1
|
Hajinezhad MR, Roostaee M, Nikfarjam Z, Rastegar S, Sargazi G, Barani M, Sargazi S. Exploring the potential of silymarin-loaded nanovesicles as an effective drug delivery system for cancer therapy: in vivo, in vitro, and in silico experiments. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7017-7036. [PMID: 38630254 DOI: 10.1007/s00210-024-03099-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/11/2024] [Indexed: 09/25/2024]
Abstract
We aimed to perform a comprehensive study on the development and characterization of silymarin (Syl)-loaded niosomes as potential drug delivery systems. The results demonstrate significant novelty and promising outcomes in terms of morphology, size distribution, encapsulation efficiency, in vitro release behavior, free energy profiles of Syl across the niosome bilayer, hydrogen bonding interactions, antimicrobial properties, cytotoxicity, and in vivo evaluations. The physical appearance, size, and morphology assessment of free niosomes and Syl-loaded niosomes indicated stable and well-formed vesicular structures suitable for drug delivery. Transmission electron microscopy (TEM) analysis revealed spherical shapes with distinct sizes for each formulation, confirming uniform distribution. Dynamic light scattering (DLS) analysis confirmed the size distribution results with higher polydispersity index for Syl-loaded niosomes. The encapsulation efficiency of Syl in the niosomes was remarkable at approximately 91%, ensuring protection and controlled release of the drug. In vitro release studies showed a sustained release profile for Syl-loaded niosomes, enhancing therapeutic efficacy over time. Free energy profiles analysis identified energy barriers hindering Syl permeation through the niosome bilayer, emphasizing challenges in drug delivery system design. Hydrogen bonding interactions between Syl and niosome components contributed to energy barriers, impacting drug permeability. Antimicrobial assessments revealed significant differences in inhibitory effects against S. aureus and E. coli. Cytotoxicity evaluations demonstrated the superior tumor-killing potential of Syl-loaded niosomes compared to free Syl. In vivo studies indicated niosome formulations' safety profiles in terms of liver and kidney parameters compared to bulk Syl, showcasing potential for clinical applications. Overall, this research highlights the promising potential of Syl-loaded niosomes as effective drug delivery systems with enhanced stability, controlled release, and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Mohammad Reza Hajinezhad
- Basic Veterinary Science Department, Veterinary Faculty, University of Zabol, P. O. Box. 98613-35856, Zabol, Iran
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Zahra Nikfarjam
- Department of Physical & Computational Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Sanaz Rastegar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 7616913555, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
2
|
Zhang Y, Wang Q, Zhu F. Epigallocatechin-3-gallate attenuates the sulfamethoxazole-induced immunotoxicity and reduces SMZ residues in Procambarus clarkii. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134602. [PMID: 38749242 DOI: 10.1016/j.jhazmat.2024.134602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
Sulfamethoxazole (SMZ) is a commonly used antibiotic in aquaculture, and its residues in water bodies pose a significant threat to aquatic organisms in the water environment. In the present study, epigallocatechin-3-gallate (EGCG), a catecholamine, was used to mitigate the immunotoxicity caused by SMZ exposure in Procambarus clarkii. EGCG reduced the apoptosis rate, which was elevated by SMZ exposure, and increased the total hemocyte count. Simultaneously, EGCG enhanced the activities of enzymes related to antibacterial and antioxidant activities, such as superoxide dismutase (SOD), catalase (CAT), lysozyme (LZM), acid phosphatase (ACP), and GSH, which were decreased following SMZ exposure. Hepatopancreatic histology confirmed that EGCG ameliorated SMZ-induced tissue damage caused by SMZ exposure. In addition to EGCG attenuating SMZ-induced immunotoxicity in crayfish, we determined that EGCG can effectively reduce SMZ residues in crayfish exposed to SMZ. In addition, at the genetic level, the expression levels of genes related to the immune response in hemocytes were disrupted after SMZ exposure, and EGCG promoted their recovery and stimulated an increase in the expression levels of metabolism-related transcripts in hemocytes. The transcriptome analysis was conducted, and "phagosome" and "apoptosis" pathways were shown to be highlighted using Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. To the best of our knowledge, this is the first study to confirm that EGCG attenuates SMZ-induced immunotoxicity in aquatic animals and reduces SMZ residues in aquatic animals exposed to SMZ. Our study contributes to the understanding of the mechanisms by which EGCG reduces the immunotoxicity of antibiotic residues in aquatic animals.
