1
|
Nemcova M, Zukal J, Seidlova V, Bednarikova S, Havelkova B, Dundarova H, Pikula J. Temperature-dependent in vitro hepatocytotoxicity of insecticides in bats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104544. [PMID: 39216797 DOI: 10.1016/j.etap.2024.104544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Heterothermic insectivorous bats are supposed to experience differential adverse effects of insecticidal pollutants depending on their seasonal and/or daily variation of metabolic and detoxification rates. Here, we investigated effects of imidacloprid, cypermethrin and fipronil on Nyctalus noctula bat-derived hepatocytes through cytotoxicity, cell inhibition and death at different concentrations (0.01, 0.1, 1, 10, 100, 1000 μg/ml), exposure times (10, 24, 48 hrs), incubation temperatures simulating hibernation (8 °C), daily torpor (20 °C), normothermy (37 °C) and active flight (40 °C), and cytochrome P450 addition. Toxic effects were significantly influenced by temperature (p < 0.05), with strong cytotoxicity after 10 hour exposure to fipronil or cypermethrin at 37 and 40 °C, cell replication inhibition (all insecticides at 8 °C) and cellular stimulation, with slight culture proliferation after 48 hours (all insecticides at 40 °C). Replacing protected chiropterans with cell cultures is a way to assess and extrapolate risks of insecticides for bats.
Collapse
Affiliation(s)
- Monika Nemcova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno 612 42, Czech Republic.
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno 603 65, Czech Republic
| | - Veronika Seidlova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno 612 42, Czech Republic
| | - Sarka Bednarikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno 612 42, Czech Republic
| | - Barbora Havelkova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno 612 42, Czech Republic
| | - Heliana Dundarova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd, Sofia 1000, Bulgaria
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno 612 42, Czech Republic.
| |
Collapse
|
2
|
Wang Y, Tian Y, Zhou D, Fang J, Cao J, Shi C, Lei Y, Fu K, Guo W, Jiang W. Expression and Functional Analysis of Two Cytochrome P450 Monooxygenase Genes and a UDP-Glycosyltransferase Gene Linked with Thiamethoxam Resistance in the Colorado Potato Beetle. INSECTS 2024; 15:559. [PMID: 39194764 DOI: 10.3390/insects15080559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Cytochrome P450 monooxygenases (P450s) and UDP-glycosyltransferases (UGTs) are involved in the evolution of insecticide resistance. Leptinotarsa decemlineata (Say), the Colorado potato beetle (CPB), is a notorious insect that has developed resistance to various insecticides including neonicotinoids. This study investigated whether the differentially expressed P450 genes CYP9Z140 and CYP9AY1 and UGT gene UGT321AP1, found in our transcriptome results, conferred resistance to thiamethoxam in L. decemlineata. Resistance monitoring showed that the sampled field populations of L. decemlineata adults collected from Urumqi City and Qapqal, Jimsar, and Mulei Counties of Xinjiang in 2021-2023 developed low levels of resistance to thiamethoxam with resistance ratios ranging from 6.66- to 9.52-fold. Expression analyses indicated that CYP9Z140, CYP9AY1, and UGT321AP1 were significantly upregulated in thiamethoxam-resistant populations compared with susceptible populations. The expression of all three genes also increased significantly after thiamethoxam treatment compared with the control. Spatiotemporal expression patterns showed that the highest expression of CYP9Z140 and CYP9AY1 occurred in pupae and the midgut, whereas UGT321AP1 was highly expressed in adults and Malpighian tubules. Knocking down all three genes individually or simultaneously using RNA interference increased the sensitivity of adult L. decemlineata to thiamethoxam. These results suggest that overexpression of CYP9Z140, CYP9AY1, and UGT321AP1 contributes to the development of thiamethoxam resistance in L. decemlineata and provides a scientific basis for improving new resistance management of CPB.
Collapse
Affiliation(s)
- Yaqi Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Yitong Tian
- China State Farms Ecnomic Development Center/South Subtropical Crops Center Ministry of Agricultureand Rural Affairs of the People's Republic of China, Beijing 100122, China
| | - Dongdi Zhou
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Jiayi Fang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Jingwei Cao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Chengcheng Shi
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Yixuan Lei
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Kaiyun Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China
| | - Wenchao Guo
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China
| | - Weihua Jiang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
| |
Collapse
|
3
|
Ul Haq I, Zhang KX, Gou Y, Hajjar D, Makki AA, Alkherb WAH, Ali H, Liu C. Transcriptomic and biochemical insights into fall armyworm ( Spodoptera frugiperda) responses on silicon-treated maize. PeerJ 2024; 12:e16859. [PMID: 38410805 PMCID: PMC10896081 DOI: 10.7717/peerj.16859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
Background The fall armyworm, Spodoptera frugiperda, is an agricultural pest of significant economic concern globally, known for its adaptability, pesticide resistance, and damage to key crops such as maize. Conventional chemical pesticides pose challenges, including the development of resistance and environmental pollution. The study aims to investigate an alternative solution: the application of soluble silicon (Si) sources to enhance plant resistance against the fall armyworm. Methods Silicon dioxide (SiO2) and potassium silicate (K2SiO3) were applied to maize plants via foliar spray. Transcriptomic and biochemical analyses were performed to study the gene expression changes in the fall armyworm feeding on Si-treated maize. Results Results indicated a significant impact on gene expression, with a large number of differentially expressed genes (DEGs) identified in both SiO2 and K2SiO3 treatments. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified critical DEGs involved in specific pathways, including amino acid, carbohydrate, lipid, energy, xenobiotics metabolisms, signal transduction, and posttranslational modification, significantly altered at both Si sources. Biochemical analyses further revealed that Si treatments inhibited several enzyme activities (glutamate dehydrogenase, trehalase, glucose-6-phosphate dehydrogenase, chitinase, juvenile hormone esterase, and cyclooxygenase while simultaneously inducing others (total protein, lipopolysaccharide, fatty acid synthase, ATPase, and cytochrome P450), thus suggesting a toxic effect on the fall armyworm. In conclusion, Si applications on maize influence the gene expression and biochemical activities of the fall armyworm, potentially offering a sustainable pest management strategy.
Collapse
Affiliation(s)
- Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ke-Xin Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yuping Gou
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Dina Hajjar
- College of Science, Department of Biochemistry, University of Jeddah, Jeddah, Saudi Arabia
| | - Arwa A Makki
- College of Science, Department of Biochemistry, University of Jeddah, Jeddah, Saudi Arabia
| | - Wafa A H Alkherb
- Department of Biology, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Tu C, Zhang Y, Zhu P, Sun L, Xu P, Wang T, Luo J, Yu J, Xu L. Enhanced toxicity of entomopathogenic fungi Beauveria bassiana with bacteria expressing immune suppressive dsRNA in a leaf beetle. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105431. [PMID: 37248009 DOI: 10.1016/j.pestbp.2023.105431] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023]
Abstract
The entomopathogenic fungus is recognized as an ideal alternative to chemical pesticides, nonetheless, its efficacy is often limited by insect's innate immune system. The suppression of the host immunity may overcome the obstacle and promote the toxicity of the fungi. Here, by using an entomopathogenic fungus Beauveria bassiana and immune genes dsRNA-expressing bacteria, we explored the potentially synergistic toxicity of the two agents on a leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae). We first determined the susceptibilities of P. versicolora to a B. bassiana 476 strain (hereafter referred to Bb476). And the immune genes were identified based on the transcriptome of Bb476 challenged beetles. Subsequently, five immune genes (PGRP1, Toll1, Domeless,SPN1,and Lysozyme) were targeted by feeding dsRNA-expressing bacteria, which produced a 71.4, 39.0, 72.0, 49.0, and 68.7% gene silencing effect, respectively. Furthermore, we found a significantly increased mortality of P. versicolora when combined the Bb476 and the immune suppressive dsRNAs. Taking together, this study highlights the importance of insect immunity in the defense of entomopathogens and also paves the way toward the development of a more efficient pest management strategy that integrates both entomopathogens and immune suppressive dsRNAs.
