1
|
Wang JZ, Li XY, Zhang M, Xiao Y, Chen L, Deng MY, Huang S, Zhou XL. Synthesis and biological evaluation of lycoctonine derivatives with cardiotonic and calcium channels inhibitory activities. Bioorg Chem 2024; 146:107297. [PMID: 38503027 DOI: 10.1016/j.bioorg.2024.107297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
In our previous study, a screening of a variety of lycotonine-type diterpenoid alkaloids were screened for cardiotonic activity revealed that lycoctonine had moderate cardiac effect. In this study, a series of structurally diverse of lycoctonine were synthesized by modifying on B-ring, D-ring, E-ring, F-ring, N-atom or salt formation on lycoctonine skeleton. We evaluated the cardiotonic activity of the derivatives by isolated frog heart, aiming to identify some compounds with significantly enhanced cardiac effects, among which compound 27 with a N-isobutyl group emerged as the most promising cardiotonic candidate. Furthermore, the cardiotonic mechanism of compound 27 was preliminarily investigated. The result suggested that the cardiotonic effect of compound 27 is related to calcium channels. Patch clamp technique confirmed that the compound 27 had inhibitory effects on CaV1.2 and CaV3.2, with inhibition rates of 78.52 % ± 2.26 % and 79.05 % ± 1.59 % at the concentration of 50 μM, respectively. Subsequently, the protective effect of 27 on H9c2 cells injury induced by cobalt chloride was tested. In addition, compound 27 can alleviate CoCl2-induced myocardial injury by alleviating calcium overload. These findings suggest that compound 27 was a new structural derived from lycoctonine, which may serve as a new lead compound for the treatment of heart failure.
Collapse
Affiliation(s)
- Jian-Zhu Wang
- School of Life Science and Engineering Southwest, Jiaotong University, Chengdu, Sichuan, PR China
| | - Xiang-Yu Li
- School of Life Science and Engineering Southwest, Jiaotong University, Chengdu, Sichuan, PR China
| | - Min Zhang
- School of Life Science and Engineering Southwest, Jiaotong University, Chengdu, Sichuan, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China
| | - Yan Xiao
- School of Life Science and Engineering Southwest, Jiaotong University, Chengdu, Sichuan, PR China
| | - Lin Chen
- School of Life Science and Engineering Southwest, Jiaotong University, Chengdu, Sichuan, PR China
| | - Meng-Yi Deng
- School of Life Science and Engineering Southwest, Jiaotong University, Chengdu, Sichuan, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China
| | - Shuai Huang
- School of Life Science and Engineering Southwest, Jiaotong University, Chengdu, Sichuan, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China.
| | - Xian-Li Zhou
- School of Life Science and Engineering Southwest, Jiaotong University, Chengdu, Sichuan, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China.
| |
Collapse
|
2
|
Wang X, Geng S, Meng J, Kang N, Liu X, Xu Y, Lyu H, Xu Y, Xu X, Song X, Zhang B, Wang X, Nuerbulati N, Zhang Z, Zhai D, Mao X, Sun R, Wang X, Wang R, Guo J, Chen SW, Zhou X, Xia T, Qi H, Hu X, Shi Y. Foxp3-mediated blockage of ryanodine receptor 2 underlies contact-based suppression by regulatory T cells. J Clin Invest 2023; 133:e163470. [PMID: 38099494 PMCID: PMC10721146 DOI: 10.1172/jci163470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/10/2023] [Indexed: 12/18/2023] Open
Abstract
The suppression mechanism of Tregs remains an intensely investigated topic. As our focus has shifted toward a model centered on indirect inhibition of DCs, a universally applicable effector mechanism controlled by the transcription factor forkhead box P3 (Foxp3) expression has not been found. Here, we report that Foxp3 blocked the transcription of ER Ca2+-release channel ryanodine receptor 2 (RyR2). Reduced RyR2 shut down basal Ca2+ oscillation in Tregs, which reduced m-calpain activities that are needed for T cells to disengage from DCs, suggesting a persistent blockage of DC antigen presentation. RyR2 deficiency rendered the CD4+ T cell pool immune suppressive and caused it to behave in the same manner as Foxp3+ Tregs in viral infection, asthma, hypersensitivity, colitis, and tumor development. In the absence of Foxp3, Ryr2-deficient CD4+ T cells rescued the systemic autoimmunity associated with scurfy mice. Therefore, Foxp3-mediated Ca2+ signaling inhibition may be a central effector mechanism of Treg immune suppression.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Shuang Geng
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Alberta, Canada
| | - Junchen Meng
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, and
| | - Ning Kang
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Xinyi Liu
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Yanni Xu
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Huiyun Lyu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ying Xu
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Xun Xu
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Xinrong Song