Collapse
Affiliation(s)
- Yunchao Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Qi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Gill NB, Dowker-Key PD, Hedrick M, Bettaieb A. Unveiling the Role of Oxidative Stress in Cochlear Hair Cell Death: Prospective Phytochemical Therapeutics against Sensorineural Hearing Loss. Int J Mol Sci 2024; 25:4272. [PMID: 38673858 PMCID: PMC11050722 DOI: 10.3390/ijms25084272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Hearing loss represents a multifaceted and pervasive challenge that deeply impacts various aspects of an individual's life, spanning psychological, emotional, social, and economic realms. Understanding the molecular underpinnings that orchestrate hearing loss remains paramount in the quest for effective therapeutic strategies. This review aims to expound upon the physiological, biochemical, and molecular aspects of hearing loss, with a specific focus on its correlation with diabetes. Within this context, phytochemicals have surfaced as prospective contenders in the pursuit of potential adjuvant therapies. These compounds exhibit noteworthy antioxidant and anti-inflammatory properties, which hold the potential to counteract the detrimental effects induced by oxidative stress and inflammation-prominent contributors to hearing impairment. Furthermore, this review offers an up-to-date exploration of the diverse molecular pathways modulated by these compounds. However, the dynamic landscape of their efficacy warrants recognition as an ongoing investigative topic, inherently contingent upon specific experimental models. Ultimately, to ascertain the genuine potential of phytochemicals as agents in hearing loss treatment, a comprehensive grasp of the molecular mechanisms at play, coupled with rigorous clinical investigations, stands as an imperative quest.
Collapse
Affiliation(s)
- Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Mark Hedrick
- Department of Audiology & Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN 37996-0240, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| |
Collapse
|
4
|
Mashayekhi M, Ketabi S, Qomi M, Sadroleslami S. Hydration study of Silymarin and its ethylene glycol derivatives compounds by Monte Carlo simulation method. Struct Chem 2023. [DOI: 10.1007/s11224-023-02146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Medical Therapy of Hearing Impairment and Tinnitus with Chinese Medicine: An Overview. Chin J Integr Med 2022:10.1007/s11655-022-3678-5. [PMID: 35419727 DOI: 10.1007/s11655-022-3678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 11/03/2022]
Abstract
The current review gives a comprehensive overview of the recent development in Chinese medicine (CM) for treating several kinds of acquired nerve deafness and tinnitus, as well as links the traditional principle to well-established pharmacological mechanisms for future research. To date, about 24 herbal species and 40 related ingredients used in CM to treat hearing loss and tinnitus are reported for the treatment of endocochlear potential, endolymph growth, lowering toxic and provocative substance aggregation, inhibiting sensory cell death, and retaining sensory transfer. However, there are a few herbal species that can be used for medicinal purposes. Nevertheless, clinical studies have been hampered by a limited population sample, a deficiency of a suitable control research group, or contradictory results. Enhanced cochlear blood flow, antiinflammatory antioxidant, neuroprotective effects, and anti-apoptotic, as well as multi-target approach on different auditory sections of the inner ear, are all possible benefits of CM medications. There are numerous unknown natural products for aural ailment and tinnitus identified in CM that are expected to be examined in the future utilizing various aural ailment models and processes.
