1
|
Bergeron HC, Kauvar LM, Tripp RA. Anti-G protein antibodies targeting the RSV G protein CX3C chemokine region improve the interferon response. Ther Adv Infect Dis 2023; 10:20499361231161157. [PMID: 36938145 PMCID: PMC10017941 DOI: 10.1177/20499361231161157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/01/2023] [Indexed: 03/15/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) is a poor inducer of antiviral interferon (IFN) responses which result in incomplete immunity and RSV disease. Several RSV proteins alter antiviral responses, including the non-structural proteins (NS1, NS2) and the major viral surface proteins, that is, fusion (F) and attachment (G) proteins. The G protein modifies the host immune response to infection linked in part through a CX3 C chemokine motif. Anti-G protein monoclonal antibodies (mAbs), that is, clones 3D3 and 2D10 that target the G protein CX3C chemokine motif can neutralize RSV and inhibit G protein-CX3CR1 mediated chemotaxis. Objectives Determine how monoclonal antibodies against the RSV F and G proteins modify the type I and III IFN responses to RSV infection. Design As the G protein CX3 C motif is implicated in IFN antagonism, we evaluated two mAbs that block G protein CX3C-CX3CR1 interaction and compared responses to isotype mAb control using a functional cellular assay and mouse model. Methods Mouse lung epithelial cells (MLE-15 cells) and BALB/c mice were infected with RSV Line19 F following prophylactic mAb treatment. Cell supernatant or bronchoalveolar lavage fluid (BALF) were assayed for types I and III IFNs. Cells were interrogated for changes in IFN-related gene expression. Results Treatment with an anti-G protein mAb (3D3) resulted in improved IFN responses compared with isotype control following infection with RSV, partially independently of neutralization, and this was linked to upregulated SOCS1 expression. Conclusions These findings show that anti-G protein antibodies improve the protective early antiviral response, which has important implications for vaccine and therapeutic design. Plain Language Summary RSV is a leading cause of respiratory disease in infants and the elderly. The only Food and Drug Administration-approved prophylactic treatment is limited to an anti-F protein monoclonal antibody (mAb), that is, palivizumab which has modest efficacy against RSV disease. Accumulating evidence suggests that targeting the RSV attachment (G) protein may provide improved protection from RSV disease. It is known that the G protein is an IFN antagonist, and IFN has been shown to be protective against RSV disease. In this study, we compared IFN responses in mouse lung epithelial (MLE-15) cells and in mice infected with RSV Line19 F treated with anti-G protein or anti-F protein mAbs. The levels of type I and III IFNs were determined. Anti-G protein mAbs improved the levels of IFNs compared with isotype-treated controls. These findings support the concept that anti-G protein mAbs mediate improved IFN responses against RSV disease, which may enable improved treatment of RSV infections.
Collapse
Affiliation(s)
- Harrison C. Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | | |
Collapse
|
2
|
Ceneviva ZJ, Norlander AE, Stokes Peebles R. Mouse Models of Respiratory Syncytial Virus Infection. Methods Mol Biol 2022; 2506:19-41. [PMID: 35771461 PMCID: PMC10164290 DOI: 10.1007/978-1-0716-2364-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Respiratory syncytial virus (RSV) infection causes considerable mortality and morbidity in infants and young children. RSV infection appears to elicit a mixed immune response characterized by both Th1-type cells and Th2-type cells. This immune response, along with clinical features such as bronchiolitis, wheezing, and respiratory distress caused by RSV infection, presents similarly to many features of asthma and has led to an investigation into the link between severe RSV infection and asthma. RSV infection in mice is a powerful and useful tool for eliciting a Th2-type-driven immune response, lending mechanistic insight into severe RSV infection. Here we present several materials and methods used for propagating and purifying RSV, infecting mice with RSV, and analyzing samples from RSV-infected mice.
Collapse
Affiliation(s)
- Zachary J Ceneviva
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allison E Norlander
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- United States Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
3
|
Thielen BK, Bye E, Wang X, Maroushek S, Friedlander H, Bistodeau S, Christensen J, Reisdorf E, Shilts MH, Martin K, Como-Sabetti K, Strain AK, Ferrieri P, Lynfield R. Summer Outbreak of Severe RSV-B Disease, Minnesota, 2017 Associated with Emergence of a Genetically Distinct Viral Lineage. J Infect Dis 2020; 222:288-297. [PMID: 32083677 PMCID: PMC7323494 DOI: 10.1093/infdis/jiaa075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 02/16/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) typically causes winter outbreaks in temperate climates. During summer 2017, the Minnesota Department of Health received a report of increased cases of severe RSV-B infection. METHODS We compared characteristics of summer 2017 cases with those of 2014-2018 summers. To understand the genetic relatedness among viruses, we performed high-throughput sequencing of RSV from patients with a spectrum of illness from sites in Minnesota and Wisconsin. RESULTS From May to September 2017, 58 RSV cases (43 RSV-B) were reported compared to 20-29 cases (3-7 RSV-B) during these months in other years. Median age and frequency of comorbidities were similar, but 55% (24/43) were admitted to the ICU in 2017 compared to 12% in preceding 3 years (odds ratio, 4.84, P < .01). Sequencing was performed on 137 specimens from March 2016 to March 2018. Outbreak cases formed a unique clade sharing a single conserved nonsynonymous change in the SH gene. We observed increased cases during the following winter season, when the new lineage was the predominant strain. CONCLUSIONS We identified an outbreak of severe RSV-B disease associated with a new genetic lineage among urban Minnesota children during a time of expected low RSV circulation.
Collapse
Affiliation(s)
- Beth K Thielen
- Department of Medicine, Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Erica Bye
- Minnesota Department of Health, St Paul, Minnesota, USA
| | - Xiong Wang
- Minnesota Department of Health, St Paul, Minnesota, USA
| | | | | | | | | | - Erik Reisdorf
- Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, USA
| | - Meghan H Shilts
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Karen Martin
- Minnesota Department of Health, St Paul, Minnesota, USA
| | | | - Anna K Strain
- Minnesota Department of Health, St Paul, Minnesota, USA
| | - Patricia Ferrieri
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ruth Lynfield
- Minnesota Department of Health, St Paul, Minnesota, USA
| |
Collapse
|
4
|
A Contemporary View of Respiratory Syncytial Virus (RSV) Biology and Strain-Specific Differences. Pathogens 2019; 8:pathogens8020067. [PMID: 31117229 PMCID: PMC6631838 DOI: 10.3390/pathogens8020067] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/09/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a human respiratory pathogen which remains a leading viral cause of hospitalizations and mortality among infants in their first year of life. Here, we review the biology of RSV, the primary laboratory isolates or strains which have been used to best characterize the virus since its discovery in 1956, and discuss the implications for genetic and functional variations between the established laboratory strains and the recently identified clinical isolates.
Collapse
|
5
|
Altamirano-Lagos MJ, Díaz FE, Mansilla MA, Rivera-Pérez D, Soto D, McGill JL, Vasquez AE, Kalergis AM. Current Animal Models for Understanding the Pathology Caused by the Respiratory Syncytial Virus. Front Microbiol 2019; 10:873. [PMID: 31130923 PMCID: PMC6510261 DOI: 10.3389/fmicb.2019.00873] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is the main etiologic agent of severe lower respiratory tract infections that affect young children throughout the world, associated with significant morbidity and mortality, becoming a serious public health problem globally. Up to date, no licensed vaccines are available to prevent severe hRSV-induced disease, and the generation of safe-effective vaccines has been a challenging task, requiring constant biomedical research aimed to overcome this ailment. Among the difficulties presented by the study of this pathogen, it arises the fact that there is no single animal model that resembles all aspects of the human pathology, which is due to the specificity that this pathogen has for the human host. Thus, for the study of hRSV, different animal models might be employed, depending on the goal of the study. Of all the existing models, the murine model has been the most frequent model of choice for biomedical studies worldwide and has been of great importance at contributing to the development and understanding of vaccines and therapies against hRSV. The most notable use of the murine model is that it is very useful as a first approach in the development of vaccines or therapies such as monoclonal antibodies, suggesting in this way the direction that research could have in other preclinical models that have higher maintenance costs and more complex requirements in its management. However, several additional different models for studying hRSV, such as other rodents, mustelids, ruminants, and non-human primates, have been explored, offering advantages over the murine model. In this review, we discuss the various applications of animal models to the study of hRSV-induced disease and the advantages and disadvantages of each model, highlighting the potential of each model to elucidate different features of the pathology caused by the hRSV infection.
