1
|
Ndikuryayo F, Gong XY, Yang WC. Advances in Understanding the Toxicity of 4-Hydroxyphenylpyruvate Dioxygenase-Inhibiting Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17762-17770. [PMID: 39093601 DOI: 10.1021/acs.jafc.4c04624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
4-Hydroxyphenylpyruvate dioxygenase inhibiting herbicides (HIHs) represent a recent class (HRAC group 27) of herbicides that offer many advantages, such as broad-spectrum activity, crop selectivity, and low resistance rates. However, emerging studies have highlighted the potential toxicity of HIHs in the environment. This review aims to provide a comprehensive summary of the toxicity of HIHs toward nontarget organisms, including plants, microorganisms, animals, and humans. Furthermore, the present work discusses the ecological roles of these organisms in the environment and their significance in agriculture. By shedding light on the toxicity of HIHs, this study seeks to raise awareness among end users, including environmentalists, researchers, and farmers, regarding the potential ecological implications of these herbicides. Hopefully, this knowledge can contribute to informed decision-making and sustainable practices in green agriculture and environmental management.
Collapse
Affiliation(s)
- Ferdinand Ndikuryayo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
- Centre Universitaire de Recherche et de Pédagogie Appliquées aux Sciences, Laboratoire de Nutrition-Phytochimie, d'Ecologie et Environnement Appliqués, Institut de Pédagogie Appliquée, Université du Burundi, BP 2700 Bujumbura, Burundi
| | - Xue-Yan Gong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Wen-Chao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
2
|
Miranda LA, de Souza VV, Campos RA, de Campos JMS, da Silva Souza T. Phytotoxicity and cytogenotoxicity of pesticide mixtures: analysis of the effects of environmentally relevant concentrations on the aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112117-112131. [PMID: 37824048 DOI: 10.1007/s11356-023-30100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
In this study, we investigate the toxicity of commercial formulations based on glyphosate, 2,4-D, imidacloprid, and iprodione, in isolation and mixed, on Allium cepa. The mixtures consisted of combinations in the lowest (M1), intermediate (M2), and highest concentrations (M3) of each pesticide. We measured physiological (germination rate, germination speed, and radicular length) and cyto-genotoxic (mitotic index and frequency of aberrant cells) parameters. In addition, we analyzed the cell cycle progression and cell death induction by flow cytometry. When applied in isolation, the pesticides changed the parameters evaluated. M1 and M2 inhibited root length and increased the frequency of aberrant cells. Their genotoxic effect was equivalent to that of pesticides applied in isolation. Furthermore, M1 and M2 caused cell death and M2 changed the cell cycle progression. M3 had the greatest deleterious effect on A. cepa. This mixture inhibited root length and promoted an additive or synergistic effect on the mitotic index. In addition, M3 changed all parameters analyzed by flow cytometry. This research clearly demonstrates that the pesticides tested, and their mixtures, may pose a risk to non-target organisms.
Collapse
Affiliation(s)
- Luanna Alves Miranda
- Programa de Pós-Graduação em Genética e Melhoramento, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alto Universitário, S/No, Guararema, Alegre, Espírito Santo, 29500-000, Brazil
| | - Victor Ventura de Souza
- Laboratório de Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renata Alice Campos
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - José Marcello Salabert de Campos
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Tatiana da Silva Souza
- Programa de Pós-Graduação em Genética e Melhoramento, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alto Universitário, S/No, Guararema, Alegre, Espírito Santo, 29500-000, Brazil.