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Bin Zhang
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Xin Wang
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Nuerdida Nuerbulati
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ze Zhang
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Di Zhai
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Xin Mao
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Ruya Sun
- Department of Basic Medical Sciences, School of Medicine, and
| | - Xiaoting Wang
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University and Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Ruiwu Wang
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - S.R. Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Tie Xia
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Hai Qi
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, China
| | - Xiaoyu Hu
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, China
| | - Yan Shi
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Alberta, Canada
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Zaffran S, Kraoua L, Jaouadi H. Calcium Handling in Inherited Cardiac Diseases: A Focus on Catecholaminergic Polymorphic Ventricular Tachycardia and Hypertrophic Cardiomyopathy. Int J Mol Sci 2023; 24:3365. [PMID: 36834774 PMCID: PMC9963263 DOI: 10.3390/ijms24043365] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Calcium (Ca2+) is the major mediator of cardiac contractile function. It plays a key role in regulating excitation-contraction coupling and modulating the systolic and diastolic phases. Defective handling of intracellular Ca2+ can cause different types of cardiac dysfunction. Thus, the remodeling of Ca2+ handling has been proposed to be a part of the pathological mechanism leading to electrical and structural heart diseases. Indeed, to ensure appropriate electrical cardiac conduction and contraction, Ca2+ levels are regulated by several Ca2+-related proteins. This review focuses on the genetic etiology of cardiac diseases related to calcium mishandling. We will approach the subject by focalizing on two clinical entities: catecholaminergic polymorphic ventricular tachycardia (CPVT) as a cardiac channelopathy and hypertrophic cardiomyopathy (HCM) as a primary cardiomyopathy. Further, this review will illustrate the fact that despite the genetic and allelic heterogeneity of cardiac defects, calcium-handling perturbations are the common pathophysiological mechanism. The newly identified calcium-related genes and the genetic overlap between the associated heart diseases are also discussed in this review.
Collapse
Affiliation(s)
- Stéphane Zaffran
- Marseille Medical Genetics, INSERM, Aix Marseille University, U1251 Marseille, France
| | - Lilia Kraoua
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis 1006, Tunisia
| | - Hager Jaouadi
- Marseille Medical Genetics, INSERM, Aix Marseille University, U1251 Marseille, France
| |
Collapse
|
4
|
Alomar FA, Tian C, Bidasee SR, Venn ZL, Schroder E, Palermo NY, AlShabeeb M, Edagwa BJ, Payne JJ, Bidasee KR. HIV-Tat Exacerbates the Actions of Atazanavir, Efavirenz, and Ritonavir on Cardiac Ryanodine Receptor (RyR2). Int J Mol Sci 2022; 24:ijms24010274. [PMID: 36613717 PMCID: PMC9820108 DOI: 10.3390/ijms24010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
The incidence of sudden cardiac death (SCD) in people living with HIV infection (PLWH), especially those with inadequate viral suppression, is high and the reasons for this remain incompletely characterized. The timely opening and closing of type 2 ryanodine receptor (RyR2) is critical for ensuring rhythmic cardiac contraction-relaxation cycles, and the disruption of these processes can elicit Ca2+ waves, ventricular arrhythmias, and SCD. Herein, we show that the HIV protein Tat (HIV-Tat: 0-52 ng/mL) and therapeutic levels of the antiretroviral drugs atazanavir (ATV: 0-25,344 ng/mL), efavirenz (EFV: 0-11,376 ng/mL), and ritonavir (RTV: 0-25,956 ng/mL) bind to and modulate the opening and closing of RyR2. Abacavir (0-14,315 ng/mL), bictegravir (0-22,469 ng/mL), Rilpivirine (0-14,360 ng/mL), and tenofovir disoproxil fumarate (0-18,321 ng/mL) did not alter [3H]ryanodine binding to RyR2. Pretreating RyR2 with low HIV-Tat (14 ng/mL) potentiated the abilities of ATV and RTV to bind to open RyR2 and enhanced their ability to bind to EFV to close RyR2. In silico molecular docking using a Schrodinger Prime protein-protein docking algorithm identified three thermodynamically favored interacting sites for HIV-Tat on RyR2. The most favored site resides between amino acids (AA) 1702-1963; the second favored site resides between AA 467-1465, and the third site resides between AA 201-1816. Collectively, these new data show that HIV-Tat, ATV, EFV, and RTV can bind to and modulate the activity of RyR2 and that HIV-Tat can exacerbate the actions of ATV, EFV, and RTV on RyR2. Whether the modulation of RyR2 by these agents increases the risk of arrhythmias and SCD remains to be explored.
