Shim
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea; Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea; Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea
| | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea; Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea; Sustainable Agriculture Research Center, Kyungpook National University, Gunwi, Republic of Korea.
| |
Collapse
|
27
|
Transcriptome-based identification and characterization of genes responding to imidacloprid in Myzus persicae. Sci Rep 2019; 9:13285. [PMID: 31527769 PMCID: PMC6746728 DOI: 10.1038/s41598-019-49922-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 08/30/2019] [Indexed: 11/21/2022] Open
Abstract
Myzus persicae is a serious and widespread agricultural pest, against which, imidacloprid remains an effective control measure. However, recent reports indicate that this aphid has evolved and developed resistance to imidacloprid. This study aimed to elucidate the underlying mechanisms and genetic basis of this resistance by conducting comparative transcriptomics studies on both imidacloprid-resistant (IR) and imidacloprid-susceptible (IS) M. persicae. The comparative analysis identified 252 differentially expressed genes (DEGs) among the IR and IS M. persicae transcriptomes. These candidate genes included 160 and 92 genes that were down- and up-regulated, respectively, in the imidacloprid-resistant strain. Using functional classification in the GO and KEGG databases, 187 DEGs were assigned to 303 functional subcategories and 100 DEGs were classified into 45 pathway groups. Moreover, several genes were associated with known insecticide targets, cuticle, metabolic processes, and oxidative phosphorylation. Quantitative real-time PCR of 10 DEGs confirmed the trends observed in the RNA sequencing expression profiles. These findings provide a valuable basis for further investigation into the complicated mechanisms of imidacloprid resistance in M. persicae.
Collapse
|
28
|
Cheng X, Wang Y, Li W, Li Q, Luo P, Ye Q. Nonstereoselective foliar absorption and translocation of cycloxaprid, a novel chiral neonicotinoid, in Chinese cabbage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1593-1598. [PMID: 31279977 DOI: 10.1016/j.envpol.2019.06.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
Exploring traditional neonicotinoid pesticides substitutes has become one of the global scientific attentions because of their hazardous environmental impacts. Cycloxaprid (CYC) is considered to be a promising candidate alternative. But the environmental behaviors and fate of CYC in different planting system remain poorly understood. The accumulation of 14C-labeled CYC stereoisomers within different parts of Chinese cabbage (Brassica chinensis L.) was investigated, with a particular focus on the foliar absorption, translocation and stereoselectivity of CYC, during a laboratory trial. In general, the stereoisomers 14C-5R,8S-CYC and 14C-5S,8R-CYC, their metabolites, as well as the breakdown and reaction products can be transferred in both acropetal and basipetal directions. Most of the two stereoisomers absorbed by plants remained in the treated leaves, whereas a small amount was distributed to the roots. The amount of 14C in the stalks varied among the experimental time points. At 192 h after treatment (HAT), the detected radioactivity of both 14C-5R,8S-CYC and 14C-5S,8R-CYC in the leaves above the treated leaf (LATL) was higher than that in the leaves below the treated leaf (LBTL). However, the stereoisomers of CYC underwent nonstereoselective absorption and translocation in this trial. This information implies that racemic CYC and its metabolites should be a main research focus. Thus, the obtained results provide implications for a more accurate prediction about the risk assessment of CYC, which will be helpful for guiding its rational use as well as securing the ecological environment safety and human health.
Collapse
Affiliation(s)
- Xi Cheng
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Yichen Wang
- Hangzhou Botanical Garden, Hangzhou 310013, PR China.
