1
|
Liu J, Li T, Zhong G, Pan Y, Gao M, Su S, Liang Y, Ma C, Liu Y, Wang Q, Shi Q. Exploring the therapeutic potential of natural compounds for Alzheimer's disease: Mechanisms of action and pharmacological properties. Biomed Pharmacother 2023; 166:115406. [PMID: 37659206 DOI: 10.1016/j.biopha.2023.115406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Alzheimer's Disease (AD) is a global public health priority characterized by high mortality rates in adults and an increasing prevalence in aging populations worldwide. Despite significant advancements in comprehending the pathogenesis of AD since its initial report in 1907, there remains a lack of effective curative or preventive measures for the disease. In recent years, natural compounds sourced from diverse origins have garnered considerable attention as potential therapeutic agents for AD, owing to their anti-inflammatory, antioxidant, and neuroprotective properties. This review aims to consolidate the therapeutic effects of natural compounds on AD, specifically targeting the reduction of β-amyloid (Aβ) overproduction, anti-apoptosis, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Notably, the identified compounds exhibiting these effects predominantly originate from plants. This review provides valuable insights into the potential of natural compounds as a reservoir of novel therapeutic agents for AD, thereby stimulating further research and contributing to the development of efficacious treatments for this devastating disease.
Collapse
Affiliation(s)
- Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Cuiru Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanyue Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qing Shi
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China.
| |
Collapse
|
2
|
Wang J, Xu J, Dong Y, Su Z, Su H, Cheng Q, Liu X. ADP-ribose transferase PARP16 mediated-unfolded protein response contributes to neuronal cell damage in cerebral ischemia/reperfusion. FASEB J 2023; 37:e22788. [PMID: 36692424 DOI: 10.1096/fj.202201426rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
Ischemic stroke is known to cause the accumulation of misfolded proteins and loss of calcium homeostasis, leading to impairment of endoplasmic reticulum (ER) function and activating the unfolded protein response (UPR). PARP16 is an active (ADP-ribosyl)transferase known tail-anchored ER transmembrane protein with a cytosolic catalytic domain. Here, we find PARP16 is highly expressed in ischemic cerebral hemisphere and oxygen-glucose deprivation/reoxygenation (OGD/R)-treated immortalized hippocampal neuronal cell HT22. Using an adeno-associated virus-mediated PARP16 knockdown approach in mice, we find PARP16 knockdown decreases infarct demarcations and has a better neurological outcome after ischemic stroke. Our data indicate PARP16 knockdown decreases ER stress and neuronal death caused by OGD/R, whereas PARP16 overexpression promotes ER stress-mediated cell damage in primary cortical neurons. Furthermore, PARP16 functions mechanistically as ADP-ribosyltransferase to modulate the level of ADP-ribosylation of the corresponding PERK and IRE1α arm of the UPR, and such modifications mediate activation of PERK and IRE1α. Indeed, pharmacological stimulation of the UPR using Brefeldin A partly counteracts PARP16 knockdown-mediated neuronal protection upon OGD/R treatment. In conclusion, PARP16 plays a crucial role in post-ischemic UPR and PARP16 knockdown alleviates brain injury after ischemic stroke. This study demonstrates the potential of the PARP16-PERK/IRE1α axis as a target for neuronal survival in ischemic stroke.
Collapse
Affiliation(s)
- Jinghuan Wang
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jie Xu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yejun Dong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhenghua Su
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, China
| | - Haibi Su
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, China
| | - Qianwen Cheng
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xinhua Liu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Chen Y, Li B, Xu Y, Zhou T, Zhao C, Zhao J. Sal003 alleviated intervertebral disc degeneration by inhibiting apoptosis and extracellular matrix degradation through suppressing endoplasmic reticulum stress pathway in rats. Front Pharmacol 2023; 14:1095307. [PMID: 36744257 PMCID: PMC9894885 DOI: 10.3389/fphar.2023.1095307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Apoptosis and extracellular matrix degradation of the nucleus pulposus are the main initiators of intervertebral disc degeneration (IVDD) and can be explained by endoplasmic reticulum (ER) stress. Thus, pharmacological therapy aimed at suppressing this pathway may be a promising approach for the management of intervertebral disc degeneration. In this study, we aimed to explore the protective effects of Sal003 against intervertebral disc degeneration and its underlying mechanisms. Thapsigargin (Tg)-stimulated rat nucleus pulposus cells and a needle puncture-induced intervertebral disc degeneration rat model were used to explore the protective effects of Sal003. Our results showed that Sal003 inhibited apoptosis and extracellular matrix degradation by suppressing the endoplasmic reticulum stress pathway. The therapeutic effects of Sal003 were also observed in the intervertebral disc degeneration rat model, as evidenced by improved degeneration along with decreased apoptosis and extracellular matrix degradation in intervertebral discs. Our results demonstrated Sal003 as a potential treatment for intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yan Chen
- Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baixing Li
- Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Xu
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Tangjun Zhou
- Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Tangjun Zhou, ; Changqing Zhao,
| | - Changqing Zhao
- Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Tangjun Zhou, ; Changqing Zhao,
| | - Jie Zhao
- Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Liu A, Hu J, Yeh TS, Wang C, Tang J, Huang X, Chen B, Huangfu L, Yu W, Zhang L. Neuroprotective Strategies for Stroke by Natural Products: Advances and Perspectives. Curr Neuropharmacol 2023; 21:2283-2309. [PMID: 37458258 PMCID: PMC10556387 DOI: 10.2174/1570159x21666230717144752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 09/09/2023] Open
Abstract
Cerebral ischemic stroke is a disease with high prevalence and incidence. Its management focuses on rapid reperfusion with intravenous thrombolysis and endovascular thrombectomy. Both therapeutic strategies reduce disability, but the therapy time window is short, and the risk of bleeding is high. Natural products (NPs) have played a key role in drug discovery, especially for cancer and infectious diseases. However, they have made little progress in clinical translation and pose challenges to the treatment of stroke. Recently, with the investigation of precise mechanisms in cerebral ischemic stroke and the technological development of NP-based drug discovery, NPs are addressing these challenges and opening up new opportunities in cerebral stroke. Thus, in this review, we first summarize the structure and function of diverse NPs, including flavonoids, phenols, terpenes, lactones, quinones, alkaloids, and glycosides. Then we propose the comprehensive neuroprotective mechanism of NPs in cerebral ischemic stroke, which involves complex cascade processes of oxidative stress, mitochondrial damage, apoptosis or ferroptosis-related cell death, inflammatory response, and disruption of the blood-brain barrier (BBB). Overall, we stress the neuroprotective effect of NPs and their mechanism on cerebral ischemic stroke for a better understanding of the advances and perspective in NPs application that may provide a rationale for the development of innovative therapeutic regimens in ischemic stroke.