Collapse
Affiliation(s)
- Fadhel A. Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Chengju Tian
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sean R. Bidasee
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zachary L. Venn
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Evan Schroder
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nicholas Y. Palermo
- Vice Chancellor for Research Cores, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohammad AlShabeeb
- Population Health Research Section, King Abdullah International Medical Research Center, King Saudi bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Benson J. Edagwa
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jason J. Payne
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Keshore R. Bidasee
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Environment and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Nebraska Redox Biology Center, Lincoln, NE 68588, USA
- Correspondence: ; Tel.: +402-559-9018; Fax: +402-559-7495
| |
Collapse
|
5
|
Adeliño R, Martínez-Falguera D, Curiel C, Teis A, Marsal R, Rodríguez-Leor O, Prat-Vidal C, Fadeuilhe E, Aranyó J, Revuelta-López E, Sarrias A, Bazan V, Andrés-Cordón JF, Roura S, Villuendas R, Lupón J, Bayes-Genis A, Gálvez-Montón C, Bisbal F. Electrophysiological effects of adipose graft transposition procedure (AGTP) on the post-myocardial infarction scar: A multimodal characterization of arrhythmogenic substrate. Front Cardiovasc Med 2022; 9:983001. [PMID: 36204562 PMCID: PMC9530287 DOI: 10.3389/fcvm.2022.983001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To assess the arrhythmic safety profile of the adipose graft transposition procedure (AGTP) and its electrophysiological effects on post-myocardial infarction (MI) scar. Background Myocardial repair is a promising treatment for patients with MI. The AGTP is a cardiac reparative therapy that reduces infarct size and improves cardiac function. The impact of AGTP on arrhythmogenesis has not been addressed. Methods MI was induced in 20 swine. Contrast-enhanced magnetic resonance (ce-MRI), electrophysiological study (EPS), and left-ventricular endocardial high-density mapping were performed 15 days post-MI. Animals were randomized 1:1 to AGTP or sham-surgery group and monitored with ECG-Holter. Repeat EPS, endocardial mapping, and ce-MRI were performed 30 days post-intervention. Myocardial SERCA2, Connexin-43 (Cx43), Ryanodine receptor-2 (RyR2), and cardiac troponin-I (cTnI) gene and protein expression were evaluated. Results The AGTP group showed a significant reduction of the total infarct scar, border zone and dense scar mass by ce-MRI (p = 0.04), and a decreased total scar and border zone area in bipolar voltage mapping (p < 0.001). AGTP treatment significantly reduced the area of very-slow conduction velocity (<0.2 m/s) (p = 0.002), the number of deceleration zones (p = 0.029), and the area of fractionated electrograms (p = 0.005). No differences were detected in number of induced or spontaneous ventricular arrhythmias at EPS and Holter-monitoring. SERCA2, Cx43, and RyR2 gene expression were decreased in the infarct core of AGTP-treated animals (p = 0.021, p = 0.018, p = 0.051, respectively). Conclusion AGTP is a safe reparative therapy in terms of arrhythmic risk and provides additional protective effect against adverse electrophysiological remodeling in ischemic heart disease.