| | - Wei Li
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Qinkan Li
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Peiwen Luo
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
29
|
Impact of low lethal concentrations of buprofezin on biological traits and expression profile of chitin synthase 1 gene (CHS1) in melon aphid, Aphis gossypii. Sci Rep 2019; 9:12291. [PMID: 31444364 PMCID: PMC6707215 DOI: 10.1038/s41598-019-48199-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Buprofezin, a chitin synthesis inhibitor that can be used for the control of hemipteran pests, especially melon aphid, Aphis gossypii. The impact of low lethal concentrations of buprofezin on the biological parameters and expression profile of CHS1 gene were estimated for two successive generations of A. gossypii. The present result shows that the LC15 and LC30 of buprofezin significantly decreased the fecundity and longevity of both generations. Exposure of F0 individuals to both concentrations delay the developmental period in F1. Furthermore, the survival rate, intrinsic rate of increase (r), finite rate of increase (λ), and net reproductive rate (R0) were reduced significantly in progeny generation at both concentrations. However, the reduction in gross reproductive rate (GRR) was observed only at LC30. Although, the mean generation time (T) prolonged substantially at LC30. Additionally, expression of the CHS1 gene was significantly increased in F0 adults. Significant increase in the relative abundance of CHS1 mRNA transcript was also observed at the juvenile and adult stages of F1 generation following exposure to LC15 and LC30. Therefore, our results show that buprofezin could affect the biological traits by diminishing the chitin contents owing to the inhibition of chitin synthase activity in the succeeding generation of melon aphid.
Collapse
|
30
|
Liang PZ, Ma KS, Chen XW, Tang CY, Xia J, Chi H, Gao XW. Toxicity and Sublethal Effects of Flupyradifurone, a Novel Butenolide Insecticide, on the Development and Fecundity of Aphis gossypii (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:852-858. [PMID: 30590572 DOI: 10.1093/jee/toy381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Indexed: 06/09/2023]
Abstract
The cosmopolitan pest Aphis gossypii (Glover) causes considerable economic losses on various crops by its feeding damage and transmitting diseases around the world. Flupyradifurone is a novel butenolide pesticide; its toxicity on A. gossypii parent generation (F0) was estimated following treatment with LC25 concentration for 48 h. The adult longevity and fecundity of the F0 individuals treated by flupyradifurone showed no significant decrease in comparison with the control. Life table method was used to evaluate the sublethal effects on progeny population (F1). Results showed that the development time of the fourth instar and the preadult as well as the total pre-reproductive period were significantly prolonged, while their fecundity was significantly decreased compared with the control. Additionally, the intrinsic rate of increase (r), the finite rate of increase (λ), and the net reproductive rate (R0) of F1 were all significantly lower in the group treated by LC25 than in the control group. These results reveal that the sublethal concentration of flupyradifurone could suppress the population growth of A. gossypii and indicate that this novel insecticide may be as a useful tool in pest management.
Collapse
Affiliation(s)
- Ping-Zhuo Liang
- Department of Entomology, China Agricultural University, Beijing, PR China
| | - Kang-Sheng Ma
- Department of Entomology, China Agricultural University, Beijing, PR China
| | - Xue-Wei Chen
- Department of Entomology, China Agricultural University, Beijing, PR China
| | - Chun-Yan Tang
- Department of Entomology, China Agricultural University, Beijing, PR China
| | - Jin Xia
- Department of Entomology, China Agricultural University, Beijing, PR China
| | - Hsin Chi
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Xi-Wu Gao
- Department of Entomology, China Agricultural University, Beijing, PR China
| |
Collapse
|
31
|
Zhang XP, Jing TF, Zhang DX, Luo J, Li BX, Liu F. Assessment of ethylene glycol diacetate as an alternative carrier for use in agrochemical emulsifiable concentrate formulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:349-355. [PMID: 30059879 DOI: 10.1016/j.ecoenv.2018.07.090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
The conventional emulsifiable concentrate (EC) formulation contains a large amount of aromatic solvents, which causes adverse effects to both the environment and human health due to the toxicity of the solvents. Here, we developed a 2.5% lambda-cyhalothrin EC formulation with ethylene glycol diacetate (EGDA) as the solvent, and the developed formulation serves as an environmental-friendly alternative to overcome the adverse effects of aromatic solvents. The physicochemical characterizations, wettability properties, phytotoxicity and bioassays of the EGDA-EC formulation were systematically investigated and compared with that of the EC formulation with xylene as the solvent. The results showed that both EC formulations had excellent emulsion properties and storage stabilities. Additionally, the EGDA-EC formulation possessed a higher flash point (96 °C), indicating safer production, storage and transport. The retentions of the EGDA-EC sample on leaves were 1.22-1.46-fold higher than that of the xylene-EC sample, and the EGDA-EC also exhibited lower surface tensions and contact angles, which would benefit decreasing drift-off and improving utilization. Furthermore, the bioassays demonstrated that the EGDA-EC formulation had lower acute toxicity to aquatic organisms and higher control efficacy to target insects compared with the xylene-EC formulation. Therefore, EGDA is a promising carrier for oil-soluble agrochemicals to improve their application performance and reduce their adverse effects.
