1
|
Opazo R, Dos Santos GRC, Parente TE. RNAseq analysis of whole zebrafish (Danio rerio) larvae revealed the main cellular biological effects of geosmin and microcystin exposure at environmentally relevant concentrations. Toxicon 2024; 250:108074. [PMID: 39154758 DOI: 10.1016/j.toxicon.2024.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Cyanobacterial blooms are common events that releases secondary metabolites into water posing considerable threats to the environment, wildlife, and public health. Some of these metabolites, such as microcystin, have been extensively studied and associated with harmful effects in mammals and aquatic organisms, while the biological effects of others, like geosmin, remain much less investigated. Enhancing our understanding of cyanotoxins effects on organisms is especially relevant facing the complex scenarios projected due to global warming. The aim of this study was to assess the transcriptional modulation in whole zebrafish (Danio rerio) larvae (n = 9) in response to a 7-days immersion exposure to 3 μg L-1 MCLR or 5 μg L-1 geosmin. No mortality or differences in length gain were observed in zebrafish larvae exposed to environmentally realistic doses of both cyanotoxins. The exposure to MCLR and to geosmin caused the differential expression of 164 and 172 genes respectively, being 23 upregulated by MCLR and 98 upregulated by geosmin. Among the upregulated genes, 16 were shared, while 42 were shared among the downregulated genes. Over-representation analysis identified three enriched GO terms only among the genes upregulated by geosmin: organic hydroxy compound metabolic process (1901615), small molecule biosynthetic process (0044283), and lipid metabolic process (0006629). In fact, the expression of 12 of the 13 genes directly involved in the synthesis of cholesterol from acetyl-CoA was upregulated by geosmin. A chronic upregulation of cholesterol biosynthetic pathway is linked to several diseases and metabolic disorders, including alterations in sex-related hormones. Moreover, our results indicate that geosmin and MCLR acts through different mechanisms. Geosmin does not appear to provoke short-term adverse effects as MCLR but could disrupt the endocrine system by altering the lipid and steroid metabolism.
Collapse
Affiliation(s)
- Rafael Opazo
- Laboratory of Biotechnology, INTA University of Chile, Chile; Laboratory of Applied Genomics and Bioinnovations, IOC, Fiocruz, Brazil
| | | | | |
Collapse
|
2
|
Guengerich FP, Tateishi Y, McCarty KD, Yoshimoto FK. Updates on Mechanisms of Cytochrome P450 Catalysis of Complex Steroid Oxidations. Int J Mol Sci 2024; 25:9020. [PMID: 39201706 PMCID: PMC11354347 DOI: 10.3390/ijms25169020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Cytochrome P450 (P450) enzymes dominate steroid metabolism. In general, the simple C-hydroxylation reactions are mechanistically straightforward and are generally agreed to involve a perferryl oxygen species (formally FeO3+). Several of the steroid transformations are more complex and involve C-C bond scission. We initiated mechanistic studies with several of these (i.e., 11A1, 17A1, 19A1, and 51A1) and have now established that the dominant modes of catalysis for P450s 19A1 and 51A1 involve a ferric peroxide anion (i.e., Fe3+O2¯) instead of a perferryl ion complex (FeO3+), as demonstrated with 18O incorporation studies. P450 17A1 is less clear. The indicated P450 reactions all involve sequential oxidations, and we have explored the processivity of these multi-step reactions. P450 19A1 is distributive, i.e., intermediate products dissociate and reassociate, but P450s 11A1 and 51A1 are highly processive. P450 17A1 shows intermediate processivity, as expected from the release of 17-hydroxysteroids for the biosynthesis of key molecules, and P450 19A1 is very distributive. P450 11B2 catalyzes a processive multi-step oxidation process with the complexity of a chemical closure of an intermediate to a locked lactol form.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Kevin D. McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Francis K. Yoshimoto
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| |
Collapse
|
3
|
Jiang Q, Wang N, Lu S, Xiong J, Yuan Y, Liu J, Chen S. Targeting hepatic ceruloplasmin mitigates nonalcoholic steatohepatitis by modulating bile acid metabolism. J Mol Cell Biol 2024; 15:mjad060. [PMID: 37771074 PMCID: PMC10993722 DOI: 10.1093/jmcb/mjad060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a condition that progresses from nonalcoholic fatty liver disease (NAFLD) and is characterized by hepatic fat accumulation, inflammation, and fibrosis. It has the potential to develop into cirrhosis and liver cancer, and currently no effective pharmacological treatment is available. In this study, we investigate the therapeutic potential of targeting ceruloplasmin (Cp), a copper-containing protein predominantly secreted by hepatocytes, for treating NASH. Our result show that hepatic Cp is remarkedly upregulated in individuals with NASH and the mouse NASH model. Hepatocyte-specific Cp ablation effectively attenuates the onset of dietary-induced NASH by decreasing lipid accumulation, curbing inflammation, mitigating fibrosis, and ameliorating liver damage. By employing transcriptomics and metabolomics approaches, we have discovered that hepatic deletion of Cp brings about remarkable restoration of bile acid (BA) metabolism during NASH. Hepatic deletion of Cp effectively remodels BA metabolism by upregulating Cyp7a1 and Cyp8b1, which subsequently leads to enhanced BA synthesis and notable alterations in BA profiles. In conclusion, our studies elucidate the crucial involvement of Cp in NASH, highlighting its significance as a promising therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Quanxin Jiang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ning Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Sijia Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jie Xiong
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yanmei Yuan
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
4
|
El Khoury M, Naim HY. Lipid rafts disruption by statins negatively impacts the interaction between SARS-CoV-2 S1 subunit and ACE2 in intestinal epithelial cells. Front Microbiol 2024; 14:1335458. [PMID: 38260879 PMCID: PMC10800905 DOI: 10.3389/fmicb.2023.1335458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The causative agent of the COVID-19 pandemic, SARS-CoV-2, is a virus that targets mainly the upper respiratory tract. However, it can affect other systems such as the gastrointestinal (GI) tract. Therapeutic strategies for this virus are still inconclusive and understanding its entry mechanism is important for finding effective treatments. Cholesterol is an important constituent in the structure of cellular membranes that plays a crucial role in a variety of cellular events. In addition, it is important for the infectivity and pathogenicity of several viruses. ACE2, the main receptor of SARS-CoV-2, is associated with lipid rafts which are microdomains composed of cholesterol and sphingolipids. In this study, we investigate the role of statins, lipid-lowering drugs, on the trafficking of ACE2 and the impact of cholesterol modulation on the interaction of this receptor with S1 in Caco-2 cells. The data show that fluvastatin and simvastatin reduce the expression of ACE2 to variable extents, impair its association with lipid rafts and sorting to the brush border membrane resulting in substantial reduction of its interaction with the S1 subunit of the spike protein. By virtue of the substantial effects of statins demonstrated in our study, these molecules, particularly fluvastatin, represent a promising therapeutic intervention that can be used off-label to treat SARS-CoV-2.
Collapse
Affiliation(s)
| | - Hassan Y. Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Centner AM, Khalili L, Ukhanov V, Kadyan S, Nagpal R, Salazar G. The Role of Phytochemicals and Gut Microbiome in Atherosclerosis in Preclinical Mouse Models. Nutrients 2023; 15:1212. [PMID: 36904211 PMCID: PMC10005405 DOI: 10.3390/nu15051212] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Gut microbiome alterations have recently been linked to many chronic conditions including cardiovascular disease (CVD). There is an interplay between diet and the resident gut microbiome, where the food eaten affects populations of certain microbes. This is important, as different microbes are associated with various pathologies, as they can produce compounds that are disease-promoting or disease-protecting. The Western diet negatively affects the host gut microbiome, ultimately resulting in heightened arterial inflammation and cell phenotype changes as well as plaque accumulation in the arteries. Nutritional interventions including whole foods rich in fiber and phytochemicals as well as isolated compounds including polyphenols and traditional medicinal plants show promise in positively influencing the host gut microbiome to alleviate atherosclerosis. This review investigates the efficacy of a vast array of foods and phytochemicals on host gut microbes and atherosclerotic burden in mice. Reduction in plaque by interventions was associated with increases in bacterial diversity, reduction in the Firmicutes/Bacteroidetes (F/B) ratio, and upregulation of Akkermansia. Upregulation in CYP7 isoform in the liver, ABC transporters, bile acid excretion, and the level of acetic acid, propionic acid, and butyric acid were also noted in several studies reducing plaque. These changes were also associated with attenuated inflammation and oxidative stress. In conclusion, an increase in the abundance of Akkermansia with diets rich in polyphenols, fiber, and grains is likely to reduce plaque burden in patients suffering from CVD.
Collapse
Affiliation(s)
- Ann M. Centner
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Leila Khalili
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Vladimir Ukhanov
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Gloria Salazar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
6
|
Kawka A, Hajdaś G, Kułaga D, Koenig H, Kowalczyk I, Pospieszny T. Molecular structure, spectral and theoretical study of new type bile acid–sterol conjugates linked via 1,2,3-triazole ring. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Raux PL, Vallée M. Cross-talk between neurosteroid and endocannabinoid systems in cannabis addiction. J Neuroendocrinol 2023; 35:e13191. [PMID: 36043319 DOI: 10.1111/jne.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
Steroids and endocannabinoids are part of two modulatory systems and some evidence has shown their interconnections in several functions. Homeostasis is a common steady-state described in the body, which is settled by regulatory systems to counterbalance deregulated or allostatic set points towards an equilibrium. This regulation is of primary significance in the central nervous system for maintaining neuronal plasticity and preventing brain-related disorders. In this context, the recent discovery of the shutdown of the endocannabinoid system (ECS) overload by the neurosteroid pregnenolone has highlighted new endogenous mechanisms of ECS regulation related to cannabis-induced intoxication. These mechanisms involve a regulatory loop mediated by overactivation of the central type-1 cannabinoid receptor (CB1R), which triggers the production of its own regulator, pregnenolone. Therefore, this highlights a new process of regulation of steroidogenesis in the brain. Pregnenolone, long considered an inactive precursor of neurosteroids, can then act as an endogenous negative allosteric modulator of CB1R. The present review aims to shed light on a new framework for the role of ECS in the addictive characteristics of cannabis with the novel endogenous mechanism of ECS involving the neurosteroid pregnenolone. In addition, this new endogenous regulatory loop could provide a relevant therapeutic model in the current context of increasing recreational and medical use of cannabis.