Collapse
Affiliation(s)
- Raquel Adeliño
- ICREC Research Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
| | - Daina Martínez-Falguera
- ICREC Research Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Carolina Curiel
- Boston Scientific Department, Barcelona Delegation, Barcelona, Spain
| | - Albert Teis
- ICREC Research Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Roger Marsal
- Boston Scientific Department, Barcelona Delegation, Barcelona, Spain
| | - Oriol Rodríguez-Leor
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Prat-Vidal
- ICREC Research Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
| | - Edgar Fadeuilhe
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Júlia Aranyó
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Elena Revuelta-López
- ICREC Research Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Axel Sarrias
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Víctor Bazan
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain
| | | | - Santiago Roura
- ICREC Research Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Roger Villuendas
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Lupón
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Can Ruti Campus, Autonomous University of Barcelona, Barcelona, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Can Ruti Campus, Autonomous University of Barcelona, Barcelona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Carolina Gálvez-Montón,
| | - Felipe Bisbal
- ICREC Research Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Carolina Gálvez-Montón,
| |
Collapse
|
6
|
Abstract
The global burden caused by cardiovascular disease is substantial, with heart disease representing the most common cause of death around the world. There remains a need to develop better mechanistic models of cardiac function in order to combat this health concern. Heart rhythm disorders, or arrhythmias, are one particular type of disease which has been amenable to quantitative investigation. Here we review the application of quantitative methodologies to explore dynamical questions pertaining to arrhythmias. We begin by describing single-cell models of cardiac myocytes, from which two and three dimensional models can be constructed. Special focus is placed on results relating to pattern formation across these spatially-distributed systems, especially the formation of spiral waves of activation. Next, we discuss mechanisms which can lead to the initiation of arrhythmias, focusing on the dynamical state of spatially discordant alternans, and outline proposed mechanisms perpetuating arrhythmias such as fibrillation. We then review experimental and clinical results related to the spatio-temporal mapping of heart rhythm disorders. Finally, we describe treatment options for heart rhythm disorders and demonstrate how statistical physics tools can provide insights into the dynamics of heart rhythm disorders.
Collapse
Affiliation(s)
- Wouter-Jan Rappel
- Department of Physics, University of California San Diego, La Jolla, CA 92037
| |
Collapse
|
7
|
Hadiatullah H, He Z, Yuchi Z. Structural Insight Into Ryanodine Receptor Channelopathies. Front Pharmacol 2022; 13:897494. [PMID: 35677449 PMCID: PMC9168041 DOI: 10.3389/fphar.2022.897494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
The ryanodine receptors (RyRs) are large cation-selective ligand-gated channels that are expressed in the sarcoplasmic reticulum (SR) membrane. They mediate the controlled release of Ca2+ from SR and play an important role in many cellular processes. The mutations in RyRs are associated with several skeletal muscle and cardiac conditions, including malignant hyperthermia (MH), central core disease (CCD), catecholaminergic polymorphic ventricular tachycardia (CPVT), and arrhythmogenic right ventricular dysplasia (ARVD). Recent breakthroughs in structural biology including cryo-electron microscopy (EM) and X-ray crystallography allowed the determination of a number of near-atomic structures of RyRs, including wildtype and mutant structures as well as the structures in complex with different modulating molecules. This allows us to comprehend the physiological gating and regulatory mechanisms of RyRs and the underlying pathological mechanisms of the disease-causing mutations. In this review, based on the insights gained from the available high-resolution structures of RyRs, we address several questions: 1) what are the gating mechanisms of different RyR isoforms; 2) how RyRs are regulated by multiple channel modulators, including ions, small molecules, and regulatory proteins; 3) how do disease-causing mutations affect the structure and function of RyRs; 4) how can these structural information aid in the diagnosis of the related diseases and the development of pharmacological therapies.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao He
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Zhiguang Yuchi,
| |
Collapse
|
8
|
Koniari I, Artopoulou E, Velissaris D, Ainslie M, Mplani V, Karavasili G, Kounis N, Tsigkas G. Biomarkers in the clinical management of patients with atrial fibrillation and heart failure. J Geriatr Cardiol 2021; 18:908-951. [PMID: 34908928 PMCID: PMC8648548 DOI: 10.11909/j.issn.1671-5411.2021.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Atrial fibrillation (AF) and heart failure (HF) are two cardiovascular diseases with an increasing prevalence worldwide. These conditions share common pathophysiologiesand frequently co-exit. In fact, the occurrence of either condition can 'cause' the development of the other, creating a new patient group that demands different management strategies to that if they occur in isolation. Regardless of the temproral association of the two conditions, their presence is linked with adverse cardiovascular outcomes, increased rate of hospitalizations, and increased economic burden on healthcare systems. The use of low-cost, easily accessible and applicable biomarkers may hasten the correct diagnosis and the effective treatment of AF and HF. Both AF and HF effect multiple physiological pathways and thus a great number of biomarkers can be measured that potentially give the clinician important diagnostic and prognostic information. These will then guide patient centred therapeutic management. The current biomarkers that offer potential for guiding therapy, focus on the physiological pathways of miRNA, myocardial stretch and injury, oxidative stress, inflammation, fibrosis, coagulation and renal impairment. Each of these has different utility in current clinincal practice.
