1
|
Khan Y, Khan NU, Ali I, Khan S, Khan AU, Iqbal A, Adams BD. Significant association of BRCA1 (rs1799950), BRCA2 (rs144848) and TP53 (rs1042522) polymorphism with breast cancer risk in Pashtun population of Khyber Pakhtunkhwa, Pakistan. Mol Biol Rep 2023:10.1007/s11033-023-08463-9. [PMID: 37300745 DOI: 10.1007/s11033-023-08463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/14/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Single nucleotide polymorphism (SNPs) in BRCA1, BRCA2 and TP53 has been widely associated with breast cancer risk in different ethnicities with inconsistent results. There is no such study conducted so far in the Pashtun population of Khyber Pakhtunkhwa, Pakistan. Therefore, this study was conducted to check BRCA1 (rs1799950), BRCA2 (rs144848) and TP53 (rs1042522) polymorphism with breast cancer risk in Pashtun population of Khyber Pakhtunkhwa, Pakistan. METHODS This study, consisting 140 breast cancer patients and 80 gender and age matched healthy controls were subjected to confirm BRCA1, BRCA2 and TP53 polymorphism. Clinicopathological data and blood samples were taken from all the participants. DNA was extracted and SNPs were confirmed using T-ARMS-PCR protocol. RESULTS Our data indicated that BRCA1, BRCA2, and TP53 selected SNPs risk allele and risk allele containing genotypes displayed significant association (p < 0.05) with breast cancer risk in the Pashtun population of Khyber Pakhtunkhwa, Pakistan. CONCLUSION All the three selected SNPs of BRCA1, BRCA2 and TP53 showed significant association with breast cancer risk in the Pashtun population of Khyber Pakhtunkhwa, Pakistan. However, more investigation will be required on large data sets to confirm the selected SNPs and other SNPs in the selected and other related genes with the risk of breast cancer.
Collapse
Affiliation(s)
- Yumna Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar, Pakistan
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar, Pakistan.
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally, Kuwait
| | - Samiullah Khan
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan
| | - Aakif Ullah Khan
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar, Pakistan
| | - Brian D Adams
- Department of RNA Science, The Brain Institute of America, New Haven, CT, USA.
| |
Collapse
|
2
|
Luan X, Zhao Y, Bu N, Chen Y, Chen N. DEC1 negatively regulates CYP2B6 expression by binding to the CYP2B6 promoter region ascribed to IL-6-induced downregulation of CYP2B6 expression in HeLa cells. Xenobiotica 2021; 51:1343-1351. [PMID: 34758708 DOI: 10.1080/00498254.2021.2004335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The cytochrome P450 superfamily (CYPs) is a group of metabolic enzymes involved in drug biotransformation/metabolism. It is the most important drug metabolic enzyme; however, its mechanism of action remains unclear.We investigated the expression of CYP2B6 in HeLa cells induced by interleukin-6 (IL-6) and explored the relationship between differentially expressed chondrocytes 1 (DEC1) and CYP2B6 via luciferase reporter, chromatin immunoprecipitation (ChIP) and ELISA assays.We observed the expression of CYP2B6 in HeLa cells exhibited a time-dependent decrease under the effect of IL-6, and the expression of CYP2B6 down-regulated by IL-6was negatively correlated with DEC1. After overexpression or knockdown of DEC1 in HeLa cells, the expression of CYP2B6 decreased or increased. The luciferase reporter assay and ChIP assay confirmed that DEC1 inhibited the expression of CYP2B6 by binding to the CYP2B6 promoter. ELISA results showed that high expression of DEC1 or low expression of CYP2B6 can promote the secretion of IL-6 in HeLa cells, and the secreted IL-6 can continually downregulate the expression of CYP2B6 in HeLa cells.Our results indicate that DEC1/CYP2B6 pathway in the inflammatory environment of tumours, and this provides a small amount of theoretical basis for the study of genes encoding drug-metabolising enzymes.
Collapse
Affiliation(s)
- Xiaofei Luan
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Zhao
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Na Bu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yue Chen
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Nan Chen
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
3
|
Sharma P, Singh N, Sharma S. ATP binding cassette transporters and cancer: revisiting their controversial role. Pharmacogenomics 2021; 22:1211-1235. [PMID: 34783261 DOI: 10.2217/pgs-2021-0116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The expression of ATP-binding cassette transporter (ABC transporters) has been reported in various tissues such as the lung, liver, kidney, brain and intestine. These proteins account for the efflux of different compounds and metabolites across the membrane, thus decreasing the concentration of the toxic compounds. ABC transporter genes play a vital role in the development of multidrug resistance, which is the main obstacle that hinders the success of chemotherapy. Preclinical and clinical trials have investigated the probability of overcoming drug-associated resistance and substantial toxicities. The focus has been put on several strategies to overcome multidrug resistance. These strategies include the development of modulators that can modulate ABC transporters. This knowledge can be translated for clinical oncology treatment in the future.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Navneet Singh
- Department of Pulmonary medicine, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
4
|
Li H, Dai H, Shi T, Cheng X, Sun M, Chen K, Wang M, Wei Q. Potentially functional variants in nucleotide excision repair pathway genes predict platinum treatment response of Chinese ovarian cancer patients. Carcinogenesis 2021; 41:1229-1237. [PMID: 32663249 DOI: 10.1093/carcin/bgaa075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/13/2020] [Accepted: 07/12/2020] [Indexed: 11/13/2022] Open
Abstract
Acquired platinum resistance impedes successful treatment of epithelial ovarian cancer (EOC), and this resistance may be associated with inherited DNA damage-repair response. In the present study, we performed a two-phase analysis to assess associations between 8191 single-nucleotide polymorphisms within 127 genes of nucleotide excision repair pathway from a genome-wide association study dataset and platinum treatment response in 803 Han Chinese EOC patients. As a result, we identified that platinum-based chemotherapeutic response was associated with two potentially functional variants MNAT1 rs2284704 T>C [TC + CC versus TT, adjusted odds ratio (OR) = 0.89, 95% confidence interval (CI) = 0.83-0.95 and P = 0.0005] and HUS1B rs61748571 A>G (AG + GG versus AA, OR = 1.10, 95% CI = 1.03-1.18 and P = 0.005). Compared with the prediction model for clinical factors only, models incorporating HUS1B rs61748571 [area under the curve (AUC) 0.652 versus 0.672, P = 0.026] and the number of unfavorable genotypes (AUC 0.652 versus 0.668, P = 0.040) demonstrated a significant increase in the AUC. Further expression quantitative trait loci analysis suggested that MNAT1 rs2284704 T>C significantly influenced mRNA expression levels of MNAT1 (P = 0.003). These results indicated that MNAT1 rs2284704 T>C and HUS1B rs61748571 A>G may serve as potential biomarkers for predicting platinum treatment response of Chinese EOC patients, once validated by further functional studies.
Collapse
Affiliation(s)
- Haoran Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tingyan Shi
- Ovarian Cancer Program, Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Fudan University Zhongshan Hospital, Shanghai, China
| | - Xi Cheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Menghong Sun
- Department of Pathology, Tissue Bank, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Mengyun Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingyi Wei
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
5
|
Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat 2020; 53:100715. [PMID: 32679188 DOI: 10.1016/j.drup.2020.100715] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022]
Abstract
It is well established that multifactorial drug resistance hinders successful cancer treatment. Tumor cell interactions with the tumor microenvironment (TME) are crucial in epithelial-mesenchymal transition (EMT) and multidrug resistance (MDR). TME-induced factors secreted by cancer cells and cancer-associated fibroblasts (CAFs) create an inflammatory microenvironment by recruiting immune cells. CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSCs) and inflammatory tumor associated macrophages (TAMs) are main immune cell types which further enhance chronic inflammation. Chronic inflammation nurtures tumor-initiating/cancer stem-like cells (CSCs), induces both EMT and MDR leading to tumor relapses. Pro-thrombotic microenvironment created by inflammatory cytokines and chemokines from TAMs, MDSCs and CAFs is also involved in EMT and MDR. MDSCs are the most common mediators of immunosuppression and are also involved in resistance to targeted therapies, e.g. BRAF inhibitors and oncolytic viruses-based therapies. Expansion of both cancer and stroma cells causes hypoxia by hypoxia-inducible transcription factors (e.g. HIF-1α) resulting in drug resistance. TME factors induce the expression of transcriptional EMT factors, MDR and metabolic adaptation of cancer cells. Promoters of several ATP-binding cassette (ABC) transporter genes contain binding sites for canonical EMT transcription factors, e.g. ZEB, TWIST and SNAIL. Changes in glycolysis, oxidative phosphorylation and autophagy during EMT also promote MDR. Conclusively, EMT signaling simultaneously increases MDR. Owing to the multifactorial nature of MDR, targeting one mechanism seems to be non-sufficient to overcome resistance. Targeting inflammatory processes by immune modulatory compounds such as mTOR inhibitors, demethylating agents, low-dosed histone deacetylase inhibitors may decrease MDR. Targeting EMT and metabolic adaptation by small molecular inhibitors might also reverse MDR. In this review, we summarize evidence for TME components as causative factors of EMT and anticancer drug resistance.
Collapse
|
6
|
Cytotoxicity of nimbolide towards multidrug-resistant tumor cells and hypersensitivity via cellular metabolic modulation. Oncotarget 2018; 9:35762-35779. [PMID: 30515268 PMCID: PMC6254660 DOI: 10.18632/oncotarget.26299] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
Nimbolide is considered a promising natural product in cancer prevention and treatment. However, it is not known yet, whether the different mechanisms of multidrug resistance (MDR) influence its anticancer activity. In this study, well-known MDR mechanisms (ABCB1, ABCG2, ABCB5, TP53, EGFR) were evaluated against nimbolide. The P-glycoprotein (ABCB1/MDR1)-overexpressing CEM/ADR5000 cell line displayed remarkable hypersensitivity to nimbolide, which was mediated through upregulation of the tumor suppressor, PTEN, and its downstream components resulted in significant downregulation in ABCB1/MDR1 mRNA and P-glycoprotein. In addition, nimbolide targeted essential cellular metabolic-regulating elements including HIF1α, FoxO1, MYC and reactive oxygen species. The expression of breast cancer resistance protein (BCRP) as well as epidermal growth factor receptor (EGFR) and mutant tumor suppressor TP53 did not correlate to nimbolide’s activity. Furthermore, this paper looked for other molecular determinants that might determine tumor cellular response towards nimbolide. COMPARE and hierarchical cluster analyses of transcriptome-wide microarray-based mRNA expressions of the NCI 60 cell line panel were performed, and a set of 40 genes from different functional groups was identified. The data suggested NF-κB as master regulator of nimbolide’s activity. Interestingly, HIF1α was determined by COMPARE analysis to mediate sensitivity to nimbolide, which would be of great benefit in targeted therapy.