Collapse
Affiliation(s)
- Pierre-Louis Raux
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Monique Vallée
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Zhou C, Peng K, Liu Y, Zhang R, Zheng X, Yue B, Du C, Wu Y. Comparative Analyses Reveal the Genetic Mechanism of Ambergris Production in the Sperm Whale Based on the Chromosome-Level Genome. Animals (Basel) 2023; 13:ani13030361. [PMID: 36766250 PMCID: PMC9913093 DOI: 10.3390/ani13030361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
Sperm whales are a marine mammal famous for the aromatic substance, the ambergris, produced from its colon. Little is known about the biological processes of ambergris production, and this study aims to investigate the genetic mechanism of ambergris production in the sperm whale based on its chromosome-level genome. Comparative genomics analyses found 1207 expanded gene families and 321 positive selected genes (PSGs) in the sperm whale, and functional enrichment analyses suggested revelatory pathways and terms related to the metabolism of steroids, terpenoids, and aldosterone, as well as microbiota interaction and immune network in the intestine. Furthermore, two sperm-whale-specific missense mutations (Tyr393His and Leu567Val) were detected in the PSG LIPE, which has been reported to play vital roles in lipid and cholesterol metabolism. In total, 46 CYP genes and 22 HSD genes were annotated, and then mapped to sperm whale chromosomes. Furthermore, phylogenetic analysis of CYP genes in six mammals found that CYP2E1, CYP51A and CYP8 subfamilies exhibited relative expansion in the sperm whale. Our results could help understand the genetic mechanism of ambergris production, and further reveal the convergent evolution pattern among animals that produce similar odorants.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Kexin Peng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yi Liu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Rusong Zhang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiaofeng Zheng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Chao Du
- Baotou Teachers College, Baotou 014060, China
- Correspondence: (C.D.); (Y.W.)
| | - Yongjie Wu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
- Correspondence: (C.D.); (Y.W.)
| |
Collapse
|
9
|
Extensive Summary of the Important Roles of Indole Propionic Acid, a Gut Microbial Metabolite in Host Health and Disease. Nutrients 2022; 15:nu15010151. [PMID: 36615808 PMCID: PMC9824871 DOI: 10.3390/nu15010151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that metabolites produced by the gut microbiota play a crucial role in host-microbe interactions. Dietary tryptophan ingested by the host enters the gut, where indole-like metabolites such as indole propionic acid (IPA) are produced under deamination by commensal bacteria. Here, we summarize the IPA-producing bacteria, dietary patterns on IPA content, and functional roles of IPA in various diseases. IPA can not only stimulate the expression of tight junction (TJ) proteins to enhance gut barrier function and inhibit the penetration of toxic factors, but also modulate the immune system to exert anti-inflammatory and antioxidant effects to synergistically regulate body physiology. Moreover, IPA can act on target organs through blood circulation to form the gut-organ axis, which helps maintain systemic homeostasis. IPA shows great potential for the diagnosis and treatment of various clinical diseases, such as NAFLD, Alzheimer's disease, and breast cancer. However, the therapeutic effect of IPA depends on dose, target organ, or time. In future studies, further work should be performed to explore the effects and mechanisms of IPA on host health and disease to further improve the existing treatment program.
Collapse
|
10
|
Zhu X, Gao H, Qin S, Liu D, Cairns J, Gu Y, Yu J, Weinshilboum RM, Wang L. Testis- specific Y-encoded- like protein 1 and cholesterol metabolism: Regulation of CYP1B1 expression through Wnt signaling. Front Pharmacol 2022; 13:1047318. [PMID: 36518674 PMCID: PMC9742362 DOI: 10.3389/fphar.2022.1047318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/07/2022] [Indexed: 08/30/2023] Open
Abstract
The cytochromes P450 (CYPs) represent a large gene superfamily that plays an important role in the metabolism of both exogenous and endogenous compounds. We have reported that the testis-specific Y-encoded-like proteins (TSPYLs) are novel CYP gene transcriptional regulators. However, little is known of mechanism(s) by which TSPYLs regulate CYP expression or the functional consequences of that regulation. The TSPYL gene family includes six members, TSPYL1 to TSPYL6. However, TSPYL3 is a pseudogene, TSPYL5 is only known to regulates the expression of CYP19A1, and TSPYL6 is expressed exclusively in the testis. Therefore, TSPYL 1, 2 and 4 were included in the present study. To better understand how TSPYL1, 2, and 4 might influence CYP expression, we performed a series of pull-downs and mass spectrometric analyses. Panther pathway analysis of the 2272 pulled down proteins for all 3 TSPYL isoforms showed that the top five pathways were the Wnt signaling pathway, the Integrin signaling pathway, the Gonadotropin releasing hormone receptor pathway, the Angiogenesis pathway and Inflammation mediated by chemokines and cytokines. Specifically, we observed that 177 Wnt signaling pathway proteins were pulled down with the TSPYLs. Subsequent luciferase assays showed that TSPYL1 knockdown had a greater effect on the activation of Wnt signaling than did TSPYL2 or TSPYL4 knockdown. Therefore, in subsequent experiments, we focused our attention on TSPYL1. HepaRG cell qRT-PCR showed that TSPYL1 regulated the expression of CYPs involved in cholesterol-metabolism such as CYP1B1 and CYP7A1. Furthermore, TSPYL1 and β-catenin regulated CYP1B1 expression in opposite directions and TSPYL1 appeared to regulate CYP1B1 expression by blocking β-catenin binding to the TCF7L2 transcription factor on the CYP1B1 promoter. In β-catenin and TSPYL1 double knockdown cells, CYP1B1 expression and the generation of CYP1B1 downstream metabolites such as 20-HETE could be restored. Finally, we observed that TSPYL1 expression was associated with plasma cholesterol levels and BMI during previous clinical studies of obesity. In conclusion, this series of experiments has revealed a novel mechanism for regulation of the expression of cholesterol-metabolizing CYPs, particularly CYP1B1, by TSPYL1 via Wnt/β-catenin signaling, raising the possibility that TSPYL1 might represent a molecular target for influencing cholesterol homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
11
|
Wei X, Yin F, Wu M, Xie Q, Zhao X, Zhu C, Xie R, Chen C, Liu M, Wang X, Ren R, Kang G, Zhu C, Cong J, Wang H, Wang X. G protein-coupled receptor 35 attenuates nonalcoholic steatohepatitis by reprogramming cholesterol homeostasis in hepatocytes. Acta Pharm Sin B 2022; 13:1128-1144. [PMID: 36970193 PMCID: PMC10031266 DOI: 10.1016/j.apsb.2022.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. Fat accumulation "sensitizes" the liver to insult and leads to nonalcoholic steatohepatitis (NASH). G protein-coupled receptor 35 (GPR35) is involved in metabolic stresses, but its role in NAFLD is unknown. We report that hepatocyte GPR35 mitigates NASH by regulating hepatic cholesterol homeostasis. Specifically, we found that GPR35 overexpression in hepatocytes protected against high-fat/cholesterol/fructose (HFCF) diet-induced steatohepatitis, whereas loss of GPR35 had the opposite effect. Administration of the GPR35 agonist kynurenic acid (Kyna) suppressed HFCF diet-induced steatohepatitis in mice. Kyna/GPR35 induced expression of StAR-related lipid transfer protein 4 (STARD4) through the ERK1/2 signaling pathway, ultimately resulting in hepatic cholesterol esterification and bile acid synthesis (BAS). The overexpression of STARD4 increased the expression of the BAS rate-limiting enzymes cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and CYP8B1, promoting the conversion of cholesterol to bile acid. The protective effect induced by GPR35 overexpression in hepatocytes disappeared in hepatocyte STARD4-knockdown mice. STARD4 overexpression in hepatocytes reversed the aggravation of HFCF diet-induced steatohepatitis caused by the loss of GPR35 expression in hepatocytes in mice. Our findings indicate that the GPR35-STARD4 axis is a promising therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230036, China
| | - Fan Yin
- Department of Pharmacy, Huainan First People's Hospital, the First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232001, China
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Miaomiao Wu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230036, China
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianqian Xie
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Xueqin Zhao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230036, China
| | - Ruiqian Xie
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Chongqing Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Menghua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Xueying Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230036, China
| | - Ruixue Ren
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230036, China
| | - Guijie Kang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Chenwen Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230036, China
| | - Jingjing Cong
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230036, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
- Corresponding authors.
| | - Xuefu Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
- Corresponding authors.
| |
Collapse
|
12
|
Huang S, Chen H, Teng J, Wu Z, Huang L, Wei B, Xia N. Antihyperlipidemic effect and increased antioxidant enzyme levels of aqueous extracts from Liupao tea and green tea in vivo. J Food Sci 2022; 87:4203-4220. [PMID: 35982642 DOI: 10.1111/1750-3841.16274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 12/16/2022]
Abstract
Liupao tea (fermented dark tea) may improve the active function of hyperlipidemia. Utilizing a hyperlipidemia Sprague-Dawley model and UPLC-MS/MS metabolomics, we examined how the effect of Liupao and green tea extracts on hyperlipidemia and antoxidant enzyme levels and compared their constituents. The results showed that the two types of tea could reduce the levels of total cholesterol (TC), total triglyceride, and low-density lipoprotein cholesterol (LDL-C); increase the contents of bile acids and cholesterol in feces; and improve catalase and glutathione peroxidase (GSH-Px) activities. Compared with the model control group, Liupao tea effectively reduced TC and LDL-C levels by 39.53% and 58.55% and increased GSH-Px activity in the liver by 67.07%, which was better than the effect of green tea. A total of 93 compounds were identified from two samples; the amounts of alkaloids and fatty acids increased compared with green tea, and ellagic acid, hypoxanthine, and theophylline with relatively high contents in Liupao tea had a significantly positive correlation with antihyperlipidemic and antioxidant effects. Therefore, Liupao tea had better antihyperlipidemic and antioxidant activities in vivo than green tea, which might be related to the relatively high content of some active substances.