Collapse
Affiliation(s)
- Ioanna Koniari
- Manchester Heart Institute, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Eleni Artopoulou
- Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | | | - Mark Ainslie
- Manchester Heart Institute, Manchester University Foundation Trust, Manchester, United Kingdom
- Division of Cardiovascular Sciences, University of Manchester
| | - Virginia Mplani
- Department of Cardiology, University Hospital of Patras, Patras, Greece
| | - Georgia Karavasili
- Manchester Heart Institute, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Nicholas Kounis
- Department of Cardiology, University Hospital of Patras, Patras, Greece
| | - Grigorios Tsigkas
- Department of Cardiology, University Hospital of Patras, Patras, Greece
| |
Collapse
|
9
|
Pelletti G, Leone O, Gavelli S, Rossi C, Foà A, Agostini V, Pelotti S. Sudden Unexpected Death after a mild trauma: The complex forensic interpretation of cardiac and genetic findings. Forensic Sci Int 2021; 328:111004. [PMID: 34597909 DOI: 10.1016/j.forsciint.2021.111004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/20/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
A 55-year-old man affected by a psychotic disorder suddenly died during a quarrel with his father. The autopsy excluded traumatic causes of death, and the cardiac examination identified a severe cardiomegaly with biventricular dilatation of very likely multifactorial origin. Toxicological and pharmacogenetic analyses excluded a fatal intoxication and identified the presence of the antipsychotic drug fluphenazine in the therapeutic range in a normal metabolizer. The screening for genetic variations highlighted a novel heterozygous single-nucleotide variant in the exon 36: c 0.4750C>A (p.Pro1584Thr) of the Ryanodine Receptor Type 2 (RYR2) gene. The mutation detected can be classified as Likely Pathogenic according to the American College of Medical Genetics and Genomics (ACMG) criteria. RYR2 variation has been associated to catecholaminergic polymorphic ventricular tachycardia (CPVT), a disease currently recognized as one of the most malignant cardiac channelopathies, expressed mostly in young patients, normally in the absence of structural heart disease. The victim late middle age, compared to juvenile onset of CPVT reported in literature, his clinical history, his structurally altered heart, circumstances at death and the absence of phenotype-related variations of dilated cardiomyopathy genes, suggested that the fatal arrhythmia could have been caused by an acquired form of dilated cardiopathy/cardiomyopathy. However, the contribution of the genetic variant to death cannot be completely ruled out, since the significance of a VUS or of a novel variant depends on the data available at the time of investigation, and should be periodically evaluated. We discuss the contribution of the structural alteration and of the variant detected, as well as the role of the molecular autopsy in forensic examination, which can make a significant contribution for inferring both cause and manner of death.
Collapse
Affiliation(s)
- Guido Pelletti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Ornella Leone
- Cardiovascular Pathology Unit, Division of Pathology, IRCCS S.Orsola Hospital and University of Bologna, Bologna, Italy.
| | - Simone Gavelli
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Cesare Rossi
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Alberto Foà
- Cardiology Unit, Department of Experimental Diagnostic and Specialty Medicine, IRCCS S. Orsola Hospital and University of Bologna, Bologna, Italy.
| | - Valentina Agostini
- Cardiovascular Pathology Unit, Division of Pathology, IRCCS S.Orsola Hospital and University of Bologna, Bologna, Italy.