Collapse
Affiliation(s)
- María José Altamirano-Lagos
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián E. Díaz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel Andrés Mansilla
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Rivera-Pérez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Soto
- Sección Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Abel E. Vasquez
- Sección Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
|
7
|
Association of Nrf2 with airway pathogenesis: lessons learned from genetic mouse models. Arch Toxicol 2015; 89:1931-57. [PMID: 26194645 DOI: 10.1007/s00204-015-1557-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/17/2015] [Indexed: 01/11/2023]
Abstract
Nrf2 is a key transcription factor for antioxidant response element (ARE)-bearing genes involved in diverse host defense functions including redox balance, cell cycle, immunity, mitochondrial biogenesis, energy metabolism, and carcinogenesis. Nrf2 in the airways is particularly essential as the respiratory system continuously interfaces with environmental stress. Since Nrf2 was determined to be a susceptibility gene for a model of acute lung injury, its protective capacity in the airways has been demonstrated in experimental models of human disorders using Nrf2 mutant mice which were susceptible to supplemental respiratory therapy (e.g., hyperoxia, mechanical ventilation), cigarette smoke, allergens, virus, environmental pollutants, and fibrotic agents compared to wild-type littermates. Recent studies also determined that Nrf2 is indispensable in developmental lung injury. While association studies with genetic NRF2 polymorphisms supported a protective role for murine Nrf2 in oxidative airway diseases, somatic NRF2 mutations enhanced NRF2-ARE responses, and were favorable for lung carcinogenesis and chemoresistance. Bioinformatic tools have elucidated direct Nrf2 targets as well as Nrf2-interacting networks. Moreover, potent Nrf2-ARE agonists protected oxidant-induced lung phenotypes in model systems, suggesting a therapeutic or preventive intervention. Further investigations on Nrf2 should yield greater understanding of its contribution to normal and pathophysiological function in the airways.
Collapse
|
8
|
Pickles RJ, DeVincenzo JP. Respiratory syncytial virus (RSV) and its propensity for causing bronchiolitis. J Pathol 2015; 235:266-76. [PMID: 25302625 PMCID: PMC5638117 DOI: 10.1002/path.4462] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 09/24/2014] [Accepted: 10/05/2014] [Indexed: 12/16/2022]
Abstract
Infants and young children with acute onset of wheezing and reduced respiratory airflows are often diagnosed with obstruction and inflammation of the small bronchiolar airways, ie bronchiolitis. The most common aetological agents causing bronchiolitis in young children are the respiratory viruses, and of the commonly encountered respiratory viruses, respiratory syncytial virus (RSV) has a propensity for causing bronchiolitis. Indeed, RSV bronchiolitis remains the major reason why previously healthy infants are admitted to hospital. Why RSV infection is such a predominant cause of bronchiolitis is the subject of this review. By reviewing the available histopathology of RSV bronchiolitis, both in humans and relevant animal models, we identify hallmark features of RSV infection of the distal airways and focus attention on the consequences of columnar cell cytopathology occurring in the bronchioles, which directly impacts the development of bronchiolar obstruction, inflammation and disease. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Raymond J Pickles
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
9
|
The impact of viral genotype on pathogenesis and disease severity: respiratory syncytial virus and human rhinoviruses. Curr Opin Immunol 2014; 25:761-8. [PMID: 24455766 DOI: 10.1016/j.coi.2013.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection (LRI) and viral death in infants. RSV disease in infants is characterized by epithelial desquamation, neutrophilic bronchiolitis and pneumonia and obstructive pulmonary mucus. Human rhinoviruses (HRVs) are by far the most common cause of symptomatic upper respiratory tract infection (URI) in people and are more recently appreciated as a significant cause of LRI. RSV and HRV are also implicated in asthma pathogenesis. Within both RSV and HRV, viral genetic differences play a role in disease severity and/or prevalence in patient populations, and viral genetic differences affect pathogenesis. Here, we review data on how viral genetic differences impact disease using RSV and HRV as examples, including effects on the host immune response. Virus genotype–phenotype relationships can be exploited in the laboratory to gain insight into mechanisms by which respiratory viruses modulate host immune responses and cause disease.
Collapse
|
10
|
Redondo E, Gázquez A, Vadillo S, García A, Franco A, Masot AJ. Induction of interleukin-8 and interleukin-12 in neonatal ovine lung following experimental inoculation of bovine respiratory syncytial virus. J Comp Pathol 2013; 150:434-48. [PMID: 24854063 DOI: 10.1016/j.jcpa.2013.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 07/05/2013] [Accepted: 08/18/2013] [Indexed: 10/26/2022]
Abstract
This study aimed to determine the immunohistochemical expression of interleukin (IL)-1β, tumour necrosis factor alpha (TNF)-α, interferon (IFN)-γ, IL-4, IL-6, IL-8, IL-10 and IL-12 and to measure the concentrations of these cytokines in lung tissue from lambs infected experimentally with bovine respiratory syncytial virus (BRSV). Lambs (n = 15) were inoculated at 2 days of age with 20 ml of viral inoculum (1.26 × 10(6) TCID50 per ml) or sterile medium (n = 15). Rectal temperature, pulse and respiratory rates were monitored daily in control and infected lambs. Lambs were killed and subject to necropsy examination at 1, 3, 5, 7 and 15 days post inoculation (dpi). There was a temporal association between pulmonary expression of these cytokines and lung pathology in BRSV-infected lambs. The cytokines IL-4 and IL-10 were not elevated, but there was a significant increase in IL-1β, TNF-α, IFN-γ and IL-6 proteins and labelled cells, suggesting that these cytokines may play a role in the biological response to BRSV infection and contribute to the development of lung lesions. There was also a significant increase in the cytokine concentration and number of immunolabelled cells expressing IL-8 and IL-12 in infected lungs, suggesting that these cytokines might be used as therapeutic targets in the management of BRSV, in conjunction with measures to combat the causative pathogen and prophylactic methods aimed at preventing infection.
Collapse
Affiliation(s)
- E Redondo
- Histology and Pathology Unit, Animal Medicine Department, Veterinary Faculty, University of Extremadura, Avenue of the University, 10003 Cáceres, Spain.