Collapse
Affiliation(s)
- Shuoyuan Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Huan Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jianwen Teng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Zhengmei Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Baoyao Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ning Xia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Tetrahydrocurcumin protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
14
|
Characterizations of Hamster Retina as a Model for Studies of Retinal Cholesterol Homeostasis. BIOLOGY 2021; 10:biology10101003. [PMID: 34681102 PMCID: PMC8533155 DOI: 10.3390/biology10101003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
Simple Summary This work represents a comprehensive evaluation of hamster retina by state-of-the-art methodologies and provides evidence that hamsters may represent a better model for studies of retinal cholesterol maintenance than mice. The latter is an important finding, as disturbances in retinal cholesterol homeostasis are linked to age-related macular degeneration and diabetic retinopathy, which are blinding diseases. Abstract Cholesterol homeostasis in the retina, a sensory organ in the back of the eye, has been studied in mice but not hamsters, despite the latter being more similar to humans than mice with respect to their whole-body cholesterol maintenance. The goal of this study was to begin to assess hamster retina and conduct initial interspecies comparisons. First, young (3-month old) and mature (6-month old) Syrian (golden) hamsters were compared with 3- and 6-month old mice for ocular biometrics and retinal appearance on optical coherence tomography and fluorescein angiography. Of the 30 evaluated hamsters, seven had retinal structural abnormalities and all had increased permeability of retinal blood vessels. However, hamsters did not carry the mutations causing retinal degenerations 1 and 8, had normal blood glucose levels, and only slightly elevated hemoglobin A1c content. Cholesterol and six other sterols were quantified in hamster retina and compared with sterol profiles in mouse and human retina. These comparisons suggested that cholesterol turnover is much higher in younger than mature hamster retina, and that mature hamster and human retinas share similarities in the ratios of cholesterol metabolites to cholesterol. This study supports further investigations of cholesterol maintenance in hamster retina.
Collapse
|
15
|
Qiang W, Wei R, Chen Y, Chen D. Clinical Pathological Features and Current Animal Models of Type 3 Macular Neovascularization. Front Neurosci 2021; 15:734860. [PMID: 34512255 PMCID: PMC8427186 DOI: 10.3389/fnins.2021.734860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
Type 3 macular neovascularization (MNV3), or retinal angiomatous proliferation (RAP), is a distinct type of neovascular age-related macular degeneration (AMD), which is a leading cause of vision loss in older persons. During the past decade, systematic investigation into the clinical, multimodal imaging, and histopathological features and therapeutic outcomes has provided important new insight into this disease. These studies favor the retinal origin of MNV3 and suggest the involvement of retinal hypoxia, inflammation, von Hippel–Lindau (VHL)–hypoxia-inducible factor (HIF)–vascular endothelial growth factor (VEGF) pathway, and multiple cell types in the development and progression of MNV3. Several mouse models, including the recently built Rb/p107/Vhl triple knockout mouse model by our group, have induced many of the histological features of MNV3 and provided much insight into the underlying pathological mechanisms. These models have revealed the roles of retinal hypoxia, inflammation, lipid metabolism, VHL/HIF pathway, and retinoblastoma tumor suppressor (Rb)–E2F cell cycle pathway in the development of MNV3. This article will summarize the clinical, multimodal imaging, and pathological features of MNV3 and the diversity of animal models that exist for MNV3, as well as their strengths and limitations.
Collapse
Affiliation(s)
- Wei Qiang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Wei
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Zhao F, Zhang M, Guo M, Duan M, Zheng J, Chen X, Liu Y, Qiu L. Effects of sublethal concentration of metamifop on hepatic lipid metabolism in adult zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105938. [PMID: 34416465 DOI: 10.1016/j.aquatox.2021.105938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Metamifop (MET) is an effective herbicide that has been extensively used in paddy fields. Previous research demonstrated that MET was highly toxic to zebrafish embryos, and this threat has caused great concern; moreover, 0.40 mg/L MET elevated the hepatosomatic index (HSI) in adult zebrafish without lethal effect after 21 d of exposure. In this study, we further determined the detailed impacts of MET on adult zebrafish at sublethal concentrations (0.025, 0.10 and 0.40 mg/L). We found that 0.40 mg/L MET caused liver injury by increasing the activity of aspartate aminotransferase and alanine aminotransferase in plasma, the content of interleukin-1β, IL-6, tumor necrosis factor-α, and mRNA expression level of genes associated with inflammatory response in liver of adult zebrafish. The hepatic triglyceride (TG), free fatty acid and fatty acid synthase levels were significantly elevated in 0.40 mg/L MET-treated group (1.55-, 2.20- and 2.30-fold, respectively), and the transcript of lipid accumulation-related genes (fabp10, fas, acc, chrebp, dagt2 and agpat4) were upregulated. Meanwhile, the total cholesterol content was decreased by 0.48-fold, bile acid level was increased by 2.44-fold, and levels of cholesterol metabolism-related genes (apoa-1a, hmgcra, cyp51, dhcr7 and cyp7a1) were increased, suggesting cholesterol metabolism disorder occurred in zebrafish. Furthermore, analysis of lipidomics revealed that 0.40 mg/L MET significantly increased the abundance of 91 lipids, which mainly belonged to TG lipid class and were enriched in pathways of glycerolipid metabolism, cholesterol metabolism, etc. These results suggested that MET exposure at sublethal concentrations would induce hepatic inflammation and lipid metabolism disorders in adult zebrafish.
Collapse
Affiliation(s)
- Feng Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Mengna Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Mengyu Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yinchi Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Kassogue Y, Diakite B, Kassogue O, Konate I, Tamboura K, Diarra Z, Maiga M, Dehbi H, Nadifi S, Traore CB, Kamate B, Dao S, Doumbia S, Dolo G. Distribution of alleles, genotypes and haplotypes of the CYP2B6 (rs3745274; rs2279343) and CYP3A4 (rs2740574) genes in the Malian population: Implication for pharmacogenetics. Medicine (Baltimore) 2021; 100:e26614. [PMID: 34398016 PMCID: PMC8294905 DOI: 10.1097/md.0000000000026614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/22/2021] [Indexed: 01/04/2023] Open
Abstract
Cytochrome P450 enzymes play a central role in the phase I biotransformation process of a wide range of compounds, including xenobiotics, drugs, hormones and vitamins. It is noteworthy that these enzymes are highly polymorphic and, depending on the genetic makeup, an individual may have impaired enzymatic activity. Therefore, the identification of genetic variants in these genes could facilitate the implementation of pharmacogenetic studies and genetic predisposition to multifactorial diseases. We have established the frequencies of CYP2B6 (rs3745274; rs2279343) and CYP3A4 (rs2740574) alleles and genotypes in 209 healthy Malian subjects using TaqMan drug metabolism genotyping assays for allelic discrimination. Allele frequencies were 37% for CYP2B6 rs3745274; 38% for CYP2B6 rs2279343; and 75% for CYP3A4 rs2740574 respectively. Overall, the frequencies observed in Mali are statistically comparable to those reported across Africa except North Africa. The major haplotypes in CYP2B6 rs3745274 and CYP2B6 rs2279343 were represented by GA (60.24%) followed by TG (35.36%). We noted a strong linkage disequilibrium between CYP2B6 rs3745274 and CYP2B6 rs2279343 with D' = 0.91 and r2 = 0.9. The frequencies of the genotypic combinations were 43.5% (GT/AG), 37.3% (GG/AA) and 11.5% (TT/GG) in the combination of CYP2B6-rs3745274 and CYP2B6-rs2279343; 26.8% (GT/CC), 25.4%, (GT/CT), 17.2% and GG/CT in the combination CYP2B6-rs3745274-CYP3A4-rs2740574; 26.8% (AG/CC), 23.9% (AA/CC), 19.1% (AG/CT), and 11% (AA/CT) in the combination CYP2B6-rs2279343-CYP3A4-rs2740574, respectively. The most common triple genotype was GT/AG/CC with 24.9%, followed by GG/AA/CC with 23.9%, GT/AG/CT with 16.7%, and GG/AA/CT with 10%. Our results provide new insights into the distribution of these pharmacogenetically relevant genes in the Malian population. Moreover, these data will be useful for studies of individual genetic variability to drugs and genetic predisposition to diseases.