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
10
|
Myospryn deficiency leads to impaired cardiac structure and function and schizophrenia-associated symptoms. Cell Tissue Res 2021; 385:675-696. [PMID: 34037836 DOI: 10.1007/s00441-021-03447-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/02/2021] [Indexed: 12/25/2022]
Abstract
The desmin-associated protein myospryn, encoded by the cardiomyopathy-associated gene 5 (CMYA5), is a TRIM-like protein associated to the BLOC-1 (Biogenesis of Lysosomes Related Organelles Complex 1) protein dysbindin. Human myospryn mutations are linked to both cardiomyopathy and schizophrenia; however, there is no evidence of a direct causative link of myospryn to these diseases. Therefore, we sought to unveil the role of myospryn in heart and brain. We have genetically inactivated the myospryn gene by homologous recombination and demonstrated that myospryn null hearts have dilated phenotype and compromised cardiac function. Ultrastructural analyses revealed that the sarcomere organization is not obviously affected; however, intercalated disk (ID) integrity is impaired, along with mislocalization of ID and sarcoplasmic reticulum (SR) protein components. Importantly, cardiac and skeletal muscles of myospryn null mice have severe mitochondrial defects with abnormal internal vacuoles and extensive cristolysis. In addition, swollen SR and T-tubules often accompany the mitochondrial defects, strongly implying a potential link of myospryn together with desmin to SR- mitochondrial physical and functional cross-talk. Furthermore, given the reported link of human myospryn mutations to schizophrenia, we performed behavioral studies, which demonstrated that myospryn-deficient male mice display disrupted startle reactivity and prepulse inhibition, asocial behavior, decreased exploratory behavior, and anhedonia. Brain neurochemical and ultrastructural analyses revealed prefrontal-striatal monoaminergic neurotransmitter defects and ultrastructural degenerative aberrations in cerebellar cytoarchitecture, respectively, in myospryn-deficient mice. In conclusion, myospryn is essential for both cardiac and brain structure and function and its deficiency leads to cardiomyopathy and schizophrenia-associated symptoms.
Collapse
|
11
|
Touat-Hamici Z, Blancard M, Ma R, Lin L, Iddir Y, Denjoy I, Leenhardt A, Yuchi Z, Guicheney P. A SPRY1 domain cardiac ryanodine receptor variant associated with short-coupled torsade de pointes. Sci Rep 2021; 11:5243. [PMID: 33664309 PMCID: PMC7970841 DOI: 10.1038/s41598-021-84373-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic ventricular fibrillation (IVF) causes sudden death in young adult patients without structural or ischemic heart disease. Most IVF cases are sporadic and some patients present with short-coupled torsade de pointes, the genetics of which are poorly understood. A man who had a first syncope at the age of 35 presented with frequent short-coupled premature ventricular beats with bursts of polymorphic ventricular tachycardia and then died suddenly. By exome sequencing, we identified three rare variants: p.I784F in the SPRY1 of the ryanodine receptor 2 (RyR2), p.A96S in connexin 40 (Cx40), reported to affect electrical coupling and cardiac conduction, and a nonsense p.R244X in the cardiac-specific troponin I-interacting kinase (TNNI3K). We assessed intracellular Ca2+ handling in WT and mutant human RYR2 transfected HEK293 cells by fluorescent microscopy and an enhanced store overload-induced Ca2+ release in response to cytosolic Ca2+ was observed in RyR2-I784F cells. In addition, crystal structures and thermal melting temperatures revealed a conformational change in the I784F-SPRY1 domain compared to the WT-domain. The novel RyR2-I784F variant in SPRY1 domain causes a leaky channel under non-stress conditions. The presence of several variants affecting Ca2+ handling and cardiac conduction suggests a possible oligogenic origin for the ectopies originating from Purkinje fibres.