| | - A Gázquez
- Histology and Pathology Unit, Animal Medicine Department, Veterinary Faculty, University of Extremadura, Avenue of the University, 10003 Cáceres, Spain
| | - S Vadillo
- Microbiology Unit, Animal Health Department, Veterinary Faculty, University of Extremadura, Avenue of the University, 10003 Cáceres, Spain
| | - A García
- Histology and Pathology Unit, Animal Medicine Department, Veterinary Faculty, University of Extremadura, Avenue of the University, 10003 Cáceres, Spain
| | - A Franco
- Anatomy and Embryology Unit, Animal Medicine Department, Veterinary Faculty, University of Extremadura, Avenue of the University, 10003 Cáceres, Spain
| | - A J Masot
- Histology and Pathology Unit, Animal Medicine Department, Veterinary Faculty, University of Extremadura, Avenue of the University, 10003 Cáceres, Spain
| |
Collapse
|
11
|
Boyoglu-Barnum S, Gaston KA, Todd SO, Boyoglu C, Chirkova T, Barnum TR, Jorquera P, Haynes LM, Tripp RA, Moore ML, Anderson LJ. A respiratory syncytial virus (RSV) anti-G protein F(ab')2 monoclonal antibody suppresses mucous production and breathing effort in RSV rA2-line19F-infected BALB/c mice. J Virol 2013; 87:10955-67. [PMID: 23885067 PMCID: PMC3807296 DOI: 10.1128/jvi.01164-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/12/2013] [Indexed: 12/27/2022] Open
Abstract
Respiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. Increased airway resistance and increased airway mucin production are two manifestations of RSV infection in children. RSV rA2-line19F infection induces pulmonary mucous production and increased breathing effort in BALB/c mice and provides a way to assess these manifestations of RSV disease in an animal model. In the present study, we investigated the effect of prophylactic treatment with the F(ab')2 form of the anti-G protein monoclonal antibody (MAb) 131-2G on disease in RSV rA2-line19F-challenged mice. F(ab')2 131-2G does not affect virus replication. It and the intact form that does decrease virus replication prevented increased breathing effort and airway mucin production, as well as weight loss, pulmonary inflammatory-cell infiltration, and the pulmonary substance P and pulmonary Th2 cytokine levels that occur in mice challenged with this virus. These data suggest that the RSV G protein contributes to prominent manifestations of RSV disease and that MAb 131-2G can prevent these manifestations of RSV disease without inhibiting virus infection.
Collapse
Affiliation(s)
- Seyhan Boyoglu-Barnum
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kelsey A. Gaston
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sean O. Todd
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Cemil Boyoglu
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Tatiana Chirkova
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Thomas R. Barnum
- University of Georgia Odum School of Ecology, Athens, Georgia, USA
| | - Patricia Jorquera
- University of Georgia Department of Infectious Diseases, Animal Health Research Center, Athens, Georgia, USA
| | - Lia M. Haynes
- Division of Viral Diseases, NCIRD, CDC, Atlanta, Georgia, USA
| | - Ralph A. Tripp
- University of Georgia Department of Infectious Diseases, Animal Health Research Center, Athens, Georgia, USA
| | - Martin L. Moore
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Larry J. Anderson
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
12
|
de Betue CTI, Joosten KFM, Deutz NEP, Vreugdenhil ACE, van Waardenburg DA. Arginine appearance and nitric oxide synthesis in critically ill infants can be increased with a protein-energy-enriched enteral formula. Am J Clin Nutr 2013; 98:907-16. [PMID: 23945723 PMCID: PMC3778863 DOI: 10.3945/ajcn.112.042523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Arginine is considered an essential amino acid during critical illness in children, and supplementation of arginine has been proposed to improve arginine availability to facilitate nitric oxide (NO) synthesis. Protein-energy-enriched enteral formulas (PE-formulas) can improve nutrient intake and promote anabolism in critically ill infants. However, the effect of increased protein and energy intake on arginine metabolism is not known. OBJECTIVE We investigated the effect of a PE-formula compared with that of a standard infant formula (S-formula) on arginine kinetics in critically ill infants. DESIGN A 2-h stable-isotope tracer protocol was conducted in 2 groups of critically ill infants with respiratory failure because of viral bronchiolitis, who received either a PE-formula (n = 8) or S-formula (n = 10) in a randomized, blinded, controlled setting. Data were reported as means ± SDs. RESULTS The intake of a PE-formula in critically ill infants (aged 0.23 ± 0.14 y) resulted in an increased arginine appearance (PE-formula: 248 ± 114 μmol · kg(-1) · h(-1); S-formula: 130 ± 53 μmol · kg(-1) · h(-1); P = 0.012) and NO synthesis (PE-formula: 1.92 ± 0.99 μmol · kg(-1) · h(-1); S-formula: 0.84 ± 0.36 μmol · kg(-1) · h(-1); P = 0.003), whereas citrulline production and plasma arginine concentrations were unaffected. CONCLUSION In critically ill infants with respiratory failure because of viral bronchiolitis, the intake of a PE-formula increases arginine availability by increasing arginine appearance, which leads to increased NO synthesis, independent of plasma arginine concentrations. This trial was registered at www.trialregister.nl as NTR515.
Collapse
Affiliation(s)
- Carlijn T I de Betue
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands
| | | | | | | | | |
Collapse
|
13
|
The respiratory syncytial virus fusion protein and neutrophils mediate the airway mucin response to pathogenic respiratory syncytial virus infection. J Virol 2013; 87:10070-82. [PMID: 23843644 DOI: 10.1128/jvi.01347-13] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of death due to a viral etiology in infants. RSV disease is characterized by epithelial desquamation, neutrophilic bronchiolitis and pneumonia, and obstructive pulmonary mucus. It has been shown that infection of BALB/cJ mice with RSV clinical isolate A2001/2-20 (2-20) results in a higher early viral load, greater airway necrosis, and higher levels of interleukin-13 (IL-13) and airway mucin expression than infection with RSV laboratory strain A2. We hypothesized that the fusion (F) protein of RSV 2-20 is a mucus-inducing viral factor. In vitro, the fusion activity of 2-20 F but not that of A2 F was enhanced by expression of RSV G. We generated a recombinant F-chimeric RSV by replacing the F gene of A2 with the F gene of 2-20, generating A2-2-20F. Similar to the results obtained with the parent 2-20 strain, infection of BALB/cJ mice with A2-2-20F resulted in a higher early viral load and higher levels of subsequent pulmonary mucin expression than infection with the A2 strain. A2-2-20F infection induced greater necrotic airway damage and neutrophil infiltration than A2 infection. We hypothesized that the neutrophil response to A2-2-20F infection is involved in mucin expression. Antibody-mediated depletion of neutrophils in RSV-infected mice resulted in lower tumor necrosis factor alpha levels, fewer IL-13-expressing CD4 T cells, and less airway mucin production in the lung. Our data are consistent with a model in which the F and attachment (G) glycoprotein functional interaction leads to enhanced fusion and F is a key factor in airway epithelium infection, pathogenesis, and subsequent airway mucin expression.
Collapse
|
14
|
Melero JA, Moore ML. Influence of respiratory syncytial virus strain differences on pathogenesis and immunity. Curr Top Microbiol Immunol 2013; 372:59-82. [PMID: 24362684 DOI: 10.1007/978-3-642-38919-1_3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular epidemiology studies have provided convincing evidence of antigenic and sequence variability among respiratory syncytial virus (RSV) isolates. Circulating viruses have been classified into two antigenic groups (A and B) that correlate with well-delineated genetic groups. Most sequence and antigenic differences (both inter- and intra-groups) accumulate in two hypervariable segments of the G-protein gene. Sequences of the G gene have been used for phylogenetic analyses. These studies have shown a worldwide distribution of RSV strains with both local and global replacement of dominant viruses with time. Although data are still limited, there is evidence that strain variation may contribute to differences in pathogenicity. In addition, there is some but limited evidence that RSV variation may be, at least partially, immune (antibody) driven. However, there is the paradox in RSV that, in contrast to other viruses (e.g., influenza viruses) the epitopes recognized by the most effective RSV-neutralizing antibodies are highly conserved. In contrast, antibodies that recognize strain-specific epitopes are poorly neutralizing. It is likely that this apparent contradiction is due to the lack of a comprehensive knowledge of the duration and specificities of the human antibody response against RSV antigens. Since there are some data supporting a group- (or clade-) specific antibody response after a primary infection in humans, it may be wise to consider the incorporation of strains representative of groups A and B (or their antigens) in future RSV vaccine development.