Collapse
Affiliation(s)
- Yaya Kassogue
- Faculty of Medicine and Odonstomatology, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Brehima Diakite
- Faculty of Medicine and Odonstomatology, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Oumar Kassogue
- Faculty of Medicine and Odonstomatology, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Issa Konate
- Faculty of Medicine and Odonstomatology, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Kadidiatou Tamboura
- Faculty of Medicine and Odonstomatology, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Zoumana Diarra
- Center of Listening, Care, Animation and Counseling, Bamako, Mali
| | - Mamoudou Maiga
- Faculty of Medicine and Odonstomatology, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Hind Dehbi
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy of Casablanca, University Hassan II, Morocco
| | - Sellama Nadifi
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy of Casablanca, University Hassan II, Morocco
| | - Cheick Bougadari Traore
- Faculty of Medicine and Odonstomatology, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Bakarou Kamate
- Faculty of Medicine and Odonstomatology, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Sounkalo Dao
- Faculty of Medicine and Odonstomatology, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Seydou Doumbia
- Faculty of Medicine and Odonstomatology, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Guimogo Dolo
- Faculty of Medicine and Odonstomatology, University of Sciences, Techniques and Technologies of Bamako, Mali
| |
Collapse
|
18
|
Zhang Q, Chang X, Wang X, Zhan H, Gao Q, Yang M, Liu H, Li S, Sun Y. A metabolomic-based study on disturbance of bile acids metabolism induced by intratracheal instillation of nickel oxide nanoparticles in rats. Toxicol Res (Camb) 2021; 10:579-591. [PMID: 34141172 DOI: 10.1093/toxres/tfab039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Nickel oxide nanoparticles (Nano NiO) evoke hepatotoxicity, while whether it affects the hepatic metabolism remains unclear. The aim of this study was to explore the differential metabolites and their metabolic pathways in rat serum and to further verify the potential mechanism of bile acids' (BAs) metabolism dysregulation after Nano NiO exposure. Sixteen male Wistar rats were intratracheally instilled with Nano NiO (0.24 mg/kg body weight) twice a week for 9 weeks. Liquid chromatography/mass spectrometry was applied to filter the differentially expressed metabolites in rat serum. Western blot was employed to detect the protein contents. Twenty-one differential metabolites that associated with BAs, lipid and phospholipid metabolism pathways were identified in rat serum after Nano NiO exposure. Decreased cholic acid and deoxycholic acid implied that the BAs metabolism was disturbed. The nickel content increased in liver after Nano NiO exposure. The protein expression of cholesterol 7α-hydroxylase (CYP7A1) was down-regulated, and the bile salt export pump was up-regulated after Nano NiO administration in rat liver. Moreover, dehydroepiandrosterone sulphotransferase (SULT2A1) and cytochrome P450 (CYP) 3A4 were elevated in the exposure group. In conclusion, Nano NiO might trigger the disturbances of BAs, lipid and phospholipid metabolism pathways in rats. The diminished serum BAs induced by Nano NiO might be related to the down-regulation of synthetase and to the overexpression of transmembrane protein and detoxification enzymes in BAs metabolism.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Sheng Li
- The First People's Hospital of Lanzhou City, Lanzhou 730050, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| |
Collapse
|
19
|
Fusi-Rubiano W, Saedon H, Patel V, Yang YC. Oral medications for central serous chorioretinopathy: a literature review. Eye (Lond) 2020; 34:809-824. [PMID: 31527760 PMCID: PMC7182569 DOI: 10.1038/s41433-019-0568-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/04/2019] [Accepted: 07/27/2019] [Indexed: 02/08/2023] Open
Abstract
Central serous chorioretinopathy (CSCR) is characterised by acute or chronic neurosensory detachments of the retina, usually in the posterior pole, with or without associated detachments of retinal pigment epithelium. Although the condition often resolves spontaneously, chronic and recurrent cases can lead to significant visual loss in the working population and it is thus increasingly recognised as an important public health issue. The uncertainty regarding the underlying cause of CSCR has led to a wide range of therapies being tried for this condition including photodynamic therapy, laser photocoagulation, anti-VEGF injections and a multitude of oral agents. This article aims to review the current evidence for oral agents that have been used for treatment of CSCR. A systematic literature search was conducted for articles published between 1980 to July 2018. A total of 73 articles were included. These studied the following oral medications: eplerenone, spironolactone, beta blockers, H. pylori agents, omeprazole, rifampicin, methotrexate, aspirin, acetazolamide, mifepristone, melatonin, finasteride, ketoconazole, antioxidants and curcumin phospholipid. Although none of the studies showed robust evidence of efficacy, the mineralocorticoid receptor antagonists, particularly eplerenone, appear to demonstrate the highest quality evidence for use in this condition. The review aims to give the reader an overview of the current available evidence for oral medications used in the treatment of CSCR in order to provide an evidence-based discussion with the patient and guide through possible options for treatment.
Collapse
Affiliation(s)
- William Fusi-Rubiano
- Ophthalmology Department, New Cross Hospital, Wednesfield Road, Wolverhampton, WV10 0QP, UK.
| | - Habiba Saedon
- Ophthalmology Department, New Cross Hospital, Wednesfield Road, Wolverhampton, WV10 0QP, UK
| | - Vijay Patel
- Ophthalmology Department, New Cross Hospital, Wednesfield Road, Wolverhampton, WV10 0QP, UK
| | - Yit C Yang
- Ophthalmology Department, New Cross Hospital, Wednesfield Road, Wolverhampton, WV10 0QP, UK
- School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK
| |
Collapse
|
20
|
Phelps T, Snyder E, Rodriguez E, Child H, Harvey P. The influence of biological sex and sex hormones on bile acid synthesis and cholesterol homeostasis. Biol Sex Differ 2019; 10:52. [PMID: 31775872 PMCID: PMC6880483 DOI: 10.1186/s13293-019-0265-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity and elevated serum lipids are associated with a threefold increase in the risk of developing atherosclerosis, a condition that underlies stroke, myocardial infarction, and sudden cardiac death. Strategies that aim to reduce serum cholesterol through modulation of liver enzymes have been successful in decreasing the risk of developing atherosclerosis and reducing mortality. Statins, which inhibit cholesterol biosynthesis in the liver, are considered among the most successful compounds developed for the treatment of cardiovascular disease. However, recent debate surrounding their effectiveness and safety prompts consideration of alternative cholesterol-lowering therapies, including increasing cholesterol catabolism through bile acid (BA) synthesis. Targeting the enzymes that convert cholesterol to BAs represents a promising alternative to other cholesterol-lowering approaches that treat atherosclerosis as well as fatty liver diseases and diabetes mellitus. Compounds that modify the activity of these pathways have been developed; however, there remains a lack of consideration of biological sex. This is necessary in light of strong evidence for sexual dimorphisms not only in the incidence and progression of the diseases they influence but also in the expression and activity of the proteins affected and in the manner in which men and women respond to drugs that modify lipid handling in the liver. A thorough understanding of the enzymes involved in cholesterol catabolism and modulation by biological sex is necessary to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Taylor Phelps
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Erin Snyder
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Erin Rodriguez
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Hailey Child
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Pamela Harvey
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
21
|
Verma D, Grigoryan G, Bailey-Kellogg C. Pareto Optimization of Combinatorial Mutagenesis Libraries. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1143-1153. [PMID: 30040654 PMCID: PMC8262366 DOI: 10.1109/tcbb.2018.2858794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In order to increase the hit rate of discovering diverse, beneficial protein variants via high-throughput screening, we have developed a computational method to optimize combinatorial mutagenesis libraries for overall enrichment in two distinct properties of interest. Given scoring functions for evaluating individual variants, POCoM (Pareto Optimal Combinatorial Mutagenesis) scores entire libraries in terms of averages over their constituent members, and designs optimal libraries as sets of mutations whose combinations make the best trade-offs between average scores. This represents the first general-purpose method to directly design combinatorial libraries for multiple objectives characterizing their constituent members. Despite being rigorous in mapping out the Pareto frontier, it is also very fast even for very large libraries (e.g., designing 30 mutation, billion-member libraries in only hours). We here instantiate POCoM with scores based on a target's protein structure and its homologs' sequences, enabling the design of libraries containing variants balancing these two important yet quite different types of information. We demonstrate POCoM's generality and power in case study applications to green fluorescent protein, cytochrome P450, and β-lactamase. Analysis of the POCoM library designs provides insights into the trade-offs between structure- and sequence-based scores, as well as the impacts of experimental constraints on library designs. POCoM libraries incorporate mutations that have previously been found favorable experimentally, while diversifying the contexts in which these mutations are situated and maintaining overall variant quality.
Collapse
|
22
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
23
|
Sun R, Chen M, Hu Y, Lan Y, Gan L, You G, Yue M, Wang H, Xia B, Zhao J, Tang L, Cai Z, Liu Z, Ye L. CYP3A4/5 mediates the metabolic detoxification of humantenmine, a highly toxic alkaloid from Gelsemium elegans Benth. J Appl Toxicol 2019; 39:1283-1292. [PMID: 31119768 DOI: 10.1002/jat.3813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 01/12/2023]
Abstract
Gelsemium elegans Benth., a well-known toxic herbal plant, is widely used to treat rheumatic arthritis, inflammation and other diseases. Gelsemium contains humantenmine (HMT), which is an important bioactive and toxic alkaloid. Cytochrome P450 enzymes (CYPs) play important roles in the elimination and detoxification of exogenous substances. This study aimed to investigate the roles of CYPs in the metabolism and detoxification of HMT. First, metabolic studies were performed in vitro by using human liver microsomes, selective chemical inhibitors and recombinant human CYPs. Results indicated that four metabolites, including hydroxylation and oxidation metabolites, were found in human liver microsomes and identified based on their high-resolution mass spectrum. The isoform responsible for HMT metabolism was mainly CYP3A4/5. Second, the toxicity of HMT on L02 cells in the presence of the nicotinamide adenine dinucleotide phosphate system (NADPH) was significantly less than that without NADPH system. A CYP3A4/5 activity inhibition model was established by intraperitoneally injecting ketoconazole in mice and used to evaluate the role of CYP3A4/5 in HMT detoxification. In this model, the 14-day survival rate of the mice decreased to 17% after they were intragastrically treated with HMT, along with hepatic injury and increasing alanine aminotransferase (ALT) /aspartate aminotransferase (AST) levels. Overall, CYP3A4/5 mediated the metabolism and detoxification of HMT.
Collapse
Affiliation(s)
- Rongjin Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Minghao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yanxian Hu
- Center For Certification And Evaluation, Guangdong Food And Drug Administration, Guangzhou, China
| | - Yao Lan
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lili Gan
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Guoquan You
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Min Yue
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Hongmei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bijun Xia
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zeng Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ling Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Yao HT, Lee PF, Lii CK, Liu YT, Chen SH. Freshwater clam extract reduces liver injury by lowering cholesterol accumulation, improving dysregulated cholesterol synthesis and alleviating inflammation in high-fat, high-cholesterol and cholic acid diet-induced steatohepatitis in mice. Food Funct 2019; 9:4876-4887. [PMID: 30160281 DOI: 10.1039/c8fo00851e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Freshwater clam (Corbicula fluminea) is a traditional liver-protective food in Asia. Recent studies have renewed attention on high cholesterol accumulation and dysregulated cholesterol synthesis in the liver as a critical factor in the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis (NASH). In this study, we investigated the protective effects of freshwater clam extract (FCE) and its fat fraction (FCE oil) on high-fat, high-cholesterol and cholic acid (HFHC) diet-induced lean steatohepatitis in mice. Mice were fed a HFHC diet containing FCE or FCE oil for 6 weeks. FCE, but not FCE oil, feeding reduced liver injury as indicated by decreased plasma alanine aminotransferase activity. Liver total cholesterol accumulation was reduced after FCE and FCE oil treatment. Accumulation of squalene and desmosterol, the precursors of cholesterol, in the liver was reduced by FCE but not by FCE oil. The caspase-1 (p10) and interleukin (IL)-1β (p17) protein expressions in the liver were suppressed by both FCE and FCE oil. Therefore, FCE may act as functional food that can reduce steatohepatitis and liver injury by reducing cholesterol accumulation, improving dysregulated cholesterol synthesis and attenuating inflammation.