Collapse
Affiliation(s)
- Chengjie Tu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yuxin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Peipei Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Liuwei Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Pei Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Tianjing Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jingya Yu
- Institute of Plant Protection, Wuhan Institute of Landscape Architecture, Wuhan, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
5
|
Wang Z, Huang W, Liu Z, Zeng J, He Z, Shu L. The neonicotinoid insecticide imidacloprid has unexpected effects on the growth and development of soil amoebae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161884. [PMID: 36716868 DOI: 10.1016/j.scitotenv.2023.161884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Neonicotinoid pesticides are the most widely used insecticides worldwide and have become a global environmental issue. Previous studies have shown that imidacloprid, the most used neonicotinoid, can negatively affect a wide range of organisms, including non-target insects, fish, invertebrates, and mammals. Imidacloprid can also accumulate and persist in soils, posing threats to the terrestrial ecosystem. However, we know little about one ecologically important group of organisms, the single-celled soil protists. In this study, we used a soil amoeba, Dictyostelium discoideum, to test whether and how imidacloprid affects the growth and development of soil amoebae. We provide the first empirical evidence that environmental concentrations of imidacloprid negatively impact the fitness and development of soil amoebae. In addition, the adverse effects did not show a dose-response relationship with increased imidacloprid concentrations, where no significant difference was observed among the treatment groups. Further transcriptome analyses showed that imidacloprid affected amoeba's key DEGs related to phagocytosis, cell division, morphogenesis, and cytochrome P450. Moreover, soil amoebae show both conserved and novel transcriptional responses to imidacloprid. In conclusion, this study has expanded the non-target list of imidacloprid from animals and plants to single-celled protists, and we believe the impact of neonicotinoid pesticides on the microbiome is significantly underestimated and deserves more studies.
Collapse
Affiliation(s)
- Zihe Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Huang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiwei Liu
- School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Jiaxiong Zeng
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Bastarache P, Bouafoura R, Omakele E, Moffat CE, Vickruck JL, Morin PJ. Spinosad-associated modulation of select cytochrome P450s and glutathione S-transferases in the Colorado potato beetle, Leptinotarsa decemlineata. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21993. [PMID: 36546461 DOI: 10.1002/arch.21993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is an insect pest that threatens potato crops. Multiple options exist to limit the impact of this pest even though insecticides remain a primary option for its control. Insecticide resistance has been reported in Colorado potato beetles and a better understanding of the molecular players underlying such process is of utmost importance to optimize the tools used to mitigate the impact of this insect. Resistance against the insecticide spinosad has been reported in this insect and this work thus aims at exploring the expression of targets previously associated with insecticide response in Colorado potato beetles exposed to this compound. Amplification and quantification of transcripts coding for cytochrome P450s and glutathione S-transferases were conducted via qRT-PCR in insects treated with varying doses of spinosad and for different time duration. This approach notably revealed differential expression of CYP6a23 and CYP12a5 in insects exposed to low doses of spinosad for 4 h as well as modulation of CYP6a13, CYP6d4, GST, GST1, and GST1-Like in insects treated with high doses of spinosad for the same duration. RNAi-based targeting of CYP4g15 and CYP6a23 was associated with marked reduction of transcript expression 7 days following dsRNA injection and reduction of the former had a marked impact on insect viability. In general, results presented here provide novel information regarding the expression of transcripts relevant to spinosad response in Colorado potato beetles and reveal a novel target to consider in the development of RNAi-based strategies aimed at this potato pest.
Collapse
Affiliation(s)
- Pierre Bastarache
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Raed Bouafoura
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Enock Omakele
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Chandra E Moffat
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, Canada
| | - Jess L Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| |
Collapse
|
7
|
Siddiqui JA, Luo Y, Sheikh UAA, Bamisile BS, Khan MM, Imran M, Hafeez M, Ghani MI, Lei N, Xu Y. Transcriptome analysis reveals differential effects of beta-cypermethrin and fipronil insecticides on detoxification mechanisms in Solenopsis invicta. Front Physiol 2022; 13:1018731. [PMID: 36277215 PMCID: PMC9583148 DOI: 10.3389/fphys.2022.1018731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Insecticide resistance poses many challenges in insect pest control, particularly in the control of destructive pests such as red imported fire ants (Solenopsis invicta). In recent years, beta-cypermethrin and fipronil have been extensively used to manage invasive ants, but their effects on resistance development in S. invicta are still unknown. To investigate resistance development, S. invicta was collected from populations in five different cities in Guangdong, China. The results showed 105.71- and 2.98-fold higher resistance against fipronil and beta-cypermethrin, respectively, in the Guangzhou population. The enzymatic activities of acetylcholinesterase, carboxylases, and glutathione S-transferases significantly increased with increasing beta-cypermethrin and fipronil concentrations. Transcriptomic analysis revealed 117 differentially expressed genes (DEGs) in the BC-ck vs. BC-30 treatments (39 upregulated and 78 downregulated), 109 DEGs in F-ck vs. F-30 (33 upregulated and 76 downregulated), and 499 DEGs in BC-30 vs. F-30 (312 upregulated and 187 downregulated). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEGs associated with insecticide resistance were significantly enriched in metabolic pathways, the AMPK signaling pathway, the insulin signaling pathway, carbon metabolism, peroxisomes, fatty acid metabolism, drug metabolism enzymes and the metabolism of xenobiotics by cytochrome P450. Furthermore, we found that DEGs important for insecticide detoxification pathways were differentially regulated under both insecticide treatments in S. invicta. Comprehensive transcriptomic data confirmed that detoxification enzymes play a significant role in insecticide detoxification and resistance development in S. invicta in Guangdong Province. Numerous identified insecticide-related genes, GO terms, and KEGG pathways indicated the resistance of S. invicta workers to both insecticides. Importantly, this transcriptome profile variability serves as a starting point for future research on insecticide risk evaluation and the molecular mechanism of insecticide detoxification in invasive red imported fire ants.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou, China
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Yuanyuan Luo
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Yuanyuan Luo, ; Yijuan Xu,
| | | | | | - Muhammad Musa Khan
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Muhammad Imran
- State Key Laboratory for the Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Imran Ghani
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Nie Lei
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
- *Correspondence: Yuanyuan Luo, ; Yijuan Xu,
| |
Collapse
|
8
|
Pathak J, Ramasamy GG, Agrawal A, Srivastava S, Basavaarya BR, Muthugounder M, Muniyappa VK, Maria P, Rai A, Venkatesan T. Comparative Transcriptome Analysis to Reveal Differentially Expressed Cytochrome P450 in Response to Imidacloprid in the Aphid Lion, Chrysoperla zastrowi sillemi (Esben-Petersen). INSECTS 2022; 13:900. [PMID: 36292848 PMCID: PMC9604014 DOI: 10.3390/insects13100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The aphid lion, Chrysoperla zastrowi sillemi (Neuroptera: Chrysopidae) is a highly effective beneficial predator of many agricultural pests and has developed resistance to several insecticides. Understanding the molecular mechanism of insecticide resistance in the predators is crucial for its effective application in IPM programs. Therefore, transcriptomes of imidacloprid-resistant and susceptible strains have been assessed using RNA-seq. Cytochrome P450 is one of the important gene families involved in xenobiotic metabolism. Hence, our study focused on the CYP gene family where mining, nomenclature, and phylogenetic analysis revealed a total of 95 unique CYP genes with considerable expansion in CYP3 and CYP4 clans. Further, differential gene expression (DGE) analysis revealed ten CYP genes from CYP3 and CYP4 clans to be differentially expressed, out of which nine genes (CYP4419A1, CYP4XK1, CYP4416A10, CYP4416A-fragment8, CYP6YL1, CYP6YH6, CYP9GK-fragment16, CYP9GN2, CYP9GK6) were downregulated and one (CYP9GK3) was upregulated in the resistant strain as compared to the susceptible strain. Expression validation by quantitative real-time PCR (qRT-PCR) is consistent with the DGE results. The expansion and differential expression of CYP genes may be an indicator of the capacity of the predator to detoxify a particular group of insecticides.