Collapse
Affiliation(s)
- José A Melero
- Unidad de Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain,
| | | |
Collapse
|
15
|
|
16
|
Mata M, Sarrion I, Armengot M, Carda C, Martinez I, Melero JA, Cortijo J. Respiratory syncytial virus inhibits ciliagenesis in differentiated normal human bronchial epithelial cells: effectiveness of N-acetylcysteine. PLoS One 2012; 7:e48037. [PMID: 23118923 PMCID: PMC3485262 DOI: 10.1371/journal.pone.0048037] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 09/20/2012] [Indexed: 01/23/2023] Open
Abstract
Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. These alterations involve reactive oxygen species-dependent mechanisms. The antioxidant N-acetylcysteine (NAC) has proven useful in the management of COPD, reducing symptoms, exacerbations, and accelerated lung function decline. NAC inhibits RSV infection and mucin release in human A549 cells. The main objective of this study was to analyze the effects of NAC in modulating ciliary activity, ciliagenesis, and metaplasia in primary normal human bronchial epithelial cell (NHBEC) cultures infected with RSV. Our results indicated that RSV induced ultrastructural abnormalities in axonemal basal bodies and decreased the expression of β-tubulin as well as two genes involved in ciliagenesis, FOXJ1 and DNAI2. These alterations led to a decrease in ciliary activity. Furthermore, RSV induced metaplastic changes to the epithelium and increased the number of goblet cells and the expression of MUC5AC and GOB5. NAC restored the normal functions of the epithelium, inhibiting ICAM1 expression, subsequent RSV infection through mechanisms involving nuclear receptor factor 2, and the expression of heme oxygenase 1, which correlated with the restoration of the antioxidant capacity, the intracellular H(2)O(2) levels and glutathione content of NHBECs. The results presented in this study support the therapeutic use of NAC for the management of chronic respiratory diseases, including COPD.
Collapse
Affiliation(s)
- Manuel Mata
- Research Foundation of the University General Hospital of Valencia, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
17
|
Sow FB, Gallup JM, Krishnan S, Patera AC, Suzich J, Ackermann MR. Respiratory syncytial virus infection is associated with an altered innate immunity and a heightened pro-inflammatory response in the lungs of preterm lambs. Respir Res 2011; 12:106. [PMID: 21827668 PMCID: PMC3170232 DOI: 10.1186/1465-9921-12-106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/09/2011] [Indexed: 05/26/2023] Open
Abstract
Introduction Factors explaining the greater susceptibility of preterm infants to severe lower respiratory infections with respiratory syncytial virus (RSV) remain poorly understood. Fetal/newborn lambs are increasingly appreciated as a model to study key elements of RSV infection in newborn infants due to similarities in lung alveolar development, immune response, and susceptibility to RSV. Previously, our laboratory demonstrated that preterm lambs had elevated viral antigen and developed more severe lesions compared to full-term lambs at seven days post-infection. Here, we compared the pathogenesis and immunological response to RSV infection in lungs of preterm and full-term lambs. Methods Lambs were delivered preterm by Caesarian section or full-term by natural birth, then inoculated with bovine RSV (bRSV) via the intratracheal route. Seven days post-infection, lungs were collected for evaluation of cytokine production, histopathology and cellular infiltration. Results Compared to full-term lambs, lungs of preterm lambs had a heightened pro-inflammatory response after infection, with significantly increased MCP-1, MIP-1α, IFN-γ, TNF-α and PD-L1 mRNA. RSV infection in the preterm lung was characterized by increased epithelial thickening and periodic acid-Schiff staining, indicative of glycogen retention. Nitric oxide levels were decreased in lungs of infected preterm lambs compared to full-term lambs, indicating alternative macrophage activation. Although infection induced significant neutrophil recruitment into the lungs of preterm lambs, neutrophils produced less myeloperoxidase than those of full-term lambs, suggesting decreased functional activation. Conclusions Taken together, our data suggest that increased RSV load and inadequate immune response may contribute to the enhanced disease severity observed in the lungs of preterm lambs.
Collapse
Affiliation(s)
- Fatoumata B Sow
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Differential pathogenesis of respiratory syncytial virus clinical isolates in BALB/c mice. J Virol 2011; 85:5782-93. [PMID: 21471228 DOI: 10.1128/jvi.01693-10] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Airway mucus is a hallmark of respiratory syncytial virus (RSV) lower respiratory tract illness. Laboratory RSV strains differentially induce airway mucus production in mice. Here, we tested the hypothesis that RSV strains differ in pathogenesis by screening six low-passage RSV clinical isolates for mucogenicity and virulence in BALB/cJ mice. The RSV clinical isolates induced variable disease severity, lung interleukin-13 (IL-13) levels, and gob-5 levels in BALB/cJ mice. We chose two of these clinical isolates for further study. Infection of BALB/cJ mice with RSV A2001/2-20 (2-20) resulted in greater disease severity, higher lung IL-13 levels, and higher lung gob-5 levels than infection with RSV strains A2, line 19, Long, and A2001/3-12 (3-12). Like the line 19 RSV strain, the 2-20 clinical isolate induced airway mucin expression in BALB/cJ mice. The 2-20 and 3-12 RSV clinical isolates had higher lung viral loads than laboratory RSV strains at 1 day postinfection (p.i.). This increased viral load correlated with higher viral antigen levels in the bronchiolar epithelium and greater histopathologic changes at 1 day p.i. The A2 RSV strain had the highest peak viral load at day 4 p.i. RSV 2-20 infection caused epithelial desquamation, bronchiolitis, airway hyperresponsiveness, and increased breathing effort in BALB/cJ mice. We found that RSV clinical isolates induce variable pathogenesis in mice, and we established a mouse model of clinical isolate strain-dependent RSV pathogenesis that recapitulates key features of RSV disease.
Collapse
|
19
|
Chéron G, Patteau G, Nouyrigat V. Bronchiolite del lattante. EMC - URGENZE 2011. [PMCID: PMC7149004 DOI: 10.1016/s1286-9341(11)70664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
La bronchiolite è un’infezione virale stagionale delle vie respiratorie basse del lattante. Il suo agente causale principale è il virus respiratorio sinciziale. La comparsa di un distress respiratorio è legata all’intensità della risposta infiammatoria delle vie aeree. Benché si tratti di una malattia frequente, le cause della suscettibilità dei lattanti a questa infezione non sono conosciute. La diagnosi è clinica. Il trattamento è sintomatico in assenza di misure specifiche. I rapporti a medio e a lungo termine di un primo episodio di bronchiolite con le recidive e con l’asma non sono spiegati. Essi potrebbero dipendere dalla natura del virus in causa al momento del primo episodio e da fattori genetici individuali.
Collapse
|
20
|
Minor RAC, Limmon GV, Miller-DeGraff L, Dixon D, Andrews DMK, Kaufman RJ, Imani F. Double-stranded RNA-activated protein kinase regulates early innate immune responses during respiratory syncytial virus infection. J Interferon Cytokine Res 2010; 30:263-72. [PMID: 20038207 DOI: 10.1089/jir.2009.0051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of childhood viral bronchiolitis and lung injury. Inflammatory responses significantly contribute to lung pathologies during RSV infections and bronchiolitis but the exact mechanisms have not been completely defined. The double-stranded RNA-activated protein kinase (PKR) functions to inhibit viral replication and participates in several signaling pathways associated with innate inflammatory immune responses. Using a functionally defective PKR (PKR(-/-)) mouse model, we investigated the role of this kinase in early events of RSV-induced inflammation. Our data showed that bronchoalveolar lavage (BAL) fluid from infected PKR(-/-) mice had significantly lower levels of several innate inflammatory cytokines and chemokines. Histological examinations revealed that there was less lung injury in infected PKR(-/-) mice as compared to the wild type. A genome-wide analysis showed that several early antiviral and immune regulatory genes were affected by PKR activation. These data suggest that PKR is a signaling molecule for immune responses during RSV infections.