Collapse
Affiliation(s)
- Xian-Peng Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Tong-Fang Jing
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Da-Xia Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jian Luo
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Bei-Xing Li
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Feng Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
32
|
Fang Y, Xie P, Dong C, Han Y, Tang T, Liu Y, Zhong J, Bai L, Zhou X. Cross-Resistance and Baseline Susceptibility of Brown Planthopper Nilaparvata lugens (Hemiptera: Delphacidae) From China to Cycloxaprid. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2359-2363. [PMID: 30085244 DOI: 10.1093/jee/toy222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 06/08/2023]
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), is a serious pest of rice. At present, the application of chemical insecticides is the main control option for this pest. BPH has evolved resistance to various classes of insecticides. Cycloxaprid, a new oxabridged cis-configuration neonicotinoid insecticide, is a (nitromethylene) imidazole analog of imidacloprid. This study focused on the baseline susceptibility to cycloxaprid of 18 field samples of N. lugens collected from nine geographical locations in China, as well as possible cross-resistances between cycloxaprid and other important neonicotinoids in one laboratory-selected resistant strain of N. lugens to imidacloprid. The median lethal concentration (LC50) of cycloxaprid for the 18 samples ranged from 1.26 to 14.90 mg/liter. Furthermore, the cross-resistance studies showed that the imidacloprid-resistant strain exhibited a 27.63-fold resistance to imidacloprid and lower levels of cross-resistance to acetamiprid (16.64-fold), thiacloprid (12.64-fold), and nitenpyram (16.90-fold); however, there was no cross-resistance to cycloxaprid (1.92-fold). These results indicate that cycloxaprid could be an effective alternative insecticide for the management of N. lugens, which is urgently needed to prevent or delay further increases in insecticide resistance in N. lugens.
Collapse
Affiliation(s)
- Yong Fang
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Pan Xie
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
| | - Chunhua Dong
- Institute of Soils and Fertilizers, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yongqiang Han
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Tao Tang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yang Liu
- Institute of Rice Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jie Zhong
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Lianyang Bai
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiaomao Zhou
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
33
|
Sublethal effects of the novel cis-nitromethylene neonicotinoid cycloxaprid on the cotton aphid Aphis gossypii Glover (Hemiptera: Aphididae). Sci Rep 2018; 8:8915. [PMID: 29891984 PMCID: PMC5995959 DOI: 10.1038/s41598-018-27035-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 04/22/2018] [Indexed: 12/30/2022] Open
Abstract
Cycloxaprid is a novel cis-configuration neonicotinoid insecticide that is effective against a wide range of insect pests, including those that are resistant to conventional neonicotinoids. In this study, life table parameters were applied to estimate the cycloxaprid-induced sublethal effects on Aphis gossypii. The results indicated that the LC20 (0.81 mg a.i. L−1) of cycloxaprid significantly decreased the pre-oviposition period in first-progeny adults. Additionally, the life expectancy of F1 generation adults was reduced. However, no significant differences were observed for the intrinsic rate of increase (ri), finite rate of increase (λ), net reproductive rate (R0), or mean generation time (T) of F1 individuals. Therefore, resurgence in the A. gossypii population induced by a low concentration of cycloxaprid might not occur. Additionally, the response of the detoxification enzymes showed that cycloxaprid at the LC20 inhibited cytochrome P450 monooxygenase (P450) and glutathione S-transferase (GST) activities at 6 h after exposure. Such inhibition of P450 and GST activities could lead to a decrease in the metabolism of cycloxaprid, which would increase the efficacy of cycloxaprid. Therefore, our results contribute to the assessment of the overall effects of cycloxaprid on A. gossypii.