Collapse
Affiliation(s)
- Jyoti Pathak
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Gandhi Gracy Ramasamy
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Aditi Agrawal
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Subhi Srivastava
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Bhusangar Raghavendra Basavaarya
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Mohan Muthugounder
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Venugopal Kundalagurki Muniyappa
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Pratheepa Maria
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistical Research Institute, Pusa, New Delhi 110012, India
| | - Thiruvengadam Venkatesan
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| |
Collapse
|
9
|
Kaleem Ullah RM, Gökçe A, Bakhsh A, Salim M, Wu HY, Naqqash MN. Insights into the Use of Eco-Friendly Synergists in Resistance Management of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). INSECTS 2022; 13:insects13090846. [PMID: 36135547 PMCID: PMC9500713 DOI: 10.3390/insects13090846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 05/31/2023]
Abstract
The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is the most notorious insect pest of potato globally. Injudicious use of insecticides for management of this pest has resulted in resistance to all major groups of insecticides along with many human, animal health, and environmental concerns. Additionally, the input cost of insecticide development/discovery is markedly increasing because each year thousands of chemicals are produced and tested for their insecticidal properties, requiring billions of dollars. For the management of resistance in insect pests, synergists can play a pivotal role by reducing the application dose of most insecticides. These eco-friendly synergists can be classified into two types: plant-based synergists and RNAi-based synergists. The use of plant-based and RNAi-based synergists in resistance management of insect pests can give promising results with lesser environmental side effects. This review summarizes the resistance status of CPB and discusses the potential advantage of plant-based and RNAi-based synergists for CPB resistance management. It will motivate researchers to further investigate the techniques of using plant- and RNAi-based synergists in combination with insecticides.
Collapse
Affiliation(s)
- Rana Muhammad Kaleem Ullah
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College of Guangxi University, Nanning 530004, China
| | - Ayhan Gökçe
- Department of Plant Production & Technologies, Faculty of Agricultural Sciences and Technologies, Niğ de Omer Halisdemir University, Niğde 51200, Turkey
| | - Allah Bakhsh
- Department of Plant Production & Technologies, Faculty of Agricultural Sciences and Technologies, Niğ de Omer Halisdemir University, Niğde 51200, Turkey
| | - Muhammad Salim
- Department of Plant Production & Technologies, Faculty of Agricultural Sciences and Technologies, Niğ de Omer Halisdemir University, Niğde 51200, Turkey
| | - Hai Yan Wu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College of Guangxi University, Nanning 530004, China
| | - Muhammad Nadir Naqqash
- Department of Plant Production & Technologies, Faculty of Agricultural Sciences and Technologies, Niğ de Omer Halisdemir University, Niğde 51200, Turkey
- Institute of Plant Protection, MNS—University of Agriculture Multan Pakistan, Multan 60000, Pakistan
| |
Collapse
|
10
|
Bouafoura R, Bastarache P, Ouédraogo BC, Dumas P, Moffat CE, Vickruck JL, Morin PJ. Characterization of Insecticide Response-Associated Transcripts in the Colorado Potato Beetle: Relevance of Selected Cytochrome P450s and Clothianidin. INSECTS 2022; 13:insects13060505. [PMID: 35735842 PMCID: PMC9225154 DOI: 10.3390/insects13060505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary The Colorado potato beetle is an insect pest that can significantly harm potato crops. Various approaches are available to mitigate its damages including the use of insecticides. Unfortunately, its ability to develop resistance towards these compounds is substantial, and understanding the basis of this process is of utmost importance to design strategies to limit the impact of this insect. This work thus aims at quantifying the expression of key transcripts coding for proteins associated with insecticide resistance in Colorado potato beetles exposed to four insecticides. Significant variations were observed, notably in insects exposed to the insecticide clothianidin. Interestingly, subsequent reduction of endogenous levels of selected targets modulated by clothianidin was associated with increased insect susceptibility to this neonicotinoid. These results further highlight molecular players with potential relevance for insecticide resistance, and introduce novel targets that underlie clothianidin resistance in the Colorado potato beetle. Abstract The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is known for its capacity to cause significant damages to potato crops worldwide. Multiple approaches have been considered to limit its spread including the use of a diverse arsenal of insecticides. Unfortunately, this insect frequently develops resistance towards these compounds. Investigating the molecular bases underlying the response of L. decemlineata against insecticides is of strong interest to ultimately devise novel and targeted approaches aimed at this pest. This work aimed to characterize, via qRT-PCR, the expression status of targets with relevance to insecticide response, including ones coding for cytochrome P450s, glutathione s-transferases, and cuticular proteins, in L. decemlineata exposed to four insecticides; chlorantraniliprole, clothianidin, imidacloprid, and spinosad. Modulation of levels associated with transcripts coding for selected cytochrome P450s was reported in insects treated with three of the four insecticides studied. Clothianidin treatment yielded the most variations in transcript levels, leading to significant changes in transcripts coding for CYP4c1, CYP4g15, CYP6a13, CYP9e2, GST, and GST-1-Like. Injection of dsRNA targeting CYP4c1 and CYP9e2 was associated with a substantial decrease in expression levels and was, in the case of the latter target, linked to a greater susceptibility of L. decemlineata towards this neonicotinoid, supporting a potential role for this target in clothianidin response. Overall, this data further highlights the differential expression of transcripts with potential relevance in insecticide response, as well as generating specific targets that warrant investigation as novel dsRNA-based approaches are developed against this insect pest.
Collapse
Affiliation(s)
- Raed Bouafoura
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB E1A 3E9, Canada; (R.B.); (P.B.); (B.C.O.); (P.D.)
| | - Pierre Bastarache
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB E1A 3E9, Canada; (R.B.); (P.B.); (B.C.O.); (P.D.)
| | - Brigitte Christelle Ouédraogo
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB E1A 3E9, Canada; (R.B.); (P.B.); (B.C.O.); (P.D.)
| | - Pascal Dumas
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB E1A 3E9, Canada; (R.B.); (P.B.); (B.C.O.); (P.D.)
| | - Chandra E. Moffat
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 95 Innovation Road, Fredericton, NB E3B 4Z7, Canada; (C.E.M.); (J.L.V.)
| | - Jess L. Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 95 Innovation Road, Fredericton, NB E3B 4Z7, Canada; (C.E.M.); (J.L.V.)
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB E1A 3E9, Canada; (R.B.); (P.B.); (B.C.O.); (P.D.)
- Correspondence:
| |
Collapse
|
11
|
Katsavou E, Riga M, Ioannidis P, King R, Zimmer CT, Vontas J. Functionally characterized arthropod pest and pollinator cytochrome P450s associated with xenobiotic metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105005. [PMID: 35082029 DOI: 10.1016/j.pestbp.2021.105005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The cytochrome P450 family (P450s) of arthropods includes diverse enzymes involved in endogenous essential physiological functions and in the oxidative metabolism of xenobiotics, insecticides and plant allelochemicals. P450s can also establish insecticide selectivity in bees and pollinators. Several arthropod P450s, distributed in different phylogenetic groups, have been associated with xenobiotic metabolism, and some of them have been functionally characterized, using different in vitro and in vivo systems. The purpose of this review is to summarize scientific publications on arthropod P450s from major insect and mite agricultural pests, pollinators and Papilio sp, which have been functionally characterized and shown to metabolize xenobiotics and/or their role (direct or indirect) in pesticide toxicity or resistance has been functionally validated. The phylogenetic relationships among these P450s, the functional systems employed for their characterization and their xenobiotic catalytic properties are presented, in a systematic approach, including critical aspects and limitations. The potential of the primary P450-based metabolic pathway of target and non-target organisms for the development of highly selective insecticides and resistance-breaking formulations may help to improve the efficiency and sustainability of pest control.