Collapse
|
7
|
Integration of phytochemicals and phytotherapy into cancer precision medicine. Oncotarget 2018; 8:50284-50304. [PMID: 28514737 PMCID: PMC5564849 DOI: 10.18632/oncotarget.17466] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/18/2017] [Indexed: 01/01/2023] Open
Abstract
Concepts of individualized therapy in the 1970s and 1980s attempted to develop predictive in vitro tests for individual drug responsiveness without reaching clinical routine. Precision medicine attempts to device novel individual cancer therapy strategies. Using bioinformatics, relevant knowledge is extracted from huge data amounts. However, tumor heterogeneity challenges chemotherapy due to genetically and phenotypically different cell subpopulations, which may lead to refractory tumors. Natural products always served as vital resources for cancer therapy (e.g., Vinca alkaloids, camptothecin, paclitaxel, etc.) and are also sources for novel drugs. Targeted drugs developed to specifically address tumor-related proteins represent the basis of precision medicine. Natural products from plants represent excellent resource for targeted therapies. Phytochemicals and herbal mixtures act multi-specifically, i.e. they attack multiple targets at the same time. Network pharmacology facilitates the identification of the complexity of pharmacogenomic networks and new signaling networks that are distorted in tumors. In the present review, we give a conceptual overview, how the problem of drug resistance may be approached by integrating phytochemicals and phytotherapy into academic western medicine. Modern technology platforms (e.g. “-omics” technologies, DNA/RNA sequencing, and network pharmacology) can be applied for diverse treatment modalities such as cytotoxic and targeted chemotherapy as well as phytochemicals and phytotherapy. Thereby, these technologies represent an integrative momentum to merge the best of two worlds: clinical oncology and traditional medicine. In conclusion, the integration of phytochemicals and phytotherapy into cancer precision medicine represents a valuable asset to chemically synthesized chemicals and therapeutic antibodies.
Collapse
|
8
|
Ochwang'i DO, Kimwele CN, Oduma JA, Gathumbi PK, Kiama SG, Efferth T. Cytotoxic activity of medicinal plants of the Kakamega County (Kenya) against drug-sensitive and multidrug-resistant cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:233-240. [PMID: 29309859 DOI: 10.1016/j.jep.2018.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 12/16/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The geographical location of Kakamega County proximal to the Kakamega Rain Forest in Kenya and its rich flora represents an interesting resource of traditional medicinal plants. The medicinal plants in the present study are traditionally used to treat cancer in Kakamega County as recorded in published literature. AIM OF THE STUDY Due to multidrug resistance (MDR) and severe side effects of currently used drugs in clinical oncology, new candidate compounds are urgently required to improve treatment outcome. The present study explored the in vitro cytotoxic potential of 34 organic and 19 aqueous extracts of Kakamega medicinal plants towards sensitive and multidrug-resistant cancer cell lines. METHODS AND RESULTS The cytotoxicity was determined using the resazurin assay. Eight organic and two aqueous plant extracts inhibited the growth of CCRF-CEM leukemia cells by more than 50%. The organic extracts were Harungana madagascariensis Lam. ex poir (6.6% of untreated control), Prunus africana (Hook.f.) Kalkman (19.4%), Entada abyssinica Steud. ex A. Rich (38.6%), Phyllanthus fischeri Pax (40.7%), Shirakiopsis elliptica (Hochst.) Esser Synonym: Sapium ellipticum (Hochst. kraus) Pax (41.8%), Bridelia micrantha (Hochst.) Baill (45.4%) and Futumia africana Benth. (45.8%) and Microglossa pyrifolia (Lam.) Kuntze (48%). The aqueous extracts were Bridelia micrantha (Hochst.) Baill (31.3%) and Shirakiopsis elliptica (Hochst.) Esser Synonym: Sapium ellipticum (Hochst. Kraus) Pax (48.2%). In addition to P-glycoprotein-expressing tumor cells, we also investigated other mechanisms of drug resistance, i.e. BCRP- or EGFR-transfected and TP53-knockout tumor cells. Some extracts also showed considerable cytotoxic activity against these drug-resistant cell lines. As demonstrated for selected examples, some extracts exhibited enhanced cytotoxicity towards cancer cells, if applied in combination with other extracts. DISCUSSION The panel of medicinal plants used in the Kakamega County for cancer treatment revealed indeed cytotoxicity to various extent towards cancer cells in vitro. Hence, our results may at least in part substantiate the traditional use of these compounds to treat cancer. Even more interesting, several extracts inhibited otherwise drug-resistant tumor cell lines with similar or even better efficacy than their drug-sensitive counterparts. This provides an attractive perspective for further exploration of their anticancer potential to combat drug resistance of refractory tumors.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- Drug Resistance, Neoplasm
- Drug Therapy, Combination
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Inhibitory Concentration 50
- Medicine, African Traditional
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oxazines/metabolism
- Plants, Medicinal/chemistry
- Xanthenes/metabolism
Collapse
Affiliation(s)
- Dominic O Ochwang'i
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya.
| | - Charles N Kimwele
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya.
| | - Jemimah A Oduma
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya.
| | - Peter K Gathumbi
- Department of Veterinary Pathology, Parasitology and Microbiology, University of Nairobi, P.O. BOX 30197-00100, Nairobi, Kenya.
| | - Stephen G Kiama
- College of Agriculture and Veterinary Sciences, P.O. Box 30197, Nairobi 00100, Kenya.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
9
|
Özenver N, Saeed M, Demirezer LÖ, Efferth T. Aloe-emodin as drug candidate for cancer therapy. Oncotarget 2018; 9:17770-17796. [PMID: 29707146 PMCID: PMC5915154 DOI: 10.18632/oncotarget.24880] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
As a leading cause of global mortality, cancer frequently cannot be cured due to the development of drug resistance. Therefore, novel drugs are required. Naturally occurring anthraquinones are mostly present in Rumex and Rhamnus species and are of interest because of their structural similarity to anthracyclines as well established anticancer drugs. In the present study, we focused on the structural elucidation of phytochemicals from R. acetosella as well as the investigation of cytotoxicity and modes of action of the main anthraquinone aglycons (emodin, Aloe-emodin, physcion, rhein). Resazurin reduction and protease viability marker assays were conducted to test their cytotoxicity. Microarray-based gene expression profiling was performed to identify cellular pathways affected by the compounds, which was validated by qPCR analyses and functional assays. Flow cytometry was used to measure cell cycle distribution, apoptosis and necrosis, induction of reactive oxygen species (ROS) and disruption of mitochondrial membrane potential (MMP). The comet assay was used to detect DNA damage. Aloe-emodin as the most cytotoxic compound revealed IC50 values from 9.872 μM to 22.3 μM in drug-sensitive wild-type cell lines and from 11.19 μM to 33.76 μM in drug-resistant sublines, was selected to investigate its mechanism against cancer. Aloe-emodin-induced S phase arrest, ROS generation, DNA damage and apoptosis. Microarray hybridization revealed a profile of deregulated genes in Aloe-emodin-treated CCRF-CEM cells with diverse functions such as cell death and survival, cellular growth and proliferation, cellular development, gene expression, cellular function and maintenance. Aloe-emodin as well as R. acetosella deserve further investigations as possible antineoplastic drug candidates.
Collapse
Affiliation(s)
- Nadire Özenver
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Mohamed Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Lütfiye Ömur Demirezer
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
10
|
Sourani Z, Shirzad H, Shirzad M, Pourgheysari B. Interaction between Gallic acid and Asparaginase to potentiate anti-proliferative effect on lymphoblastic leukemia cell line. Biomed Pharmacother 2017; 96:1045-1054. [PMID: 29217160 DOI: 10.1016/j.biopha.2017.11.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/31/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Treatment of acute lymphoblastic leukemia (ALL) fails in some cases and the side effects cause mortality in certain patients. Gallic acid (GA), a polyhydroxyphenolic compound has biological functions including anti-proliferative properties. The aim of the present study was to investigate the growth inhibition effects of GA in combination with asparaginase (ASP), as a component of combination chemotherapy, in a lymphoblastic leukemia cell line. METHODS Jurkat cells were incubated with different concentrations of GA with or without ASP. Proliferation inhibition was investigated using MTS test. The level of apoptosis alterations were evaluated using flow cytometry. The expression of Fas gene level and surface expression were investigated by quantitative real time PCR and flow cytometry respectively. RESULTS GA at 50μM concentration and ASP at 0.5 IU/ml inhibited 50% cell proliferation in 48 hours. GA also increased the inhibitory effect of ASP and some combinations had synergistic results. The increase of cell apoptosis and Fas expression were observed in GA-treated cells compared to control. GA increased the effect of ASP on proliferation inhibition, induction of apoptosis and Fas expression. CONCLUSION GA is an effective component in proliferation inhibition, apoptosis induction and enhancement of Fas expression level in Jurkat cell line. GA in some combination with ASP increases the effect of the latter on the cells. The study of the mechanism of these effects could be a further step towards target therapy. This study is a preliminary phase to the use of GA and should be carried out by more comprehensive study and animal models.