Collapse
Affiliation(s)
- Hsien-Tsung Yao
- Department of Nutrition, China Medical University, 91 Hsueh-shih Road, Taichung 404, Taiwan.
| | | | | | | | | |
Collapse
|
25
|
From electrochemistry to enzyme kinetics of cytochrome P450. Biosens Bioelectron 2018; 121:192-204. [PMID: 30218927 DOI: 10.1016/j.bios.2018.08.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/02/2018] [Accepted: 08/17/2018] [Indexed: 12/23/2022]
Abstract
This review is an attempt to describe advancements in the electrochemistry of cytochrome P450 enzymes (EC 1.14.14.1) and to study molecular aspects and catalytic behavior of enzymatic electrocatalysis. Electroanalysis of cytochrome P450 demonstrates how to translate theoretical laws and equations of classical electrochemistry for the calculation of the kinetic parameters of enzymatic reactions and then translation of kinetic parameters to interpretation of drug-drug interactions. The functional significance of cytochrome P450s (CYPs) includes the metabolism of drugs, foreign chemicals, and endogenic compounds. The pharmaceutical industry needs sensitive and cost-effective systems for screening new drugs and investigation of drug-drug interactions. The development of different types of CYP-based biosensors is now in great demand. This review also highlights the characteristics of electrode processes and electrode properties for optimization of the cytochrome P450 electroanalysis. Electrochemical cytochrome P450-biosensors are the most studied. In this review, we analyzed electrode/cytochrome P450 systems in terms of the mechanisms underlying P450-catalyzed reactions. Screening of potential substrates or inhibitors of cytochromes P450 by means of electrodes were described.
Collapse
|
26
|
Navarro-Mabarak C, Camacho-Carranza R, Espinosa-Aguirre JJ. Cytochrome P450 in the central nervous system as a therapeutic target in neurodegenerative diseases. Drug Metab Rev 2018; 50:95-108. [DOI: 10.1080/03602532.2018.1439502] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Cynthia Navarro-Mabarak
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rafael Camacho-Carranza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jesús Javier Espinosa-Aguirre
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
27
|
Kloudova A, Brynychova V, Vaclavikova R, Vrana D, Gatek J, Mrhalova M, Kodet R, Soucek P. Expression of oxysterol pathway genes in oestrogen-positive breast carcinomas. Clin Endocrinol (Oxf) 2017; 86:852-861. [PMID: 28342201 DOI: 10.1111/cen.13337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/10/2017] [Accepted: 03/21/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE This study investigated whether gene expression levels of key modulators of the oxysterol signalling pathway modify the prognosis of patients with oestrogen receptor-positive (ER+) breast carcinomas via interaction with endocrine therapy. CONTEXT The prognosis of patients with ER+ breast carcinoma depends on several factors. Previous studies have suggested that some oxygenated forms of cholesterol (oxysterols) bind to oestrogen receptor and anti-oestrogen binding site which may deregulate cholesterol homoeostasis and influence effect of therapy. DESIGN The expression levels of 70 oxysterol pathway genes were evaluated in a test set of breast carcinomas differing in ER expression. The genes differentially expressed in ER+ tumours were assessed in a comprehensive set of ER+ tumours to evaluate their clinical significance. PATIENTS A total of 193 primary patients with breast carcinoma were included. MEASUREMENTS The transcript levels were determined by quantitative real-time polymerase chain reaction. RESULTS The expression levels of 23 genes were found to be specifically dysregulated in ER+ tumours compared to ER- tumours of the test set. The expression levels of ABCG2, CYP7B1, CYP24A1, CYP39A1 and CH25H genes were found to be strongly associated with disease stage; however, none of the gene expression levels were associated with disease-free survival in patients treated with endocrine therapy. CONCLUSIONS The expression of a number of oxysterol pathway genes is significantly modulated by ER expression and associated with the clinical stage of patients. However, the expression of oxysterol pathway genes was not found to modify the prognosis of ER+ patients with breast carcinoma treated with endocrine therapy.
Collapse
Affiliation(s)
- Alzbeta Kloudova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Brynychova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Radka Vaclavikova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - David Vrana
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Department of Oncology, Palacky University Medical School and Teaching Hospital, Olomouc, Czech Republic
| | - Jiri Gatek
- Department of Surgery, Hospital Atlas, Zlin, Czech Republic
- University of Tomas Bata in Zlin, Zlin, Czech Republic
| | - Marcela Mrhalova
- Department of Pathology & Molecular Medicine, Second Faculty of Medicine, Charles University & Motol University Hospital, Prague, Czech Republic
| | - Roman Kodet
- Department of Pathology & Molecular Medicine, Second Faculty of Medicine, Charles University & Motol University Hospital, Prague, Czech Republic
| | - Pavel Soucek
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
28
|
Howard JT, Ashwell MS, Baynes RE, Brooks JD, Yeatts JL, Maltecca C. Gene co-expression network analysis identifies porcine genes associated with variation in metabolizing fenbendazole and flunixin meglumine in the liver. Sci Rep 2017; 7:1357. [PMID: 28465592 PMCID: PMC5430975 DOI: 10.1038/s41598-017-01526-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/29/2017] [Indexed: 12/31/2022] Open
Abstract
Identifying individual genetic variation in drug metabolism pathways is of importance not only in livestock, but also in humans in order to provide the ultimate goal of giving the right drug at the right dose at the right time. Our objective was to identify individual genes and gene networks involved in metabolizing fenbendazole (FBZ) and flunixin meglumine (FLU) in swine liver. The population consisted of female and castrated male pigs that were sired by boars represented by 4 breeds. Progeny were randomly placed into groups: no drug (UNT), FLU or FBZ administered. Liver transcriptome profiles from 60 animals with extreme (i.e. fast or slow drug metabolism) pharmacokinetic (PK) profiles were generated from RNA sequencing. Multiple cytochrome P450 (CYP1A1, CYP2A19 and CYP2C36) genes displayed different transcript levels across treated versus UNT. Weighted gene co-expression network analysis identified 5 and 3 modules of genes correlated with PK parameters and a portion of these were enriched for biological processes relevant to drug metabolism for FBZ and FLU, respectively. Genes within identified modules were shown to have a higher transcript level relationship (i.e. connectivity) in treated versus UNT animals. Investigation into the identified genes would allow for greater insight into FBZ and FLU metabolism.
Collapse
Affiliation(s)
- Jeremy T Howard
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA
| | - Melissa S Ashwell
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA
| | - Ronald E Baynes
- Department of Population Health and Pathobiology, Center for Chemical Toxicology and Research Pharmacokinetics, North Carolina State University, College of Veterinary Medicine, 4700 Hillsborough Road, Raleigh, North Carolina, 27606, USA
| | - James D Brooks
- Department of Population Health and Pathobiology, Center for Chemical Toxicology and Research Pharmacokinetics, North Carolina State University, College of Veterinary Medicine, 4700 Hillsborough Road, Raleigh, North Carolina, 27606, USA
| | - James L Yeatts
- Department of Population Health and Pathobiology, Center for Chemical Toxicology and Research Pharmacokinetics, North Carolina State University, College of Veterinary Medicine, 4700 Hillsborough Road, Raleigh, North Carolina, 27606, USA
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA.
| |
Collapse
|
29
|
Visser M, Weber K, Rincon G, Merritt D. Use of RNA-seq to determine variation in canine cytochrome P450 mRNA expression between blood, liver, lung, kidney and duodenum in healthy beagles. J Vet Pharmacol Ther 2017; 40:583-590. [DOI: 10.1111/jvp.12400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/03/2017] [Indexed: 12/22/2022]
Affiliation(s)
- M. Visser
- Veterinary Medicine Research and Development, Metabolism & Safety; Zoetis; Kalamazoo MI USA
- Department of Anatomy, Physiology and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| | - K. Weber
- Veterinary Medicine Research and Development, Genetics; Zoetis; Kalamazoo MI USA
| | - G. Rincon
- Veterinary Medicine Research and Development, Genetics; Zoetis; Kalamazoo MI USA
| | - D. Merritt
- Veterinary Medicine Research and Development, Metabolism & Safety; Zoetis; Kalamazoo MI USA
| |
Collapse
|
30
|
Henkel AS, LeCuyer B, Olivares S, Green RM. Endoplasmic Reticulum Stress Regulates Hepatic Bile Acid Metabolism in Mice. Cell Mol Gastroenterol Hepatol 2016; 3:261-271. [PMID: 28275692 PMCID: PMC5331781 DOI: 10.1016/j.jcmgh.2016.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Cholestasis promotes endoplasmic reticulum (ER) stress in the liver, however, the effect of ER stress on hepatic bile acid metabolism is unknown. We aim to determine the effect of ER stress on hepatic bile acid synthesis and transport in mice. METHODS ER stress was induced pharmacologically in C57BL/6J mice and human hepatoma (HepG2) cells. The hepatic expression of genes controlling bile acid synthesis and transport was determined. To measure the activity of the primary bile acid synthetic pathway, the concentration of 7α-hydroxy-4-cholesten-3-1 was measured in plasma. RESULTS Induction of ER stress in mice and HepG2 cells rapidly suppressed the hepatic expression of the primary bile acid synthetic enzyme, cholesterol 7α-hydroxylase. Plasma levels of 7α-hydroxy-4-cholesten-3-1 were reduced in mice subjected to ER stress, indicating impaired bile acid synthesis. Induction of ER stress in mice and HepG2 cells increased expression of the bile salt export pump (adenosine triphosphate binding cassette [Abc]b11) and a bile salt efflux pump (Abcc3). The observed regulation of Cyp7a1, Abcb11, and Abcc3 occurred in the absence of hepatic inflammatory cytokine activation and was not dependent on activation of hepatic small heterodimer partner or intestinal fibroblast growth factor 15. Consistent with suppressed bile acid synthesis and enhanced bile acid export from hepatocytes, prolonged ER stress decreased the hepatic bile acid content in mice. CONCLUSIONS Induction of ER stress in mice suppresses bile acid synthesis and enhances bile acid removal from hepatocytes independently of established bile acid regulatory pathways. These data show a novel function of the ER stress response in regulating bile acid metabolism.