Collapse
Affiliation(s)
- Aifen Liu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Jingyan Hu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Tzu-Shao Yeh
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Chengniu Wang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Jilong Tang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaohong Huang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Bin Chen
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Liexiang Huangfu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Weili Yu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Lei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
Nan D, Jin H, Deng J, Yu W, Liu R, Sun W, Huang Y. Cilostazol ameliorates ischemia/reperfusion-induced tight junction disruption in brain endothelial cells by inhibiting endoplasmic reticulum stress. FASEB J 2019; 33:10152-10164. [PMID: 31184927 DOI: 10.1096/fj.201900326r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endoplasmic reticulum (ER) stress is essential for brain ischemia/reperfusion (I/R) injury. However, whether it contributes to I/R-induced blood-brain barrier (BBB) injury remains unclear. cilostazol exerts protective effects toward I/R-induced BBB injury, with unclear mechanisms. This study explored the potential role of ER stress in I/R-induced endothelial cell damage and determined whether the therapeutic potential of cilostazol, with respect to I/R-induced endothelial cell damage, is related to inhibition of ER stress. We found that exposing brain endothelial cells (bEnd.3) to oxygen-glucose deprivation/reoxygenation (OGD/R) significantly activated ER stress and diminished the barrier function of cell monolayers; treatment with the ER stress inhibitor 4-phenylbutyric acid (4-PBA) or cilostazol prevented OGD/R-induced ER stress and preserved barrier function. Furthermore, OGD/R induced the expression and secretion of matrix metalloproteinase-9 and nuclear translocation of phosphorylated NF-κB. These changes were partially reversed by 4-PBA or cilostazol treatment. In vivo, 4-PBA or cilostazol significantly attenuated I/R-induced ER stress and ameliorated Evans blue leakage and tight junction loss. These results demonstrate that I/R-induced ER stress participates in BBB disruption. Targeting ER stress could be a useful strategy to protect the BBB from ischemic stroke, and cilostazol is a promising therapeutic agent for this process.-Nan, D., Jin, H., Deng, J., Yu, W., Liu, R., Sun, W., Huang, Y. Cilostazol ameliorates ischemia/reperfusion-induced tight junction disruption in brain endothelial cells by inhibiting endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ding Nan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Weiwei Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ran Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Weiping Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Jin Y, Sumsuzzman DM, Choi J, Kang H, Lee SR, Hong Y. Molecular and Functional Interaction of the Myokine Irisin with Physical Exercise and Alzheimer's Disease. Molecules 2018; 23:molecules23123229. [PMID: 30544500 PMCID: PMC6321132 DOI: 10.3390/molecules23123229] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
Irisin, a skeletal muscle-secreted myokine, produced in response to physical exercise, has protective functions in both the central and the peripheral nervous systems, including the regulation of brain-derived neurotrophic factors. In particular, irisin is capable of protecting hippocampus. Since this area is the region of the brain that is most susceptible to Alzheimer's disease (AD), such beneficial effect may inhibit or delay the emergence of neurodegenerative diseases, including AD. Also, the factors engaged in irisin formation appear to suppress Aβ aggregation, which is the pathological hallmark of AD. This review is based on the hypothesis that irisin produced by physical exercise helps to control AD progression. Herein, we describe the physiology of irisin and its potential role in delaying or preventing AD progression in human.
Collapse
Affiliation(s)
- Yunho Jin
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
| | - Dewan Md Sumsuzzman
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
| | - Jeonghyun Choi
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
| | - Hyunbon Kang
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, Graduate School of Inje University, Gimhae 50834, Korea.
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 50834, Korea.
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, Graduate School of Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae 50834, Korea.
| |
Collapse
|
7
|
de la Torre JC. Are Major Dementias Triggered by Poor Blood Flow to the Brain? Theoretical Considerations. J Alzheimers Dis 2018; 57:353-371. [PMID: 28211814 DOI: 10.3233/jad-161266] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is growing evidence that chronic brain hypoperfusion plays a central role in the development of Alzheimer's disease (AD) long before dyscognitive symptoms or amyloid-β accumulation in the brain appear. This commentary proposes that dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), and Creutzfeldt-Jakob disease (CJD) may also develop from chronic brain hypoperfusion following a similar but not identical neurometabolic breakdown as AD. The argument to support this conclusion is that chronic brain hypoperfusion, which is found at the early stages of the three dementias reviewed here, will reduce oxygen delivery and lower oxidative phosphorylation promoting a steady decline in the synthesis of the cell energy fuel adenosine triphosphate (ATP). This process is known to lead to oxidative stress. Virtually all neurodegenerative diseases, including FTD, DLB, and CJD, are characterized by oxidative stress that promotes inclusion bodies which differ in structure, location, and origin, as well as which neurological disorder they typify. Inclusion bodies have one thing in common; they are known to diminish autophagic activity, the protective intracellular degradative process that removes malformed proteins, protein aggregates, and damaged subcellular organelles that can disrupt neuronal homeostasis. Neurons are dependent on autophagy for their normal function and survival. When autophagic activity is diminished or impaired in neurons, high levels of unfolded or misfolded proteins overwhelm and downregulate the neuroprotective activity of unfolded protein response which is unable to get rid of dysfunctional organelles such as damaged mitochondria and malformed proteins at the synapse. The endpoint of this neuropathologic process results in damaged synapses, impaired neurotransmission, cognitive decline, and dementia.
Collapse
|
8
|
Wei Z, Weng S, Wang L, Mao Z. Mechanism of Astragalus polysaccharides in attenuating insulin resistance in Rats with type 2 diabetes mellitus via the regulation of liver microRNA‑203a‑3p. Mol Med Rep 2017; 17:1617-1624. [PMID: 29257218 PMCID: PMC5780102 DOI: 10.3892/mmr.2017.8084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022] Open
Abstract
Insulin resistance (IR) is a common feature of type 2 diabetes mellitus (T2DM). Astragalus polysaccharides (APS) is a natural medicine that is used to treat T2DM. However, the mechanism by which APS regulates micro (mi)RNA in the treatment of IR has not been investigated. The purpose of the present study was to investigate differential miRNA expression between normal, T2DM model and APS treatment rats, as well as changes in miRNA and its downstream gene expression levels after APS treatment in T2DM Goto Kakizaki (GK) rats. Results suggested that miRNA (miR)-203a-3p expression level was significantly decreased in the liver of T2DM GK rats. Furthermore, it was identified that glucose-regulated protein (GRP)78 was the target gene of miR-203a-3p. GRP78 mRNA and protein expression levels of GRP78, CAAT-enhancer-binding protein homologous protein (CHOP), phosphorylated-c-Jun N-terminal kinase (pJNK)1, and caspase-12 were significantly increased in the liver of T2DM GK rats. Furthermore, miR-203a-3p was upregulated following APS treatment, and the protein expression levels of GRP78, CHOP, pJNK1 and caspase-12 were significantly decreased. In addition, miR-203a-3p overexpression in IR cells decreased the protein expression levels of these factors and anti-miR-203a-3p produced the opposite result. These findings provided evidence that miR-203a-3p may have a functional role in endoplasmic reticulum stress (ERS) signaling in the liver of T2DM GK rats. In addition, APS attenuated IR in T2DM, likely through upregulating or maintaining the miR-203a-3p expression levels, decreasing GRP78 mRNA and protein expression levels and regulating the protein expression of the ERS signaling pathway.