| |
Collapse
|
3
|
Alias C, Feretti D, Viola GVC, Zerbini I, Bisceglie F, Pelosi G, Zani C. Allium cepa tests: A plant-based tool for the early evaluation of toxicity and genotoxicity of newly synthetized antifungal molecules. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503654. [PMID: 37491113 DOI: 10.1016/j.mrgentox.2023.503654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Many fungal genera such as Aspergillus, Penicillium, Fusarium and Alternaria are able to produce, among many other metabolites, the aflatoxins, a group of toxic and carcinogenic compounds. To reduce their formation, synthetic fungicides are used as an effective way of intervention. However, the extensive use of such molecules generates long-term residues into the food and the environment. The need of new antifungal molecules, with high specificity and low off-target toxicity is worth. The aim of this study was to evaluate: i) the toxicity and genotoxicity of newly synthesized molecules with a good anti-mycotoxic activity, and ii) the suitability of the Allium cepa multi-endpoint assay as an early screening method for chemicals. Eight compounds were tested for toxicity by using the A. cepa bulb root elongation test and for genotoxicity using the A. cepa bulb mitotic index, micronuclei and chromosome aberrations tests. Three molecules showed no toxicity, while two induced mild toxic effects in roots exposed to the highest dose (100 µM). A more pronounced toxic effect was caused by the other three compounds for which the EC50 was approximately 50 μM. Furthermore, all molecules showed a clear genotoxic activity, both in terms of chromosomal aberrations and micronuclei. Albeit the known good antifungal activity, the different molecules caused strong toxic and genotoxic effects. The results indicate the suitability of experiments with A. cepa as a research model for the evaluation of the toxic and genotoxic activities of new molecules in plants before they are released into the environment.
Collapse
Affiliation(s)
- Carlotta Alias
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - Donatella Feretti
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - Gaia V C Viola
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - Ilaria Zerbini
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Claudia Zani
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy.
| |
Collapse
|
4
|
Souza VVD, Souza TDS, Campos JMSD, Oliveira LAD, Ribeiro YM, Hoyos DCDM, Xavier RMP, Charlie-Silva I, Lacerda SMDSN. Ecogenotoxicity of environmentally relevant atrazine concentrations: A threat to aquatic bioindicators. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105297. [PMID: 36549823 DOI: 10.1016/j.pestbp.2022.105297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is a herbicide that is frequently present in surface waters and may result in damage to the health of various organisms, including humans. However, most scientific literature reports injuries caused by ATZ at high concentrations, which are not found in the environment. Therefore, the scope of this study was to investigate the impacts of realistic concentrations of ATZ found in surface waters (1, 2, 5, 10, 15 and 20 μg/L) using the bioindicators Allium cepa, Daphnia magna and zebrafish (Danio rerio). ATZ elicited a genotoxic effect in A. cepa, manifested by the induction of chromosomal aberrations, and a mutagenic effect with increased incidence of micronuclei formation, promotion of cell death and reduction in nuclear size revealed by flow cytometry analysis. D. magna exposed to 10, 15 and 20 μg/L of ATZ showed significant reduction in body size after 21 days, delayed first-brood release, decreased egg production and total offspring, as well as swimming behavioral changes. ATZ exposure promoted physiological and developmental alterations in zebrafish embryos, including an increased spontaneous movement rate, which led to premature hatching at all concentrations investigated. Increase in total body length, decrease of the yolk sac area, pericardial edema and higher heart rate were also detected in ATZ-treated zebrafish. In summary, environmentally relevant concentrations of ATZ can induce substantial alterations in the three bioindicators investigated. This study evidences the deleterious effects of ATZ on three aquatic bioindicators employing established and current techniques, and may contribute to elucidate the risks caused by this widely used herbicide even at low concentrations and short-to-medium-term exposure.