Collapse
Key Words
- 7α-Hydroxy-4-Cholesten-3-1
- ABC, adenosine triphosphate binding cassette
- Bile Acid Synthesis
- C4, 7α-hydroxy-4-cholesten-3-1
- CYP7A1, cholesterol 7α-hydroxylase
- Cyp7a1
- DMEM, Dulbecco's modified Eagle medium
- DMSO, dimethyl sulfoxide
- ER, endoplasmic reticulum
- ERK, extracellular signaling-regulated kinase
- FGF, fibroblast growth factor
- FXR, farnesoid X receptor
- IL, interleukin
- IRE1α, inositol requiring enzyme 1α
- JNK, c-Jun-N-terminal kinase
- NTCP, sodium/taurocholate cotransporter
- RIDD, regulated inositol requiring enzyme 1α–dependent messenger RNA decay
- SHP, small heterodimer partner
- UPR, unfolded protein response
- Unfolded Protein Response
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Anne S. Henkel
- Correspondence Address correspondence to: Anne S. Henkel, MD, 320 East Superior Street, Tarry 15-705, Chicago, Illinois 60611. fax: (312) 908-9032.320 East Superior StreetTarry 15-705ChicagoIllinois 60611
| | | | | | | |
Collapse
|
31
|
Pozzo L, Vornoli A, Coppola I, Croce CMD, Giorgetti L, Gervasi PG, Longo V. Effect of HFD/STZ on expression of genes involved in lipid, cholesterol and glucose metabolism in rats. Life Sci 2016; 166:149-156. [DOI: 10.1016/j.lfs.2016.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/13/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022]
|
32
|
Pan ST, Xue D, Li ZL, Zhou ZW, He ZX, Yang Y, Yang T, Qiu JX, Zhou SF. Computational Identification of the Paralogs and Orthologs of Human Cytochrome P450 Superfamily and the Implication in Drug Discovery. Int J Mol Sci 2016; 17:E1020. [PMID: 27367670 PMCID: PMC4964396 DOI: 10.3390/ijms17071020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/02/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022] Open
Abstract
The human cytochrome P450 (CYP) superfamily consisting of 57 functional genes is the most important group of Phase I drug metabolizing enzymes that oxidize a large number of xenobiotics and endogenous compounds, including therapeutic drugs and environmental toxicants. The CYP superfamily has been shown to expand itself through gene duplication, and some of them become pseudogenes due to gene mutations. Orthologs and paralogs are homologous genes resulting from speciation or duplication, respectively. To explore the evolutionary and functional relationships of human CYPs, we conducted this bioinformatic study to identify their corresponding paralogs, homologs, and orthologs. The functional implications and implications in drug discovery and evolutionary biology were then discussed. GeneCards and Ensembl were used to identify the paralogs of human CYPs. We have used a panel of online databases to identify the orthologs of human CYP genes: NCBI, Ensembl Compara, GeneCards, OMA ("Orthologous MAtrix") Browser, PATHER, TreeFam, EggNOG, and Roundup. The results show that each human CYP has various numbers of paralogs and orthologs using GeneCards and Ensembl. For example, the paralogs of CYP2A6 include CYP2A7, 2A13, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 2F1, 2J2, 2R1, 2S1, 2U1, and 2W1; CYP11A1 has 6 paralogs including CYP11B1, 11B2, 24A1, 27A1, 27B1, and 27C1; CYP51A1 has only three paralogs: CYP26A1, 26B1, and 26C1; while CYP20A1 has no paralog. The majority of human CYPs are well conserved from plants, amphibians, fishes, or mammals to humans due to their important functions in physiology and xenobiotic disposition. The data from different approaches are also cross-validated and validated when experimental data are available. These findings facilitate our understanding of the evolutionary relationships and functional implications of the human CYP superfamily in drug discovery.
Collapse
Affiliation(s)
- Shu-Ting Pan
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330003, China.
| | - Danfeng Xue
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330003, China.
| | - Zhi-Ling Li
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang 550004, China.
| | - Yinxue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT 84132, USA.
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330003, China.
| | - Shu-Feng Zhou
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China.
| |
Collapse
|
33
|
Monocrotophos Induces the Expression of Xenobiotic Metabolizing Cytochrome P450s (CYP2C8 and CYP3A4) and Neurotoxicity in Human Brain Cells. Mol Neurobiol 2016; 54:3633-3651. [PMID: 27206429 DOI: 10.1007/s12035-016-9938-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/10/2016] [Indexed: 01/30/2023]
Abstract
Expression of various cytochrome P450s (CYPs) in mammalian brain cells is well documented. However, such studies are hampered in neural/glial cells of human origin due to nonavailability of human brain cells. To address this issue, we investigated the expression and inducibility of CYP2C8 and CYP3A4 and their responsiveness against cyclophosphamide (CPA) and organophosphorus pesticide monocrotophos (MCP), a known developmental neurotoxicant in human neural (SH-SY5Y) and glial (U373-MG) cell lines. CPA induced significant expression of CYP2C8 and CYP3A4 in both types of cells in a time-dependent manner. Neural cell line exhibited relatively higher constitutive and inducible expression of CYPs than the glial cell line. MCP exposure alone could not induce the significant expression of CYPs, whereas the cells preexposed to CPA showed a significant response to MCP. Similar to the case of CPA induced expressions, neural cells were found to be more vulnerable than glial cells. Our data indicate differential expressions of CYPs in cultured human neural and glial cell lines. The findings were synchronized with protein ligand docking studies, which showed a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR and PXR. Similarly, the known CYP inducer CPA has also shown significant high docking scores with the two studied CYP regulators. We also observed a significant induction in reactive oxygen species (ROS), lipid peroxides (LPO), micronucleus (MN), chromosomal aberration (CA), and reduction in reduced glutathione (GSH) and catalase following the exposure of MCP. Moreover, the expressions of apoptotic markers such as caspase-3, caspase-9, Bax, and p53 were significantly upregulated, whereas the levels of antiapoptotic marker, Bcl2, was downregulated after the exposure of MCP in both cell lines. These findings confirm the involvement of ROS-mediated oxidative stress, which subsequently triggers apoptosis pathways in both human neural (SH-SY5Y) and glial (U373-MG) cell lines following the exposure of MCP.
Collapse
|
34
|
Lu Q, Powles RL, Wang Q, He BJ, Zhao H. Integrative Tissue-Specific Functional Annotations in the Human Genome Provide Novel Insights on Many Complex Traits and Improve Signal Prioritization in Genome Wide Association Studies. PLoS Genet 2016; 12:e1005947. [PMID: 27058395 PMCID: PMC4825932 DOI: 10.1371/journal.pgen.1005947] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSkyline successfully identified a variety of non-coding regulatory machinery including enhancers, regulatory miRNA, and hypomethylated transposable elements in extensive case studies. Integrative analysis of GenoSkyline annotations and results from genome-wide association studies (GWAS) led to novel biological insights on the etiologies of a number of human complex traits. We also explored using tissue-specific functional annotations to prioritize GWAS signals and predict relevant tissue types for each risk locus. Brain and blood-specific annotations led to better prioritization performance for schizophrenia than standard GWAS p-values and non-tissue-specific annotations. As for coronary artery disease, heart-specific functional regions was highly enriched of GWAS signals, but previously identified risk loci were found to be most functional in other tissues, suggesting a substantial proportion of still undetected heart-related loci. In summary, GenoSkyline annotations can guide genetic studies at multiple resolutions and provide valuable insights in understanding complex diseases. GenoSkyline is available at http://genocanyon.med.yale.edu/GenoSkyline.
Collapse
Affiliation(s)
- Qiongshi Lu
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ryan Lee Powles
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Qian Wang
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Beixin Julie He
- Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
35
|
Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats. Nutr Res 2016; 36:271-9. [DOI: 10.1016/j.nutres.2015.11.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 01/11/2023]
|
36
|
Pospieszny T. Design and Synthesis of New Bile AcidSterol Conjugates Linkedvia1,2,3-Triazole Ring. Helv Chim Acta 2015. [DOI: 10.1002/hlca.201500118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Fedorova OV, Zernetkina VI, Shilova VY, Grigorova YN, Juhasz O, Wei W, Marshall CA, Lakatta EG, Bagrov AY. Synthesis of an Endogenous Steroidal Na Pump Inhibitor Marinobufagenin, Implicated in Human Cardiovascular Diseases, Is Initiated by CYP27A1 via Bile Acid Pathway. ACTA ACUST UNITED AC 2015; 8:736-45. [PMID: 26374826 DOI: 10.1161/circgenetics.115.001217] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/31/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND The bioactive steroid, marinobufagenin, is an endogenous Na/K-ATPase bufadienolide inhibitor that is synthesized by adrenocortical and placental cells. Marinobufagenin binding to Na/K-ATPase initiates profibrotic cell signaling, and heightened marinobufagenin levels are implicated in the pathogenesis of hypertension, preeclampsia, and chronic kidney disease. Steroids are derived from cholesterol through the traditional steroidogenesis pathway initiated by enzyme CYP11A1, and via the acidic bile acid pathway, which is controlled by enzyme CYP27A1. The mechanism of marinobufagenin biosynthesis in mammals, however, remains unknown. METHODS AND RESULTS Here, we show that post-transcriptional silencing of the CYP27A1 gene in human trophoblast and rat adrenocortical cells reduced the expression of CYP27A1 mRNA by 70%, reduced total bile acids 2-fold, and marinobufagenin levels by 67% when compared with nontreated cells or cells transfected with nontargeting siRNA. In contrast, silencing of the CYP11A1 gene did not affect marinobufagenin production in either cell culture, but suppressed production of progesterone 2-fold in human trophoblast cells and of corticosterone by 90% in rat adrenocortical cells when compared with cells transfected with nontargeting siRNA. In vivo, in a high-salt administration experiment, male and female Dahl salt-sensitive rats became hypertensive after 4 weeks on a high-NaCl diet, their plasma marinobufagenin levels doubled, and adrenocortical CYP27A1 mRNA and protein increased 1.6-fold and 2.0-fold. CONCLUSIONS Therefore, the endogenous steroidal Na/K-ATPase inhibitor, marinobufagenin, is synthesized in mammalian placenta and adrenal cortex from cholesterol through the novel acidic bile acid pathway. These findings will help to understand the role of marinobufagenin in highly prevalent human cardiovascular diseases.