Collapse
Affiliation(s)
- Zahra Sourani
- Immunology Department, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Moein Shirzad
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Batoul Pourgheysari
- Pathology and Hematology Department, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plant Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
11
|
Impact of chemotherapy-induced neutropenia (CIN) and febrile neutropenia (FN) on cancer treatment outcomes: An overview about well-established and recently emerging clinical data. Crit Rev Oncol Hematol 2017; 120:163-179. [DOI: 10.1016/j.critrevonc.2017.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
|
12
|
Attri KS, Murthy D, Singh PK. Racial disparity in metabolic regulation of cancer. Front Biosci (Landmark Ed) 2017; 22:1221-1246. [PMID: 28199202 DOI: 10.2741/4543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genetic mutations and metabolic reprogramming are two key hallmarks of cancer, required for proliferation, invasion, and metastasis of the disease. While genetic mutations, whether inherited or acquired, are critical for the initiation of tumor development, metabolic reprogramming is an effector mechanism imperative for adaptational transition during the progression of cancer. Recent findings in the literature emphasize the significance of molecular cross-talk between these two cellular processes in regulating signaling and differentiation of cancer cells. Genome-wide sequencing analyses of cancer genomes have highlighted the association of various genic mutations in predicting cancer risk and survival. Oncogenic mutational frequency is heterogeneously distributed among various cancer types in different populations, resulting in varying susceptibility to cancer risk. In this review, we explore and discuss the role of genetic mutations in metabolic enzymes and metabolic oncoregulators to stratify cancer risk in persons of different racial backgrounds.
Collapse
Affiliation(s)
- Kuldeep S Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA,
| |
Collapse
|
13
|
Nasr R, Sleiman F, Awada Z, Zgheib NK. The pharmacoepigenetics of drug metabolism and transport in breast cancer: review of the literature and in silico analysis. Pharmacogenomics 2016; 17:1573-85. [DOI: 10.2217/pgs-2016-0081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The focus of this manuscript is on DNA methylation and miRNA regulation of drug-metabolizing enzymes and drug transporters involved in the disposition of drugs commonly used in breast cancer. We start with a review of the available scant literature and follow with an in silico analysis of the CpG islands and miRNA binding sites of genes of interest. We make the case that there is room for further research to include more genes and miRNAs despite the extensive sharing of miRNA targets by candidate genes of interest. We also stress on the role of peripheral blood as a source of pharmacoepigenetic biomarkers, and point out the lack of toxicoepigenetic studies in breast cancer.
Collapse
Affiliation(s)
- Rihab Nasr
- Department of Anatomy, Cell Biology & Physiology, American University of Beirut Faculty of Medicine (AUBFM), Beirut, Lebanon
| | - Fatima Sleiman
- Department of Pharmacology & Toxicology, American University of Beirut Faculty of Medicine (AUBFM), Beirut, Lebanon
| | - Zeinab Awada
- Department of Pharmacology & Toxicology, American University of Beirut Faculty of Medicine (AUBFM), Beirut, Lebanon
| | - Natalie K Zgheib
- Department of Pharmacology & Toxicology, American University of Beirut Faculty of Medicine (AUBFM), Beirut, Lebanon
| |
Collapse
|
14
|
Poornima P, Kumar JD, Zhao Q, Blunder M, Efferth T. Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature. Pharmacol Res 2016; 111:290-302. [PMID: 27329331 DOI: 10.1016/j.phrs.2016.06.018] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/14/2022]
Abstract
Despite massive investments in drug research and development, the significant decline in the number of new drugs approved or translated to clinical use raises the question, whether single targeted drug discovery is the right approach. To combat complex systemic diseases that harbour robust biological networks such as cancer, single target intervention is proved to be ineffective. In such cases, network pharmacology approaches are highly useful, because they differ from conventional drug discovery by addressing the ability of drugs to target numerous proteins or networks involved in a disease. Pleiotropic natural products are one of the promising strategies due to their multi-targeting and due to lower side effects. In this review, we discuss the application of network pharmacology for cancer drug discovery. We provide an overview of the current state of knowledge on network pharmacology, focus on different technical approaches and implications for cancer therapy (e.g. polypharmacology and synthetic lethality), and illustrate the therapeutic potential with selected examples green tea polyphenolics, Eleutherococcus senticosus, Rhodiola rosea, and Schisandra chinensis). Finally, we present future perspectives on their plausible applications for diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Paramasivan Poornima
- School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Jothi Dinesh Kumar
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Qiaoli Zhao
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany
| | - Martina Blunder
- Department of Neuroscience, Biomedical Center, Uppsala University, Uppsala, Sweden and Brain Institute, Federal University of Rio Grande do Norte, UFRN, Natal, Brazil
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
15
|
Seo EJ, Saeed M, Law BYK, Wu AG, Kadioglu O, Greten HJ, Efferth T. Pharmacogenomics of Scopoletin in Tumor Cells. Molecules 2016; 21:496. [PMID: 27092478 PMCID: PMC6273985 DOI: 10.3390/molecules21040496] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/01/2016] [Accepted: 04/07/2016] [Indexed: 11/16/2022] Open
Abstract
Drug resistance and the severe side effects of chemotherapy necessitate the development of novel anticancer drugs. Natural products are a valuable source for drug development. Scopoletin is a coumarin compound, which can be found in several Artemisia species and other plant genera. Microarray-based RNA expression profiling of the NCI cell line panel showed that cellular response of scopoletin did not correlate to the expression of ATP-binding cassette (ABC) transporters as classical drug resistance mechanisms (ABCB1, ABCB5, ABCC1, ABCG2). This was also true for the expression of the oncogene EGFR and the mutational status of the tumor suppressor gene, TP53. However, mutations in the RAS oncogenes and the slow proliferative activity in terms of cell doubling times significantly correlated with scopoletin resistance. COMPARE and hierarchical cluster analyses of transcriptome-wide mRNA expression resulted in a set of 40 genes, which all harbored binding motifs in their promoter sequences for the transcription factor, NF-κB, which is known to be associated with drug resistance. RAS mutations, slow proliferative activity, and NF-κB may hamper its effectiveness. By in silico molecular docking studies, we found that scopoletin bound to NF-κB and its regulator IκB. Scopoletin activated NF-κB in a SEAP-driven NF-κB reporter cell line, indicating that NF-κB might be a resistance factor for scopoletin. In conclusion, scopoletin might serve as lead compound for drug development because of its favorable activity against tumor cells with ABC-transporter expression, although NF-κB activation may be considered as resistance factor for this compound. Further investigations are warranted to explore the full therapeutic potential of this natural product.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Mohamed Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - An Guo Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Henry Johannes Greten
- Abel Salazar Biomedical Sciences Institute, University of Porto, Porto 4099-002, Portugal.
- Heidelberg School of Chinese Medicine, Heidelberg 69126, Germany.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
16
|
Abstract
The final therapeutic effect of a drug candidate, which is directed to a specific molecular target strongly depends on its absorption, distribution, metabolism and excretion (ADME). The disruption of at least one element of ADME may result in serious drug resistance. In this work we described the role of one element of this resistance: phase II metabolism with UDP-glucuronosyltransferases (UGTs). UGT function is the transformation of their substrates into more polar metabolites, which are better substrates for the ABC transporters, MDR1, MRP and BCRP, than the native drug. UGT-mediated drug resistance can be associated with (i) inherent overexpression of the enzyme, named intrinsic drug resistance or (ii) induced expression of the enzyme, named acquired drug resistance observed when enzyme expression is induced by the drug or other factors, as food-derived compounds. Very often this induction occurs via ligand binding receptors including AhR (aryl hydrocarbon receptor) PXR (pregnane X receptor), or other transcription factors. The effect of UGT dependent resistance is strengthened by coordinate action and also a coordinate regulation of the expression of UGTs and ABC transporters. This coupling of UGT and multidrug resistance proteins has been intensively studied, particularly in the case of antitumor treatment, when this resistance is "improved" by differences in UGT expression between tumor and healthy tissue. Multidrug resistance coordinated with glucuronidation has also been described here for drugs used in the management of epilepsy, psychiatric diseases, HIV infections, hypertension and hypercholesterolemia. Proposals to reverse UGT-mediated drug resistance should consider the endogenous functions of UGT.
Collapse
Affiliation(s)
- Zofia Mazerska
- Gdańsk University of Technology, Chemical Faculty, Department of Pharmaceutical Technology and Biochemistry, 80-233 Gdańsk, Poland
| | - Anna Mróz
- Gdańsk University of Technology, Chemical Faculty, Department of Pharmaceutical Technology and Biochemistry, 80-233 Gdańsk, Poland
| | - Monika Pawłowska
- Gdańsk University of Technology, Chemical Faculty, Department of Pharmaceutical Technology and Biochemistry, 80-233 Gdańsk, Poland
| | - Ewa Augustin
- Gdańsk University of Technology, Chemical Faculty, Department of Pharmaceutical Technology and Biochemistry, 80-233 Gdańsk, Poland.
| |
Collapse
|
17
|
Abstract
‘Pharmacogenetics or Pharmacogenomics’ (PG) is one of the most practiced cancer therapeutic strategies, tailored for individualized patients. Despite its popularity and rapid advancements in the field, many obstacles for cancer therapy PG still need to be overcome. By borrowing scientific systems from other disciplines such as cancer diagnosis, and therapeutic information from the diversity of tumor origins, categories and stages, cancer therapy PG may hopefully be improved. Furthermore, to quickly acquire genetic and pathologic information and seek therapeutic interventions, possible breakthroughs may come from beyond – changing the cancer therapeutic landscapes. The next generations of PG protocols and hospital routines for searching deadly cancer pathogenic pathways versus drug-targeting predictions are of great clinical significance for the future. Yet, progress of cancer therapy PG is entering into a bottleneck stage owing to simple model of relevant techniques and routines. Promoting or even innovating present PG modular is very necessary. This perspective highlights this issue by introducing new initiatives and ideas.