Collapse
Affiliation(s)
- Victor Ventura de Souza
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tatiana da Silva Souza
- Laboratory of Ecotoxicology, Department of Biology, Federal University of Espírito Santo, Alegre, Brazil
| | | | - Luiza Araújo de Oliveira
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves Moreira Ribeiro
- Laboratory of Ichthyohistology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
5
|
Rashid F, Singh D, Attri S, Kaur P, Kaur H, Mohana P, Quadar J, Vig AP, Bhatia A, Singh B, Walia H, Arora S. Modulation of atrazine-induced chromosomal aberrations and cyclin-dependent kinases by aqueous extract of Roylea cinerea (D.Don) Baillon leaves in Allium cepa. Sci Rep 2022; 12:12570. [PMID: 35869268 PMCID: PMC9307653 DOI: 10.1038/s41598-022-16813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022] Open
Abstract
Roylea cinerea (D.Don) Baillon an indigenous medicinal plant of Lamiaceae family used for the treatment of several diseases. In the present study, its aqueous (leaves) extract was tested for genoprotective action against atrazine-induced chromosomal aberrations in the root tip cells of Allium cepa. Atrazine is a herbicide of triazine class commonly used to inhibit the growth of broad leaf and grassy weeds. In order to find the concentration of atrazine that exhibits maximum toxicity, its different concentrations (1, 5 and 10 µg/mL) were tested. It was observed that 10 µg/mL concentration was more toxic as it reduced the mitotic index and also increased the chromosomal aberrations. Among all the tested concentrations of aqueous (leaves) extracts (0.25. 0.5, 1.0, 1.5 and 3.0 µg/mL), the3.0 µg/mL concentration in both modes of experiments i.e. pre and post showed a significant reduction in chromosomal aberrations induced by atrazine. To understand the mechanism of protection by plant extract on atrazine-induced chromosomal abnormalities the RT-qPCR studies were conducted to observe the expression of marker genes Cyclin-dependent kinases (CDKs) (CDKA:1, CDKB2:1 and CDKD1:1. For this, the RNA was extracted from root tips treated with extract along with atrazine by TRIzol®. It was observed that aqueous extract of Roylea cinerea (D.Don) Baillon leaves upregulated the CDKs gene expression in both the modes i.e. pre and post treatments. A critical analysis of results indicated that aqueous extract ameliorated the chromosomal aberrations caused by atrazine which may be be due to the increased expression level of CDKs genes.
Collapse
|
6
|
Passos JDC, Felisbino K, Laureano HA, Guiloski IC. Occupational exposure to pesticides and its association with telomere length - A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157715. [PMID: 35914599 DOI: 10.1016/j.scitotenv.2022.157715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Telomere length is a common biomarker for the cumulative effect of environmental factors on aging-related diseases, therefore an association has been hypothesized between occupational exposure to pesticides and shorter telomere length. OBJECTIVE This study is a systematic review and meta-analysis aiming to examine the association between telomere length and occupational exposure to pesticides. METHODS We systematically searched in SciELO, PubMed, Scopus, Embase, Cochrane, Lilacs, Science Direct, and Web of Science databases for all observational studies containing measurements of telomere length on groups occupationally exposed to pesticides. Data were synthesized through qualitative synthesis and meta-analysis. We estimated the associations between exposed and non-exposed groups by using the natural log of the response ratio (lnRR). Heterogeneity was quantified using the Cochran Q test and I2 statistics. RESULTS Six studies were included in the qualitative synthesis and meta-analysis, with a total of 480 participants exposed to pesticides. The time of exposure evaluated 391 participants that had a range of 5 to >30 years of occupational exposure. Most studies presented shorter telomere length in the occupationally exposed group. From the six studies included in the meta-analysis, three presented telomere length measurement as a single copy gene (T/S), and three presented telomere length measurement as base pairs (bp). The statistical analysis pooled estimates (log ratio of means) of the telomere length in both measurements (T/S and bp) showed a shortening of telomere length in the exposed group when compared with the non-exposed (control) group. Two of six studies reported longer telomere length in the group exposed to pesticides. DISCUSSION Our findings suggest an association between occupational exposure to pesticides and shorter telomere length. However, we found a small number of studies to include in our meta-analysis, being required more high-quality studies to strengthen our findings and conclusions.
Collapse
Affiliation(s)
- Jaqueline Dal Curtivo Passos
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.