Collapse
|
6
|
Fanoudi S, Alavi MS, Karimi G, Hosseinzadeh H. Milk thistle ( Silybum Marianum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug Chem Toxicol 2020; 43:240-254. [PMID: 30033764 DOI: 10.1080/01480545.2018.1485687] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/17/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Biological and chemical agents cause dangerous effects on human health via different exposing ways. Recently, herbal medicine is considered as a biological and safe treatment for toxicities. Silybum marianum (milk thistle), belongs to the Asteraceae family, possesses different effects such as hepatoprotective, cardioprotective, neuroprotective, anti-inflammatory and anti-carcinogenic activities. Several studies have demonstrated that this plant has protective properties against toxic agents. Herein, the protective effects of S. marianum and its main component, silymarin, which is the mixture of flavonolignans including silibinin, silydianin and silychristin acts against different biological (mycotoxins, snake venoms, and bacterial toxins) and chemical (metals, fluoride, pesticides, cardiotoxic, neurotoxic, hepatotoxic, and nephrotoxic agents) poisons have been summarized. This review reveals that main protective effects of milk thistle and its components are attributed to radical scavenging, anti-oxidative, chelating, anti-apoptotic properties, and regulating the inflammatory responses.
Collapse
Affiliation(s)
- Sahar Fanoudi
- Department of Pharmacology Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| |
Collapse
|
7
|
Housing condition-associated changes in gut microbiota further affect the host response to diet-induced nonalcoholic fatty liver. J Nutr Biochem 2020; 79:108362. [PMID: 32163832 DOI: 10.1016/j.jnutbio.2020.108362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Diet-induced obesity is the most widely used animal model for studying nonalcoholic fatty liver disease (NAFLD). However, the physiological effects of a high-fat diet (HFD) are inconsistent between different studies. To elucidate this mystery, mice raised with conventional (CONV), specific pathogen-free (SPF) and gentamicin (G) treatments and fed with standard diet (STD) or HFD were analyzed in terms of their physiology, gut microbiota composition, hepatic steatosis and inflammation. Serum biochemistry showed increased levels of cholesterol and aspartate aminotransferase in the G-STD and CONV-HFD groups, respectively. The CONV-HFD group exhibited more inflammatory foci compared to the SPF-HFD and G-HFD groups. Furthermore, immunohistochemistry staining revealed the infiltration of Kupffer cells in the liver, consistent with increased mRNA levels of MCP-1, CD36 and TLR4. Principal coordinate analysis and the cladogram of LEfSe showed that the distinguished clusters of gut microbiota were dependent on housing conditions. The Rikenellaceae, F16 and Desulfovibrionaceae were strongly correlated with hepatic inflammation. Otherwise, higher NAFLD activity score correlated with altered relative abundances of Bacteroidetes and Firmicutes. In conclusion, gut microbiota varying with housing condition may be pivotal for the host response to HFD.
Collapse
|
8
|
Petrova NN, Korotkova VN, Ilinskaya EV, Maslova YA. [Morphofunctional status of inner ear's cells in case of experimental hearing loss]. Vestn Otorinolaringol 2019; 84:4-7. [PMID: 31198207 DOI: 10.17116/otorino2019840214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To study ultrastructural changes in stria's vascularis cells of inner ear and determine possible ways of correction. MATERIAL AND METHODS The work was carried out on male guinea pigs. After completion of the experiment, stria vascularis of inner ear was subjected to electron microscopic examination. RESULTS AND DISCUSSION In the control group (receiving gentamycin sulfate in an ototoxic dose), signs of blood flow disturbance were revealed, as well as ultrastructural changes in stria's vascularis cells (expansion of intercellular space, deformation of organelles, thinning of glycocalyx, blebbing). Also, fragmented cells were found. These changes are characteristics for apoptosis. In experimental group (receiving gentamycin sulfate and melaxen), degenerative changes were less pronounced. An increase of cell's secretory activity was observed. CONCLUSION Changes in stria's vascularis cells by using melaxen are less pronounced. Increase of cell's secretory activity in stria vascularis is a compensatory reaction and saves auditory function.