Collapse
|
18
|
Takahashi H, Kaniwa N, Saito Y, Sai K, Hamaguchi T, Shirao K, Shimada Y, Matsumura Y, Ohtsu A, Yoshino T, Doi T, Takahashi A, Odaka Y, Okuyama M, Sawada JI, Sakamoto H, Yoshida T. Construction of possible integrated predictive index based on EGFR and ANXA3 polymorphisms for chemotherapy response in fluoropyrimidine-treated Japanese gastric cancer patients using a bioinformatic method. BMC Cancer 2015; 15:718. [PMID: 26475168 PMCID: PMC4609065 DOI: 10.1186/s12885-015-1721-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/08/2015] [Indexed: 12/23/2022] Open
Abstract
Background Variability in drug response between individual patients is a serious concern in medicine. To identify single-nucleotide polymorphisms (SNPs) related to drug response variability, many genome-wide association studies have been conducted. Methods We previously applied a knowledge-based bioinformatic approach to a pharmacogenomics study in which 119 fluoropyrimidine-treated gastric cancer patients were genotyped at 109,365 SNPs using the Illumina Human-1 BeadChip. We identified the SNP rs2293347 in the human epidermal growth factor receptor (EGFR) gene as a novel genetic factor related to chemotherapeutic response. In the present study, we reanalyzed these hypothesis-free genomic data using extended knowledge. Results We identified rs2867461 in annexin A3 (ANXA3) gene as another candidate. Using logistic regression, we confirmed that the performance of the rs2867461 + rs2293347 model was superior to those of the single factor models. Furthermore, we propose a novel integrated predictive index (iEA) based on these two polymorphisms in EGFR and ANXA3. The p value for iEA was 1.47 × 10−8 by Fisher’s exact test. Recent studies showed that the mutations in EGFR is associated with high expression of dihydropyrimidine dehydrogenase, which is an inactivating and rate-limiting enzyme for fluoropyrimidine, and suggested that the combination of chemotherapy with fluoropyrimidine and EGFR-targeting agents is effective against EGFR-overexpressing gastric tumors, while ANXA3 overexpression confers resistance to tyrosine kinase inhibitors targeting the EGFR pathway. Conclusions These results suggest that the iEA index or a combination of polymorphisms in EGFR and ANXA3 may serve as predictive factors of drug response, and therefore could be useful for optimal selection of chemotherapy regimens. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1721-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiro Takahashi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan. .,Plant Biology Research Center, Chubu University, Matsumoto-cho 1200, Kasugai, Aichi, 487-8501, Japan. .,Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Nahoko Kaniwa
- Division of Medicinal Safety Science, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan.
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan.
| | - Kimie Sai
- Division of Medicinal Safety Science, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan.
| | - Tetsuya Hamaguchi
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Kuniaki Shirao
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Yasuhiro Shimada
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Atsushi Ohtsu
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Takayuki Yoshino
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Toshihiko Doi
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Anna Takahashi
- Plant Biology Research Center, Chubu University, Matsumoto-cho 1200, Kasugai, Aichi, 487-8501, Japan.
| | - Yoko Odaka
- Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Misuzu Okuyama
- Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Jun-Ichi Sawada
- Division of Functional Biochemistry and Genomics, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan. .,Present address: Pharmaceutical and Medical Devices Agency, Shinkasumigaseki-building, 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo, 100-0013, Japan.
| | - Hiromi Sakamoto
- Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
19
|
Chen J, Wu L, Wang Y, Yin J, Li X, Wang Z, Li H, Zou T, Qian C, Li C, Zhang W, Zhou H, Liu Z. Effect of transporter and DNA repair gene polymorphisms to lung cancer chemotherapy toxicity. Tumour Biol 2015; 37:2275-84. [PMID: 26358256 DOI: 10.1007/s13277-015-4048-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/02/2015] [Indexed: 11/26/2022] Open
Abstract
Lung cancer is the first leading cause of cancer deaths. Chemotherapy toxicity is one of factors that limited the efficacy of platinum-based chemotherapy in lung cancer patients. Transporters and DNA repair genes play critical roles in occurrence of platinum-based chemotherapy toxicity. To investigate the relationships between transporter and DNA repair gene polymorphisms and platinum-based chemotherapy toxicity in lung cancer patients, we selected 60 polymorphisms in 14 transporters and DNA repair genes. The polymorphisms were genotyped in 317 lung cancer patients by Sequenom MassARRAY. Logistic regression was performed to estimate the association of toxicity outcome with the polymorphisms by PLINK. Our results showed that polymorphisms of SLC2A1 (rs3738514, rs4658, rs841844) were significantly related to overall toxicity. XRCC5 (rs1051685, rs6941) and AQP2 (10875989, rs3759125) polymorphisms were associated with hematologic toxicity. AQP2 polymorphisms (rs461872, rs7305534) were correlated with gastrointestinal toxicity. In conclusion, genotypes of these genes may be used to predict the platinum-based chemotherapy toxicity in lung cancer patients.
Collapse
Affiliation(s)
- Juan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China
| | - Lin Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410014, People's Republic of China
| | - Ying Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410014, People's Republic of China
| | - Jiye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China
| | - Xiangping Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
| | - Zhan Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Huihua Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ting Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
| | - Chenyue Qian
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
| | - Chuntian Li
- Department of Radiotherapy, PLA 463 Hospital, Shenyang, 110042, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
20
|
Wang Y, Li XP, Yin JY, Zhang Y, He H, Qian CY, Chen J, Zheng Y, Smieszkol K, Fu YL, Chen ZY, Zhou HH, Liu ZQ. Association of HMGB1 and HMGB2 genetic polymorphisms with lung cancer chemotherapy response. Clin Exp Pharmacol Physiol 2015; 41:408-15. [PMID: 24684392 DOI: 10.1111/1440-1681.12232] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to investigate the association of genetic polymorphisms in high mobility group box 1 and 2 (HMGB1 and HMGB2, respectively) with platinum-based chemotherapy responses in Chinese lung cancer patients. In total, 338 Chinese lung cancer patients (154 responders and 184 non-responders) were recruited to the study. All patients received at least two cycles of first-line platinum-based chemotherapy. Three tagging single nucleotide polymorphisms (SNPs) of HMGB1 and two tagging SNPs of HMGB2 were detected in patients. We found that rs1412125 and rs2249825 of HMGB1 were significantly associated with the platinum-based chemotherapy response in both recessive and genotypic models. In addition, rs1412125 showed significant association with platinum-based chemotherapy response for the subgroup of patients aged >55 years in additive, recessive and genotypic models. No significant associations were detected between other SNPs and the platinum-based chemotherapy response. The HMGB1 SNPs (rs1412125 and rs2249825) were associated with platinum-based chemotherapy responses in Chinese lung cancer patients. In conclusion, HMGB1 SNPs may serve as potential biomarkers for predicting the efficacy of platinum-based chemotherapy.
Collapse
Affiliation(s)
- Ying Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Targeting epidermal growth factor receptors and downstream signaling pathways in cancer by phytochemicals. Target Oncol 2014; 10:337-53. [DOI: 10.1007/s11523-014-0339-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 09/25/2014] [Indexed: 12/27/2022]
|
22
|
Saeed M, Kuete V, Kadioglu O, Börtzler J, Khalid H, Greten HJ, Efferth T. Cytotoxicity of the bisphenolic honokiol from Magnolia officinalis against multiple drug-resistant tumor cells as determined by pharmacogenomics and molecular docking. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1525-1533. [PMID: 25442261 DOI: 10.1016/j.phymed.2014.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 06/15/2014] [Accepted: 07/21/2014] [Indexed: 06/04/2023]
Abstract
A main problem in oncology is the development of drug-resistance. Some plant-derived lignans are established in cancer therapy, e.g. the semisynthetic epipodophyllotoxins etoposide and teniposide. Their activity is, unfortunately, hampered by the ATP-binding cassette (ABC) efflux transporter, P-glycoprotein. Here, we investigated the bisphenolic honokiol derived from Magnolia officinalis. P-glycoprotein-overexpressing CEM/ADR5000 cells were not cross-resistant to honokiol, but MDA-MB-231 BRCP cells transfected with another ABC-transporter, BCRP, revealed 3-fold resistance. Further drug resistance mechanisms analyzed study was the tumor suppressor TP53 and the epidermal growth factor receptor (EGFR). HCT116 p53(-/-) did not reveal resistance to honokiol, and EGFR-transfected U87.MG EGFR cells were collateral sensitive compared to wild-type cells (degree of resistance: 0.34). To gain insight into possible modes of collateral sensitivity, we performed in silico molecular docking studies of honokiol to EGFR and EGFR-related downstream signal proteins. Honokiol bound with comparable binding energies to EGFR (-7.30 ± 0.01 kcal/mol) as the control drugs erlotinib (-7.50 ± 0.30 kcal/mol) and gefitinib (-8.30 ± 0.10 kcal/mol). Similar binding affinities of AKT, MEK1, MEK2, STAT3 and mTOR were calculated for honokiol (range from -9.0 ± 0.01 to 7.40 ± 0.01 kcal/mol) compared to corresponding control inhibitor compounds for these signal transducers. This indicates that collateral sensitivity of EGFR-transfectant cells towards honokiol may be due to binding to EGFR and downstream signal transducers. COMPARE and hierarchical cluster analyses of microarray-based transcriptomic mRNA expression data of 59 tumor cell lines revealed a specific gene expression profile predicting sensitivity or resistance towards honokiol.