Collapse
Affiliation(s)
- Olga V Fedorova
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD.
| | - Valentina I Zernetkina
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Victoria Y Shilova
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Yulia N Grigorova
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Ondrej Juhasz
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Wen Wei
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Courtney A Marshall
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Edward G Lakatta
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Alexei Y Bagrov
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD.
| |
Collapse
|
38
|
Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles. Br J Nutr 2015; 114:1143-56. [PMID: 26306559 DOI: 10.1017/s0007114515002731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Plant feedstuffs (PF) are rich in carbohydrates, which may interact with lipid metabolism. Thus, when considering dietary replacement of fishery by-products with PF, knowledge is needed on how dietary lipid source (LS) and carbohydrates affect lipid metabolism and other metabolic pathways. For that purpose, a 73-d growth trial was performed with European sea bass juveniles (IBW 74 g) fed four diets differing in LS (fish oil (FO) or a blend of vegetable oils (VO)) and carbohydrate content (0 % (CH-) or 20 % (CH+) gelatinised starch). At the end of the trial no differences among diets were observed on growth and feed utilisation. Protein efficiency ratio was, however, higher in the CH+ groups. Muscle and liver fatty acid profiles reflected the dietary LS. Dietary carbohydrate promoted higher plasma cholesterol and phospholipids (PL), whole-body and hepatic (mainly 16 : 0) lipids and increased muscular and hepatic glycogen. Except for PL, which were higher in the FO groups, no major alterations between FO and VO groups were observed on plasma metabolites (glucose, TAG, cholesterol, PL), liver and muscle glycogen, and lipid and cholesterol contents. Activities of glucose-6-phosphate dehydrogenase and malic enzyme - lipogenesis-related enzymes - increased with carbohydrate intake. Hepatic expression of genes involved in cholesterol metabolism was up-regulated with carbohydrate (HMGCR and CYP3A27) and VO (HMGCR and CYP51A1) intake. No dietary regulation of long-chain PUFA biosynthesis at the transcriptional level was observed. Overall, very few interactions between dietary carbohydrates and LS were observed. However, important insights on the direct relation between dietary carbohydrate and the cholesterol biosynthetic pathway in European sea bass were demonstrated.
Collapse
|
39
|
Abstract
The aging process seems to be associated with oxidative stress and hence increased production of lipid peroxidation products, including isolevuglandins (isoLGs). The latter are highly reactive γ-ketoaldehydes which can form covalent adducts with primary amino groups of enzymes and proteins and alter the properties of these biomolecules. Yet little is currently known about amino acid-containing compounds affected by isoLG modification in different age-related pathological processes. To facilitate the detection of these biomolecules, we developed a strategy in which the purified enzyme (or protein) of interest is first treated with authentic isoLG in vitro to evaluate whether it contains reactive lysine residues prone to modification with isoLGs. The data obtained serve as a basis for making the "GO/NO GO" decision as to whether to pursue a further search of this isoLG modification in a biological sample. In this chapter, we describe the conditions for the in vitro isoLG modification assay and how to use mass spectrometry to identify the isoLG-modified peptides and amino acid residues. Our studies were carried out on cytochrome P450 27A1, an important metabolic enzyme, and utilized iso[4]levuglandin E2 as a prototypical isoLG. The isoLG-treated cytochrome P450 was subjected to proteolysis followed by liquid chromatography-tandem mass spectrometry for peptide separation and analysis by Mascot, a proteomics search engine, for the presence of modified peptides. The developed protocol could be applied to characterization of other enzymes/proteins and other types of unconventional posttranslational protein modification.
Collapse
|
40
|
Kozanecka W, Mrówczyńska L, Pospieszny T, Jasiewicz B, Gierszewski M. Synthesis, spectroscopy, theoretical and biological studies of new gramine-steroids salts and conjugates. Steroids 2015; 98:92-9. [PMID: 25777948 DOI: 10.1016/j.steroids.2015.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/08/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
New gramine connections with bile acids (lithocholic, deoxycholic, cholic) and sterols (cholesterol, cholestanol) were synthesized. The structures of products were confirmed by spectral (NMR, FT-IR) analysis, mass spectrometry (ESI-MS) as well as PM5 semiempirical methods. Unexpectedly, the products of the reaction of gramine with cholesterol and cholestanol were symmetrical compounds consisting of two molecules of sterols connected by N(CH3)2 group. All new synthesized compounds interact in vitro with the human erythrocyte membrane and alter discoid erythrocyte shape inducing stomatocytosis or echinocytosis. Increase in the incorporation of the fluorescent dye merocyanine 540 (MC540) into the erythrocyte membrane indicates that new compounds at sublytic concentrations are capable of disturbing membrane phospholipids asymmetry and loosening the molecular packing of phospholipids in the bilayer. Gramine significantly decreases the membrane partitioning properties as well as haemolytic activity of lithocholic acid in its new salt. Moreover, both deoxycholic and cholic acids completely lost their membrane perturbing activities in the gramine salts. On the other hand, the capacity of new gramine-sterols connections to alter the erythrocyte membrane structure and its permeability is much higher in comparison with sterols alone. The dual effect of gramine on the bile acid and sterols cell membrane partitioning activity observed in our study should not be neglected in vivo.
Collapse
Affiliation(s)
- Weronika Kozanecka
- Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Faculty of Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Tomasz Pospieszny
- Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| | - Beata Jasiewicz
- Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland.
| | - Mateusz Gierszewski
- Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| |
Collapse
|
41
|
Shumyantseva VV, Bulko TV, Suprun EV, Kuzikov AV, Agafonova LE, Archakov AI. [Electrochemical methods for biomedical investigations]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:188-202. [PMID: 25978386 DOI: 10.18097/pbmc20156102188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the review, authors discussed recently published experimental data concerning highly sensitive electrochemical methods and technologies for biomedical investigations in the postgenomic era. Developments in electrochemical biosensors systems for the analysis of various bio objects are also considered: cytochrome P450s, cardiac markers, bacterial cells, the analysis of proteins based on electro oxidized amino acids as a tool for analysis of conformational events. The electroanalysis of catalytic activity of cytochromes P450 allowed developing system for screening of potential substrates, inhibitors or modulators of catalytic functions of this class of hemoproteins. The highly sensitive quartz crystal microbalance (QCM) immunosensor has been developed for analysis of bio affinity interactions of antibodies with troponin I in plasma. The QCM technique allowed real-time monitoring of the kinetic differences in specific interactions and nonspecific sorption, with out multiple labeling procedures and separation steps. The affinity binding process was characterized by the association (ka) and the dissociation (kd) kinetic constants and the equilibrium association (K) constant, calculated using experimental data. Based on the electroactivity of bacterial cells, the electrochemical system for determination of sensitivity of the microbial cells to antibiotics cefepime, ampicillin, amikacin, and erythromycin was proposed. It was shown that the minimally detectable cell number corresponds to 106 CFU per electrode. The electrochemical method allows estimating the degree of E.coli JM109 cells resistance to antibiotics within 2-5 h. Electrosynthesis of polymeric analogs of antibodies for myoglobin (molecularly imprinted polymer, MIP) on the surface of graphite screen-printed electrodes as sensor elements with o- phenylenediamine as the functional monomer was developed. Molecularly imprinted polymers demonstrate selective complementary binding of a template protein molecule (myoglobin) by the "key-lock" principle.
Collapse
Affiliation(s)
- V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; IBMC-EcoBioPharm Company, Moscow, Russia
| | - T V Bulko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E V Suprun
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
42
|
Oral Rifampin treatment for longstanding chronic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 2015; 254:15-22. [DOI: 10.1007/s00417-015-2989-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/25/2015] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
|
43
|
Niwa T, Murayama N, Imagawa Y, Yamazaki H. Regioselective hydroxylation of steroid hormones by human cytochromes P450. Drug Metab Rev 2015; 47:89-110. [PMID: 25678418 DOI: 10.3109/03602532.2015.1011658] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This article reviews in vitro metabolic activities [including Michaelis constants (Km), maximal velocities (Vmax) and Vmax/Km] and drug-steroid interactions [such as induction and cooperativity (activation)] of cytochromes P450 (P450 or CYP) in human tissues, including liver and adrenal gland, for 14 kinds of endogenous steroid compounds, including allopregnanolone, cholesterol, cortisol, cortisone, dehydroepiandrosterone, estradiol, estrone, pregnenolone, progesterone, testosterone and bile acids (cholic acid). First, we considered the drug-metabolizing P450s. 6β-Hydroxylation of many steroids, including cortisol, cortisone, progesterone and testosterone, was catalyzed primarily by CYP3A4. CYP1A2 and CYP3A4, respectively, are likely the major hepatic enzymes responsible for 2-/4-hydroxylation and 16α-hydroxylation of estradiol and estrone, steroids that can contribute to breast cancer risk. In contrast, CYP1A1 and CYP1B1 predominantly metabolized estrone and estradiol to 2- and 4-catechol estrogens, which are endogenous ultimate carcinogens if formed in the breast. Some metabolic activities of CYP3A4, including dehydroepiandrosterone 7β-/16α-hydroxylation, estrone 2-hydroxylation and testosterone 6β-hydroxylation, were higher than those for polymorphically expressed CYP3A5. Next, we considered typical steroidogenic P450s. CYP17A1, CYP19A1 and CYP27A1 catalyzed steroid synthesis, including hydroxylation at 17α, 19 and 27 positions, respectively. However, it was difficult to predict which hepatic drug-metabolizing P450 or steroidogenic P450 will be mainly responsible for metabolizing each steroid hormone in vivo based on these results. Further research is required on the metabolism of steroid hormones by various P450s and on prediction of their relative contributions to in vivo metabolism. The findings collected here provide fundamental and useful information on the metabolism of steroid compounds.