Collapse
Affiliation(s)
- N N Petrova
- North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia, 195067
| | - V N Korotkova
- North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia, 195067
| | - E V Ilinskaya
- Research Institute of Influenza, St. Petersburg, Russia, 197376
| | - Yu A Maslova
- North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia, 195067
| |
Collapse
|
9
|
Castañeda R, Natarajan S, Jeong SY, Hong BN, Kang TH. Traditional oriental medicine for sensorineural hearing loss: Can ethnopharmacology contribute to potential drug discovery? JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:409-428. [PMID: 30439402 DOI: 10.1016/j.jep.2018.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Traditional Oriental Medicine (TOM), the development of hearing pathologies is related to an inadequate nourishment of the ears by the kidney and other organs involved in regulation of bodily fluids and nutrients. Several herbal species have historically been prescribed for promoting the production of bodily fluids or as antiaging agents to treat deficiencies in hearing. AIM OF REVIEW The prevalence of hearing loss has been increasing in the last decade and is projected to grow considerably in the coming years. Recently, several herbal-derived products prescribed in TOM have demonstrated a therapeutic potential for acquired sensorineural hearing loss and tinnitus. Therefore, the aims of this review are to provide a comprehensive overview of the current known efficacy of the herbs used in TOM for preventing different forms of acquired sensorineural hearing loss and tinnitus, and associate the traditional principle with the demonstrated pharmacological mechanisms to establish a solid foundation for directing future research. METHODS The present review collected the literature related to herbs used in TOM or related compounds on hearing from Chinese, Korean, and Japanese herbal classics; library catalogs; and scientific databases (PubMed, Scopus, Google Scholar; and Science Direct). RESULTS This review shows that approximately 25 herbal species and 40 active compounds prescribed in TOM for hearing loss and tinnitus have shown in vitro or in vivo beneficial effects for acquired sensorineural hearing loss produced by noise, aging, ototoxic drugs or diabetes. The inner ear is highly vulnerable to ischemia and oxidative damage, where several TOM agents have revealed a direct effect on the auditory system by normalizing the blood supply to the cochlea and increasing the antioxidant defense in sensory hair cells. These strategies have shown a positive impact on maintaining the inner ear potential, sustaining the production of endolymph, reducing the accumulation of toxic and inflammatory substances, preventing sensory cell death and preserving sensory transmission. There are still several herbal species with demonstrated therapeutic efficacy whose mechanisms have not been deeply studied and others that have been traditionally used in hearing loss but have not been tested experimentally. In clinical studies, Ginkgo biloba, Panax ginseng, and Astragalus propinquus have demonstrated to improve hearing thresholds in patients with sensorineural hearing loss and alleviated the symptoms of tinnitus. However, some of these clinical studies have been limited by small sample sizes, lack of an adequate control group or contradictory results. CONCLUSIONS Current therapeutic strategies have proven that the goal of the traditional oriental medicine principle of increasing bodily fluids is a relevant approach for reducing the development of hearing loss by improving microcirculation in the blood-labyrinth barrier and increasing cochlear blood flow. The potential benefits of TOM agents expand to a multi-target approach on different auditory structures of the inner ear related to increased cochlear blood flow, antioxidant, anti-inflammatory, anti-apoptotic and neuroprotective activities. However, more research is required, given the evidence is very limited in terms of the mechanism of action at the preclinical in vivo level and the scarce number of clinical studies published.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Sathishkumar Natarajan
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Seo Yule Jeong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Bin Na Hong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea.