Collapse
Affiliation(s)
- Zitai Wei
- Department of Chemistry of Traditional Chinese Medicine, Medical College, Quzhou College of Technology, Quzhou, Zhejiang 324000, P.R. China
| | - Siying Weng
- Department of Endocrinology, Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chineses Medical University, Ningbo, Zhejiang 315000, P.R. China
| | - Lei Wang
- Department of Clinical Foundation of Chinese Medicine, College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhujun Mao
- Department of Clinical Foundation of Chinese Medicine, College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
9
|
Role of Endoplasmic Reticulum Stress in Learning and Memory Impairment and Alzheimer's Disease-Like Neuropathology in the PS19 and APP Swe Mouse Models of Tauopathy and Amyloidosis. eNeuro 2017; 4:eN-NWR-0025-17. [PMID: 28721361 PMCID: PMC5510086 DOI: 10.1523/eneuro.0025-17.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/04/2017] [Accepted: 06/17/2017] [Indexed: 01/28/2023] Open
Abstract
Emerging evidence suggests that endoplasmic reticulum (ER) stress may be involved in the pathogenesis of Alzheimer's disease (AD). Recently, pharmacological modulation of the eukaryotic translation initiation factor-2 (eIF2α) pathway was achieved using an integrated stress response inhibitor (ISRIB). While members of this signaling cascade have been suggested as potential therapeutic targets for neurodegeneration, the biological significance of this pathway has not been comprehensively assessed in animal models of AD. The present study investigated the ER stress pathway and its long-term modulation utilizing in vitro and in vivo experimental models of tauopathy (MAPT P301S)PS19 and amyloidosis (APPSwe). We report that thapsigargin induces activating transcription factor-4 (ATF4) in primary cortical neurons (PCNs) derived from rat and APPSwe nontransgenic (nTg) and transgenic (Tg) mice. ISRIB mitigated the induction of ATF4 in PCNs generated from wild-type (WT) but not APPSwe mice despite partially restoring thapsigargin-induced translational repression in nTg PCNs. In vivo, C57BL/6J and PS19 mice received prolonged, once-daily administration of ISRIB. While the compound was well tolerated by PS19 and C57BL/6J mice, APPSwe mice treated per this schedule displayed significant mortality. Thus, the dose was reduced and administered only on behavioral test days. ISRIB did not improve learning and memory function in APPSwe Tg mice. While ISRIB did not reduce tau-related neuropathology in PS19 Tg mice, no evidence of ER stress-related dysfunction was observed in either of these Tg models. Taken together, the significance of ER stress and the relevance of these models to the etiology of AD require further investigation.
Collapse
|
10
|
Yu Z, Sheng H, Liu S, Zhao S, Glembotski CC, Warner DS, Paschen W, Yang W. Activation of the ATF6 branch of the unfolded protein response in neurons improves stroke outcome. J Cereb Blood Flow Metab 2017; 37:1069-1079. [PMID: 27217380 PMCID: PMC5363481 DOI: 10.1177/0271678x16650218] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Impaired function of the endoplasmic reticulum (ER stress) is a hallmark of many human diseases including stroke. To restore ER function in stressed cells, the unfolded protein response (UPR) is induced, which activates 3 ER stress sensor proteins including activating transcription factor 6 (ATF6). ATF6 is then cleaved by proteases to form the short-form ATF6 (sATF6), a transcription factor. To determine the extent to which activation of the ATF6 UPR branch defines the fate and function of neurons after stroke, we generated a conditional and tamoxifen-inducible sATF6 knock-in mouse. To express sATF6 in forebrain neurons, we crossed our sATF6 knock-in mouse line with Emx1-Cre mice to generate ATF6-KI mice. After the ATF6 branch was activated in ATF6-KI mice with tamoxifen, mice were subjected to transient middle cerebral artery occlusion. Forced activation of the ATF6 UPR branch reduced infarct volume and improved functional outcome at 24 h after stroke. Increased autophagic activity at early reperfusion time after stroke may contribute to the ATF6-mediated neuroprotection. We concluded that the ATF6 UPR branch is crucial to ischemic stroke outcome. Therefore, boosting UPR pro-survival pathways may be a promising therapeutic strategy for stroke.
Collapse
Affiliation(s)
- Zhui Yu
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,2 Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huaxin Sheng
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Shuai Liu
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Shengli Zhao
- 3 Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | | | - David S Warner
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wulf Paschen
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wei Yang
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
11
|
van Lieshout JH, Dibué-Adjei M, Cornelius JF, Slotty PJ, Schneider T, Restin T, Boogaarts HD, Steiger HJ, Petridis AK, Kamp MA. An introduction to the pathophysiology of aneurysmal subarachnoid hemorrhage. Neurosurg Rev 2017; 41:917-930. [PMID: 28215029 DOI: 10.1007/s10143-017-0827-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
Abstract
Pathophysiological processes following subarachnoid hemorrhage (SAH) present survivors of the initial bleeding with a high risk of morbidity and mortality during the course of the disease. As angiographic vasospasm is strongly associated with delayed cerebral ischemia (DCI) and clinical outcome, clinical trials in the last few decades focused on prevention of these angiographic spasms. Despite all efforts, no new pharmacological agents have shown to improve patient outcome. As such, it has become clear that our understanding of the pathophysiology of SAH is incomplete and we need to reevaluate our concepts on the complex pathophysiological process following SAH. Angiographic vasospasm is probably important. However, a unifying theory for the pathophysiological changes following SAH has yet not been described. Some of these changes may be causally connected or present themselves as an epiphenomenon of an associated process. A causal connection between DCI and early brain injury (EBI) would mean that future therapies should address EBI more specifically. If the mechanisms following SAH display no causal pathophysiological connection but are rather evoked by the subarachnoid blood and its degradation production, multiple treatment strategies addressing the different pathophysiological mechanisms are required. The discrepancy between experimental and clinical SAH could be one reason for unsuccessful translational results.
Collapse
Affiliation(s)
- Jasper H van Lieshout
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Maxine Dibué-Adjei
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Jan F Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Philipp J Slotty
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Toni Schneider
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Robert-Koch-Str. 39, 50931, Köln, Germany
| | - Tanja Restin
- Zurich Centre for Integrative Human Physiology, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Anesthesiology, Medical Faculty, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Hieronymus D Boogaarts
- Department of Neurosurgery, Medical Faculty, Radboud University Nijmegen, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Athanasios K Petridis
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Marcel A Kamp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| |
Collapse
|
12
|
Katarao K, Murakawa S, Asano M, Usuki N, Yamamoto H, Shirafuji T, Tanaka S, Hide I, Sakai N. The Development of Screening Methods to Identify Drugs to Limit ER Stress Using Wild-type and Mutant Serotonin Transporter. Acta Histochem Cytochem 2016; 49:197-206. [PMID: 28127108 PMCID: PMC5263230 DOI: 10.1267/ahc.16029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/25/2016] [Indexed: 11/22/2022] Open
Abstract
The function of the serotonin transporter (SERT) is regulated by its membrane trafficking. Previously, we showed that the C-terminus-deleted mutant of SERT (SERTΔCT) exhibited an aberrant membrane trafficking and subsequent retention at the endoplasmic reticulum (ER). In addition, we found that proteasome inhibitor-induced ER stress resulted in the impairment of SERT membrane trafficking and retention of SERT at the ER, an impairment very similar to that of SERTΔCT. Based on the result that the chemical chaperone 4-phnylbutulic acid (4-PBA), which relieves ER stress, accelerated the membrane trafficking and upregulated SERT activity, we hypothesized that drugs that facilitate the membrane trafficking of SERT would have potential therapeutic effects on an ER stress-related disease. In this study, we aimed to develop simple screening methods for such drugs using SERT. We first validated the serotonin uptake assay using fluorescent substrates. This simple and reliable assay method was useful for screening for drugs that affected the wild-type SERT but not SERTΔCT. In addition, we verified an assay focusing on the formation of SERTΔCT aggregates. The drugs 4-PBA and SKF-10047 facilitated the trafficking of SERT to the membrane and reduced SERTΔCT aggregates, indicating that the drugs with such characters could be potential candidates for ER stress relief. For both assays, we clarified the usefulness of a high-content screening microscope. These results could pave the way for high-throughput screening for such drugs.