Collapse
Affiliation(s)
- Evangelia Katsavou
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Maria Riga
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - John Vontas
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
12
|
Pélissié B, Chen YH, Cohen ZP, Crossley MS, Hawthorne DJ, Izzo V, Schoville SD. Genome resequencing reveals rapid, repeated evolution in the Colorado potato beetle. Mol Biol Evol 2022; 39:6511499. [PMID: 35044459 PMCID: PMC8826761 DOI: 10.1093/molbev/msac016] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insecticide resistance and rapid pest evolution threatens food security and the development of sustainable agricultural practices, yet the evolutionary mechanisms that allow pests to rapidly adapt to control tactics remains unclear. Here we examine how a global super-pest, the Colorado potato beetle (CPB), Leptinotarsa decemlineata, rapidly evolves resistance to insecticides. Using whole genome resequencing and transcriptomic data focused on its ancestral and pest range in North America, we assess evidence for three, non-mutually exclusive models of rapid evolution: pervasive selection on novel mutations, rapid regulatory evolution, and repeated selection on standing genetic variation. Population genomic analysis demonstrates that CPB is geographically structured, even among recently established pest populations. Pest populations exhibit similar levels of nucleotide diversity, relative to non-pest populations, and show evidence of recent expansion. Genome scans provide clear signatures of repeated adaptation across CPB populations, with especially strong evidence of selection on insecticide resistance genes in different populations. Analyses of gene expression show that constitutive upregulation of candidate insecticide resistance genes drives distinctive population patterns. CPB evolves insecticide resistance repeatedly across agricultural regions, leveraging similar genetic pathways but different genes, demonstrating a polygenic trait architecture for insecticide resistance that can evolve from standing genetic variation. Despite expectations, we do not find support for strong selection on novel mutations, or rapid evolution from selection on regulatory genes. These results suggest that integrated pest management practices must mitigate the evolution of polygenic resistance phenotypes among local pest populations, in order to maintain the efficacy and sustainability of novel control techniques.
Collapse
Affiliation(s)
- Benjamin Pélissié
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yolanda H Chen
- Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405, USA
| | - Zachary P Cohen
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael S Crossley
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David J Hawthorne
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Victor Izzo
- Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
13
|
Ben Youssef M, Christelle Ouédraogo B, Bastarache P, Dumas P, Moffat CE, Vickruck JL, Morin PJ. Exposure to Temperature and Insecticides Modulates the Expression of Small Noncoding RNA-Associated Transcripts in the Colorado Potato Beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:23. [PMID: 35172010 PMCID: PMC8849280 DOI: 10.1093/jisesa/ieac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 06/14/2023]
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is an insect that can adapt to various challenges, including temperature fluctuations or select insecticide treatments. This pest is also an ongoing threat to the potato industry. Small noncoding RNAs such as miRNAs, which can control posttranscriptionally the expression of various genes, and piRNAs, which can notably impact mRNA turnover, are modulated in insects under different conditions. Unfortunately, information regarding the expression status of key players involved in their synthesis and function is for the most part lacking. The current study thus aims at assessing the levels of such targets in L. decemlineata exposed to hot and cold temperatures as well as treated to the insecticides chlorantraniliprole, clothianidin, imidacloprid, and spinosad. Transcript expression levels of Ago1, Ago2, Ago3, Dcr2a, Dcr2b, Expo-5, Siwi-1, and Siwi-2, components of pathways associated with small noncoding RNA production or function, were measured by qRT-PCR and revealed modulation of select transcripts in response to temperature challenges and to select insecticides. RNAi-mediated reduction of Ago2 transcript levels in L. decemlineata injected with Ago2-targeting dsRNA and exposed to cold and warm temperatures was also conducted. Changes in survival rates were observed for the latter condition in dsRNA- versus saline-injected insects. These results showcase the differential expression of select targets involved in small noncoding RNA homeostasis and provide leads for the subsequent assessment of their involvement during stress response in L. decemlineata using RNAi-based approaches.
Collapse
Affiliation(s)
- Mariem Ben Youssef
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Brigitte Christelle Ouédraogo
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Pierre Bastarache
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Pascal Dumas
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Chandra E Moffat
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Jessica L Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| |
Collapse
|
14
|
Structural and Functional Characterization of One Unclassified Glutathione S-Transferase in Xenobiotic Adaptation of Leptinotarsa decemlineata. Int J Mol Sci 2021; 22:ijms222111921. [PMID: 34769352 PMCID: PMC8584303 DOI: 10.3390/ijms222111921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/18/2022] Open
Abstract
Arthropod Glutathione S-transferases (GSTs) constitute a large family of multifunctional enzymes that are mainly associated with xenobiotic or stress adaptation. GST-mediated xenobiotic adaptation takes place through direct metabolism or sequestration of xenobiotics, and/or indirectly by providing protection against oxidative stress induced by xenobiotic exposure. To date, the roles of GSTs in xenobiotic adaptation in the Colorado potato beetle (CPB), a notorious agricultural pest of plants within Solanaceae, have not been well studied. Here, we functionally expressed and characterized an unclassified-class GST, LdGSTu1. The three-dimensional structure of the LdGSTu1 was solved with a resolution up to 1.8 Å by X-ray crystallography. The signature motif VSDGPPSL was identified in the “G-site”, and it contains the catalytically active residue Ser14. Recombinant LdGSTu1 was used to determine enzyme activity and kinetic parameters using 1-chloro-2, 4-dinitrobenzene (CDNB), GSH, p-nitrophenyl acetate (PNA) as substrates. The enzyme kinetic parameters and enzyme-substrate interaction studies demonstrated that LdGSTu1 could catalyze the conjugation of GSH to both CDNB and PNA, with a higher turnover number for CDNB than PNA. The LdGSTu1 enzyme inhibition assays demonstrated that the enzymatic conjugation of GSH to CDNB was inhibited by multiple pesticides, suggesting a potential function of LdGSTu1 in xenobiotic adaptation.
Collapse
|
15
|
Güney G, Cedden D, Hänniger S, Heckel DG, Coutu C, Hegedus DD, Mutlu DA, Suludere Z, Sezen K, Güney E, Toprak U. Silencing of an ABC transporter, but not a cadherin, decreases the susceptibility of Colorado potato beetle larvae to Bacillus thuringiensis ssp. tenebrionis Cry3Aa toxin. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21834. [PMID: 34288075 DOI: 10.1002/arch.21834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), is a major pest of potato plants worldwide and is notorious for its ability to develop resistance to insecticides. Cry3 toxins synthesized by Bacillus thuringiensis ssp. tenebrionis have been used successfully to manage this pest. Resistance to Cry toxins is a concerning problem for many insect pests; therefore, it is important to determine the mechanisms by which insects acquire resistance to these toxins. Cadherin-like and ABC transporter proteins have been implicated in the mode of action of Cry toxins as mutations in these genes render lepidopterans resistant to them; however, clear consensus does not exist on whether these proteins also play a role in Cry3 toxin activity and/or development of resistance in coleopterans. In the current study, we identified the L. decemlineata orthologues of the cadherin (LdCAD) and the ABCB transporter (LdABCB1) that have been implicated in the mode of action of Cry toxins in other coleopterans. Suppression of LdABCB1 via RNA interference reduced toxin-related larval mortality, whereas partial silencing of LdCAD did not. Our results suggest that the ABCB is involved in the mode of action of Cry3Aa toxins; however, no evidence was found to support the role of cadherin as a receptor of Cry3Aa in L. decemlineata.