Collapse
|
34
|
Yang YX, Yu N, Zhang JH, Zhang YX, Liu ZW. Induction of P450 genes in Nilaparvata lugens and Sogatella furcifera by two neonicotinoid insecticides. INSECT SCIENCE 2018; 25:401-408. [PMID: 28092127 DOI: 10.1111/1744-7917.12440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/20/2016] [Accepted: 12/24/2016] [Indexed: 06/06/2023]
Abstract
Nilaparvata lugens and Sogatella furcifera are two primary planthoppers on rice throughout Asian countries and areas. Neonicotinoid insecticides, such as imidacloprid (IMI), have been extensively used to control rice planthoppers and IMI resistance consequently occurred with an important mechanism from the over-expression of P450 genes. The induction of P450 genes by IMI may increase the ability to metabolize this insecticide in planthoppers and increase the resistance risk. In this study, the induction of P450 genes was compared in S. furcifera treated with IMI and nitromethyleneimidazole (NMI), in two planthopper species by IMI lethal dose that kills 85% of the population (LD85 ), and in N. lugens among three IMI doses (LD15 , LD50 and LD85 ). When IMI and NMI at the LD85 dose were applied to S. furcifera, the expression changes in most P450 genes were similar, including the up-regulation of nine genes and down-regulation of three genes. In terms of the expression changes in 12 homologous P450 genes between N. lugens and S. furcifera treated with IMI at the LD85 dose, 10 genes had very similar patterns, such as up-regulation in seven genes, down-regulation in one gene and no significant changes in two genes. When three different IMI doses were applied to N. lugens, the changes in P450 gene expression were much different, such as up-regulation in four genes at all doses and dose-dependent regulation of the other nine genes. For example, CYP6AY1 could be induced by all IMI doses, while CYP6ER1 was only up-regulated by the LD50 dose, although both genes were reported important in IMI resistance. In conclusion, P450 genes in two planthopper species showed similar regulation patterns in responding to IMI, and the two neonicotinoid insecticides had similar effects on P450 gene expression, although the regulation was often dose-dependent.
Collapse
Affiliation(s)
- Yuan-Xue Yang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian-Hua Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi-Xi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
35
|
Cao L, Zhang H, Li F, Zhou Z, Wang W, Ma D, Yang L, Zhou P, Huang Q. Potential dermal and inhalation exposure to imidacloprid and risk assessment among applicators during treatment in cotton field in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1195-1201. [PMID: 29929232 DOI: 10.1016/j.scitotenv.2017.12.238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 06/08/2023]
Abstract
Quantifying operator exposure to pesticides is a key component of the decision-making procedure for risk assessment. China is the largest cotton-planting country in the world. Dense cotton planting patterns and pesticide overuse potentially place Chinese cotton farmers at high levels of exposure risk. Using whole-body dosimetry during backpack spraying application in cotton filed, the present study monitored potential dermal and inhalation exposure to the insecticide imidacloprid. For forward spraying (when the operators walked forward), the total potential dermal and inhalation exposure was 2059mg/kg of active ingredient (ai), corresponding to 0.21% of the applied quantity of the insecticide. However, the total exposure of backward walking (188mg/kg of ai) was approximately 11 times lower than that of forward walking. The upper body parts (head, chest, back and arms) were the most exposed. The potential inhalation exposure contributed to <0.1% of the total exposure. The exposure risk to imidacloprid inherent in these agricultural procedures was evaluated by margin of exposure values and was found to be safe under the present cotton treatment scenarios. In general, similar body exposure and distribution between Allura Red and imidacloprid verify Allura Red's feasibility as an environmentally friendly pesticide surrogate for exposure assessment.
Collapse
Affiliation(s)
- Lidong Cao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Hongjun Zhang
- Institute for the Control of Agrochemicals, Ministry of Agriculture, No. 22 Maizidian Street, Beijing 110000, China
| | - Fengmin Li
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Zhaolu Zhou
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Wenliang Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Dukang Ma
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Li Yang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Puguo Zhou
- Institute for the Control of Agrochemicals, Ministry of Agriculture, No. 22 Maizidian Street, Beijing 110000, China.