Collapse
Affiliation(s)
- Mohamed Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Victor Kuete
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany; Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Jonas Börtzler
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Hassan Khalid
- Medicinal and Aromatic Plants Research Institute (MAPRI), National Centre for Research, Khartoum, Sudan
| | - Henry Johannes Greten
- Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal; Heidelberg School of Chinese Medicine, Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
23
|
Saeed M, Zeino M, Kadioglu O, Volm M, Efferth T. Overcoming of P-glycoprotein-mediated multidrug resistance of tumors in vivo by drug combinations. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.synres.2014.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Takahashi H, Sai K, Saito Y, Kaniwa N, Matsumura Y, Hamaguchi T, Shimada Y, Ohtsu A, Yoshino T, Doi T, Okuda H, Ichinohe R, Takahashi A, Doi A, Odaka Y, Okuyama M, Saijo N, Sawada JI, Sakamoto H, Yoshida T. Application of a combination of a knowledge-based algorithm and 2-stage screening to hypothesis-free genomic data on irinotecan-treated patients for identification of a candidate single nucleotide polymorphism related to an adverse effect. PLoS One 2014; 9:e105160. [PMID: 25127363 PMCID: PMC4134257 DOI: 10.1371/journal.pone.0105160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 07/17/2014] [Indexed: 01/27/2023] Open
Abstract
Interindividual variation in a drug response among patients is known to cause serious problems in medicine. Genomic information has been proposed as the basis for “personalized” health care. The genome-wide association study (GWAS) is a powerful technique for examining single nucleotide polymorphisms (SNPs) and their relationship with drug response variation; however, when using only GWAS, it often happens that no useful SNPs are identified due to multiple testing problems. Therefore, in a previous study, we proposed a combined method consisting of a knowledge-based algorithm, 2 stages of screening, and a permutation test for identifying SNPs. In the present study, we applied this method to a pharmacogenomics study where 109,365 SNPs were genotyped using Illumina Human-1 BeadChip in 168 cancer patients treated with irinotecan chemotherapy. We identified the SNP rs9351963 in potassium voltage-gated channel subfamily KQT member 5 (KCNQ5) as a candidate factor related to incidence of irinotecan-induced diarrhea. The p value for rs9351963 was 3.31×10−5 in Fisher's exact test and 0.0289 in the permutation test (when multiple testing problems were corrected). Additionally, rs9351963 was clearly superior to the clinical parameters and the model involving rs9351963 showed sensitivity of 77.8% and specificity of 57.6% in the evaluation by means of logistic regression. Recent studies showed that KCNQ4 and KCNQ5 genes encode members of the M channel expressed in gastrointestinal smooth muscle and suggested that these genes are associated with irritable bowel syndrome and similar peristalsis diseases. These results suggest that rs9351963 in KCNQ5 is a possible predictive factor of incidence of diarrhea in cancer patients treated with irinotecan chemotherapy and for selecting chemotherapy regimens, such as irinotecan alone or a combination of irinotecan with a KCNQ5 opener. Nonetheless, clinical importance of rs9351963 should be further elucidated.
Collapse
Affiliation(s)
- Hiro Takahashi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
- Plant Biology Research Center, Chubu University, Kasugai, Aichi, Japan
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- * E-mail:
| | - Kimie Sai
- Division of Medicinal Safety Science, National Institute of Health Sciences, Tokyo, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Tokyo, Japan
| | - Nahoko Kaniwa
- Division of Medicinal Safety Science, National Institute of Health Sciences, Tokyo, Japan
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Tetsuya Hamaguchi
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuhiro Shimada
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Atsushi Ohtsu
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Takayuki Yoshino
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Toshihiko Doi
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Haruhiro Okuda
- Division of Medicinal Safety Science, National Institute of Health Sciences, Tokyo, Japan
| | - Risa Ichinohe
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- Faculty of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Anna Takahashi
- Plant Biology Research Center, Chubu University, Kasugai, Aichi, Japan
| | - Ayano Doi
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- Faculty of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Yoko Odaka
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Misuzu Okuyama
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Nagahiro Saijo
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Jun-ichi Sawada
- Division of Functional Biochemistry and Genomics, National Institute of Health Sciences, Tokyo, Japan
| | - Hiromi Sakamoto
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
25
|
Eng L, Liu G. VEGF pathway polymorphisms as prognostic and pharmacogenetic factors in cancer: a 2013 update. Pharmacogenomics 2014; 14:1659-67. [PMID: 24088136 DOI: 10.2217/pgs.13.165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
With the recent advances in genomic medicine and the development of targeted antiangiogenic therapy for cancer patients, there has been an increased interest in the role of predictive and prognostic markers for antiangiogenic therapy. Here, we provide a summary of the angiogenesis pathway, the role of predictive and prognostic markers in cancer and a summary of the current literature and studies on predictive and prognostic markers for antiangiogenic therapy. Our aim is to summarize those studies that are currently in the literature with an emphasis on the future directions of the field from 2013 and beyond. We conclude by providing our perspective on the future directions of this growing field, as well as possible challenges and pitfalls along the way.
Collapse
Affiliation(s)
- Lawson Eng
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Hospital/University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
26
|
Wang Y, Yin JY, Li XP, Chen J, Qian CY, Zheng Y, Fu YL, Chen ZY, Zhou HH, Liu ZQ. The association of transporter genes polymorphisms and lung cancer chemotherapy response. PLoS One 2014; 9:e91967. [PMID: 24643204 PMCID: PMC3958404 DOI: 10.1371/journal.pone.0091967] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/16/2014] [Indexed: 01/11/2023] Open
Abstract
Lung cancer is one of the most common cancers and is the leading cause of death worldwide. Platinum-based chemotherapy is the main treatment method in lung cancer patients. Our previous studies indicated that single nucleotide polymorphisms (SNPs) in some transporter genes played important role in platinum-based chemotherapy efficacy. The aim of this study was to investigate the association of SNPs in transporter genes and platinum-based chemotherapy efficacy. The main polymorphisms on transporters OCT2, LRP, AQP2, AQP9 and TMEM205 genes were genotyped in 338 lung cancer patients. The rs195854 in genotypic model, rs896412 in genotypic and recessive models for all subjects showed significant association with chemotherapy response. In stratification analysis, TMEM205 rs896412, OCT2 rs1869641 and rs195854, AQP9 rs1516400 and AQP2 rs7314734 showed significant relation to chemotherapy response. In conclusion, the genetic polymorphisms in OCT2, AQP2, AQP9 and TMEM205 may contribute to chemotherapy response in lung cancer patients.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, P. R. China
| | - Ji-Ye Yin
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, P. R. China
| | - Xiang-Ping Li
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, P. R. China
| | - Juan Chen
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, P. R. China
| | - Chen-Yue Qian
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, P. R. China
| | - Yi Zheng
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, P. R. China
| | - Yi-Lan Fu
- The Affiliated Cancer Hospital of XiangYa School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Zi-Yu Chen
- The Affiliated Cancer Hospital of XiangYa School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Hong-Hao Zhou
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, P. R. China
| | - Zhao-Qian Liu
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, P. R. China
- * E-mail:
| |
Collapse
|
27
|
Konkimalla VB, Suhas VL, Chandra NR, Gebhart E, Efferth T. Diagnosis and therapy of oral squamous cell carcinoma. Expert Rev Anticancer Ther 2014; 7:317-29. [PMID: 17338652 DOI: 10.1586/14737140.7.3.317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oral squamous cell carcinoma ranks among the top ten most common cancers worldwide. Despite the success in diagnosis and therapy during the past 30 years, oral squamous cell carcinoma still belongs to the tumor types with a very unfavorable prognosis. In an effort to identify genomic alterations with prognostic relevance, we applied the comparative genomic hybridization technique on oral squamous cell carcinoma. The tumors exhibited from five up to 47 DNA copy number alterations, indicating a considerable degree of genomic imbalance. Out of 35 tumors, 19 showed a gain of chromosome band 7p12. Genomic imbalances were investigated by hierarchical cluster analysis and clustered image mapping to investigate whether genomic profiles correlate with clinical data. Results of the present investigation show that profiling of genomic imbalances in general, and especially of the epidermal growth factor receptor (EGFR) on 7p12, may be suitable as prognostic factors. In order to identify small-molecule inhibitors for EGFR, we established a database of 531 natural compounds derived from medicinal plants used in traditional Chinese medicine. Candidate compounds were identified by correlation analysis using the Kendall tau-test of IC50 values of tumor cell lines and microarray-based EGFR mRNA expression. Further validation was performed by molecular docking studies using the AutoDock program with the crystal structure of EGFR tyrosine kinase domain as docking template. We estimate these results will be a further step toward the ultimate goal of individualized, patient-adapted tumor treatment based on tumor molecular profiling.
Collapse
MESH Headings
- Age Factors
- Alcohol Drinking/adverse effects
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Aporphines/chemistry
- Aporphines/pharmacology
- Azo Compounds/chemistry
- Azo Compounds/pharmacology
- Azo Compounds/therapeutic use
- Berberine/analogs & derivatives
- Berberine/chemistry
- Berberine/pharmacology
- Berberine/therapeutic use
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/therapy
- Chromosome Aberrations
- Crystallography, X-Ray
- DNA, Neoplasm/genetics
- Databases, Factual
- Drug Screening Assays, Antitumor
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/chemistry
- ErbB Receptors/physiology
- Erlotinib Hydrochloride
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, erbB-1
- Humans
- Mouth Neoplasms/diagnosis
- Mouth Neoplasms/drug therapy
- Mouth Neoplasms/genetics
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Nucleic Acid Hybridization
- Polymorphism, Single Nucleotide
- Prognosis
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Quinazolines/chemistry
- Quinazolines/pharmacology
- Risk Factors
- Smoking/adverse effects
- Stilbenes/chemistry
- Stilbenes/pharmacology
- Stilbenes/therapeutic use
- Structure-Activity Relationship
Collapse
Affiliation(s)
- V Badireenath Konkimalla
- German Cancer Research Centre, Pharmaceutical Biology of Natural Products (C015), Heidelberg, Germany
| | | | | | | | | |
Collapse
|
28
|
Takahashi H, Kaniwa N, Saito Y, Sai K, Hamaguchi T, Shirao K, Shimada Y, Matsumura Y, Ohtsu A, Yoshino T, Takahashi A, Odaka Y, Okuyama M, Sawada JI, Sakamoto H, Yoshida T. Identification of a candidate single-nucleotide polymorphism related to chemotherapeutic response through a combination of knowledge-based algorithm and hypothesis-free genomic data. J Biosci Bioeng 2013; 116:768-73. [PMID: 23816762 DOI: 10.1016/j.jbiosc.2013.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/02/2013] [Accepted: 05/13/2013] [Indexed: 01/06/2023]
Abstract
Inter-individual variations in drug responses among patients are known to cause serious problems in medicine. Genome-wide association study (GWAS) is powerful for examining single-nucleotide polymorphisms (SNPs) and their relationships with drug response variations. However, no significant SNP has been identified using GWAS due to multiple testing problems. Therefore, we propose a combination method consisting of knowledge-based algorithm, two stages of screening, and permutation test for identifying SNPs in the present study. We applied this method to a genome-wide pharmacogenomics study for which 109,365 SNPs had been genotyped using Illumina Human-1 BeadChip for 119 gastric cancer patients treated with fluoropyrimidine. We identified rs2293347 in epidermal growth factor receptor (EGFR) is as a candidate SNP related to chemotherapeutic response. The p value for the rs2293347 was 2.19 × 10(-5) for Fisher's exact test, and the p value was 0.00360 for the permutation test (multiple testing problems are corrected). Additionally, rs2293347 was clearly superior to clinical parameters and showed a sensitivity value of 55.0% and specificity value of 94.4% in the evaluation by using multiple regression models. Recent studies have shown that combination chemotherapy of fluoropyrimidine and EGFR-targeting agents is effective for gastric cancer patients highly expressing EGFR. These results suggest that rs2293347 is a potential predictive factor for selecting chemotherapies, such as fluoropyrimidine alone or combination chemotherapies.