Collapse
Affiliation(s)
- Kazusa Katarao
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University
| | - Seiya Murakawa
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University
| | - Masaya Asano
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University
| | - Naoto Usuki
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University
| | - Hikaru Yamamoto
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University
| | - Toshihiko Shirafuji
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University
| |
Collapse
|
13
|
Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res 2016; 95:943-972. [PMID: 27350397 DOI: 10.1002/jnr.23777] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 02/06/2023]
Abstract
Aging, hypertension, diabetes, hypoxia/obstructive sleep apnea (OSA), obesity, vitamin B12/folate deficiency, depression, and traumatic brain injury synergistically promote diverse pathological mechanisms including cerebral hypoperfusion and glucose hypometabolism. These risk factors trigger neuroinflammation and oxidative-nitrosative stress that in turn decrease nitric oxide and enhance endothelin, Amyloid-β deposition, cerebral amyloid angiopathy, and blood-brain barrier disruption. Proinflammatory cytokines, endothelin-1, and oxidative-nitrosative stress trigger several pathological feedforward and feedback loops. These upstream factors persist in the brain for decades, upregulating amyloid and tau, before the cognitive decline. These cascades lead to neuronal Ca2+ increase, neurodegeneration, cognitive/memory decline, and Alzheimer's disease (AD). However, strategies are available to attenuate cerebral hypoperfusion and glucose hypometabolism and ameliorate cognitive decline. AD is the leading cause of dementia among the elderly. There is significant evidence that pathways involving inflammation and oxidative-nitrosative stress (ONS) play a key pathophysiological role in promoting cognitive dysfunction. Aging and several comorbid conditions mentioned above promote diverse pathologies. These include inflammation, ONS, hypoperfusion, and hypometabolism in the brain. In AD, chronic cerebral hypoperfusion and glucose hypometabolism precede decades before the cognitive decline. These comorbid disease conditions may share and synergistically activate these pathophysiological pathways. Inflammation upregulates cerebrovascular pathology through proinflammatory cytokines, endothelin-1, and nitric oxide (NO). Inflammation-triggered ONS promotes long-term damage involving fatty acids, proteins, DNA, and mitochondria; these amplify and perpetuate several feedforward and feedback pathological loops. The latter includes dysfunctional energy metabolism (compromised mitochondrial ATP production), amyloid-β generation, endothelial dysfunction, and blood-brain-barrier disruption. These lead to decreased cerebral blood flow and chronic cerebral hypoperfusion- that would modulate metabolic dysfunction and neurodegeneration. In essence, hypoperfusion deprives the brain from its two paramount trophic substances, viz., oxygen and nutrients. Consequently, the brain suffers from synaptic dysfunction and neuronal degeneration/loss, leading to both gray and white matter atrophy, cognitive dysfunction, and AD. This Review underscores the importance of treating the above-mentioned comorbid disease conditions to attenuate inflammation and ONS and ameliorate decreased cerebral blood flow and hypometabolism. Additionally, several strategies are described here to control chronic hypoperfusion of the brain and enhance cognition. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Dept/MSE, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Bickler P, Clark J, Gabatto P, Brosnan H. Hypoxic preconditioning and cell death from oxygen/glucose deprivation co-opt a subset of the unfolded protein response in hippocampal neurons. Neuroscience 2015; 310:306-21. [DOI: 10.1016/j.neuroscience.2015.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 01/04/2023]
|
15
|
Yap YW, Llanos RM, La Fontaine S, Cater MA, Beart PM, Cheung NS. Comparative Microarray Analysis Identifies Commonalities in Neuronal Injury: Evidence for Oxidative Stress, Dysfunction of Calcium Signalling, and Inhibition of Autophagy-Lysosomal Pathway. Neurochem Res 2015; 41:554-67. [PMID: 26318862 DOI: 10.1007/s11064-015-1666-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction, ubiquitin-proteasomal system impairment and excitotoxicity occur during the injury and death of neurons in neurodegenerative conditions. The aim of this work was to elucidate the cellular mechanisms that are universally altered by these conditions. Through overlapping expression profiles of rotenone-, lactacystin- and N-methyl-D-aspartate-treated cortical neurons, we have identified three affected biological processes that are commonly affected; oxidative stress, dysfunction of calcium signalling and inhibition of the autophagic-lysosomal pathway. These data provides many opportunities for therapeutic intervention in neurodegenerative conditions, where mitochondrial dysfunction, proteasomal inhibition and excitotoxicity are evident.
Collapse
Affiliation(s)
- Yann Wan Yap
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Roxana M Llanos
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Sharon La Fontaine
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Michael A Cater
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Nam Sang Cheung
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.
| |
Collapse
|
16
|
Neurovascular events after subarachnoid hemorrhage: focusing on subcellular organelles. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:39-46. [PMID: 25366597 DOI: 10.1007/978-3-319-04981-6_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating condition with high morbidity and mortality rates due to the lack of effective therapy. Early brain injury (EBI) and cerebral vasospasm (CVS) are the two most important pathophysiological mechanisms for brain injury and poor outcomes for patients with SAH. CVS has traditionally been considered the sole cause of delayed ischemic neurological deficits after SAH. However, the failure of antivasospastic therapy in patients with SAH supported changing the research target from CVS to other mechanisms. Currently, more attention has been focused on global brain injury within 3 days after ictus, designated as EBI. The dysfunction of subcellular organelles, such as endoplasmic reticulum stress, mitochondrial failure, and autophagy-lysosomal system activation, has developed during EBI and delayed brain injury after SAH. To our knowledge, there is a lack of review articles addressing the direction of organelle dysfunction after SAH. In this review, we discuss the roles of organelle dysfunction in the pathogenesis of SAH and present the opportunity to develop novel therapeutic strategies of SAH via modulating the functions of organelles.
Collapse
|
17
|
Guanxinkang Decoction Exerts Its Antiatherosclerotic Effect Partly through Inhibiting the Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:465640. [PMID: 24955103 PMCID: PMC4052183 DOI: 10.1155/2014/465640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 12/05/2022]
Abstract
Purpose. To investigate the antiatherosclerotic effect of Guanxinkang (GXK) decoction on the apoptosis, mitochondrial membrane potential (MMP), and endoplasmic reticulum stress (ERS) of human umbilical vein endothelial cells (HUVEC) pretreated with homocysteinemia (HCY). Materials and Methods. HUVEC were randomly divided into 5 groups: (1) blank control group (control), (2) model control group (model), (3) GXK low dose group, (4) GXK medium dose group, and (5) GXK high dose group. For the three GXK groups, HCY was given to reach the concentration of 3.0 mmol/L after HUVEC had been incubated with rabbit serum containing GXK for two hours. At 3, 6, 12, and 24 h after HCY had been incubated with the cells, the HUVEC were collected for test of the apoptosis rate, MMP, and GRP78 protein (reflecting ERS). Results. In the model control group, the apoptosis rate and GRP 78 protein expression of HUVEC significantly increased (P < 0.05), while MMP significantly decreased (P < 0.05) compared with the blank control group. After GXK treatment of medium and high doses, the apoptosis rate and the GRP 78 protein expression significantly (P < 0.05) decreased, while MMP significantly increased (P < 0.05) in a time-dependent manner compared with the model control group. Conclusion. GXK can antagonize the injury of HUVEC caused by HCY and the antagonism effect increases with the concentration and treatment duration of GXK, with the possible mechanism of GXK antagonism being through inhibiting ERS caused by HCY.