Collapse
Affiliation(s)
- Gözde Güney
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
- Max Planck Institute for Chemical Ecology, Jena, Germany
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Doğa Cedden
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | | | - David G Heckel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | - Kazım Sezen
- Department of Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Ebru Güney
- Department of Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Umut Toprak
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
16
|
Tonione MA, Bi K, Tsutsui ND. Transcriptomic signatures of cold adaptation and heat stress in the winter ant (Prenolepis imparis). PLoS One 2020; 15:e0239558. [PMID: 33002025 PMCID: PMC7529264 DOI: 10.1371/journal.pone.0239558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Climate change is a serious threat to biodiversity; it is therefore important to understand how animals will react to this stress. Ectotherms, such as ants, are especially sensitive to the climate as the environmental temperature influences myriad aspects of their biology, from optimal foraging time to developmental rate. In this study, we conducted an RNA-seq analysis to identify stress-induced genes in the winter ant (Prenolepis imparis). We quantified gene expression during heat and cold stress relative to a control temperature. From each of our conditions, we sequenced the transcriptome of three individuals. Our de novo assembly included 13,324 contigs that were annotated against the nr and SwissProt databases. We performed gene ontology and enrichment analyses to gain insight into the physiological processes involved in the stress response. We identified a total of 643 differentially expressed genes across both treatments. Of these, only seven genes were differentially expressed in the cold-stressed ants, which could indicate that the temperature we chose for trials did not induce a strong stress response, perhaps due to the cold adaptations of this species. Conversely, we found a strong response to heat: 426 upregulated genes and 210 downregulated genes. Of these, ten were expressed at a greater than ten-fold change relative to the control. The transcripts we could identify included those encoding for protein folding genes, heat shock proteins, histones, and Ca2+ ion transport. One of these transcripts, hsc70-4L was found to be under positive selection. We also characterized the functional categories of differentially expressed genes. These candidate genes may be functionally conserved and relevant for related species that will deal with rapid climate change.
Collapse
Affiliation(s)
- Maria Adelena Tonione
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, United States of America
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, United States of America.,Computational Genomics Resource Laboratory (CGRL), California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California, United States of America
| | - Neil Durie Tsutsui
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
17
|
The ABCB Multidrug Resistance Proteins Do Not Contribute to Ivermectin Detoxification in the Colorado Potato Beetle, Leptinotarsa decemlineata (Say). INSECTS 2020; 11:insects11020135. [PMID: 32093187 PMCID: PMC7074147 DOI: 10.3390/insects11020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/16/2023]
Abstract
The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a significant agricultural pest that has developed resistance to many insecticides that are used to control it. Investigating the mechanisms of insecticide detoxification in this pest is important for ensuring its continued control, since they may be contributors to such resistance. Multidrug resistance (MDR) genes that code for the ABCB transmembrane efflux transporters are one potential source of insecticide detoxification activity that have not been thoroughly examined in L. decemlineata. In this study, we annotated the ABCB genes found in the L. decemlineata genome and then characterized the expression profiles across midgut, nerve, and Malpighian tubule tissues of the three full transporters identified. To investigate if these genes are involved in defense against the macrocyclic lactone insecticide ivermectin in this insect, each gene was silenced using RNA interference or MDR protein activity was inhibited using a chemical inhibitor, verapamil, before challenging the insects with a dose of ivermectin. Survival of the insects did not significantly change due to gene silencing or protein inhibition, suggesting that MDR transporters do not significantly contribute to defense against ivermectin in L. decemlineata.
Collapse
|
18
|
Naqqash MN, Gökçe A, Aksoy E, Bakhsh A. Downregulation of imidacloprid resistant genes alters the biological parameters in Colorado potato beetle, Leptinotarsa decemlineata Say (chrysomelidae: Coleoptera). CHEMOSPHERE 2020; 240:124857. [PMID: 31726599 DOI: 10.1016/j.chemosphere.2019.124857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Colorado potato beetle, Leptinotarsa decemlineata Say (coleoptera: chrysomelidae), is the important pest of potato all over the world. This insect pest is resistant to more than 50 active compounds belonging to various chemical groups. Potential of RNA interference (RNAi) was explored to knock down transcript levels of imidacloprid resistant genes in Colorado potato beetle (CPB) under laboratory conditions. Three important genes belonging to cuticular protein (CP), cytochrome P450 monoxygenases (P450) and glutathione synthetase (GSS) families encoding imidacloprid resistance were targeted. Feeding bio-assays were conducted on various stages of imidacloprid resistant CPB lab population by applying HT115 expressing dsRNA on potato leaflets. Survival rate of insects exposed to CP-dsRNA decreased to 4.23%, 15.32% and 47.35% in 2nd, 3rd and 4th instar larvae respectively. Larval weight and pre-adult duration were also affected due to dsRNAs feeding. Synergism of RNAi with imidacloprid conducted on the 2nd instar larvae, exhibited 100% mortality of larvae when subjected to reduced doses of GSS and CP dsRNAs along with imidacloprid. Utilization of three different dsRNAs against imidacloprid resistant CPB population reveal that dsRNAs targeting CP, P450 and GSS enzymes could be useful tool in management of imidacloprid resistant CPB populations.
Collapse
Affiliation(s)
- Muhammad Nadir Naqqash
- Department of Plant Production & Technologies, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Omer Halisdemir University, Niğde, Turkey.
| | - Ayhan Gökçe
- Department of Plant Production & Technologies, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Omer Halisdemir University, Niğde, Turkey
| | - Emre Aksoy
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Omer Halisdemir University, Niğde, Turkey
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Omer Halisdemir University, Niğde, Turkey.
| |
Collapse
|
19
|
Xu QY, Deng P, Mu LL, Fu KY, Guo WC, Li GQ. Silencing Taiman impairs larval development in Leptinotarsa decemlineata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:30-39. [PMID: 31519255 DOI: 10.1016/j.pestbp.2019.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
An exploration of novel control strategies for Leptinotarsa decemlineata is becoming more pressing given rapid evolution of insecticide resistance and rise of production loss of potato. Dietary delivery of bacterially expressed double-stranded RNA (dsRNA) is a promising alternative for management. An important first step is to uncover possible RNA-interference (RNAi)-target genes effective against both young and old larvae. Taiman (Tai) is a basic-helix-loop-helix/Per-Arnt-Sim transcription factor that is involved in the mediation of both juvenile hormone (JH) and 20-hydroxyecdysone (20E) signaling. In the present paper, we found that continuous ingestion of dsTai for three days by third (penultimate)-instar larvae caused approximately 20% larval mortality and 80% pupation failure. The larval lethality resulted from failed cuticle and tracheae shedding, which subsequently reduced foliage consumption and nutrient absorption, and depleted lipid stores. In contrast, pupation failure derived from disturbed JH and 20E signals, and disordered nutrient homeostasis including, among others, inhibition of trehalose metabolism and reduction of chitin content. Knockdown of LdTai caused similar larval lethality and pupation impairment in second and fourth (final) larval instars. Therefore, LdTai is among the most attractive candidate genes for RNAi to control L. decemlineata larvae.