Collapse
|
21
|
TLR4 Asp299Gly and Thr399Ile polymorphisms: no impact on human immune responsiveness to LPS or respiratory syncytial virus. PLoS One 2010; 5:e12087. [PMID: 20711470 PMCID: PMC2919413 DOI: 10.1371/journal.pone.0012087] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/11/2010] [Indexed: 12/14/2022] Open
Abstract
Background A broad variety of natural environmental stimuli, genotypic influences and timing all contribute to expression of protective versus maladaptive immune responses and the resulting clinical outcomes in humans. The role of commonly co-segregating Toll-like receptor 4 (TLR4) non-synonymous single nucleotide polymorphisms Asp299Gly and Thr399Ile in this process remains highly controversial. Moreover, what differential impact these polymorphisms might have in at risk populations with respiratory dysfunction, such as current asthma or a history of infantile bronchiolitis, has never been examined. Here we determine the importance of these polymorphisms in modulating LPS and respiratory syncytial virus (RSV) - driven cytokine responses. We focus on both healthy children and those with clinically relevant respiratory dysfunction. Methodology To elucidate the impact of TLR4 Asp299Gly and Thr399Ile on cytokine production, we assessed multiple immune parameters in over 200 pediatric subjects aged 7–9. Genotyping was followed by quantification of pro- and anti-inflammatory cytokine responses by fresh peripheral blood mononuclear cells upon acute exposure to LPS or RSV. Principal Findings In contrast to early reports, neither SNP influenced immune responses evoked by LPS exposure or RSV infection, as measured by the intermediate phenotype of pro- and anti-inflammatory cytokine responses to these ubiquitous agents. There is no evidence of altered sensitivity in populations with “at risk” clinical phenotypes. Conclusions/Significance Genomic medicine seeks to inform clinical practice. Determination of the TLR4 Asp299Gly/Thr399Ile haplotype is of no clinical benefit in predicting the nature or intensity of cytokine production in children whether currently healthy or among specific at-risk groups characterized by prior infantile broncholitis or current asthma.
Collapse
|
22
|
Stegmann T, Kamphuis T, Meijerhof T, Goud E, de Haan A, Wilschut J. Lipopeptide-adjuvanted respiratory syncytial virus virosomes: A safe and immunogenic non-replicating vaccine formulation. Vaccine 2010; 28:5543-50. [DOI: 10.1016/j.vaccine.2010.06.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/19/2010] [Accepted: 06/10/2010] [Indexed: 11/29/2022]
|
23
|
Buonaguro FM, Tornesello ML, Buonaguro L. Virus-like particle vaccines and adjuvants: the HPV paradigm. Expert Rev Vaccines 2009; 8:1379-98. [PMID: 19803760 DOI: 10.1586/erv.09.81] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Complex antigen structures currently represent the most-studied approach for prophylactic as well as therapeutic vaccines. Different types of complex vaccines, including virus-like particles and virosomes, have been developed depending on the nature of the viral pathogen they are trying to replicate (enveloped vs naked) or the modality to express antigenic epitopes (i.e., the binding of envelope protein on liposomic structures). The complex structure of these vaccines provides them with some adjuvanted properties, not uniformly present for all virus-like particle types. The further inclusion of specific adjuvants in vaccine preparations can modify the presentation modality of such particles to the immune system with a specific Th1 versus Th2 polarization efficacy. A paradigm of the relevance of these new adjuvants are the immunological results obtained with the inclusion of monophosphoryl lipid A adjuvant in the formulation of L1-based human papillomavirus-naked virus-like particles to reduce a Th1 cellular immunity impairment, peculiar for alum-derived adjuvants, along with the induction of highly enhanced humoral and memory B-cellular immunity.
Collapse
Affiliation(s)
- Franco Maria Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Via Mariano Semmola 142, 80131 Napoli, Italy.
| | | | | |
Collapse
|
24
|
Abstract
Numerous viruses are able to cause respiratory tract infections. With the availability of new molecular techniques, the number of pathogens detected in specimens from the human respiratory tract has increased. Some of these viral infections have the potential to lead to severe systemic disease. Other viruses are limited to playing a role in the pathogenesis of the common cold syndrome. This chapter focuses on the viral pathogens that are linked to common cold. It is not the intention to comprehensively review all the viruses that are able to cause respiratory tract infections—this would go beyond the scope of this book. The list of viruses that are briefly reviewed here includes rhinoviruses, respiratory syncytial virus, parainfluenza virus, adenovirus, metapneumovirus and coronavirus. Bocavirus is discussed as one example of a newly identified pathogen with a less established role in the etiology and pathogenesis of common cold. Influenza virus does not cause what is defined as common cold. However, influenza viruses are associated with respiratory disease and the clinical picture of mild influenza and common cold frequently overlaps. Therefore, influenza virus has been included in this chapter. It is important to note that a number of viruses are frequently co-detected with other viruses in humans with respiratory diseases. Therefore, the viral etiology and the role of viruses in the pathogenesis of common cold is complex, and numberous questions remain to be answered.
Collapse
|
25
|
Nrf2 protects against airway disorders. Toxicol Appl Pharmacol 2009; 244:43-56. [PMID: 19646463 DOI: 10.1016/j.taap.2009.07.024] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/17/2009] [Accepted: 07/22/2009] [Indexed: 11/23/2022]
Abstract
Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that regulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. In the unstressed condition, Kelch-like ECH-associated protein 1 (Keap1) suppresses cellular Nrf2 in cytoplasm and drives its proteasomal degradation. Nrf2 can be activated by diverse stimuli including oxidants, pro-oxidants, antioxidants, and chemopreventive agents. Nrf2 induces cellular rescue pathways against oxidative injury, abnormal inflammatory and immune responses, apoptosis, and carcinogenesis. Application of Nrf2 germ-line mutant mice has identified an extensive range of protective roles for Nrf2 in experimental models of human disorders in the liver, gastrointestinal tract, airway, kidney, brain, circulation, and immune or nerve system. In the lung, lack of Nrf2 exacerbated toxicity caused by multiple oxidative insults including supplemental respiratory therapy (e.g., hyperoxia, mechanical ventilation), cigarette smoke, allergen, virus, bacterial endotoxin and other inflammatory agents (e.g., carrageenin), environmental pollution (e.g., particles), and a fibrotic agent bleomycin. Microarray analyses and bioinformatic studies elucidated functional AREs and Nrf2-directed genes that are critical components of signaling mechanisms in pulmonary protection by Nrf2. Association of loss of function with promoter polymorphisms in NRF2 or somatic and epigenetic mutations in KEAP1 and NRF2 has been found in cohorts of patients with acute lung injury/acute respiratory distress syndrome or lung cancer, which further supports the role for NRF2 in these lung diseases. In the current review, we address the role of Nrf2 in airways based on emerging evidence from experimental oxidative disease models and human studies.
Collapse
|
26
|
Moore ML, Newcomb DC, Parekh VV, Van Kaer L, Collins RD, Zhou W, Goleniewska K, Chi MH, Mitchell D, Boyce JA, Durbin JE, Sturkie C, Peebles RS. STAT1 negatively regulates lung basophil IL-4 expression induced by respiratory syncytial virus infection. THE JOURNAL OF IMMUNOLOGY 2009; 183:2016-26. [PMID: 19587017 DOI: 10.4049/jimmunol.0803167] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-4 contributes to immunopathology induced in mice by primary respiratory syncytial virus (RSV) infection. However, the cellular source of IL-4 in RSV infection is unknown. We identified CD3(-)CD49b(+) cells as the predominant source of IL-4 in the lungs of RSV-infected BALB/c mice. We ruled out T cells, NK cells, NKT cells, mast cells, and eosinophils as IL-4 expressors in RSV infection by flow cytometry. Using IL4 GFP reporter mice (4get) mice, we identified the IL-4-expressing cells in RSV infection as basophils (CD3(-)CD49b(+)FcepsilonRI(+)c-kit(-)). Because STAT1(-/-) mice have an enhanced Th2-type response to RSV infection, we also sought to determine the cellular source and role of IL-4 in RSV-infected STAT1(-/-) mice. RSV infection resulted in significantly more IL-4-expressing CD3(-)CD49b(+) cells in the lungs of STAT1(-/-) mice than in BALB/c mice. CD49b(+)IL-4(+) cells sorted from the lungs of RSV-infected STAT1(-/-) mice and stained with Wright-Giemsa had basophil characteristics. As in wild-type BALB/c mice, IL-4 contributed to lung histopathology in RSV-infected STAT1(-/-) mice. Depletion of basophils in RSV-infected STAT1(-/-) mice reduced lung IL-4 expression. Thus, we show for the first time that a respiratory virus (RSV) induced basophil accumulation in vivo. Basophils were the primary source of IL-4 in the lung in RSV infection, and STAT1 was a negative regulator of virus-induced basophil IL-4 expression.