| | - Tong Ho Kang
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| |
Collapse
|
10
|
Structure Characterization and Otoprotective Effects of a New Endophytic Exopolysaccharide from Saffron. Molecules 2019; 24:molecules24040749. [PMID: 30791463 PMCID: PMC6412985 DOI: 10.3390/molecules24040749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/26/2023] Open
Abstract
Saffron, a kind of rare medicinal herb with antioxidant, antitumor, and anti-inflammatory activities, is the dry stigma of Crocus sativus L. A new water-soluble endophytic exopolysaccharide (EPS-2) was isolated from saffron by anion exchange chromatography and gel filtration. The chemical structure was characterized by FT-IR, GC-MS, and 1D and 2D-NMR spectra, indicating that EPS-2 has a main backbone of (1→2)-linked α-d-Manp, (1→2, 4)-linked α-d-Manp, (1→4)-linked α-d-Xylp, (1→2, 3, 5)-linked β-d-Araf, (1→6)- linked α-d-Glcp with α-d-Glcp-(1→ and α-d-Galp-(1→ as sidegroups. Furthermore, EPS-2 significantly attenuated gentamicin-induced cell damage in cultured HEI-OC1 cells and increased cell survival in zebrafish model. The results suggested that EPS-2 could protect cochlear hair cells from ototoxicity exposure. This study could provide new insights for studies on the pharmacological mechanisms of endophytic exopolysaccharides from saffron as otoprotective agents.
Collapse
|
11
|
Hollow Mesoporous Silica@Zeolitic Imidazolate Framework Capsules and Their Applications for Gentamicin Delivery. Neural Plast 2018; 2018:2160854. [PMID: 29849553 PMCID: PMC5907525 DOI: 10.1155/2018/2160854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/27/2017] [Indexed: 11/24/2022] Open
Abstract
We have synthesized hollow mesoporous silica (HMS) at a zeolitic imidazolate framework (ZIF) capsule that can be used as a drug delivery system for gentamicin (GM). The GM is first loaded into HMS. Then, the outer surface of the GM/HMS is coated with uniformed ZIF nanoparticles (denoted as GM/HMS@ZIF). The GM/HMS@ZIF has been successfully prepared and acts as a capsule for GM. The GM/HMS@ZIF shows a good biocompatibility and a good cellular uptake in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells. The GM is released slowly within 10 h under acidic conditions, which is used to simulate the pH of the endosome and lysosome compartments. The in vivo assay shows that the signal from fluorescein isothiocyanate (FITC) can be observed after 15 days, when the mice were injected with FITC/HMS@ZIF. This opens new opportunities to construct a delivery system for GM via one controlled low dose and sustained release for the therapy of Ménière's disease.
Collapse
|
12
|
Tavanai E, Mohammadkhani G, Farahani S, Jalaie S. Protective Effects of Silymarin Against Age-Related Hearing Loss in an Aging Rat Model. Indian J Otolaryngol Head Neck Surg 2018; 71:1248-1257. [PMID: 31750160 DOI: 10.1007/s12070-018-1294-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/07/2018] [Indexed: 01/21/2023] Open
Abstract
Age-related hearing loss (ARHL) is one of the most common chronic degenerative disorders. Several studies have indicated that supplementation with some antioxidants can slow down the progression of ARHL. Despite several lines of evidence about the potent antioxidant and anti-aging effects of silymarin, its protective effect against ARHL has not evaluated yet. The aim of the current study was to investigate the effects of silymarin in prevention of ARHL in a d-Galactose-induced aging rat model for the first time. 45 male wistar rats aged 3-month old were divided into 5 groups: group 1, 2 and 3 received 500 mg/kg/day d-Gal plus 100, 200 and 300 mg/kg/day silymarin respectively for 8 weeks, placebo group received 500 mg/kg/day d-Gal plus propylene glycol as placebo, and control group received normal saline during this period of time. Auditory brainstem responses were measured at several frequencies (4, 6, 8, 12 and 16 kHz) before and after the intervention. Placebo group and group 3 showed significant ABR threshold increase across frequencies of 4, 6, 16 kHz compared with the other groups (P < 0.05). However, rats treated with silymarin 100 and 200 mg/kg/day plus d-Gal did not show any significant ABR threshold shifts. Similarly, ABR amplitude of P2 at 4, 8 kHz and P1, P4 at 4 kHz in the placebo group and group 3 were decreased significantly compared with other groups (P < 0.05). However, no significant differences are found in ABR absolute and inter-peak latencies between groups (P > 0.05). The findings indicates that silymarin with doses of 100 and 200 mg/kg/day has protective effect against ARHL and it can be supplemented into the diet of older people to slow down the progression of age-related hearing loss.