| | - Karoline Felisbino
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | | | - Izonete Cristina Guiloski
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| |
Collapse
|
7
|
Sun L, Liu L, Wang Y, Feng Y, Yang W, Wang D, Gao S, Miao X, Sun W. Integration of Metabolomics and Transcriptomics for Investigating the Tolerance of Foxtail Millet ( Setaria italica) to Atrazine Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:890550. [PMID: 35755691 PMCID: PMC9226717 DOI: 10.3389/fpls.2022.890550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Foxtail millet (Setaria italica) is a monotypic species widely planted in China. However, residual atrazine, a commonly used maize herbicide, in soil, is a major abiotic stress to millet. Here, we investigated atrazine tolerance in millet based on the field experiments, then obtained an atrazine-resistant variety (Gongai2, GA2) and an atrazine-sensitive variety (Longgu31, LG31). To examine the effects of atrazine on genes and metabolites in millet plants, we compared the transcriptomic and metabolomic profiles between GA2 and LG31 seedling leaves. The results showed that 2,208 differentially expressed genes (DEGs; 501 upregulated, 1,707 downregulated) and 192 differentially expressed metabolites (DEMs; 82 upregulated, 110 downregulate) were identified in atrazine-treated GA2, while in atrazine-treated LG31, 1,773 DEGs (761 upregulated, 1,012 downregulated) and 215 DEMs (95 upregulated, 120 downregulated) were identified. The bioinformatics analysis of DEGs and DEMs showed that many biosynthetic metabolism pathways were significantly enriched in GA2 and LG31, such as glutathione metabolism (oxiglutatione, γ-glutamylcysteine; GSTU6, GSTU1, GSTF1), amino acid biosynthesis (L-cysteine, N-acetyl-L-glutamic acid; ArgB, GS, hisC, POX1), and phenylpropanoid biosynthesis [trans-5-o-(4-coumaroyl)shikimate; HST, C3'H]. Meanwhile, the co-expression analysis indicated that GA2 plants had enhanced atrazine tolerance owing to improved glutathione metabolism and proline biosynthesis, and the enrichment of scopoletin may help LG31 plants resist atrazine stress. Herein, we screened an atrazine-resistant millet variety and generated valuable information that may deepen our understanding of the complex molecular mechanism underlying the response to atrazine stress in millet.
Collapse
Affiliation(s)
- Lifang Sun
- Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Regions, Key Laboratory of Low Carbon Green Agriculture of Northeast Plain in Ministry of Agriculture and Rural Affairs, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, China
| | - Libin Liu
- Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Regions, Key Laboratory of Low Carbon Green Agriculture of Northeast Plain in Ministry of Agriculture and Rural Affairs, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuting Wang
- Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Regions, Key Laboratory of Low Carbon Green Agriculture of Northeast Plain in Ministry of Agriculture and Rural Affairs, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanfei Feng
- Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Regions, Key Laboratory of Low Carbon Green Agriculture of Northeast Plain in Ministry of Agriculture and Rural Affairs, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wei Yang
- Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Regions, Key Laboratory of Low Carbon Green Agriculture of Northeast Plain in Ministry of Agriculture and Rural Affairs, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, China
| | - Di Wang
- Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Regions, Key Laboratory of Low Carbon Green Agriculture of Northeast Plain in Ministry of Agriculture and Rural Affairs, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuren Gao
- Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Regions, Key Laboratory of Low Carbon Green Agriculture of Northeast Plain in Ministry of Agriculture and Rural Affairs, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xingfen Miao
- Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Regions, Key Laboratory of Low Carbon Green Agriculture of Northeast Plain in Ministry of Agriculture and Rural Affairs, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wentao Sun
- Heilongjiang HYHC Company, Daqing, China
| |
Collapse
|
8
|
Martins GA, Corrêa LB, Guidoni LLC, Lucia T, Gerber MD, Silva FMR, Corrêa EK. Toxicity and physicochemical parameters of composts including distinct residues from agribusiness and slaughterhouse sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 138:75-82. [PMID: 34871883 DOI: 10.1016/j.wasman.2021.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Composting is useful for treatment of residues from agribusiness, but the potential toxicity of the final compost should be evaluated before its agricultural destination. The objective of this study was to evaluate the physicochemical characteristics and the toxicity of agribusiness residues using onion seeds as bioindicators. All tested treatments were composed by sludge from a swine slaughterhouse and sawdust. Besides the control, which included no additional materials, the other treatments included aviary bedding, rice husk and residue from tobacco industries as structuring materials. After 120 days of composting, for all treatments, the temperature inside the composting piles approached the environmental temperature, the physicochemical parameters indicated that the composts were stabilized and, except for the treatment including tobacco residues, that could be used for agriculture without impairing plant germination. Although the treatments including tobacco residues and rice husk showed evidence of cytotoxicity and genotoxicity at the beginning of the composting period, that was not observed for the treatment including aviary bedding. Such potential toxicity was not observed at the end of composting for any of the tested treatments.