Collapse
Affiliation(s)
- Martin L Moore
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Oshansky CM, Krunkosky TM, Barber J, Jones LP, Tripp RA. Respiratory Syncytial Virus Proteins Modulate Suppressors of Cytokine Signaling 1 and 3 and the Type I Interferon Response to Infection by a Toll-Like Receptor Pathway. Viral Immunol 2009; 22:147-61. [DOI: 10.1089/vim.2008.0098] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Christine M. Oshansky
- Department of Infectious Diseases, College of Veterinary Medicine, Center for Disease Intervention, University of Georgia, Athens, Georgia
| | - Thomas M. Krunkosky
- Department of Anatomy and Radiology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Jamie Barber
- Department of Infectious Diseases, College of Veterinary Medicine, Center for Disease Intervention, University of Georgia, Athens, Georgia
| | - Les P. Jones
- Department of Infectious Diseases, College of Veterinary Medicine, Center for Disease Intervention, University of Georgia, Athens, Georgia
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, Center for Disease Intervention, University of Georgia, Athens, Georgia
| |
Collapse
|
28
|
Oshansky CM, Zhang W, Moore E, Tripp RA. The host response and molecular pathogenesis associated with respiratory syncytial virus infection. Future Microbiol 2009; 4:279-97. [PMID: 19327115 DOI: 10.2217/fmb.09.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since the isolation of respiratory syncytial virus (RSV) in 1956, its significance as an important human pathogen in infants, the elderly and the immunocompromised has been established. Many important mechanisms contributing to RSV infection, replication and disease pathogenesis have been uncovered; however, there is still insufficient knowledge in these and related areas, which must be addressed to facilitate the development of safe and effective vaccines and therapeutic treatments. A better understanding of the molecular pathogenesis of RSV infection, particularly the host-cell response and transcription profiles to RSV infection, is required to advance disease intervention strategies. Substantial information is accumulating regarding how RSV proteins modulate molecular signaling and regulation of cytokine and chemokine responses to infection, molecular signals regulating programmed cell death, and innate and adaptive immune responses to infection. This review discusses RSV manipulation of the host response to infection and related disease pathogenesis.
Collapse
Affiliation(s)
- Christine M Oshansky
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | | | | | | |
Collapse
|
29
|
Gene expression of nucleic acid-sensing pattern recognition receptors in children hospitalized for respiratory syncytial virus-associated acute bronchiolitis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:816-23. [PMID: 19386802 DOI: 10.1128/cvi.00445-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Given the critical role of pattern recognition receptors (PRRs) in acid nucleic recognition in the initiation of innate immunity and the orchestration of adaptive immunity, the aim of this study was to determine whether any heterogeneity of PRR expression in the airway tracts of infants with respiratory syncytial virus (RSV) infection might explain the broad clinical spectrum of RSV-associated bronchiolitis in infants. For this purpose, the levels of melanoma differentiation-associated protein-5 (MDA-5), retinoic acid inducible gene-1 (RIG-1), and Toll-like receptor 3 (TLR-3), TLR-7, TLR-8, and TLR-9 mRNAs were evaluated, using TaqMan quantitative reverse transcription-PCR, in cells from nasopharyngeal washes collected from 157 infants suffering from acute bronchiolitis whether or not they were associated with respiratory viruses. High interindividual variability was observed in both virus-positive and -negative infants; however, the relative gene expression levels of MDA-5, RIG-1, TLR-7, and TLR-8 were significantly higher in the virus-infected group, whereas the expression levels of TLR-3 and TLR-9 were not significantly different. The differences in the gene expression of MDA-5, RIG-1, TLR-7, and TLR-8 were more evident in infants with RSV infection than in those with bocavirus or rhinovirus infection. In RSV-infected infants, PRR-mRNA levels also were analyzed in relation to interferon protein levels, viral load, clinical severity, days of hospitalization, age, and body weight. A significant positive correlation was observed only between RSV viral load and RIG-1 mRNA levels. These findings provide the first direct evidence that, in infants with respiratory virus-associated bronchiolitis, especially RSV, there are substantial changes in PRR gene expression; this likely is an important determinant of the clinical outcome of bronchiolitis.
Collapse
|
30
|
Glasser SW, Witt TL, Senft AP, Baatz JE, Folger D, Maxfield MD, Akinbi HT, Newton DA, Prows DR, Korfhagen TR. Surfactant protein C-deficient mice are susceptible to respiratory syncytial virus infection. Am J Physiol Lung Cell Mol Physiol 2009; 297:L64-72. [PMID: 19304906 DOI: 10.1152/ajplung.90640.2008] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Patients with mutations in the pulmonary surfactant protein C (SP-C) gene develop interstitial lung disease and pulmonary exacerbations associated with viral infections including respiratory syncytial virus (RSV). Pulmonary infection with RSV caused more severe interstitial thickening, air space consolidation, and goblet cell hyperplasia in SP-C-deficient (Sftpc(-/-)) mice compared with SP-C replete mice. The RSV-induced pathology resolved more slowly in Sftpc(-/-) mice with lung inflammation persistent up to 30 days postinfection. Polymorphonuclear leukocyte and macrophage counts were increased in the bronchoalveolar lavage (BAL) fluid of Sftpc(-/-) mice. Viral titers and viral F and G protein mRNA were significantly increased in both Sftpc(-/-) and heterozygous Sftpc(+/-) mice compared with controls. Expression of Toll-like receptor 3 (TLR3) mRNA was increased in the lungs of Sftpc(-/-) mice relative to Sftpc(+/+) mice before and after RSV infection. Consistent with the increased TLR3 expression, BAL inflammatory cells were increased in the Sftpc(-/-) mice after exposure to a TLR3-specific ligand, poly(I:C). Preparations of purified SP-C and synthetic phospholipids blocked poly(I:C)-induced TLR3 signaling in vitro. SP-C deficiency increases the severity of RSV-induced pulmonary inflammation through regulation of TLR3 signaling.
Collapse
Affiliation(s)
- Stephan W Glasser
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Matheson MC, Walters EH, Simpson JA, Wharton CL, Ponsonby AL, Johns DP, Jenkins MA, Giles GG, Hopper JL, Abramson MJ, Dharmage SC. Relevance of the hygiene hypothesis to early vs. late onset allergic rhinitis. Clin Exp Allergy 2009; 39:370-8. [DOI: 10.1111/j.1365-2222.2008.03175.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
A chimeric A2 strain of respiratory syncytial virus (RSV) with the fusion protein of RSV strain line 19 exhibits enhanced viral load, mucus, and airway dysfunction. J Virol 2009; 83:4185-94. [PMID: 19211758 DOI: 10.1128/jvi.01853-08] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of respiratory failure and viral death in infants. Abundant airway mucus contributes to airway obstruction in RSV disease. Interleukin-13 (IL-13) is a mediator of pulmonary mucus secretion. It has been shown that infection of BALB/c mice with the RSV line 19 strain but not with the RSV A2 laboratory strain results in lung IL-13 and mucus expression. Here, we sequenced the RSV line 19 genome and compared it to the commonly used A2 and Long strains. There were six amino acid differences between the line 19 strain and both the A2 and Long RSV strains, five of which are in the fusion (F) protein. The Long strain, like the A2 strain, did not induce lung IL-13 and mucus expression in BALB/c mice. We hypothesized that the F protein of RSV line 19 is more mucogenic than the F proteins of A2 and Long. We generated recombinant, F-chimeric RSVs by replacing the F gene of A2 with the F gene of either line 19 or Long. Infection of BALB/c mice with RSV rA2 line 19F resulted in lower alpha interferon lung levels 24 h postinfection, higher lung viral load, higher lung IL-13 levels, greater airway mucin expression levels, and greater airway hyperresponsiveness than infection with rA2-A2F or rA2-LongF. We identified the F protein of RSV line 19 as a factor that plays a role in pulmonary mucin expression in the setting of RSV infection.