Collapse
Affiliation(s)
- Qing-Yu Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Pan Deng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Li-Li Mu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kai-Yun Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; Key Laboratory of Intergraded Management of Harmful Crop Vermin of China North-western Oasis, Ministry of Agriculture, China
| | - Wen-Chao Guo
- Institute of Microbiological Application, Xinjiang, Academy of Agricultural Science; Urumqi, 830091, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Antony B, Johny J, Abdelazim MM, Jakše J, Al-Saleh MA, Pain A. Global transcriptome profiling and functional analysis reveal that tissue-specific constitutive overexpression of cytochrome P450s confers tolerance to imidacloprid in palm weevils in date palm fields. BMC Genomics 2019; 20:440. [PMID: 31151384 PMCID: PMC6545022 DOI: 10.1186/s12864-019-5837-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/23/2019] [Indexed: 01/30/2023] Open
Abstract
Background Cytochrome P450-dependent monooxygenases (P450s), constituting one of the largest and oldest gene superfamilies found in many organisms from bacteria to humans, play a vital role in the detoxification and inactivation of endogenous toxic compounds. The use of various insecticides has increased over the last two decades, and insects have developed resistance to most of these compounds through the detoxifying function of P450s. In this study, we focused on the red palm weevil (RPW), Rhynchophorus ferrugineus, the most devastating pest of palm trees worldwide, and demonstrated through functional analysis that upregulation of P450 gene expression has evolved as an adaptation to insecticide stress arising from exposure to the neonicotinoid-class systematic insecticide imidacloprid. Results Based on the RPW global transcriptome analysis, we identified 101 putative P450 genes, including 77 likely encoding protein coding genes with ubiquitous expression. A phylogenetic analysis revealed extensive functional and species-specific diversification of RPW P450s, indicating that multiple CYPs actively participated in the detoxification process. We identified highly conserved paralogs of insect P450s that likely play a role in the development of resistance to imidacloprid: Drosophila Cyp6g1 (CYP6345J1) and Bemisia tabaci CYP4C64 (CYP4LE1). We performed a toxicity bioassay and evaluated the induction of P450s, followed by the identification of overexpressed P450s, including CYP9Z82, CYP6fra5, CYP6NR1, CYP6345J1 and CYP4BD4, which confer cross-resistance to imidacloprid. In addition, under imidacloprid insecticide stress in a date palm field, we observed increased expression of various P450 genes, with CYP9Z82, CYP4BD4, CYP6NR1 and CYP6345J1 being the most upregulated detoxification genes in RPWs. Expression profiling and cluster analysis revealed P450 genes with multiple patterns of induction and differential expression. Furthermore, we used RNA interference to knock down the overexpressed P450s, after which a toxicity bioassay and quantitative expression analysis revealed likely candidates involved in metabolic resistance against imidacloprid in RPW. Ingestion of double-stranded RNA (dsRNA) successfully knocked down the expression of CYP9Z82, CYP6NR1 and CYP345J1 and demonstrated that silencing of CYP345J1 and CYP6NR1 significantly decreased the survival rate of adult RPWs treated with imidacloprid, indicating that overexpression of these two P450s may play an important role in developing tolerance to imidacloprid in a date palm field. Conclusion Our study provides useful background information on imidacloprid-specific induction and overexpression of P450s, which may enable the development of diagnostic tools/markers for monitoring the spread of insecticide resistant RPWs. The observed trend of increasing tolerance to imidacloprid in the date palm field therefore indicated that strategies for resistance management are urgently needed. Electronic supplementary material The online version of this article (10.1186/s12864-019-5837-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Binu Antony
- Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Chair of Date Palm Research, Riyadh, 11451, Saudi Arabia.
| | - Jibin Johny
- Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Chair of Date Palm Research, Riyadh, 11451, Saudi Arabia
| | - Mahmoud M Abdelazim
- Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Chair of Date Palm Research, Riyadh, 11451, Saudi Arabia
| | - Jernej Jakše
- Biotechnical Faculty, Agronomy Department, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Mohammed Ali Al-Saleh
- Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Chair of Date Palm Research, Riyadh, 11451, Saudi Arabia
| | - Arnab Pain
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, 23955-6900, Saudi Arabia
| |
Collapse
|
21
|
Tian F, Li C, Wang Z, Liu J, Zeng X. Identification of detoxification genes in imidacloprid-resistant Asian citrus psyllid (Hemiptera: Lividae) and their expression patterns under stress of eight insecticides. PEST MANAGEMENT SCIENCE 2019; 75:1400-1410. [PMID: 30411865 DOI: 10.1002/ps.5260] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The Asian citrus psyllid, Diaphorina citri, is one of the major pests in citrus-growing areas around the world. The application of insecticides is the most effective method to reduce the population of D. citri. However, D. citri has developed resistance to multiple classes of insecticides. Understanding resistance mechanisms is crucial to the management of D. citri. In this study, molecular assays were performed to characterize imidacloprid resistance mechanisms. RESULTS Based on the D. citri transcriptome database and other known insect resistance genes, 16 cytochrome P450, eight glutathione-S-transferase and six esterase genes were selected for cloning and sequencing. The gene expression analysis of 30 detoxification genes demonstrated that the relative expression of CYP4g15, CYP303A1, CYP4C62, CYP6BD5, GSTS1 and EST-6 were moderately high (>5-fold increase) in the imidacloprid-resistant strain. Feeding of double-stranded RNA (dsRNA) reduced the expression of the six genes (46.7%-72.1%) and resulted in significant adult mortality (65.62%-82.76%). We also determined the ability of different insecticides to induce the six selected genes. The expression of CYP4C62 and GSTS1 genes were the most significantly upregulated in adults treated with all insecticides, except for chlorfenapyr. In chlorfenapyr-treated D. citri, expression of CYP4g15 and CYP303A1 were the most highly induced. CONCLUSION Overexpressed detoxification genes were associated with imidacloprid resistance, as confirmed by RNA interference feeding tests. The induction of the six selected genes when exposed to different insecticides supported the hypothesis that they were involved in the metabolism of the tested insecticides. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fajun Tian
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Chaofeng Li
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhengbing Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiali Liu
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xinnian Zeng
- College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Wang YW, Li YZ, Li GQ, Wan PJ, Li C. Identification of Cuticular Protein Genes in the Colorado Potato Beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:912-923. [PMID: 30615165 DOI: 10.1093/jee/toy396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 06/09/2023]
Abstract
Structural cuticular proteins (CPs) are the primary components of insect cuticle, linings of salivary gland, foregut, hindgut and tracheae, and midgut peritrophic membrane. Variation of CPs in insect cuticle can cause penetration resistance to insecticides. Moreover, depletion of specific CP by RNA interference may be a suitable way for the development of potential pest control traits. Leptinotarsa decemlineata (Say) CPs are poorly characterized at present, and therefore, we mined the genome and transcriptome data to better annotate and classify L. decemlineata CPs in this study, by comparison with the annotated CPs of Tribolium castaneum Browse (Coleoptera: Tenebrionidae). We identified 175 CP genes. Except one miscellaneous CP with an 18-amino acid motif, these CPs were classified into 7 families based on motifs and phylogenetic analyses (CPs with a Rebers and Riddiford motif, CPR; CPs analogous to peritrophins, CPAP3 and CPAP1; CPs with a tweedle motif, TWDL; CPs with a 44-amino acid motif, CPF; CPs that are CPF-like, CPFL; and CPs with two to three copies of C-X5-C motif, CPCFC). Leptinotarsa decemlineata CPRs could be categorized into three subfamilies: RR-1 (50), RR-2 (85), and RR-3 (2). The RR-1 proteins had an additional motif with a conserved YTADENGF sequence. The RR-2 members possessed a conserved RDGDVVKG region and three copes of G-x(3)-VV. Few genes were found in TWDL (9), CPAP1 (9), CPAP3 (8), CPF (5), CPFL (4), and CPCFC (2) families. The findings provide valuable information to explore molecular modes of penetration resistance to insecticides and to develop dsRNA-based control method in L. decemlineata.