Collapse
Affiliation(s)
- G A Martins
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - L B Corrêa
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - L L C Guidoni
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS, Brazil; ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - T Lucia
- ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - M D Gerber
- Instituto Federal de Educação, Ciência e Tecnologia Sul-Rio-Grandense, Pelotas, RS, Brazil
| | - F M R Silva
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - E K Corrêa
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
9
|
Oliveira KMGD, Carvalho EHDS, Santos Filho RD, Sivek TW, Thá EL, Souza IRD, Coelho LDDS, Pimenta MEB, Oliveira GARD, Oliveira DPD, Cestari MM, Leme DM. Single and mixture toxicity evaluation of three phenolic compounds to the terrestrial ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113226. [PMID: 34252852 DOI: 10.1016/j.jenvman.2021.113226] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are primarily studied regarding endocrine-mediated effects in mammals and fish. However, EDCs can cause toxicity by mechanisms outside the endocrine system, and, as they are released continuously into soils, they may pose risks to terrestrial organisms. In this work, the plant Allium cepa and the earthworm Eisenia foetida were used as test systems to evaluate the toxicity and cyto-/geno-toxicity of three environmental phenols known as EDCs (Bisphenol A - BPA, Octylphenol - OP, Nonylphenol - NP). The tested phenols were evaluated in environmentally relevant concentrations (μg/L) and in single forms and mixture. BPA, OP, and NP did not inhibit the seed germination and root development in A. cepa in their single forms and mixture. However, all single forms of the tested phenols caused cellular and DNA damages in A. cepa, and although these effects persist in the mixtures, the effects were verified at lower levels. These phenols caused acute toxicity to E. foetida after 48 h of exposure and at both conditions evaluated (single forms and mixture); however, unlike A. cepa, in earthworms, mixtures and single forms presented the same level of effects, indicating that interspecies physiological different might influence the mixture toxicity. In summary, our results suggest that BPA, OP, and NP are toxicants to earthworm and cyto-/geno-toxicants to monocotyledonous plants at low concentrations. However, interaction among these phenols reduces the magnitude of their individual effects (antagonistic effect) in the plant test system. Therefore, this study draws attention to the need to raise knowledge about the ecotoxicity of phenolic compounds to help predict their ecological risks and protect non-target terrestrial species.
Collapse
Affiliation(s)
- Ketelen Michele Guilherme de Oliveira
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | | | - Ronaldo Dos Santos Filho
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | - Tainá Wilke Sivek
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | - Emanoela Lundgren Thá
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | - Irisdoris Rodrigues de Souza
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | - Lauren Dalat de Sousa Coelho
- Faculty of Pharmacy, Federal University of Goiás (UFG), Environmental Toxicology Research Laboratory (EnvTox), Goiânia, GO, Brazil
| | - Maria Eunice Bertelli Pimenta
- Faculty of Pharmacy, Federal University of Goiás (UFG), Environmental Toxicology Research Laboratory (EnvTox), Goiânia, GO, Brazil
| | - Gisele Augusto Rodrigues de Oliveira
- Faculty of Pharmacy, Federal University of Goiás (UFG), Environmental Toxicology Research Laboratory (EnvTox), Goiânia, GO, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Danielle Palma de Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Marta Margarete Cestari
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil
| | - Daniela Morais Leme
- Graduate Program in Genetics, Departament of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, PR, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil.