Collapse
|
33
|
Cho HY, Imani F, Miller-DeGraff L, Walters D, Melendi GA, Yamamoto M, Polack FP, Kleeberger SR. Antiviral activity of Nrf2 in a murine model of respiratory syncytial virus disease. Am J Respir Crit Care Med 2009; 179:138-50. [PMID: 18931336 PMCID: PMC2633060 DOI: 10.1164/rccm.200804-535oc] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 10/17/2008] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Respiratory syncytial virus (RSV) is the most frequent cause of significant lower respiratory illness in infants and young children, but its pathogenesis is not fully understood. The transcription factor Nrf2 protects lungs from oxidative injury and inflammation via antioxidant response element (ARE)-mediated gene induction. OBJECTIVES The current study was designed to determine the role of Nrf2-mediated cytoprotective mechanisms in murine airway RSV disease. METHODS Nrf2-deficient (Nrf2(-/-)) and wild-type (Nrf2(+/+)) mice were intranasally instilled with RSV or vehicle. In a separate study, Nrf2(+/+) and Nrf2(-/-) mice were treated orally with sulforaphane (an Nrf2-ARE inducer) or phosphate-buffered saline before RSV infection. MEASUREMENTS AND MAIN RESULTS RSV-induced bronchopulmonary inflammation, epithelial injury, and mucus cell metaplasia as well as nasal epithelial injury were significantly greater in Nrf2(-/-) mice than in Nrf2(+/+) mice. Compared with Nrf2(+/+) mice, significantly attenuated viral clearance and IFN-gamma, body weight loss, heightened protein/lipid oxidation, and AP-1/NF-kappaB activity along with suppressed antioxidant induction was found in Nrf2(-/-) mice in response to RSV. Sulforaphane pretreatment significantly limited lung RSV replication and virus-induced inflammation in Nrf2(+/+) but not in Nrf2(-/-) mice. CONCLUSIONS The results of this study support an association of oxidant stress with RSV pathogenesis and a key role for the Nrf2-ARE pathway in host defense against RSV.
Collapse
Affiliation(s)
- Hye-Youn Cho
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Moore ML, Chi MH, Goleniewska K, Durbin JE, Peebles RS. Differential regulation of GM1 and asialo-GM1 expression by T cells and natural killer (NK) cells in respiratory syncytial virus infection. Viral Immunol 2008; 21:327-39. [PMID: 18788941 DOI: 10.1089/vim.2008.0003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously reported that respiratory syncytial virus (RSV) infection increases lung CD8(+) T cell GM1 expression. The related lipid asialo-GM1 (ASGM1) is expressed by T cells in viral infection and by natural killer (NK) cells. The in vivo co-expression of GM1 and ASGM1 by immune cells is not defined. Here we analyzed lung lymphocyte GM1 and ASGM1 expression in RSV-infected mice. GM1 and ASGM1 were coordinately upregulated by activated CD8(+) T cells in RSV-infected BALB/c and C57BL/6 mice. In contrast, RSV infection had no effect on constitutively high NK cell GM1 expression, while increasing NK cell ASGM1 expression. GM1 and ASGM1 co-localized in lipid raft structures in NK and CD8(+) T cells sorted from the lungs of RSV-infected mice. Anti-ASGM1 Ab treatment of RSV-infected BALB/c mice depleted GM1/ASGM1-expressing NK cells and GM1/ASGM1-expressing T cells, reduced lung IFN-gamma levels, increased viral load, delayed viral clearance, and reduced illness. STAT1(-/-) mice are more susceptible to RSV replication and disease than wild-type mice. In RSV-infected STAT1(-/-) mice, anti-ASGM1 Ab altered cytokine levels, but in contrast to BALB/c mice, antibody treatment had no effect on viral load or illness. Taken together, GM1 and ASGM1 expression are differentially regulated by T and NK cells in RSV infection. Also, GM1/ASGM1-expressing cells are important for control of RSV in BALB/c mice, whereas STAT1(-/-) mice clear RSV by an alternative pathway.
Collapse
Affiliation(s)
- Martin L Moore
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2650, USA
| | | | | | | | | |
Collapse
|
35
|
RNA interference inhibits respiratory syncytial virus replication and disease pathogenesis without inhibiting priming of the memory immune response. J Virol 2008; 82:12221-31. [PMID: 18818323 DOI: 10.1128/jvi.01557-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of morbidity in infants, young children, and the elderly worldwide. Currently, there is no effective vaccine, and antiviral drugs to control infection are limited. RNA interference is a powerful tool amenable to development of antiviral drugs. Using small interfering RNA (siRNA) targeting the RSV P gene (siRNA-P), RSV replication can be silenced both in vitro and in a BALB/c model of RSV infection. In this study, we examine the effect of siRNA prophylaxis on the primary and memory immune response to RSV infection in mice. We show that mice prophylactically treated with siRNA-P to decrease but not eliminate RSV replication exhibit reduced pulmonary inflammation and lung pathogenesis and produce a robust anti-RSV memory response when subsequently challenged with RSV. The pulmonary T-cell memory response was characterized by high numbers of CD44(hi) CD62L(lo) CD4(+) and CD8(+) T cells, M2 peptide tetramer(+) CD8(+) T cells expressing gamma interferon, and an RSV-specific antibody response. The results support the hypothesis that siRNAs can be developed as effective antiviral drugs that can be used to reduce the viral load and parameters of pathogenesis without limiting the induction of the memory immune response.
Collapse
|
36
|
The fusion protein of respiratory syncytial virus triggers p53-dependent apoptosis. J Virol 2008; 82:3236-49. [PMID: 18216092 DOI: 10.1128/jvi.01887-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with respiratory syncytial virus (RSV) frequently causes inflammation and obstruction of the small airways, leading to severe pulmonary disease in infants. We show here that the RSV fusion (F) protein, an integral membrane protein of the viral envelope, is a strong elicitor of apoptosis. Inducible expression of F protein in polarized epithelial cells triggered caspase-dependent cell death, resulting in rigorous extrusion of apoptotic cells from the cell monolayer and transient loss of epithelial integrity. A monoclonal antibody directed against F protein inhibited apoptosis and was also effective if administered to A549 lung epithelial cells postinfection. F protein expression in epithelial cells caused phosphorylation of tumor suppressor p53 at serine 15, activation of p53 transcriptional activity, and conformational activation of proapoptotic Bax. Stable expression of dominant-negative p53 or p53 knockdown by RNA interference inhibited the apoptosis of RSV-infected A549 cells. HEp-2 tumor cells with low levels of p53 were not sensitive to RSV-triggered apoptosis. We propose a new model of RSV disease with the F protein as an initiator of epithelial cell shedding, airway obstruction, secondary necrosis, and consequent inflammation. This makes the RSV F protein a key target for the development of effective postinfection therapies.