Collapse
|
18
|
Endoplasmic Reticulum Dysfunction in Alzheimer’s Disease. Mol Neurobiol 2014; 51:383-95. [DOI: 10.1007/s12035-014-8695-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/24/2014] [Indexed: 12/12/2022]
|
19
|
Regulators of mitochondrial Ca2+ homeostasis in cerebral ischemia. Cell Tissue Res 2014; 357:395-405. [DOI: 10.1007/s00441-014-1807-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/10/2014] [Indexed: 02/06/2023]
|
20
|
YAO CHENGYE, ZHANG JIANCHENG, LIU GONGPING, CHEN FANG, LIN YUN. Neuroprotection by (−)-epigallocatechin-3-gallate in a rat model of stroke is mediated through inhibition of endoplasmic reticulum stress. Mol Med Rep 2013; 9:69-76. [DOI: 10.3892/mmr.2013.1778] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 10/25/2013] [Indexed: 11/06/2022] Open
|
21
|
Osada N, Kosuge Y, Ishige K, Ito Y. Mithramycin, an agent for developing new therapeutic drugs for neurodegenerative diseases. J Pharmacol Sci 2013; 122:251-6. [PMID: 23902990 DOI: 10.1254/jphs.13r02cp] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Mithramycin A (MTM) has been shown to inhibit cancer growth by blocking the binding of Sp-family transcription factors to gene regulatory elements and is used for the treatment of leukemia and testicular cancer in the United States. In contrast, MTM has also been shown to exert neuroprotective effects in normal cells. An earlier study showed that MTM protected primary cortical neurons against oxidative stress-induced cell death. Recently, we demonstrated that MTM suppressed endoplasmic reticulum (ER) stress-induced neuronal death in organotypic hippocampal slice cultures and cultured hippocampal cells through attenuation of ER stress-associated signal proteins. We also found that MTM decreased neuronal death in area CA1 of the hippocampus after transient global ischemia/reperfusion in mice and restored the ischemia/reperfusion-induced impairment of long-term potentiation in this area. MTM has been shown to prolong the survival of Huntington's disease model mice and to attenuate dopaminergic neurotoxicity in mice after repeated administration of methamphetamine. In this review, we provide an up to date overview of neuroprotective effects of MTM and less toxic MTM analogs, MTM SK and MTM SDK, on some of the neurodegenerative diseases and discuss the promise of MTM as an agent for developing new therapeutic drugs for such diseases.
Collapse
Affiliation(s)
- Nobuhiro Osada
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, Japan
| | | | | | | |
Collapse
|
22
|
Llorente IL, Burgin TC, Pérez-Rodríguez D, Martínez-Villayandre B, Pérez-García CC, Fernández-López A. Unfolded protein response to global ischemia following 48 h of reperfusion in the rat brain: the effect of age and meloxicam. J Neurochem 2013; 127:701-10. [DOI: 10.1111/jnc.12337] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 05/23/2013] [Accepted: 06/03/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Irene L. Llorente
- Área de Biología Celular; Instituto de Biomedicina; Universidad de León; León Spain
| | - Taiana C. Burgin
- Área de Biología Celular; Instituto de Biomedicina; Universidad de León; León Spain
| | | | | | | | | |
Collapse
|
23
|
Kuijpers M, Yu KL, Teuling E, Akhmanova A, Jaarsma D, Hoogenraad CC. The ALS8 protein VAPB interacts with the ER-Golgi recycling protein YIF1A and regulates membrane delivery into dendrites. EMBO J 2013; 32:2056-72. [PMID: 23736259 DOI: 10.1038/emboj.2013.131] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 05/07/2013] [Indexed: 02/06/2023] Open
Abstract
The vesicle-associated membrane protein (VAMP) associated protein B (VAPB) is an integral membrane protein localized to the endoplasmic reticulum (ER). The P56S mutation in VAPB has been linked to motor neuron degeneration in amyotrophic lateral sclerosis type 8 (ALS8) and forms ER-like inclusions in various model systems. However, the role of wild-type and mutant VAPB in neurons is poorly understood. Here, we identified Yip1-interacting factor homologue A (YIF1A) as a new VAPB binding partner and important component in the early secretory pathway. YIF1A interacts with VAPB via its transmembrane regions, recycles between the ER and Golgi and is mainly localized to the ER-Golgi intermediate compartments (ERGICs) in rat hippocampal neurons. VAPB strongly affects the distribution of YIF1A and is required for intracellular membrane trafficking into dendrites and normal dendritic morphology. When VAPB-P56S is present, YIF1A is recruited to the VAPB-P56S clusters and loses its ERGIC localization. These data suggest that both VAPB and YIF1A are important for ER-to-Golgi transport and that missorting of YIF1A may contribute to VAPB-associated motor neuron disease.
Collapse
Affiliation(s)
- Marijn Kuijpers
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Fujiwara M, Yamamoto H, Miyagi T, Seki T, Tanaka S, Hide I, Sakai N. Effects of the Chemical Chaperone 4-Phenylbutylate on the Function of the Serotonin Transporter (SERT) Expressed in COS-7 Cells. J Pharmacol Sci 2013; 122:71-83. [DOI: 10.1254/jphs.12194fp] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
25
|
Liu D, Zhang M, Yin H. Signaling pathways involved in endoplasmic reticulum stress-induced neuronal apoptosis. Int J Neurosci 2012; 123:155-62. [PMID: 23134425 DOI: 10.3109/00207454.2012.746974] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is a very critical site for synthesis, folding, modification of protein, and calcium homeostasis. The ER responds to factors that perturb ER function such as the accumulation of unfolded proteins (ER stress) by activating unfolded protein response to relieve the stress. However, chronic or unresolved ER stress can induce neuronal apoptosis by activating c-Jun N-terminal kinase (JNK), glycogen synthase kinase 3/3β (GSK3/3β), CAAT/enhancer binding protein homologous protein (CHOP), and caspase-12 pathway. Research related to ER stress will provide therapeutic implications in neurological diseases.