Collapse
Affiliation(s)
- Toshiro Niwa
- School of Pharmacy, Shujitsu University , Okayama , Japan and
| | | | | | | |
Collapse
|
44
|
Cytochrome P450 Enzymes and Electrochemistry: Crosstalk with Electrodes as Redox Partners and Electron Sources. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:229-46. [DOI: 10.1007/978-3-319-16009-2_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
45
|
Mayr JA. Lipid metabolism in mitochondrial membranes. J Inherit Metab Dis 2015; 38:137-44. [PMID: 25082432 DOI: 10.1007/s10545-014-9748-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 12/26/2022]
Abstract
Mitochondrial membranes have a unique lipid composition necessary for proper shape and function of the organelle. Mitochondrial lipid metabolism involves biosynthesis of the phospholipids phosphatidylethanolamine, cardiolipin and phosphatidylglycerol, the latter is a precursor of the late endosomal lipid bis(monoacylglycero)phosphate. It also includes mitochondrial fatty acid synthesis necessary for the formation of the lipid cofactor lipoic acid. Furthermore the synthesis of coenzyme Q takes place in mitochondria as well as essential parts of the steroid and vitamin D metabolism. Lipid transport and remodelling, which are necessary for tailoring and maintaining specific membrane properties, are just partially unravelled. Mitochondrial lipids are involved in organelle maintenance, fission and fusion, mitophagy and cytochrome c-mediated apoptosis. Mutations in TAZ, SERAC1 and AGK affect mitochondrial phospholipid metabolism and cause Barth syndrome, MEGDEL and Sengers syndrome, respectively. In these disorders an abnormal mitochondrial energy metabolism was found, which seems to be due to disturbed protein-lipid interactions, affecting especially enzymes of the oxidative phosphorylation. Since a growing number of enzymes and transport processes are recognised as parts of the mitochondrial lipid metabolism, a further increase of lipid-related disorders can be expected.
Collapse
Affiliation(s)
- Johannes A Mayr
- Department of Paediatrics, Paracelsus Medical University Salzburg, Salzburg, 5020, Austria,
| |
Collapse
|
46
|
Barau C, Ghaleh B, Berdeaux A, Morin D. Cytochrome P450 and myocardial ischemia: potential pharmacological implication for cardioprotection. Fundam Clin Pharmacol 2014; 29:1-9. [DOI: 10.1111/fcp.12087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/20/2014] [Accepted: 06/13/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Caroline Barau
- Inserm, U955, Equipe 03; F-94000 Créteil France
- UMR_S955, UPEC; Université Paris-Est; F-94000 Créteil France
| | - Bijan Ghaleh
- Inserm, U955, Equipe 03; F-94000 Créteil France
- UMR_S955, UPEC; Université Paris-Est; F-94000 Créteil France
| | - Alain Berdeaux
- Inserm, U955, Equipe 03; F-94000 Créteil France
- UMR_S955, UPEC; Université Paris-Est; F-94000 Créteil France
| | - Didier Morin
- Inserm, U955, Equipe 03; F-94000 Créteil France
- UMR_S955, UPEC; Université Paris-Est; F-94000 Créteil France
| |
Collapse
|
47
|
Schwingel PA, Zoppi CC, Cotrim HP. The influence of concomitant use of alcohol, tobacco, cocaine, and anabolic steroids on lipid profiles of Brazilian recreational bodybuilders. Subst Use Misuse 2014; 49:1115-25. [PMID: 24766402 DOI: 10.3109/10826084.2014.903753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Anabolic-androgenic steroids (AAS) are used to enhance physical performance and/or appearance. The aim of this study was to evaluate the influence of the concomitant use of alcohol, tobacco, cocaine, and AAS on blood lipid profiles of 145 asymptomatic male bodybuilders from the Northeast region of Brazil. Interviews, clinical exams, and serological evaluations were performed on all participants between 2007 and 2009. All subjects' self-reported use of testosterone or its derivatives, 118 individuals reported alcohol intake, 27-reported cigarette smoking, and 33 confirmed cocaine use. Four subjects were users of all drugs at the same time. Higher levels of total cholesterol and LDL-cholesterol were observed among concomitant users of alcohol, tobacco, cocaine, and AAS. The study's limitations are noted.
Collapse
Affiliation(s)
- Paulo Adriano Schwingel
- 1Programa de Pós-graduação em Medicina e Saúde (PPgMS), Faculdade de Medicina da Bahia (FMB), Universidade Federal da Bahia (UFBA), Rua Augusto Viana S/N, Salvador, Brazil
| | | | | |
Collapse
|
48
|
Cadagan D, Khan R, Amer S. Female adipocyte androgen synthesis and the effects of insulin. Mol Genet Metab Rep 2014; 1:254-263. [PMID: 27896097 PMCID: PMC5121335 DOI: 10.1016/j.ymgmr.2014.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 11/01/2022] Open
Abstract
The metabolic syndrome is a cluster of metabolic disorders characterized by insulin resistance and hyperinsulinaemia, and its presence can increase the risk of cardiovascular disease significantly. The metabolic syndrome is associated with increased circulating androgen levels in women, which may originate from the ovaries and adrenal glands. Adipocytes are also able to synthesise steroid hormones, and this output has been hypothesised to increase with elevated insulin plasma concentrations. However, the contribution of the adipocytes to the circulating androgen levels in women with metabolic syndrome is limited and the effects of insulin are not fully understood. The aim of this study was to investigate the presence of steroid precursors and synthetic enzymes in human adipocyte biopsies as markers of possible adipocyte androgen synthesis. We examined pre and mature adipocytes taken from tissue biopsies of abdominal subcutaneous adipose tissue of participating women from the Department of Obstetrics and Gynaecology, of the Royal Derby Hospital. The results showed the potential for localised adipocyte androgen synthesis through the presence of the androgen precursor progesterone, as well as the steroid-converting enzyme 17α-hydroxylase. Furthermore, we found the controlled secretion of androstenedione in vitro and that insulin treatment caused levels to increase. Continued examination of a localised source of androgen production is therefore of clinical relevance due to its influence on adipocyte metabolism, its negative impact on female steroidogenic homeostasis, and the possible aggravation this may have when associated to obesity and obesity related metabolic abnormalities such as hyperinsulinaemia.
Collapse
Affiliation(s)
- David Cadagan
- School of Graduate Entry Medicine, Derby Hospital, Nottingham University, DE22 3DT, UK
| | - Raheela Khan
- School of Graduate Entry Medicine, Derby Hospital, Nottingham University, DE22 3DT, UK
| | - Saad Amer
- School of Graduate Entry Medicine, Derby Hospital, Nottingham University, DE22 3DT, UK
| |
Collapse
|
49
|
Role of AMACR (α-methylacyl-CoA racemase) and MFE-1 (peroxisomal multifunctional enzyme-1) in bile acid synthesis in mice. Biochem J 2014; 461:125-35. [DOI: 10.1042/bj20130915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bile acid analysis of wild-type, Mfe-1−/−, Amacr−/− and Amacr−/−Mfe-1−/− mouse models shows that peroxisomal multifunctional enzyme 1 can participate in bile acid synthesis in both AMACR-dependent and AMACR-independent pathways.
Collapse
|
50
|
Brycki B, Koenig H, Kowalczyk I, Pospieszny T. Synthesis, spectroscopic and theoretical studies of new quaternary N,N-dimethyl-3-phthalimidopropylammonium conjugates of sterols and bile acids. Molecules 2014; 19:4212-33. [PMID: 24705565 PMCID: PMC6270980 DOI: 10.3390/molecules19044212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 11/16/2022] Open
Abstract
New quaternary 3-phthalimidopropylammonium conjugates of steroids were obtained by reaction of sterols (ergosterol, cholesterol, cholestanol) and bile acids (lithocholic, deoxycholic, cholic) with bromoacetic acid bromide to give sterol 3β-bromoacetates and bile acid 3α-bromoacetates, respectively. These intermediates were subjected to nuclephilic substitution with N,N-dimethyl-3-phthalimidopropylamine to give the final quaternary ammonium salts. The structures of products were confirmed by spectral (1H-NMR, 13C-NMR, and FT-IR) analysis, mass spectrometry (ESI-MS, MALDI) as well as PM5 semiempirical methods and B3LYP ab initio methods. Estimation of the pharmacotherapeutic potential has been accomplished for synthesized compounds on the basis of Prediction of Activity Spectra for Substances (PASS).
Collapse
Affiliation(s)
- Bogumil Brycki
- Laboratory of Microbiocide Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, Poznań 60-780, Poland.
| | - Hanna Koenig
- Laboratory of Microbiocide Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, Poznań 60-780, Poland.
| | - Iwona Kowalczyk
- Laboratory of Microbiocide Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, Poznań 60-780, Poland.
| | - Tomasz Pospieszny
- Laboratory of Microbiocide Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, Poznań 60-780, Poland.
| |
Collapse
|