Collapse
Affiliation(s)
- Zahia Touat-Hamici
- INSERM, UMRS 1166, Faculté de Médecine Sorbonne-Université, Unité de Recherche sur les Maladies Cardiovasculaires et Métaboliques, 91, boulevard de l'Hôpital, 75013, Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Malorie Blancard
- INSERM, UMRS 1166, Faculté de Médecine Sorbonne-Université, Unité de Recherche sur les Maladies Cardiovasculaires et Métaboliques, 91, boulevard de l'Hôpital, 75013, Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Paris, France
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ruifang Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yasmine Iddir
- INSERM, UMRS 1166, Faculté de Médecine Sorbonne-Université, Unité de Recherche sur les Maladies Cardiovasculaires et Métaboliques, 91, boulevard de l'Hôpital, 75013, Paris, France
- Département d'Oncologie Pédiatrique Laboratoire RTOP «Recherche Translationnelle en Oncologie Pédiatrique»-INSERM U830, Institut Curie, Paris, France
| | - Isabelle Denjoy
- Département de Cardiologie et Centre de Référence des Maladies Cardiaques Héréditaires, AP-HP, Hôpital Bichat, 75018, Paris, France
- Université de Paris, INSERM, U1166, 75013, Paris, France
| | - Antoine Leenhardt
- Département de Cardiologie et Centre de Référence des Maladies Cardiaques Héréditaires, AP-HP, Hôpital Bichat, 75018, Paris, France
- Université de Paris, INSERM, U1166, 75013, Paris, France
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Pascale Guicheney
- INSERM, UMRS 1166, Faculté de Médecine Sorbonne-Université, Unité de Recherche sur les Maladies Cardiovasculaires et Métaboliques, 91, boulevard de l'Hôpital, 75013, Paris, France.
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Paris, France.
| |
Collapse
|
12
|
Stress-driven cardiac calcium mishandling via a kinase-to-kinase crosstalk. Pflugers Arch 2021; 473:363-375. [PMID: 33590296 PMCID: PMC7940337 DOI: 10.1007/s00424-021-02533-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 01/25/2023]
Abstract
Calcium homeostasis in the cardiomyocyte is critical to the regulation of normal cardiac function. Abnormal calcium dynamics such as altered uptake by the sarcoplasmic reticulum (SR) Ca2+-ATPase and increased diastolic SR calcium leak are involved in the development of maladaptive cardiac remodeling under pathological conditions. Ca2+/calmodulin-dependent protein kinase II-δ (CaMKIIδ) is a well-recognized key molecule in calcium dysregulation in cardiomyocytes. Elevated cellular stress is known as a common feature during pathological remodeling, and c-jun N-terminal kinase (JNK) is an important stress kinase that is activated in response to intrinsic and extrinsic stress stimuli. Our lab recently identified specific actions of JNK isoform 2 (JNK2) in CaMKIIδ expression, activation, and CaMKIIδ-dependent SR Ca2+ mishandling in the stressed heart. This review focuses on the current understanding of cardiac SR calcium handling under physiological and pathological conditions as well as the newly identified contribution of the stress kinase JNK2 in CaMKIIδ-dependent SR Ca2+ abnormal mishandling. The new findings identifying dual roles of JNK2 in CaMKIIδ expression and activation are also discussed in this review.
Collapse
|
13
|
Mollenhauer M, Mehrkens D, Klinke A, Lange M, Remane L, Friedrichs K, Braumann S, Geißen S, Simsekyilmaz S, Nettersheim FS, Lee S, Peinkofer G, Geisler AC, Geis B, Schwoerer AP, Carrier L, Freeman BA, Dewenter M, Luo X, El-Armouche A, Wagner M, Adam M, Baldus S, Rudolph V. Nitro-fatty acids suppress ischemic ventricular arrhythmias by preserving calcium homeostasis. Sci Rep 2020; 10:15319. [PMID: 32948795 PMCID: PMC7501300 DOI: 10.1038/s41598-020-71870-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/22/2020] [Indexed: 12/01/2022] Open
Abstract
Nitro-fatty acids are electrophilic anti-inflammatory mediators which are generated during myocardial ischemic injury. Whether these species exert anti-arrhythmic effects in the acute phase of myocardial ischemia has not been investigated so far. Herein, we demonstrate that pretreatment of mice with 9- and 10-nitro-octadec-9-enoic acid (nitro-oleic acid, NO2-OA) significantly reduced the susceptibility to develop acute ventricular tachycardia (VT). Accordingly, epicardial mapping revealed a markedly enhanced homogeneity in ventricular conduction. NO2-OA treatment of isolated cardiomyocytes lowered the number of spontaneous contractions upon adrenergic isoproterenol stimulation and nearly abolished ryanodine receptor type 2 (RyR2)-dependent sarcoplasmic Ca2+ leak. NO2-OA also significantly reduced RyR2-phosphorylation by inhibition of increased CaMKII activity. Thus, NO2-OA might be a novel pharmacological option for the prevention of VT development.