Collapse
Affiliation(s)
- Di Liu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | | |
Collapse
|
26
|
Lin M, Chandramani-Shivalingappa P, Jin H, Ghosh A, Anantharam V, Ali S, Kanthasamy AG, Kanthasamy A. Methamphetamine-induced neurotoxicity linked to ubiquitin-proteasome system dysfunction and autophagy-related changes that can be modulated by protein kinase C delta in dopaminergic neuronal cells. Neuroscience 2012; 210:308-32. [PMID: 22445524 DOI: 10.1016/j.neuroscience.2012.03.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 02/09/2012] [Accepted: 03/04/2012] [Indexed: 01/07/2023]
Abstract
A compromised protein degradation machinery has been implicated in methamphetamine (MA)-induced neurodegeneration. However, the signaling mechanisms that induce autophagy and ubiquitin-proteasome system (UPS) dysfunction are not well understood. The present study investigates the contributions of protein kinase C delta (PKCδ)-mediated signaling events in MA-induced autophagy, UPS dysfunction, and cell death. Using an in vitro mesencephalic dopaminergic cell culture model, we demonstrate that MA-induced early induction of autophagy is associated with reduction in proteasomal function and concomitant dissipation of mitochondrial membrane potential (MMP), followed by significantly increased PKCδ activation, caspase-3 activation, accumulation of ubiquitin-positive aggregates and microtubule-associated light chain-3 (LC3-II) levels. Interestingly, siRNA-mediated knockdown of PKCδ or overexpression of cleavage-resistant mutant of PKCδ dramatically reduced MA-induced autophagy, proteasomal function, and associated accumulation of ubiquitinated protein aggregates, which closely paralleled cell survival. Importantly, when autophagy was inhibited either pharmacologically (3-MA) or genetically (siRNA-mediated silencing of LC3), the dopaminergic cells became sensitized to MA-induced apoptosis through caspase-3 activation. Conversely, overexpression of LC3 partially protected against MA-induced apoptotic cell death, suggesting a neuroprotective role for autophagy in MA-induced neurotoxicity. Notably, rat striatal tissue isolated from MA-treated rats also exhibited elevated LC3-II, ubiquitinated protein levels, and PKCδ cleavage. Taken together, our data demonstrate that MA-induced autophagy serves as an adaptive strategy for inhibiting mitochondria-mediated apoptotic cell death and degradation of aggregated proteins. Our results also suggest that the sustained activation of PKCδ leads to UPS dysfunction, resulting in the activation of caspase-3-mediated apoptotic cell death in the nigrostriatal dopaminergic system.
Collapse
Affiliation(s)
- M Lin
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Osada N, Kosuge Y, Oguchi S, Miyagishi H, Ishige K, Ito Y. Protective action of mithramycin against neurodegeneration and impairment of synaptic plasticity in the hippocampal CA1 area after transient global ischemia. Neurochem Int 2011; 60:47-54. [PMID: 22100565 DOI: 10.1016/j.neuint.2011.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/23/2011] [Accepted: 11/04/2011] [Indexed: 01/22/2023]
Abstract
Mithramycin A (MTM) is an antibiotic used for the treatment of hypercalcemia and several types of cancer. We have reported previously that MTM protects against endoplasmic reticulum (ER) stress-induced neuronal death in organotypic hippocampal slice cultures. In the present study, the neuroprotective effect of MTM against ischemia/reperfusion-induced neuronal injury was evaluated in the hippocampus in mice. Neuronal damage was apparent in area CA1 of the hippocampus after transient global ischemia/reperfusion. The expression of C/EBP homologous protein (CHOP), a key transcription factor for ER stress-induced neuronal death, showed a pronounced increase in area CA1 in these mice. Treatment of the mice with MTM significantly decreased both the number of neurons stained with Fluoro-Jade B and the level of CHOP expression in the hippocampus. MTM did not affect the increase of 78-kDa glucose-regulated protein induced by ischemia/reperfusion. MTM also restored the ischemia/reperfusion-induced impairment of long-term potentiation in the hippocampus, without any change in paired pulse facilitation. These results suggest that administration of MTM protects hippocampal neurons against injury induced by transient global ischemia/reperfusion through attenuation of ER stress-associated signals, and ameliorates neuronal injury induced by ischemia/reperfusion in the hippocampus.
Collapse
Affiliation(s)
- Nobuhiro Osada
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Srinivasan K, Sharma SS. Edaravone Offers Neuroprotection in a Diabetic Stroke Model via Inhibition of Endoplasmic Reticulum Stress. Basic Clin Pharmacol Toxicol 2011; 110:133-40. [DOI: 10.1111/j.1742-7843.2011.00763.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet 2011; 43:699-705. [PMID: 21685912 PMCID: PMC3125476 DOI: 10.1038/ng.859] [Citation(s) in RCA: 436] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/16/2011] [Indexed: 12/24/2022]
Abstract
Progressive supranuclear palsy (PSP) is a movement disorder with prominent tau neuropathology. Brain diseases with abnormal tau deposits are called tauopathies, the most common of which is Alzheimer's disease. Environmental causes of tauopathies include repetitive head trauma associated with some sports. To identify common genetic variation contributing to risk for tauopathies, we carried out a genome-wide association study of 1,114 individuals with PSP (cases) and 3,247 controls (stage 1) followed by a second stage in which we genotyped 1,051 cases and 3,560 controls for the stage 1 SNPs that yielded P ≤ 10(-3). We found significant previously unidentified signals (P < 5 × 10(-8)) associated with PSP risk at STX6, EIF2AK3 and MOBP. We confirmed two independent variants in MAPT affecting risk for PSP, one of which influences MAPT brain expression. The genes implicated encode proteins for vesicle-membrane fusion at the Golgi-endosomal interface, for the endoplasmic reticulum unfolded protein response and for a myelin structural component.
Collapse
|
30
|
Unal-Cevik I, Gursoy-Ozdemir Y, Yemisci M, Lule S, Gurer G, Can A, Müller V, Kahle PJ, Dalkara T. Alpha-synuclein aggregation induced by brief ischemia negatively impacts neuronal survival in vivo: a study in [A30P]alpha-synuclein transgenic mouse. J Cereb Blood Flow Metab 2011; 31:913-23. [PMID: 20877387 PMCID: PMC3063624 DOI: 10.1038/jcbfm.2010.170] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alpha-synuclein oligomerization and aggregation are considered to have a role in the pathogenesis of neurodegenerative diseases. However, despite numerous in vitro studies, the impact of aggregates in the intact brain is unclear. In vitro, oxidative/nitrative stress and acidity induce α-synuclein oligomerization. These conditions favoring α-synuclein fibrillization are present in the ischemic brain, which may serve as an in vivo model to study α-synuclein aggregation. In this study, we show that 30-minute proximal middle cerebral artery (MCA) occlusion and 72 hours reperfusion induce oligomerization of wild-type α-synuclein in the ischemic mouse brain. The nonamyloidogenic isoform β-synuclein did not form oligomers. Alpha-synuclein aggregates were confined to neurons and colocalized with ubiquitin immunoreactivity. We also found that 30 minutes proximal MCA occlusion and 24 hours reperfusion induced larger infarcts in C57BL/6(Thy1)-h[A30P]alphaSYN transgenic mice, which have an increased tendency to form synuclein fibrils. Trangenics also developed more selective neuronal necrosis when subjected to 20 minutes distal MCA occlusion and 72 hours reperfusion. Enhanced 3-nitrotyrosine immunoreactivity in transgenic mice suggests that oxidative/nitrative stress may be one of the mechanisms mediating aggregate toxicity. Thus, the increased vulnerability of transgenic mice to ischemia suggests that α-synuclein aggregates not only form during ischemia but also negatively impact neuronal survival, supporting the idea that α-synuclein misfolding may be neurotoxic.