| | - Qiliang Huang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
36
|
Zhang Y, Han Y, Yang Q, Wang L, He P, Liu Z, Li Z, Guo H, Fang J. Resistance to cycloxaprid in Laodelphax striatellus is associated with altered expression of nicotinic acetylcholine receptor subunits. PEST MANAGEMENT SCIENCE 2018; 74:837-843. [PMID: 28991400 DOI: 10.1002/ps.4757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/23/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Cycloxaprid is a new oxabridged cis-configuration neonicotinoid insecticide, the resistance development potential and underlying resistance mechanism of which were investigated in the small brown planthopper, Laodelphax striatellus (Fallén), an important agricultural pest of rice. RESULTS A cycloxaprid-resistant strain (YN-CPD) only achieved 10-fold higher resistance, in contrast to 106-fold higher resistance to buprofezin and 332-fold higher resistance to chlorpyrifos achieved after exposure to similar selection pressure, and the cycloxaprid selected line showed no cross-resistance to the buprofezin and chlorpyrifos-selected resistance strains. Moreover, we identified 10 nicotinic acetylcholine receptor (nAChR) subunits from the transcriptome of L. striatellus, and six segments had open reading frames (ORFs). While we did not find mutations in the nAChR genes of L. striatellus, subunits Lsα1 and Lsβ1 exhibited, respectively, 9.60-fold and 3.36-fold higher expression in the resistant strain, while Lsα8 exhibited 0.44-fold lower expression. Suppression of Lsα1 through ingestion of dsLsα1 led to an increase in susceptibility to cycloxaprid. CONCLUSION The findings indicate that resistance to cycloxaprid develops slowly compared with resistance to other chemicals and without cross-resistance to chlorpyrifos or buprofezin; over-expressed Lsα1 is associated with low cycloxaprid resistance levels, but the importance of over-expressed Lsβ1 and reduced expression of Lsα8 could not be excluded. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yueliang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Yangchun Han
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Qiong Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Lihua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zewen Liu
- Key Laboratory of Monitoring and Management of Plant Disease and Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| |
Collapse
|
37
|
Qi S, Wang D, Zhu L, Teng M, Wang C, Xue X, Wu L. Neonicotinoid insecticides imidacloprid, guadipyr, and cycloxaprid induce acute oxidative stress in Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:352-358. [PMID: 29096261 DOI: 10.1016/j.ecoenv.2017.10.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/26/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Cycloxaprid (CYC) and guadipyr (GUA) are two new and promising neonicotinoid insecticides whose effects on Daphnia magna are as yet unknown. In this study, the acute toxicities of CYC and GUA to D. magna, including immobilization and embryo-hatching inhibition, and their effects on antioxidant enzymes and related gene expression were determined after a 48-h exposure. Imidacloprid (IMI) was evaluated at the same time as a reference agent. The 48-h EC50 values of IMI, GUA, and CYC for neonate immobilization were 13.0-16.5mg/L and for embryo hatching were 11.3-16.2mg/L. The specific activity of the enzymes superoxide dismutase (SOD) and catalase (CAT) were interfered by IMI, but not by GUA and CYC, while the activity of acetylcholinesterase (AChE) was significantly increased by IMI, but inhibited by GUA and CYC. The relative expressions of the Sod-Cu/Zn, Sod-Mn, Cat, and Ache genes were usually inhibited by IMI, GUA, and CYC, except for Cat by CYC, Ache by GUA, and Sods by IMI. For vitellogenin genes with a SOD-like domain (Vtg1/2-sod), relative expression was increased by IMI and inhibited by GUA and CYC, indicating that IMI, GUA, and CYC have potential toxicity toward reproduction. CYC and GUA are highly active against IMI-resistant pests, and considering the similar toxicity of IMI to D. magna, CYC and GUA are suitable for use in future integrated pest management systems.
Collapse
Affiliation(s)
- Suzhen Qi
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; College of Sciences, China Agricultural University, Beijing 100093, PR China
| | - Donghui Wang
- College of Life Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, PR China
| | - Lizhen Zhu
- College of Sciences, China Agricultural University, Beijing 100093, PR China
| | - Miaomiao Teng
- College of Sciences, China Agricultural University, Beijing 100093, PR China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing 100093, PR China
| | - Xiaofeng Xue
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Liming Wu
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China.
| |
Collapse
|
38
|
Zhu KY. Preface to the Special Issue: Insecticide Toxicology in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 132:1-2. [PMID: 27521906 DOI: 10.1016/j.pestbp.2016.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506.
| |
Collapse
|