Collapse
Affiliation(s)
- Yan-Wei Wang
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yu-Zhe Li
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
| | - Guo-Qing Li
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Pin-Jun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Chao Li
- Guangdong Institute of Applied Biological Resources, Guangzhou, China
| |
Collapse
|
23
|
Chen C, Shan T, Liu Y, Wang C, Shi X, Gao X. Identification and functional analysis of a cytochrome P450 gene involved in imidacloprid resistance in Bradysia odoriphaga Yang et Zhang. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:129-135. [PMID: 30744886 DOI: 10.1016/j.pestbp.2018.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 05/20/2023]
Abstract
Insect cytochrome P450 monooxygenases played an important role in detoxifying insecticides which potentially contributed to the metabolic resistance to insecticides. Bradysia odoriphaga, as a major pest of Chinese chive, was reported to be highly tolerant to neonicotinoid insecticides imidacloprid. In this study, a novel P450 gene, CYP6FV12, was cloned from B. odoriphaga. The full-length cDNA sequence of CYP6FV12 is 2520 bp long and its open reading frame (ORF) encodes 519 amino acids. Quantitative real-time PCR showed that the highest expression of CYP6FV12 was observed in fourth-instar larvae, which is 154.32-fold higher than that of eggs. Highest expression of CYP6FV12 was observed in the midgut, followed by fat body, which was 13.67 and 5.42-fold higher than that in cuticle, respectively. The expression of CYP6FV12 was significantly up-regulated in B. odoriphaga larvae after exposed to imidacloprid at the concentrations of 10, 30, 50, and 70 mg/L. Moreover, RNAi mediated silencing of CYP6FV12 increased mortality by 28.62% when the fourth-instar larvae were treated with imidacloprid. This is the first systematic study on isolated P450s gene involved in imidacloprid resistance in B. odoriphaga and increased our understanding of the molecular mechanisms of insecticide detoxification in this pest insect.
Collapse
Affiliation(s)
- Chengyu Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Tisheng Shan
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Cuicui Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xueyan Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
24
|
Transcriptomic analysis reveals similarities in genetic activation of detoxification mechanisms resulting from imidacloprid and chlorothalonil exposure. PLoS One 2018; 13:e0205881. [PMID: 30359414 PMCID: PMC6201883 DOI: 10.1371/journal.pone.0205881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/03/2018] [Indexed: 11/21/2022] Open
Abstract
The Colorado potato beetle, Leptinotarsa decemlineata (Say), is an agricultural pest of commercial potatoes in parts of North America, Europe, and Asia. Plant protection strategies within this geographic range employ a variety of pesticides to combat not only the insect, but also plant pathogens. Previous research has shown that field populations of Leptinotarsa decemlineata have a chronological history of resistance development to a suite of insecticides, including the Group 4A neonicotinoids. The aim of this study is to contextualize the transcriptomic response of Leptinotarsa decemlineata when exposed to the neonicotinoid insecticide imidacloprid, or the fungicides boscalid or chlorothalonil, in order to determine whether these compounds induce similar detoxification mechanisms. We found that chlorothalonil and imidacloprid induced similar patterns of transcript expression, including the up-regulation of a cytochrome p450 and a UDP-glucuronosyltransferase transcript, which belong to protein families associated with xenobiotic metabolism. Further, transcriptomic responses varied among individuals within the same treatment group, suggesting individual insects’ responses vary within a population and may cope with chemical stressors in a variety of manners.
Collapse
|
25
|
Agricultural fungicides inadvertently influence the fitness of Colorado potato beetles, Leptinotarsa decemlineata, and their susceptibility to insecticides. Sci Rep 2018; 8:13282. [PMID: 30185821 PMCID: PMC6125405 DOI: 10.1038/s41598-018-31663-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is an agricultural pest of solanaceous crops which has developed insecticide resistance at an alarming rate. Up to this point, little consideration has been given to unintended, or inadvertent effects that non-insecticide xenobiotics may have on insecticide susceptibility in L. decemlineata. Fungicides, such as chlorothalonil and boscalid, are often used to control fungal pathogens in potato fields and are applied at regular intervals when L. decemlineata populations are present in the crop. In order to determine whether fungicide use may be associated with elevated levels of insecticide resistance in L. decemlineata, we examined phenotypic responses in L. decemlineata to the fungicides chlorothalonil and boscalid. Using enzymatic and transcript abundance investigations, we also examined modes of molecular detoxification in response to both insecticide (imidacloprid) and fungicide (boscalid and chlorothalonil) application to more specifically determine if fungicides and insecticides induce similar metabolic detoxification mechanisms. Both chlorothalonil and boscalid exposure induced a phenotypic, enzymatic and transcript response in L. decemlineata which correlates with known mechanisms of insecticide resistance.
Collapse
|
26
|
Pélissié B, Crossley MS, Cohen ZP, Schoville SD. Rapid evolution in insect pests: the importance of space and time in population genomics studies. CURRENT OPINION IN INSECT SCIENCE 2018; 26:8-16. [PMID: 29764665 DOI: 10.1016/j.cois.2017.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/28/2017] [Accepted: 12/31/2017] [Indexed: 06/08/2023]
Abstract
Pest species in agroecosystems often exhibit patterns of rapid evolution to environmental and human-imposed selection pressures. Although the role of adaptive processes is well accepted, few insect pests have been studied in detail and most research has focused on selection at insecticide resistance candidate genes. Emerging genomic datasets provide opportunities to detect and quantify selection in insect pest populations, and address long-standing questions about mechanisms underlying rapid evolutionary change. We examine the strengths of recent studies that stratify population samples both in space (along environmental gradients and comparing ancestral vs. derived populations) and in time (using chronological sampling, museum specimens and comparative phylogenomics), resulting in critical insights on evolutionary processes, and providing new directions for studying pests in agroecosystems.
Collapse
Affiliation(s)
- Benjamin Pélissié
- University of Wisconsin-Madison, Department of Entomology, 1630 Linden Drive, 637-643 Russell Labs, Madison, WI 53706, USA.
| | - Michael S Crossley
- University of Wisconsin-Madison, Department of Entomology, 1630 Linden Drive, 637-643 Russell Labs, Madison, WI 53706, USA
| | - Zachary Paul Cohen
- University of Wisconsin-Madison, Department of Entomology, 1630 Linden Drive, 637-643 Russell Labs, Madison, WI 53706, USA
| | - Sean D Schoville
- University of Wisconsin-Madison, Department of Entomology, 1630 Linden Drive, 637-643 Russell Labs, Madison, WI 53706, USA
| |
Collapse
|
27
|
Chen C, Wang C, Liu Y, Shi X, Gao X. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga. Sci Rep 2018; 8:2564. [PMID: 29416091 PMCID: PMC5803201 DOI: 10.1038/s41598-018-20981-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
Pesticide tolerance poses many challenges for pest control, particularly for destructive pests such as Bradysia odoriphaga. Imidacloprid has been used to control B. odoriphaga since 2013, however, imidacloprid resistance in B. odoriphaga has developed in recent years. Identifying actual and potential genes involved in detoxification metabolism of imidacloprid could offer solutions for controlling this insect. In this study, RNA-seq was used to explore differentially expressed genes in B. odoriphaga that respond to imidacloprid treatment. Differential expression data between imidacloprid treatment and the control revealed 281 transcripts (176 with annotations) showing upregulation and 394 transcripts (235 with annotations) showing downregulation. Among them, differential expression levels of seven P450 unigenes were associated with imidacloprid detoxification mechanism, with 4 unigenes that were upregulated and 3 unigenes that were downregulated. The qRT-PCR results of the seven differential expression P450 unigenes after imidacloprid treatment were consistent with RNA-Seq data. Furthermore, oral delivery mediated RNA interference of these four upregulated P450 unigenes followed by an insecticide bioassay significantly increased the mortality of imidacloprid-treated B. odoriphaga. This result indicated that the four upregulated P450s are involved in detoxification of imidacloprid. This study provides a genetic basis for further exploring P450 genes for imidacloprid detoxification in B. odoriphaga.