Collapse
|
37
|
Hobson L, Everard ML. Persistent of respiratory syncytial virus in human dendritic cells and influence of nitric oxide. Clin Exp Immunol 2007; 151:359-66. [PMID: 18062796 DOI: 10.1111/j.1365-2249.2007.03560.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The annual epidemics of respiratory syncytial virus (RSV) infection are probably explained by poor herd immunity and the existence of a dormant reservoir of virus that is activated by an unknown trigger. The virus causes particular problems in infants, the elderly and patients with chronic obstructive airways disease (COPD). During two consecutive winters, human monocyte-derived dendritic cells (DCs) were exposed on a single occasion to one of two forms of RSV labelled with a fluorescent expresser genes (rgRSV or rrRSV) during the epidemic season. The cultures were maintained for many months, with fresh DCs being added at monthly intervals. The cultures were variously exposed to 600 parts per billion (ppb) nitric oxide for 15 min, nitric oxide (NO) donors and NO inhibitors outside the RSV epidemic season. The pattern of productive infection of DCs in vitro appeared to parallel the natural epidemics, in that DCs exhibited evidence of viral replication and productive infection only as manifested by intracellular fluorescence and infection of HeLa cells during the RSV epidemic season. When the long-term cultures were exposed to the above agents outside the RSV epidemic season there was again evidence of vigorous replication and productive infection, as shown by the reappearance of fluorescence and productive infection of HeLa cells. The results indicate that RSV may remain dormant in dendritic cells for prolonged periods and that replication appears to be activated by suppression of endogenous NO production. These observations may be key to our understanding of the mechanisms contributing to the annual epidemics of RSV infection.
Collapse
Affiliation(s)
- L Hobson
- Department of Respiratory Medicine, Sheffield Children's Hospital, Academic Department of Child Health, Sheffield University, Sheffield, UK
| | | |
Collapse
|
38
|
Garçon N, Chomez P, Van Mechelen M. GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev Vaccines 2007; 6:723-39. [PMID: 17931153 DOI: 10.1586/14760584.6.5.723] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The need for potentiating immune responses to recombinant or subunit antigens has prompted GlaxoSmithKline (GSK) Biologicals to develop various Adjuvant Systems for the design of prophylactic and therapeutic vaccines. Adjuvant Systems are formulations of classical adjuvants mixed with immunomodulators, specifically adapted to the antigen and the target population. They can activate the appropriate innate immune system and subsequently impact on adaptive immune responses. AS04 is an Adjuvant System that has demonstrated significant achievements in several vaccines against viral diseases. AS02, another Adjuvant System, is being evaluated in various contexts, where a strong T-cell response is needed to afford protection. Likewise, AS01 has been developed for vaccines where the induction of a yet stronger T-cell-mediated immune response is required. Altogether, the promising clinical results strongly support the concept of Adjuvant Systems and allow for further development of new vaccines, best adapted to the target population and the immune mechanisms of protection.
Collapse
Affiliation(s)
- Nathalie Garçon
- GlaxoSmithKline Biologicals, Research & Development, 1330 Rixensart, Belgium.
| | | | | |
Collapse
|
39
|
Geskey JM, Thomas NJ, Brummel GL. Palivizumab in congenital heart disease: should international guidelines be revised? Expert Opin Biol Ther 2007; 7:1615-20. [PMID: 17961086 DOI: 10.1517/14712598.7.11.1615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Palivizumab has reduced the incidence of respiratory syncytial virus hospitalization in infants and children with congenital heart disease by 45%. Although the mortality rate of children with congenital heart disease hospitalized with respiratory syncytial virus infection has declined from 37% to approximately 3% over the past 3 decades, palivizumab has not been shown to improve mortality. There has been considerable controversy over the cost-effectiveness of administering palivizumab according to international guidelines, including children with congenital heart disease. In particular, the number of children that need to be treated with palivizumab to prevent one respiratory syncytial virus hospitalization increases dramatically in children > 12 months of age. As a result, the authors recommend that countries re-examine their recommendations for providing palivizumab up to age 24 months in children with congenital heart disease.
Collapse
|
40
|
Peebles RS, Moore ML. A mechanistic advance in understanding RSV pathogenesis, but still a long way from therapy. Am J Respir Cell Mol Biol 2007; 37:375-7. [PMID: 17872592 DOI: 10.1165/rcmb.2007-0003ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
41
|
Krempl CD, Wnekowicz A, Lamirande EW, Nayebagha G, Collins PL, Buchholz UJ. Identification of a novel virulence factor in recombinant pneumonia virus of mice. J Virol 2007; 81:9490-501. [PMID: 17567693 PMCID: PMC1951446 DOI: 10.1128/jvi.00364-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 06/06/2007] [Indexed: 12/25/2022] Open
Abstract
Pneumonia virus of mice (PVM) is a murine relative of human respiratory syncytial virus (HRSV). Here we developed a reverse genetics system for PVM based on a consensus sequence for virulent strain 15. Recombinant PVM and a version engineered to express green fluorescent protein replicated as efficiently as the biological parent in vitro but were 4- and 12.5-fold attenuated in vivo, respectively. The G proteins of HRSV and PVM have been suggested to contribute to viral pathogenesis, but this had not been possible to study in a defined manner in a fully permissive host. As a first step, we evaluated recombinant mutants bearing a deletion of the entire G gene (Delta G) or expressing a G protein lacking its cytoplasmic tail (Gt). Both G mutants replicated as efficiently in vitro as their recombinant parent, but both were nonpathogenic in mice at doses that would otherwise be lethal. We could not detect replication of the Delta G mutant in mice, indicating that its attenuation is based on a severe reduction in the virus load. In contrast, the Gt mutant appeared to replicate as efficiently in mice as its recombinant parent. Thus, the reduction in virulence associated with the Gt mutant could not be accounted for by a reduction in viral replication. These results identified the cytoplasmic tail of G as a virulence factor whose effect is not mediated solely by the viral load. In addition to its intrinsic interest, a recombinant virus that replicates with wild-type-like efficiency but does not cause disease defines optimal properties for vaccine development.
Collapse
Affiliation(s)
- Christine D Krempl
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
NAGHIPOUR M, HART C, CUEVAS L. Burden of acute respiratory infections in a family cohort in Iran. Epidemiol Infect 2007; 135:1384-8. [PMID: 17313695 PMCID: PMC2870706 DOI: 10.1017/s0950268807008114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Acute respiratory infections (ARIs) are the most important infectious cause of death, but there is less information of their burden in the community. This study describes the burden of ARI in a cohort of 50 Iranian families visited weekly over 2 months. Eighty-one out of 113 (72%) children and 29/103 (28%) adults had a total of 124 episodes of ARI. Seventy-five per cent of the episodes occurring in children were primary/co-primary compared to 40% of those in adults (P<0.01). Children were more likely to be the first symptomatic cases and infections were frequently transmitted within the family. Frequencies were lowest among adults, low among infants aged <6 months and highest among children aged <5 years (P<0.01). Winter episodes occurred more frequently in January (P<0.01). The high frequency and apparent transmissibility of ARI in this cohort highlights its enormous burden in the community.
Collapse
Affiliation(s)
- M. NAGHIPOUR
- Liverpool School of Tropical Medicine, Liverpool, UK
- Guilan University of Medical Sciences and Health Services, Rasht, Iran
- School of Infection and Host defence, University of Liverpool, Liverpool, UK
| | - C. A. HART
- School of Infection and Host defence, University of Liverpool, Liverpool, UK
| | - L. E. CUEVAS
- Liverpool School of Tropical Medicine, Liverpool, UK
- Author for correspondence: Dr L. E. Cuevas, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK. ()
| |
Collapse
|
43
|
Abstract
Respiratory syncytial virus (RSV), the recently identified human metapneumovirus (HMPV), and the human parainfluenza viruses (HPIVs), cause most cases of childhood croup, bronchiolitis, and pneumonia. Influenza virus also causes a significant burden of disease in young children, although its significance in children was not fully recognized until recently. This article discusses pathogens that have been studied for several decades, including RSV and HPIVs, and also explores the newly identified viral pathogens HMPV and human coronavirus NL63. The escalating rate of emergence of new infectious agents, fortunately meeting with equally rapid advancements in molecular methods of surveillance and pathogen discovery, means that new organisms will soon be added to the list. A section on therapies for bronchiolitis addresses the final common pathways that can result from infection with diverse pathogens, highlighting the mechanisms that may be amenable to therapeutic approaches. The article concludes with a discussion of the overarching impact of new diagnostic strategies.
Collapse
|