Collapse
Affiliation(s)
- Hiro Takahashi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan; Plant Biology Research Center, Chubu University, Matsumoto-cho 1200, Kasugai, Aichi 487-8501, Japan; Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Campa D, Müller P, Edler L, Knoefel L, Barale R, Heussel CP, Thomas M, Canzian F, Risch A. A comprehensive study of polymorphisms inABCB1, ABCC2andABCG2and lung cancer chemotherapy response and prognosis. Int J Cancer 2012; 131:2920-8. [DOI: 10.1002/ijc.27567] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 02/09/2012] [Indexed: 12/16/2022]
|
31
|
Eichhorn T, Efferth T. P-glycoprotein and its inhibition in tumors by phytochemicals derived from Chinese herbs. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:557-570. [PMID: 21963565 DOI: 10.1016/j.jep.2011.08.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 08/19/2011] [Accepted: 08/25/2011] [Indexed: 05/31/2023]
Abstract
P-glycoprotein belongs to the family of ATP-binding cassette (ABC) transporters. It functions in cellular detoxification, pumping a wide range of xenobiotic compounds, including anticancer drugs out of the cell. In cancerous cells, P-glycoprotein confers resistance to a broad spectrum of anticancer agents, a phenomenon termed multidrug resistance. An attractive strategy for overcoming multidrug resistance is to block the transport function of P-glycoprotein and thus increase intracellular concentrations of anticancer drugs to lethal levels. Efforts to identify P-glycoprotein inhibitors have led to numerous candidates, none of which have passed clinical trials with cancer patients due to their high toxicity. The search for naturally inhibitory products from traditional Chinese medicine may be more promising because natural products are frequently less toxic than chemically synthesized substances. In this review, we give an overview of molecular and clinical aspects of P-glycoprotein and multidrug resistance in the context of cancer as well as Chinese herbs and phytochemicals showing inhibitory activity towards P-glycoprotein.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/adverse effects
- Antineoplastic Agents, Phytogenic/therapeutic use
- Drug Resistance, Neoplasm
- Drugs, Chinese Herbal/adverse effects
- Drugs, Chinese Herbal/therapeutic use
- Humans
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Plants, Medicinal
Collapse
Affiliation(s)
- Tolga Eichhorn
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | | |
Collapse
|
32
|
O'Donnell PH, Stark AL, Gamazon ER, Wheeler HE, McIlwee BE, Gorsic L, Im HK, Huang RS, Cox NJ, Dolan ME. Identification of novel germline polymorphisms governing capecitabine sensitivity. Cancer 2012; 118:4063-73. [PMID: 22864933 DOI: 10.1002/cncr.26737] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 11/11/2022]
Abstract
BACKGROUND Capecitabine, an oral 5-fluorouracil (5-FU) prodrug, is widely used in the treatment of breast, colorectal, and gastric cancers. To guide the selection of patients with potentially the greatest benefit of experiencing antitumor efficacy, or, alternatively, of developing toxicities, identifying genomic predictors of capecitabine sensitivity could permit its more informed use. METHODS The objective of this study was to perform capecitabine sensitivity genome-wide association studies (GWAS) using 503 well genotyped human cell lines from individuals representing multiple different world populations. A meta-analysis that included all ethnic populations then enabled the identification of novel germline determinants (single nucleotide polymorphisms [SNPs]) of capecitabine susceptibility. RESULTS First, an intrapopulation GWAS of Caucasian individuals identified reference SNP 4702484 (rs4702484) (within adenylate cyclase 2 [ADCY2]) at a level reaching genome-wide significance (P = 5.2 × 10(-8) ). This SNP is located upstream of the 5 methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR) gene, and it is known that the enzyme for MTRR is involved in the methionine-folate biosynthesis and metabolism pathway, which is the primary target of 5-FU-related compounds, although the authors were unable to identify a direct relation between rs4702484 and MTRR expression in a tested subset of cells. In the meta-analysis, 4 SNPs comprised the top hits, which, again, included rs4702484 and 3 additional SNPs (rs8101143, rs576523, and rs361433) that approached genome-wide significance (P values from 1.9 × 10(-7) to 8.8 × 10(-7) ). The meta-analysis also identified 1 missense variant (rs11722476; serine to asparagine) within switch/sucrose nonfermentable-related, matrix-associated, actin-dependent regulator of chromatin (SMARCAD1), a novel gene for association with capecitabine/5-FU susceptibility. CONCLUSIONS Toward the goal of individualizing cancer chemotherapy, the current study identified novel SNPs and genes associated with capecitabine sensitivity that are potentially informative and testable in any patient regardless of ethnicity.
Collapse
Affiliation(s)
- Peter H O'Donnell
- Section of Hematology-Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ruwali M, Singh M, Pant MC, Parmar D. Polymorphism in glutathione S-transferases: Susceptibility and treatment outcome for head and neck cancer. Xenobiotica 2011; 41:1122-30. [DOI: 10.3109/00498254.2011.614020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Deenen MJ, Cats A, Beijnen JH, Schellens JHM. Part 1: background, methodology, and clinical adoption of pharmacogenetics. Oncologist 2011; 16:811-9. [PMID: 21632456 DOI: 10.1634/theoncologist.2010-0258] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Equivalent drug doses may lead to wide interpatient variability with regard to drug response, reflected by differences in drug activity and normal tissue toxicity. A major factor responsible for this variability is variation among patients in their genetic constitution. Genetic polymorphism may affect the activity of proteins encoded, which in turn may lead to changes in the pharmacokinetic and pharmacodynamic behavior of a drug, observed as differences in drug transport, drug metabolism, and pharmacodynamic drug effects. Recent insights into the functional effect of polymorphism in genes that are involved in the pharmacokinetics and pharmacodynamics of anticancer drugs have provided opportunities for patient-tailored therapy in oncology. Individualized pharmacotherapy based on genotype will help to increase treatment efficacy while reducing unnecessary toxicity, especially of drugs characterized by a narrow therapeutic window, such as anticancer drugs. We provide a series of four reviews aimed at implementing pharmacogenetic-based drug and dose prescription in the daily clinical setting for the practicing oncologist. This first part in the series describes the functional impact of genetic polymorphism and provides a general background to and insight into possible clinical consequences of pharmacogenetic variability. It also discusses different methodologies for clinical pharmacogenetic studies and provides a concise overview about the different laboratory technologies for genetic mutation analysis that are currently widely applied. Subsequently, pharmacogenetic association studies in anticancer drug transport, phase I and II drug metabolism, and pharmacodynamic drug effects are discussed in the rest of the series. Opportunities for patient-tailored pharmacotherapy are highlighted.
Collapse
Affiliation(s)
- Maarten J Deenen
- The Netherlands Cancer Institute, Department of Medical Oncology, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Bioinformatic analyses identifies novel protein-coding pharmacogenomic markers associated with paclitaxel sensitivity in NCI60 cancer cell lines. BMC Med Genomics 2011; 4:18. [PMID: 21314952 PMCID: PMC3050680 DOI: 10.1186/1755-8794-4-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 02/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paclitaxel is a microtubule-stabilizing drug that has been commonly used in treating cancer. Due to genetic heterogeneity within patient populations, therapeutic response rates often vary. Here we used the NCI60 panel to identify SNPs associated with paclitaxel sensitivity. Using the panel's GI50 response data available from Developmental Therapeutics Program, cell lines were categorized as either sensitive or resistant. PLINK software was used to perform a genome-wide association analysis of the cellular response to paclitaxel with the panel's SNP-genotype data on the Affymetrix 125 k SNP array. FastSNP software helped predict each SNP's potential impact on their gene product. mRNA expression differences between sensitive and resistant cell lines was examined using data from BioGPS. Using Haploview software, we investigated for haplotypes that were more strongly associated with the cellular response to paclitaxel. Ingenuity Pathway Analysis software helped us understand how our identified genes may alter the cellular response to paclitaxel. RESULTS 43 SNPs were found significantly associated (FDR<0.005) with paclitaxel response, with 10 belonging to protein-coding genes (CFTR, ROBO1, PTPRD, BTBD12, DCT, SNTG1, SGCD, LPHN2, GRIK1, ZNF607). SNPs in GRIK1, DCT, SGCD and CFTR were predicted to be intronic enhancers, altering gene expression, while SNPs in ZNF607 and BTBD12 cause conservative missense mutations. mRNA expression analysis supported these findings as GRIK1, DCT, SNTG1, SGCD and CFTR showed significantly (p<0.05) increased expression among sensitive cell lines. Haplotypes found in GRIK1, SGCD, ROBO1, LPHN2, and PTPRD were more strongly associated with response than their individual SNPs. CONCLUSIONS Our study has taken advantage of available genotypic data and its integration with drug response data obtained from the NCI60 panel. We identified 10 SNPs located within protein-coding genes that were not previously shown to be associated with paclitaxel response. As only five genes showed differential mRNA expression, the remainder would not have been detected solely based on expression data. The identified haplotypes highlight the role of utilizing SNP combinations within genomic loci of interest to improve the risk determination associated with drug response. These genetic variants represent promising biomarkers for predicting paclitaxel response and may play a significant role in the cellular response to paclitaxel.