Collapse
Affiliation(s)
- Chengyu Chen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Cuicui Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ying Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xueyan Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
28
|
He C, Xie W, Yang X, Wang SL, Wu QJ, Zhang YJ. Identification of glutathione S-transferases in Bemisia tabaci (Hemiptera: Aleyrodidae) and evidence that GSTd7 helps explain the difference in insecticide susceptibility between B. tabaci Middle East-Minor Asia 1 and Mediterranean. INSECT MOLECULAR BIOLOGY 2018; 27:22-35. [PMID: 28767183 DOI: 10.1111/imb.12337] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae) species complex includes invasive and destructive pests of field crops, and the sibling species MEAM1 and MED are its two most damaging members. Previous research indicated that the replacement of Middle East-Minor Asia 1 (MEAM1) by Mediterranean (MED) as the dominant B. tabaci species in China can be mainly attributed to MED's greater tolerance to insecticides. Glutathione S-transferases (GSTs) play important roles in the detoxification of hydrophobic toxic compounds. To increase our understanding of differences in insecticide resistance between B. tabaci MEAM1 and MED, we searched the genomic and transcriptomic databases and identified 23 putative GSTs in both B. tabaci MEAM1 and MED. Through measuring mRNA levels of 18 of the GSTs after B. tabaci MEAM1 and MED adults were exposed to the insecticide imidacloprid, we found that the expression levels were increased more in B. tabaci MED than in MEAM1 (in particular, the expression level of GST-d7 was increased by 4.39-fold relative to the control). Knockdown of GST-d7 in B. tabaci MED but not in B. tabaci MEAM1 resulted in a substantial increase in the mortality of imidacloprid-treated adults. These results indicate that differences in GST-d7 may help explain why insecticide tolerance is greater in B. tabaci MED than in B. tabaci MEAM1.
Collapse
Affiliation(s)
- C He
- College of Plant Protection of Hunan Agricultural University, Changsha, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - W Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - X Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - S-L Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Q-J Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y-J Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Schoville SD, Chen YH, Andersson MN, Benoit JB, Bhandari A, Bowsher JH, Brevik K, Cappelle K, Chen MJM, Childers AK, Childers C, Christiaens O, Clements J, Didion EM, Elpidina EN, Engsontia P, Friedrich M, García-Robles I, Gibbs RA, Goswami C, Grapputo A, Gruden K, Grynberg M, Henrissat B, Jennings EC, Jones JW, Kalsi M, Khan SA, Kumar A, Li F, Lombard V, Ma X, Martynov A, Miller NJ, Mitchell RF, Munoz-Torres M, Muszewska A, Oppert B, Palli SR, Panfilio KA, Pauchet Y, Perkin LC, Petek M, Poelchau MF, Record É, Rinehart JP, Robertson HM, Rosendale AJ, Ruiz-Arroyo VM, Smagghe G, Szendrei Z, Thomas GWC, Torson AS, Vargas Jentzsch IM, Weirauch MT, Yates AD, Yocum GD, Yoon JS, Richards S. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep 2018; 8:1931. [PMID: 29386578 PMCID: PMC5792627 DOI: 10.1038/s41598-018-20154-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/13/2018] [Indexed: 01/04/2023] Open
Abstract
The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.
Collapse
Affiliation(s)
- Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, USA.
| | - Yolanda H Chen
- Department of Plant and Soil Sciences, University of Vermont, Burlington, USA
| | | | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Anita Bhandari
- Department of Molecular Physiology, Christian-Albrechts-University at Kiel, Kiel, Germany
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, Fargo, USA
| | - Kristian Brevik
- Department of Plant and Soil Sciences, University of Vermont, Burlington, USA
| | - Kaat Cappelle
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Mei-Ju M Chen
- USDA-ARS National Agricultural Library, Beltsville, MD, USA
| | - Anna K Childers
- USDA-ARS Bee Research Lab, Beltsville, MD, USA
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | | | | | - Justin Clements
- Department of Entomology, University of Wisconsin-Madison, Madison, USA
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Elena N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moskva, Russia
| | - Patamarerk Engsontia
- Department of Biology, Faculty of Science, Prince of Songkla University, Amphoe Hat Yai, Thailand
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, USA
| | | | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Chandan Goswami
- National Institute of Science Education and Research, Bhubaneswar, India
| | | | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288, Marseille, France
- INRA, USC 1408 AFMB, F-13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, King Abdulaziz, Saudi Arabia
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, USA
| | - Megha Kalsi
- Department of Entomology, University of Kentucky, Lexington, USA
| | - Sher A Khan
- Department of Entomology, Texas A&M University, College Station, USA
| | - Abhishek Kumar
- Department of Genetics & Molecular Biology in Botany, Christian-Albrechts-University at Kiel, Kiel, Germany
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Fei Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288, Marseille, France
- INRA, USC 1408 AFMB, F-13288, Marseille, France
| | - Xingzhou Ma
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Alexander Martynov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nicholas J Miller
- Department of Biology, Illinois Institute of Technology, Chicago, USA
| | - Robert F Mitchell
- Department of Biology, University of Wisconsin-Oshkosh, Oshkosh, USA
| | - Monica Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Brenda Oppert
- USDA-ARS Center for Grain and Animal Health Research, New York, USA
| | | | - Kristen A Panfilio
- Institute for Developmental Biology, University of Cologne, Köln, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, England, UK
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lindsey C Perkin
- USDA-ARS Center for Grain and Animal Health Research, New York, USA
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Éric Record
- INRA, Aix-Marseille Université, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Joseph P Rinehart
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | | | - Guy Smagghe
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Zsofia Szendrei
- Department of Entomology, Michigan State University, East Lansing, USA
| | - Gregg W C Thomas
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, USA
| | - Alex S Torson
- Department of Biological Sciences, North Dakota State University, Fargo, USA
| | | | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Ashley D Yates
- Department of Entomology, The Ohio State University, Columbus, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, USA
| | - George D Yocum
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | - June-Sun Yoon
- Department of Entomology, University of Kentucky, Lexington, USA
| | - Stephen Richards
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
30
|
Kaplanoglu E, Chapman P, Scott IM, Donly C. Overexpression of a cytochrome P450 and a UDP-glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Sci Rep 2017; 7:1762. [PMID: 28496260 PMCID: PMC5431904 DOI: 10.1038/s41598-017-01961-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/07/2017] [Indexed: 01/23/2023] Open
Abstract
Current control of insect pests relies on chemical insecticides, however, insecticide resistance development by pests is a growing concern in pest management. The main mechanisms for insecticide resistance typically involve elevated activity of detoxifying enzymes and xenobiotic transporters that break-down and excrete insecticide molecules. In this study, we investigated the molecular mechanisms of imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), an insect pest notorious for its capacity to develop insecticide resistance rapidly. We compared the transcriptome profiles of imidacloprid-resistant and sensitive beetle strains and identified 102 differentially expressed transcripts encoding detoxifying enzymes and xenobiotic transporters. Of these, 74 were up-regulated and 28 were down-regulated in the resistant strain. We then used RNA interference to knock down the transcript levels of seven up-regulated genes in the resistant beetles. Ingestion of double-stranded RNA successfully knocked down the expression of the genes for three cytochrome P450s (CYP6BQ15, CYP4Q3 and CYP4Q7), one ATP binding cassette (ABC) transporter (ABC-G), one esterase (EST1), and two UDP-glycosyltransferases (UGT1 and UGT2). Further, we demonstrated that silencing of CYP4Q3 and UGT2 significantly increased susceptibility of resistant beetles to imidacloprid, indicating that overexpression of these two genes contributes to imidacloprid resistance in this resistant strain.
Collapse
Affiliation(s)
- Emine Kaplanoglu
- Department of Biology, The University of Western Ontario, London, ON, N6A 3K7, Canada.,London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Patrick Chapman
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Ian M Scott
- Department of Biology, The University of Western Ontario, London, ON, N6A 3K7, Canada.,London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Cam Donly
- Department of Biology, The University of Western Ontario, London, ON, N6A 3K7, Canada. .,London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada.
| |
Collapse
|