| |
Collapse
|
10
|
Zhang Y, Jiang D, Yang C, Deng S, Lv X, Chen R, Jiang Z. The oxidative stress caused by atrazine in root exudation of Pennisetum americanum (L.) K. Schum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111943. [PMID: 33493720 DOI: 10.1016/j.ecoenv.2021.111943] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Pearl millet (Pennisetum americanum (L.) K. Schum) has been proven as a potential remediation plant of the pollution caused by atrazine. Plants used in remediation can release root exudates to communicate with rhizosphere microorganisms and accelerate the removal of pollutants in soil. However, the response of pearl millet root exudates under atrazine stress has remained unclear. In this study, hydroponic experiments were conducted at Northeast Agricultural University, Harbin, China, to investigate the oxidative stress response and the changes in composition of root exudates in pearl millet plants that were exposed to 19.4 mgL-1 of atrazine, compared to the untreated control. The experiment was established as six treatments with exposure to no atrazine for 2, 4 and 6 days (CK-2, CK-4, CK-6) and 19.4 mgL-1 atrazine for 2, 4 and 6 days (AT-2, AT-4, AT-6), respectively. The results suggest that the growth of the seedlings changed slightly when exposed to atrazine for 2 days. The content of thiobarbituric acid reactive substances exposed to atrazine for 6 days increased 26% compared with the treatment that was exposed for 2 days. Moreover, the reactive oxygen species in test plant obviously increased when exposed to atrazine for 6 days. In addition, the activity of superoxide dismutase increased from 30.82 ug-1 to 37.33 ug-1 fresh weight after 6 days of exposure to atrazine. The results of a nontargeted metabolomic analysis suggest that carbohydrate metabolism, fatty acid metabolism and amino acid metabolism in pearl millet were obviously affected by the oxidative stress caused by atrazine. The contents of sphinganine and methylimidazole acetaldehyde in CK-6 increased by 5.14 times and 2.05 times, respectively, compared with those of CK-2. Furthermore, the contents of (S)-methylmalonic acid semialdehyde and 1-pyrroline-2-carboxylic acid decreased by 0.56 times and 0.5 times, respectively, compared with the AT-6. These results strongly suggest that the changes observed in the composition of root exudates in pearl millet seedlings can be attributed to the oxidative stress caused by atrazine.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Duo Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Chao Yang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Shijie Deng
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinyu Lv
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ruifeng Chen
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
11
|
Tripthi DK, Varma RK, Singh S, Sachan M, Guerriero G, Kushwaha BK, Bhardwaj S, Ramawat N, Sharma S, Singh VP, Prasad SM, Chauhan DK, Dubey NK, Sahi S. Silicon tackles butachlor toxicity in rice seedlings by regulating anatomical characteristics, ascorbate-glutathione cycle, proline metabolism and levels of nutrients. Sci Rep 2020; 10:14078. [PMID: 32826929 PMCID: PMC7442639 DOI: 10.1038/s41598-020-65124-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 01/22/2020] [Indexed: 01/11/2023] Open
Abstract
Reckless use of herbicides like butachlor (Buta) in the fields represents a serious threat to crop plants, and hence to their productivity. Silicon (Si) is well known for its implication in the alleviation of the effects of abiotic stresses; however, its role in mitigating Buta toxicity is not yet known. Therefore, this study was carried out to explore the role of Si (10 µM) in regulating Buta (4 µM) toxicity in rice seedlings. Buta reduced growth and photosynthesis, altered nitric oxide (NO) level and leaf and root anatomy, inhibited enzyme activities of the ascorbate-glutathione cycle (while transcripts of associated enzymes, increased except OsMDHAR), as well as its metabolites (ascorbate and glutathione) and uptake of nutrients (Mg, P, K, S, Ca, Fe, etc. except Na), while addition of Si reversed Buta-induced alterations. Buta stimulated the expression of Si channel and efflux transporter genes- Lsi1 and Lsi2 while the addition of Si further greatly induced their expression under Buta toxicity. Buta increased free proline accumulation by inducing the activity of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and decreasing proline dehydrogenase (PDH) activity, while Si reversed these effects caused by Buta. Our results suggest that Si-governed mitigation of Buta toxicity is linked with favorable modifications in energy flux parameters of photosynthesis and leaf and root anatomy, up-regulation of Si channel and transporter genes, ascorbate-glutathione cycle and nutrient uptake, and lowering in oxidative stress. We additionally demonstrate that NO might have a crucial role in these responses.
Collapse
Affiliation(s)
- Durgesh Kumar Tripthi
- Amity Institute of Organic Agriculture (AIOA), Amity University Uttar Pradesh, Noida, 201313, India.,Center of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Rishi Kumar Varma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India
| | - Swati Singh
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Hautcharage, Luxembourg
| | - Bishwajit Kumar Kushwaha
- Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad, 211002, India
| | - Shruti Bhardwaj
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India
| | - Naleeni Ramawat
- Amity Institute of Organic Agriculture (AIOA), Amity University Uttar Pradesh, Noida, 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India.
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad, 211002, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, India, 211002.