Collapse
|
36
|
Barbosa FR, Matsuda JB, Mazucato M, de Castro França S, Zingaretti SM, da Silva LM, Martinez-Rossi NM, Júnior MF, Marins M, Fachin AL. Influence of catechol-O-methyltransferase (COMT) gene polymorphisms in pain sensibility of Brazilian fibromialgia patients. Rheumatol Int 2010; 32:427-30. [PMID: 21120493 DOI: 10.1007/s00296-010-1659-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 11/14/2010] [Indexed: 01/02/2023]
Abstract
Fibromyalgia syndrome (FS) is a rheumatic syndrome affecting to 2-3% of individuals of productive age, mainly women. Neuroendocrine and genetic factors may play a significant role in development of the disease which is characterized by diffuse chronic pain and presence of tender points. Several studies have suggested an association between FS, especially pain sensitivity, and polymorphism of the catechol-O-methyltransferase (COMT) gene. The aim of the present study was to characterize the SNPs rs4680 and rs4818 of the COMT gene and assess its influence in pain sensitivity of patients with fibromyalgia screened by the Fibromyalgia Impact Questionnaire (FIQ). DNA was extracted from peripheral blood of 112 patients with fibromyalgia and 110 healthy individuals and was used as template in PCR for amplification of a 185-bp fragment of the COMT gene. The amplified fragment was sequenced for analyses of the SNPs rs4680 and rs4818. The frequency of mutant genotype AA of SNP rs6860 was 77.67% in patients with FS and 28.18% for the control group. For the SNP rs4818, the frequency of mutant genotype CC was 73.21 and 39.09% for patients with FS and controls, respectively. Moreover, the FIQ score was higher in patients with the homozygous mutant genotype for SNPs rs4680 (87.92 points) and rs4818 (86.14 points). These results suggest that SNPs rs4680 and rs4818 of the COMT gene may be associated with fibromyalgia and pain sensitivity in FS Brazilian patients.
Collapse
Affiliation(s)
- Flávia Regina Barbosa
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costábile Romano 2201, Ribeirão Preto, SP 14096-900, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Anti-neoplastic effects of gallic acid, a major component of Toona sinensis leaf extract, on oral squamous carcinoma cells. Molecules 2010; 15:8377-89. [PMID: 21081858 PMCID: PMC6259246 DOI: 10.3390/molecules15118377] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 11/16/2022] Open
Abstract
Extract of Toona sinensis (TS) has been reported to have various effects on cultured cell lines, including anti-proliferative activity in cancer cells. We have studied the effects of TS on various human oral squamous carcinoma cell lines (HOSCC), including UM1, UM2, SCC-4, and SCC-9. These cell lines were treated with TS leaf extract and screened for viability, apoptosis, necrosis, and apoptotic gene expression. Normal human oral keratinocytes (NHOK) served as a control for cytotoxic assays. Viability of TS-treated HOSCC was reduced, whereas that of NHOK was not affected. FACScan analysis revealed that the leaf extract induced apoptosis or a combination of apoptosis and necrosis, depending on cell type. Microarray and semi-quantitative RT-PCR analysis for apoptotic-related gene expression revealed that 3,4,5-trihydroxybenzoic acid (gallic acid, one of the major bioactive compounds purified from TS extract) up-regulated pro-apoptotic genes such TNF-α, TP53BP2, and GADD45A, and down-regulated the anti-apoptotic genes Survivin and cIAP1, resulting in cell death. This study suggests that gallic acid, the major bioactive compound present, is responsible for the anti-neoplastic effect of Toona sinensis leaf extract.
Collapse
|
38
|
Savas S, Briollais L, Ibrahim-zada I, Jarjanazi H, Choi YH, Musquera M, Fleshner N, Venkateswaran V, Ozcelik H. A whole-genome SNP association study of NCI60 cell line panel indicates a role of Ca2+ signaling in selenium resistance. PLoS One 2010; 5:e12601. [PMID: 20830292 PMCID: PMC2935366 DOI: 10.1371/journal.pone.0012601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 08/04/2010] [Indexed: 01/21/2023] Open
Abstract
Epidemiological studies have suggested an association between selenium intake and protection from a variety of cancer. Considering this clinical importance of selenium, we aimed to identify the genes associated with resistance to selenium treatment. We have applied a previous methodology developed by our group, which is based on the genetic and pharmacological data publicly available for the NCI60 cancer cell line panel. In short, we have categorized the NCI60 cell lines as selenium resistant and sensitive based on their growth inhibition (GI50) data. Then, we have utilized the Affymetrix 125K SNP chip data available and carried out a genome-wide case-control association study for the selenium sensitive and resistant NCI60 cell lines. Our results showed statistically significant association of four SNPs in 5q33–34, 10q11.2, 10q22.3 and 14q13.1 with selenium resistance. These SNPs were located in introns of the genes encoding for a kinase-scaffolding protein (AKAP6), a membrane protein (SGCD), a channel protein (KCNMA1), and a protein kinase (PRKG1). The knock-down of KCNMA1 by siRNA showed increased sensitivity to selenium in both LNCaP and PC3 cell lines. Furthermore, SNP-SNP interaction (epistasis) analysis indicated the interactions of the SNPs in AKAP6 with SGCD as well as SNPs in AKAP6 with KCNMA1 with each other, assuming additive genetic model. These genes were also all involved in the Ca2+ signaling, which has a direct role in induction of apoptosis and induction of apoptosis in tumor cells is consistent with the chemopreventive action of selenium. Once our findings are further validated, this knowledge can be translated into clinics where individuals who can benefit from the chemopreventive characteristics of the selenium supplementation will be easily identified using a simple DNA analysis.
Collapse
Affiliation(s)
- Sevtap Savas
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Briollais
- Prosserman Centre for Health Research, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Irada Ibrahim-zada
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hamdi Jarjanazi
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Yun Hee Choi
- Prosserman Centre for Health Research, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mireia Musquera
- Division of Urology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Neil Fleshner
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Vasundara Venkateswaran
- Division of Urology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- * E-mail: (VV); (HO)
| | - Hilmi Ozcelik
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (VV); (HO)
| |
Collapse
|
39
|
Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production. Appl Microbiol Biotechnol 2010; 87:1237-54. [DOI: 10.1007/s00253-010-2682-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 01/10/2023]
|
40
|
Tang JH, Zhao JH, Lu JW, Yan F, Qin JW, Xu B. Circulating levels of angiogenic cytokines in advanced breast cancer patients with system chemotherapy and their potential value in monitoring disease course. J Cancer Res Clin Oncol 2010; 137:55-63. [PMID: 20221635 DOI: 10.1007/s00432-010-0859-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 02/22/2010] [Indexed: 12/22/2022]
Abstract
PURPOSE The low-dose metronomic chemotherapy was reported to inhibit directly tumor angiogenesis or VEGF secretion. The study aimed to seek for this effect of system chemotherapy by observing the changes in serum levels of angiogenic cytokines during treatment and assessing their value in monitoring the advanced breast cancer. METHODS In sixty-one patients with advanced breast cancer, serum levels of vascular endothelial growth factor (VEGF) and endostatin (ES) were compared at baseline (B0), after one cycle (B1), after 3 cycles (B3), and after 5-6 cycles (B5-6) of system chemotherapy using a quantitative ELISA. Data were correlated with treatment response and total survival. RESULTS The response to chemotherapy did not correlate with serum VEGF level before therapy or after one cycle, but the changes in VEGF levels after 3 cycles and 5-6 cycles showed good association with clinical responses, i.e., the patients with disease control had a decreased VEGF value, whereas the progressive patients had an increased value. The Cox proportional hazard model revealed that a normalized VEGF level after therapy and an increase in VEGF level after 5-6 cycles were independent predictors for survival. CONCLUSIONS System chemotherapy for advanced breast cancer lead to a significant decrease in serum VEGF level in patients with disease control, and this anti-VEGF efficacy may be mainly due to the reduction in tumor burden. Sequential measurement of serum VEGF could be useful for evaluating treatment efficacy and prognosis.
Collapse
Affiliation(s)
- Jin-Hai Tang
- Department of General Surgery, Jiangsu Cancer Hospital, Baziting 42, 210009 Nanjing, China
| | | | | | | | | | | |
Collapse
|
41
|
Kollmar O, Rupertus K, Scheuer C, Nickels RM, Haberl GCY, Tilton B, Menger MD, Schilling MK. CXCR4 and CXCR7 regulate angiogenesis and CT26.WT tumor growth independent from SDF-1. Int J Cancer 2010; 124:1669-74. [PMID: 19821487 DOI: 10.1002/ijc.23956] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies have shown that the chemokine stromal cell-derived factor (SDF)-1 and its receptor CXCR4 are involved in the metastatic process of colorectal cancer. The impact of SDF-1 on the stimulated metastatic growth during hepatectomy-associated liver regeneration is unknown. With the use of a heterotopic murine colon cancer model, we analyzed whether blockade of SDF-1 inhibits angiogenesis and extrahepatic growth of colorectal cancer after liver resection. Functional neutralization of SDF-1 by 1 mg/kg body weight anti-SDF-1 antibody only slightly delayed the initial tumor cell engraftment but also did not reduce the size of established extrahepatic tumors compared with controls. Tumor cell apoptosis was increased by anti-SDF-1 treatment only during the early 5-9-day period of tumor cell engraftment, but was found significantly decreased during the late phase of tumor growth. The initial delay of tumor cell engraftment was associated with an increase of tumor capillary density and microvascular permeability. This was associated with an increased vascular endothelial growth factor (VEGF) expression and an enhanced tumor cell invasion of the neighboring tissue. In contrast to the neutralization of SDF-1, blockade of the SDF-1 receptors CXCR4 and CXCR7 significantly reduced tumor capillary density and tumor growth. Thus, our study indicates that neutralization of SDF-1 after hepatectomy is not capable of inhibiting angiogenesis and growth of extrahepatic colorectal tumors, because it is counteracted by the compensatory actions through an alternative VEGF-dependent pathway.