Collapse
Affiliation(s)
- Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| | - Saeid Farahani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| | - Shohreh Jalaie
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| |
Collapse
|
13
|
Coronado LM, Montealegre S, Chaverra Z, Mojica L, Espinosa C, Almanza A, Correa R, Stoute JA, Gittens RA, Spadafora C. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields. PLoS One 2016; 11:e0161207. [PMID: 27537497 PMCID: PMC4990222 DOI: 10.1371/journal.pone.0161207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/01/2016] [Indexed: 11/18/2022] Open
Abstract
The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways.
Collapse
Affiliation(s)
- Lorena M. Coronado
- Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, 522 510, A.P., India
| | - Stephania Montealegre
- School of Biotechnology, Facultad de Ciencias de la Salud “William C. Gorgas”, Universidad Latina, Panama, Republic of Panama
| | - Zumara Chaverra
- School of Biotechnology, Facultad de Ciencias de la Salud “William C. Gorgas”, Universidad Latina, Panama, Republic of Panama
| | - Luis Mojica
- National Center for Metrology of Panama (CENAMEP AIP), City of Knowledge, Panama, Republic of Panama
| | - Carlos Espinosa
- National Center for Metrology of Panama (CENAMEP AIP), City of Knowledge, Panama, Republic of Panama
| | - Alejandro Almanza
- Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Ricardo Correa
- Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, 522 510, A.P., India
| | - José A. Stoute
- Department of Medicine, Division of Infectious Diseases and Epidemiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Rolando A. Gittens
- Center for Biodiversity & Drug Discovery (CBDD), INDICASAT AIP, City of Knowledge, Panama, Republic of Panama
| | - Carmenza Spadafora
- Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| |
Collapse
|
14
|
Ma Y, He S, Ma X, Hong T, Li Z, Park K, Wang W. Silymarin-Loaded Nanoparticles Based on Stearic Acid-Modified Bletilla striata Polysaccharide for Hepatic Targeting. Molecules 2016; 21:265. [PMID: 26938513 PMCID: PMC6274508 DOI: 10.3390/molecules21030265] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 11/23/2022] Open
Abstract
Silymarin has been widely used as a hepatoprotective drug in the treatment of various liver diseases, yet its effectiveness is affected by its poor water solubility and low bioavailability after oral administration, and there is a need for the development of intravenous products, especially for liver-targeting purposes. In this study, silymarin was encapsulated in self-assembled nanoparticles of Bletilla striata polysaccharide (BSP) conjugates modified with stearic acid and the physicochemical properties of the obtained nanoparticles were characterized. The silymarin-loaded micelles appeared as spherical particles with a mean diameter of 200 nm under TEM. The encapsulation of drug molecules was confirmed by DSC thermograms and XRD diffractograms, respectively. The nanoparticles exhibited a sustained-release profile for nearly 1 week with no obvious initial burst. Compared to drug solutions, the drug-loaded nanoparticles showed a lower viability and higher uptake intensity on HepG2 cell lines. After intravenous administration of nanoparticle formulation for 30 min to mice, the liver became the most significant organ enriched with the fluorescent probe. These results suggest that BSP derivative nanoparticles possess hepatic targeting capability and are promising nanocarriers for delivering silymarin to the liver.
Collapse
Affiliation(s)
- Yanni Ma
- Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Shaolong He
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Xueqin Ma
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Tongtong Hong
- Department of Pharmacy, General Hospital of Yankuang Group, Zou Cheng, Shandong 273500, China.
| | - Zhifang Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Kinam Park
- Departments of Biomedical Engineering and Pharmaceutics, Purdue University, West Lafayette, IN 47907, USA.
| | - Wenping Wang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| |
Collapse
|