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India.
| | - Nawal Kishore Dubey
- Center of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Shivendra Sahi
- University of the Sciences in Philadelphia (USP), Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Fioresi VS, de Cássia Ribeiro Vieira B, de Campos JMS, da Silva Souza T. Cytogenotoxic activity of the pesticides imidacloprid and iprodione on Allium cepa root meristem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28066-28076. [PMID: 32405953 DOI: 10.1007/s11356-020-09201-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Effects of imidacloprid and iprodione, isolated and in mixture, were assessed by using seed germination and root growth test, flow cytometry, and chromosomal aberrations test on Allium cepa root meristem. The highest concentrations of imidacloprid, including field concentration, increased the frequency of sub-G1 particles, decreased the frequency of nuclei in G2/M, increased the coefficient of variation of G1 (CVG1) and the frequency of aberrant cells, and inhibited the mitotic index culminating in the reduction in root length. All doses of iprodione also presented cytogenotoxic action. The highest concentration of the fungicide affected the growth of A. cepa roots. In response to exposure to pesticide mixtures, the cell cycle of A. cepa was blocked in the G1 phase. The mixtures with low doses of the pesticides significantly decreased the mitotic index, and as a consequence, the genotoxicity was reduced. In the mixtures with the highest doses of the agrochemicals, the blockage of the cell cycle was insufficient for damage repair, resulting in a significant increase of chromosomal aberrations. The results suggest caution in the use of pesticides doses that induce cytological abnormalities in non-target organisms.
Collapse
Affiliation(s)
- Vinicius Sartori Fioresi
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde (CCENS), Universidade Federal do Espírito Santo, Alto Universitário s/n, Caixa Postal 16, Alegre, ES, 29500-000, Brasil
| | | | | | - Tatiana da Silva Souza
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde (CCENS), Universidade Federal do Espírito Santo, Alto Universitário s/n, Caixa Postal 16, Alegre, ES, 29500-000, Brasil.
| |
Collapse
|
13
|
de Lima GG, Mendes C, de Marchi G, Vicari T, Cestari MM, Gomes MF, Ramsdorf WA, Magalhães WLE, Hansel FA, Leme DM. The evaluation of the potential ecotoxicity of pyroligneous acid obtained from fast pyrolysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:616-623. [PMID: 31132557 DOI: 10.1016/j.ecoenv.2019.05.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Pyroligneous acid (PA) is a by-product of bio-oil, which is obtained by pyrolysis of the wood. This product has been tested for use in several areas, such as agriculture, as a promising green herbicide; however, there are few scientific data regarding its environmental impacts. For this study, an ecotoxicity testing battery, composed of Daphnia magna acute toxicity test, Allium cepa test and in vitro Comet assay with the rainbow trout gonad-2 cell fish line (RTG-2) were used to evaluate the acute toxicity and genotoxicity of PA obtained from fast pyrolysis of eucalyptus wood fines. The PA presented acute toxicity to D. magna (microcrustacea) with EC50 of 26.12 mg/L, and inhibited the seed germination (EC50 5.556 g/L) and root development (EC50 3.436 g/L) of A. cepa (higher plant). No signs of genotoxicity (chromosomal aberrations and micronuclei in A. cepa and primary DNA lesions in RTG-2 cells) were detected to this product. The acute toxicity and absence of genotoxicity may relate to the molecules found in the PA, being the phenolic fraction the key chemical candidate responsible for the toxicity observed. In addition, daphnids seem to be more sensitivity to the toxicity of PA than higher plants based on their EC50 values. This first ecotoxicological evaluation of PA from fast pyrolysis pointed out the need of determining environmental exposure limits to promote the safer agriculture use of this product, avoiding impacts to living organisms.
Collapse
Affiliation(s)
- Gabriel Goetten de Lima
- Graduate Program in Engineering and Science of Materials - PIPE, Federal University of Paraná - UFPR, 81.531-990 Curitiba PR, Brazil; Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Camila Mendes
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Gustavo de Marchi
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Taynah Vicari
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Monike F Gomes
- Laboratory of Ecotoxicology, Federal University of Technology - Paraná, Curitiba, PR, Brazil
| | | | | | | | | |
Collapse
|