Collapse
Affiliation(s)
- Otto Kollmar
- Department of General, Visceral, Vascular and Pediatric Surgery, University of Saarland, D-66421 Homburg/Saar, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chang HW, Chuang LY, Cheng YH, Ho CH, Wen CH, Yang CH. Seq-SNPing: multiple-alignment tool for SNP discovery, SNP ID identification, and RFLP genotyping. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2009; 13:253-60. [PMID: 19514837 DOI: 10.1089/omi.2008.0058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Many sequence-alignment tools were developed to discover single nucleotide polymorphisms (SNPs) derived from resequencing in genomic regions. Whether an identified SNP is indeed a novel SNP or is already contained in dbSNP is often difficult to answer. Here, we describe a freely available software, Seq-SNPing, which is a Java-based software for SNP discovery, and ID identification and editing and visualizating of sequence alignments. It is easy to use, fast, and provides an accurate method for searching and organizing SNP IDs from multiple sequence inputs, thereby greatly facilitating genetic studies. Seq-SNPing provides SNP identification by selecting any range of unaligned or aligned sequences in sequences that are similar. SNP IDs in the National Center for Biotechnology Information (NCBI) or user-defined SNPs within a selected sequence can be identified by Seq-SNPing. Information needed for SNP-RFLP (restriction fragment length polymorphism) genotyping is provided, such as SNP-REs (restriction enzymes), the sequence trimmer, sequence finder, BLAST (Basic Local Alignment Search Tool), SNP-BLAST, UCSC BLAT (BLAST-like alignment tool), RE mining, antisequencer (Anti-seq), and T(m) (melting temperature)/GC% of selected sequence. The thresholds for SNP calling are adjustable by selecting the height of the peak for each nucleotide representative curve in the chromatogram. Therefore, Seq-SNPing can discover SNPs and identify SNP IDs in both sequence text and chromatogram files in a fast and reliable way. The software is fully compatible with Microsoft Windows. The program and user manual are available at http://bio.kuas.edu.tw/Seq-SNPing for download.
Collapse
Affiliation(s)
- Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
43
|
O'Donnell PH, Dolan ME. Cancer pharmacoethnicity: ethnic differences in susceptibility to the effects of chemotherapy. Clin Cancer Res 2009; 15:4806-14. [PMID: 19622575 DOI: 10.1158/1078-0432.ccr-09-0344] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A long-term goal of pharmacogenomics research is the design of individualized therapy based on the genomic sequence of the patient, in order to maximize response and minimize adverse drug reactions. Pharmacoethnicity, or ethnic diversity in drug response or toxicity, is becoming increasingly recognized as an important factor accounting for interindividual variation in anticancer drug responsiveness. Although pharmacoethnicity is determined by genetic and nongenetic factors, there is rapidly accumulating clinical evidence about ethnic differences in the frequencies of polymorphisms within many of the important cancer drug-related genes. This article reviews the current clinical evidence for ethnic differences in anticancer drug disposition and sensitivity while highlighting the challenges, and potential solutions, to acquiring such knowledge. The discovery of "ethnic-specific genetic signatures," representing unique sets of drug susceptibility-governing polymorphisms, may be the outcome of such work. Ultimately, such understanding will further the lofty goal of individualization of chemotherapy based on a person's unique genetic make-up to improve the tolerability and effectiveness of chemotherapy for all patients.
Collapse
Affiliation(s)
- Peter H O'Donnell
- Section of Hematology/Oncology and Committee on Clinical Pharmacology and Pharmacogenomics, Department of Medicine, The University of Chicago, Chicago,IL 60637, USA
| | | |
Collapse
|
44
|
Abstract
Rare, high-penetrance genetic variations account for a small portion of genetic cancer syndromes. In contrast, most cancers develop from a combination of minor genetic influences and environmental factors. There are numerous publications on cancer susceptibility. In contrast, genetic studies in treatment response and outcome analyses are a rapidly emerging field. Approaches used in disease susceptibility can be adapted for genetic outcome studies. In this review, we summarize the current knowledge on how candidate genes and genetic variations are selected to evaluate gene-outcome, gene-prognosis, and gene-treatment response relationships as applicable to the practicing oncologist.
Collapse
Affiliation(s)
- Sevtap Savas
- Division of Applied Molecular Oncology, Department of Medical Biophysics, Ontario Cancer Institute, Toronto, Canada.
| | | |
Collapse
|
45
|
Sakaeda T, Yamamori M, Kuwahara A, Nishiguchi K. Pharmacokinetics and pharmacogenomics in esophageal cancer chemoradiotherapy. Adv Drug Deliv Rev 2009; 61:388-401. [PMID: 19135108 DOI: 10.1016/j.addr.2008.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 10/30/2008] [Indexed: 12/15/2022]
Abstract
Esophageal cancer is one of the most lethal malignancies. Surgical resection of the tumor from the primary site has been the standard treatment, especially for localized squamous cell carcinoma, but considerable clinical efforts during the last decade have resulted in novel courses of treatment. These options include chemoradiotherapy, consisting of a continuous infusion of 5-fluorouracil (5-FU), cisplatin (CDDP), and concurrent radiation. Given the substantial inter- and/or intra-individual variation in clinical outcome, future improvements will likely require the incorporation of a novel anticancer drug, pharmacokinetically guided administration of CDDP or 5-FU, and identification of potential responders by patient genetic profiling prior to treatment. In this review, the latest information on incidence, risk factors, biomarkers, therapeutic strategies, and the pharmacokinetically guided or genotype-guided administration of CDDP and 5-FU is summarized for future individualization of esophageal cancer treatment.
Collapse
Affiliation(s)
- Toshiyuki Sakaeda
- Center for Integrative Education of Pharmacy Frontier, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | | | | | | |
Collapse
|
46
|
Advances in understanding of toxicities of treatment for head and neck cancer. Oral Oncol 2009; 45:844-8. [PMID: 19467918 DOI: 10.1016/j.oraloncology.2009.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/30/2009] [Accepted: 03/30/2009] [Indexed: 12/11/2022]
Abstract
Toxicities associated with head and neck cancer treatment are common events. Despite the fact that many side effects of cancer treatment are now well controlled, some, such as mucositis and salivary gland hypofunction, continue to be almost inevitable outcomes of cancer treatment. Furthermore, improvements in cancer treatment itself as well as new modalities, such as targeted treatments, may be associated with different toxicities. In this review, common toxicities associated with head and neck cancer treatment will be discussed including those reported to occur with targeted therapies. This review also considers the concept of toxicity clusters, risk factors for toxicity (for example genetics) and individualisation of cancer treatment.
Collapse
|
47
|
Brazeau DA, Brazeau GA. Role of the Genomics Revolution in Pharmaceutics. Lab Med 2009. [DOI: 10.1309/u0wiglrllmuqyn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
48
|
Abstract
Carboplatin is a chemotherapeutic agent used in the management of many cancers, yet treatment is limited by resistance and toxicities. To achieve a better understanding of the genetic contribution to carboplatin resistance or toxicities, lymphoblastoid cell lines from 34 large Centre d'Etude du Polymorphisme Humain pedigrees were utilised to evaluate interindividual variation in carboplatin cytotoxicity. Significant heritability, ranging from 0.17-0.36 (p = 1 x 10(-7) to 9 x 10(-4)), was found for cell growth inhibition following 72-hour treatment at each carboplatin concentration (10, 20, 40 and 80 microM) and IC(50) (concentration for 50 per cent cell growth inhibition). Linkage analysis revealed 11 regions with logarithm of odds (LOD) scores greater than 1.5. The highest LOD score on chromosome 11 (LOD = 3.36, p = 4.2 x 10(-5)) encompasses 65 genes within the 1 LOD confidence interval for the carboplatin IC 50 . We further analysed the IC(50) phenotype with a linkage-directed association analysis using 71 unrelated HapMap and Perlegen cell lines and identified 18 single nucleotide polymorphisms within eight genes that were significantly associated with the carboplatin IC(50) (p < 3.6 x 10(-5); false discovery rate <5 per cent). Next, we performed linear regression on the baseline expression and carboplatin IC(50) values of the eight associated genes, which identified the most significant correlation between CD44 expression and IC(50) (r(2)= 0.20; p = 6 x 10(-4)). The quantitative real-time polymerase chain reaction further confirmed a statistically significant difference in CD44 expression levels between carboplatin-resistant and -sensitive cell lines (p = 5.9 x 10(-3)). Knockdown of CD44 expression through small interfering RNA resulted in increased cellular sensitivity to carboplatin (p < 0.01). Our whole-genome approach using molecular experiments identified CD44 as being important in conferring cellular resistance to carboplatin.
Collapse
|
49
|
Abstract
Investigations into inherited genetic variations in the DNA code (known as polymorphisms) in the field of oncology have provided preliminary support for an association with cancer risks and outcomes. Early studies have highlighted several genes with this potential predictive and prognostic power. However, these studies have had methodological limitations and have produced inconsistent results, making impractical as yet the routine evaluation of such genetic polymorphisms in general clinical practice. Continued research in this area is essential if we are to be able to soon use genetic polymorphisms to better select patients for targeted anticancer interventions. This review discusses the role of genetic polymorphisms and their association with esophageal cancer risk and prognosis. The article also highlights future directions in this new, emerging field of molecular epidemiology.
Collapse
|
50
|
A nanoliter fluidic platform for large-scale single nucleotide polymorphism genotyping. Biotechniques 2009; 46:ix-xiii. [DOI: 10.2144/000112887] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Discovery, evaluation, and understanding the biological relevance of single nucleotide polymorphisms (SNPs) and their associated phenotypes is relevant to many applications, including human disease diagnostics, pathogen detection, and identification of genetic traits impacting agricultural practices, both in terms of food quality and production efficiency. Validation of putative SNP associations in large-scale cohorts is currently impeded by the technical challenges and high cost inherent in analyzing large numbers of samples using available SNP genotyping platforms. We describe in this report the implementation of the 5′-exonuclease, biallelic PCR assay for SNP genotyping (TaqMan) in a nanofluidic version of a high-density microplate. System performance was assessed using a panel of 32 TaqMan SNP genotyping assays targeted to human polymorphisms. This functional test of the nanoliter fluidic SNP genotyping platform delivered genotyping call rates and accuracies comparable to the same larger volume reactions in microplate systems.
Collapse
|