Collapse
Affiliation(s)
- Isin Unal-Cevik
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nakka VP, Gusain A, Raghubir R. Endoplasmic reticulum stress plays critical role in brain damage after cerebral ischemia/reperfusion in rats. Neurotox Res 2010; 17:189-202. [PMID: 19763736 DOI: 10.1007/s12640-009-9110-5] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/23/2009] [Accepted: 08/28/2009] [Indexed: 12/17/2022]
Abstract
The endoplasmic reticulum(ER) stress plays a vital role in mediating ischemic neuronal cell death. However, very little is known about the role of ER stress in mediating pathophysiological reactions to acute brain injuries. An attempt was therefore made to assess the role of cerebral ischemia/reperfusion (I/R) induced ER stress and its modulation on outcome of ischemic insult. Focal cerebral ischemia was induced in rats by middle cerebral artery occlusion (MCAO) for 2 h followed by varying time points of reperfusion. The brain loci specific and time-dependent alterations were seen in the expression pattern of molecular markers, i.e., heat-shock protein 70 (HSP70) for cytoplasmic dysfunction, glucose-regulated protein 78 (GRP78), Caspase-12, C/EBP homologous protein/growth arrest and DNA damage-inducible gene 153 (CHOP/GADD153), activating transcription factor 4 (ATF-4), and Processed X-box protein 1 (xbp1) mRNA for ER dysfunction. Further, histological examinations indicated pronounced brain damage, massive neuronal loss, and DNA fragmentation predominantly in the striatum and cortex. The enhanced expression of GRP78, Caspase-12, CHOP/GADD153, ATF4 and processing of xbp1 mRNA in the affected brain regions clearly indicate the critical involvement of ER-mediated cell death/survival mechanisms and also collectively demonstrated the activation of unfolded protein response (UPR). Moreover, Salubrinal, a selective inhibitor of eIF2alpha dephosphorylation was used to counteract ER stress, which significantly increased the phosphorylation of eukaryotic translation initiation factor 2 subunit alpha (eIF2alpha), leading to reduced brain damage after I/R injury. Therefore, inhibition of ER stress following I/R injury may be used as key therapeutic target for neuroprotection.
Collapse
|
32
|
Schröder M, Sutcliffe L. Consequences of stress in the secretory pathway: The ER stress response and its role in the metabolic syndrome. Methods Mol Biol 2010; 648:43-62. [PMID: 20700704 DOI: 10.1007/978-1-60761-756-3_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The unfolded protein response (UPR) was originally identified as a signaling network coordinating adaptive and apoptotic responses to accumulation of unfolded proteins in the endoplasmic reticulum (ER). More recent work has shown that UPR signaling can be triggered by a multitude of cellular events and that the UPR plays a critical role in the prevention, and also the progression, of a wide variety of diseases. Much attention has been paid to the role of the UPR in neurodegenerative diseases in the past. More recently, important roles for the UPR in diseases associated with the metabolic syndrome have been discovered. Here we review the role of the UPR in these diseases, including type 2 diabetes, atherosclerosis, fatty liver disease, and ischemia.
Collapse
|
33
|
Salminen A, Kauppinen A, Suuronen T, Kaarniranta K, Ojala J. ER stress in Alzheimer's disease: a novel neuronal trigger for inflammation and Alzheimer's pathology. J Neuroinflammation 2009; 6:41. [PMID: 20035627 PMCID: PMC2806266 DOI: 10.1186/1742-2094-6-41] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/26/2009] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) is involved in several crucial cellular functions, e.g. protein folding and quality control, maintenance of Ca2+ balance, and cholesterol synthesis. Many genetic and environmental insults can disturb the function of ER and induce ER stress. ER contains three branches of stress sensors, i.e. IRE1, PERK and ATF6 transducers, which recognize the misfolding of proteins in ER and activate a complex signaling network to generate the unfolded protein response (UPR). Alzheimer's disease (AD) is a progressive neurodegenerative disorder involving misfolding and aggregation of proteins in conjunction with prolonged cellular stress, e.g. in redox regulation and Ca2+ homeostasis. Emerging evidence indicates that the UPR is activated in neurons but not in glial cells in AD brains. Neurons display pPERK, peIF2α and pIRE1α immunostaining along with abundant diffuse staining of phosphorylated tau protein. Recent studies have demonstrated that ER stress can also induce an inflammatory response via different UPR transducers. The most potent pathways are IRE1-TRAF2, PERK-eIF2α, PERK-GSK-3, ATF6-CREBH, as well as inflammatory caspase-induced signaling pathways. We will describe the mechanisms which could link the ER stress of neurons to the activation of the inflammatory response and the evolution of pathological changes in AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
34
|
Wildburger NC, Lin-Ye A, Baird MA, Lei D, Bao J. Neuroprotective effects of blockers for T-type calcium channels. Mol Neurodegener 2009; 4:44. [PMID: 19863782 PMCID: PMC2774686 DOI: 10.1186/1750-1326-4-44] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 10/28/2009] [Indexed: 01/21/2023] Open
Abstract
Cognitive and functional decline with age is correlated with deregulation of intracellular calcium, which can lead to neuronal death in the brain. Previous studies have found protective effects of various calcium channel blockers in pathological conditions. However, little has been done to explore possible protective effects of blockers for T-type calcium channels, which forms a family of FDA approved anti-epileptic drugs. In this study, we found that neurons showed an increase in viability after treatment with either L-type or T-type calcium channel antagonists. The family of low-voltage activated, or T-type calcium channels, comprise of three members (Cav3.1, Cav3.2, and Cav3.3) based on their respective main pore-forming alpha subunits: α1G, α1H, and α1I. Among these three subunits, α1H is highly expressed in hippocampus and certain cortical regions. However, T-type calcium channel blockers can protect neurons derived from α1H-/- mice, suggesting that neuroprotection demonstrated by these drugs is not through the α1H subunit. In addition, blockers for T-type calcium channels were not able to confer any protection to neurons in long-term cultures, while blockers of L-type calcium channels could protect neurons. These data indicate a new function of blockers for T-type calcium channels, and also suggest different mechanisms to regulate neuronal survival by calcium signaling pathways. Thus, our findings have important implications in the development of new treatment for age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Norelle C Wildburger
- Department of Otolaryngology, Center for Aging, Washington University, 4560 Clayton Avenue, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
The mechanisms of brain ischemic insult include glutamate excitoxicity, calcium toxicity, free radicals, nitric oxide, inflammatory reactions, as well as dysfunctions of endoplasmic reticulum and mitochondrion. These injury cascades are interconnected in complex ways, thus it is hard to compare their pathogenic importances in ischemia models. And the research in cellular and molecular pathways has spurred the studies in potential neuroprotections mainly in pharmacological fields, such as anti-excitotoxic treatment, calcium-channel antagonism, approaches for inhibition of oxidation, inflammation and apoptosis, etc. Besides, other protective interventions including thrombolysis, arteriogenesis, regeneration therapy, and ischemia preconditioning or postconditioning, are also under investigations. Despite the present difficulties, we are quite optimistic towards future clinical applications of neuroprotective agents, by optimizing experimental approaches and clinical trials.
Collapse
|
36
|
The endoplasmic reticulum and neurological diseases. Exp Neurol 2009; 219:376-81. [DOI: 10.1016/j.expneurol.2009.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/29/2009] [Accepted: 07/09/2009] [Indexed: 12/21/2022]
|
37
|
O'Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA, Lammich S, Lichtenthaler SF, Hébert SS, De Strooper B, Haass C, Bennett DA, Vassar R. Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron 2009; 60:988-1009. [PMID: 19109907 DOI: 10.1016/j.neuron.2008.10.047] [Citation(s) in RCA: 327] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 09/16/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
beta-site APP cleaving enzyme-1 (BACE1), the rate-limiting enzyme for beta-amyloid (Abeta) production, is elevated in Alzheimer's disease (AD). Here, we show that energy deprivation induces phosphorylation of the translation initiation factor eIF2alpha (eIF2alpha-P), which increases the translation of BACE1. Salubrinal, an inhibitor of eIF2alpha-P phosphatase PP1c, directly increases BACE1 and elevates Abeta production in primary neurons. Preventing eIF2alpha phosphorylation by transfection with constitutively active PP1c regulatory subunit, dominant-negative eIF2alpha kinase PERK, or PERK inhibitor P58(IPK) blocks the energy-deprivation-induced BACE1 increase. Furthermore, chronic treatment of aged Tg2576 mice with energy inhibitors increases levels of eIF2alpha-P, BACE1, Abeta, and amyloid plaques. Importantly, eIF2alpha-P and BACE1 are elevated in aggressive plaque-forming 5XFAD transgenic mice, and BACE1, eIF2alpha-P, and amyloid load are correlated in humans with AD. These results strongly suggest that eIF2alpha phosphorylation increases BACE1 levels and causes Abeta overproduction, which could be an early, initiating molecular mechanism in sporadic AD.
Collapse
Affiliation(s)
- Tracy O'Connor
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nobukuni M, Mochizuki H, Okada S, Kameyama N, Tanaka A, Yamamoto H, Amano T, Seki T, Sakai N. The C-Terminal Region of Serotonin Transporter Is Important for Its Trafficking and Glycosylation. J Pharmacol Sci 2009; 111:392-404. [DOI: 10.1254/jphs.09195fp] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
39
|
Qi X, Mochly-Rosen D. The PKCdelta -Abl complex communicates ER stress to the mitochondria - an essential step in subsequent apoptosis. J Cell Sci 2008; 121:804-13. [PMID: 18285444 DOI: 10.1242/jcs.024653] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Conditions that compromise protein folding in the endoplasmic reticulum trigger the unfolded protein response (UPR), which either restores proper protein folding or results in cellular demise through apoptosis. In this study, we found that, in response to ER stress in vivo and in vitro, PKCdelta translocates to the ER where it binds to the tyrosine kinase Abl. Tyrosine phosphorylation and kinase activity of PKCdelta are required for PKCdelta binding to Abl in the ER. Moreover, we found that inhibition of PKCdelta by the PKCdelta-specific peptide inhibitor deltaV1-1 or by silencing of PKCdelta reduces ER-stress-induced JNK activation and inhibits ER-stress-mediated apoptosis. Furthermore, the inhibitor of PKCdelta kinase activity rottlerin blocks the translocation of the PKCdelta-Abl complex from the ER to the mitochondria and confers protection against apoptosis. Thus, PKCdelta communicates ER stress to the mitochondria by binding to ER-localized Abl. The PKCdelta-Abl complex then translocates to the mitochondria, communicating ER stress to this organelle, thereby, triggering apoptosis.
Collapse
Affiliation(s)
- Xin Qi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
40
|
Abstract
Reductions in brain glucose metabolism and increased oxidative stress invariably occur in Alzheimer's disease (AD) and thiamine (vitamin B1) deficiency. Both conditions cause irreversible cognitive impairment; their behavioral consequences overlap but are not identical. Thiamine-dependent processes are critical in glucose metabolism, and recent studies implicate thiamine in oxidative stress, protein processing, peroxisomal function, and gene expression. The activities of thiamine-dependent enzymes are characteristically diminished in AD, and the reductions in autopsy AD brain correlate highly with the extent of dementia in the preagonal state. Abnormalities in thiamine-dependent processes can be plausibly linked to the pathology of AD. Seemingly paradoxical properties of thiamine-dependent processes may underlie their relation to the pathophysiology of AD: Reduction of thiamine-dependent processes increase oxidative stress. Thiamine can act as a free radical scavenger. Thiamine-dependent mitochondrial dehydrogenase complexes produce oxygen free radicals and are sensitive to oxidative stress. Genetic disorders of thiamine metabolism that lead to neurological disease can be treated with large doses of thiamine. Although thiamine itself has not shown dramatic benefits in AD patients, the available data is scanty. Adding thiamine or more absorbable forms of thiamine to tested treatments for the abnormality in glucose metabolism in AD may increase their efficacy.
Collapse
Affiliation(s)
- Gary E Gibson
- Department of Neurology and Neurosciences, Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, New York 10605, USA.
| | | |
Collapse
|
41
|
Thibault O, Gant JC, Landfield PW. Expansion of the calcium hypothesis of brain aging and Alzheimer's disease: minding the store. Aging Cell 2007; 6:307-17. [PMID: 17465978 PMCID: PMC1974776 DOI: 10.1111/j.1474-9726.2007.00295.x] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Evidence accumulated over more than two decades has implicated Ca2+ dysregulation in brain aging and Alzheimer's disease (AD), giving rise to the Ca2+ hypothesis of brain aging and dementia. Electrophysiological, imaging, and behavioral studies in hippocampal or cortical neurons of rodents and rabbits have revealed aging-related increases in the slow afterhyperpolarization, Ca2+ spikes and currents, Ca2+ transients, and L-type voltage-gated Ca2+ channel (L-VGCC) activity. Several of these changes have been associated with age-related deficits in learning or memory. Consequently, one version of the Ca2+ hypothesis has been that increased L-VGCC activity drives many of the other Ca2+-related biomarkers of hippocampal aging. In addition, other studies have reported aging- or AD model-related alterations in Ca2+ release from ryanodine receptors (RyR) on intracellular stores. The Ca2+-sensitive RyR channels amplify plasmalemmal Ca2+ influx by the mechanism of Ca2+-induced Ca2+ release (CICR). Considerable evidence indicates that a preferred functional link is present between L-VGCCs and RyRs which operate in series in heart and some brain cells. Here, we review studies implicating RyRs in altered Ca2+ regulation in cell toxicity, aging, and AD. A recent study from our laboratory showed that increased CICR plays a necessary role in the emergence of Ca2+-related biomarkers of aging. Consequently, we propose an expanded L-VGCC/Ca2+ hypothesis, in which aging/pathological changes occur in both L-type Ca2+ channels and RyRs, and interact to abnormally amplify Ca2+ transients. In turn, the increased transients result in dysregulation of multiple Ca2+-dependent processes and, through somewhat different pathways, in accelerated functional decline during aging and AD.
Collapse
Affiliation(s)
- Olivier Thibault
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | | | | |
Collapse
|
42
|
Bánhegyi G, Baumeister P, Benedetti A, Dong D, Fu Y, Lee AS, Li J, Mao C, Margittai E, Ni M, Paschen W, Piccirella S, Senesi S, Sitia R, Wang M, Yang W. Endoplasmic reticulum stress. Ann N Y Acad Sci 2007; 1113:58-71. [PMID: 17483206 DOI: 10.1196/annals.1391.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Stress is the imbalance of homeostasis, which can be sensed even at the subcellular level. The stress-sensing capability of various organelles including the endoplasmic reticulum (ER) has been described. It has become evident that acute or prolonged ER stress plays an important role in many human diseases; especially those involving organs/tissues specialized in protein secretion. This article summarizes the emerging role of ER stress in diverse human pathophysiological conditions such as carcinogenesis and tumor progression, cerebral ischemia, plasma cell maturation and apoptosis, obesity, insulin resistance, and type 2 diabetes. Certain components of the ER stress response machinery are identified as biomarkers of the diseases or as possible targets for therapeutic intervention.
Collapse
Affiliation(s)
- Gábor Bánhegyi
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Puskin utca 9, 1088, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|