Collapse
Affiliation(s)
- Martin Mollenhauer
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany.
| | - Dennis Mehrkens
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/ Angiology, Herz- Und Diabeteszentrum NRW, Ruhr-Universitaet Bochum, Bad Oeynhausen, Germany
| | - Max Lange
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Lisa Remane
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Kai Friedrichs
- Clinic for General and Interventional Cardiology/ Angiology, Herz- Und Diabeteszentrum NRW, Ruhr-Universitaet Bochum, Bad Oeynhausen, Germany
| | - Simon Braumann
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Simon Geißen
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Sakine Simsekyilmaz
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Felix S Nettersheim
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Samuel Lee
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Gabriel Peinkofer
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Anne C Geisler
- General and Interventional Cardiology University Heart Center Hamburg, University Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bianca Geis
- General and Interventional Cardiology University Heart Center Hamburg, University Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Alexander P Schwoerer
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg Eppendorf, DZHK (German Centre of Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucie Carrier
- Experimental Pharmacology and Toxicology, University Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthias Dewenter
- Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Heidelberg/Mannheim, Germany
| | - Xiaojing Luo
- Department of Pharmacology and Toxicology, Technische Universitaet Dresden, Dresden, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Technische Universitaet Dresden, Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Technische Universitaet Dresden, Dresden, Germany
- Clinic for Internal Medicine and Cardiology, Heart Center Dresden, Dresden, Germany
| | - Matti Adam
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/ Angiology, Herz- Und Diabeteszentrum NRW, Ruhr-Universitaet Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
14
|
Nikolaienko R, Bovo E, Rebbeck RT, Kahn D, Thomas DD, Cornea RL, Zima AV. The functional significance of redox-mediated intersubunit cross-linking in regulation of human type 2 ryanodine receptor. Redox Biol 2020; 37:101729. [PMID: 32980662 PMCID: PMC7522892 DOI: 10.1016/j.redox.2020.101729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/19/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
The type 2 ryanodine receptor (RyR2) plays a key role in the cardiac intracellular calcium (Ca2+) regulation. We have previously shown that oxidative stress activates RyR2 in rabbit cardiomyocytes by promoting the formation of disulfide bonds between neighboring RyR2 subunits. However, the functional significance of this redox modification for human RyR2 (hRyR2) remains largely unknown. Here, we studied the redox regulation of hRyR2 in HEK293 cells transiently expressing the ryr2 gene. Analysis of hRyR2 cross-linking and of the redox-GFP readout response to diamide oxidation revealed that hRyR2 cysteines involved in the intersubunit cross-linking are highly sensitive to oxidative stress. In parallel experiments, the effect of diamide on endoplasmic reticulum (ER) Ca2+ release was studied in cells co-transfected with hRyR2, ER Ca2+ pump (SERCA2a) and the ER-targeted Ca2+ sensor R-CEPIA1er. Expression of hRyR2 and SERCA2a produced “cardiac-like” Ca2+ waves due to spontaneous hRyR2 activation. Incubation with diamide caused a fast decline of the luminal ER Ca2+ (or ER Ca2+ load) followed by the cessation of Ca2+ waves. The maximal effect of diamide on ER Ca2+ load and Ca2+ waves positively correlates with the maximum level of hRyR2 cross-linking, indicating a functional significance of this redox modification. Furthermore, the level of hRyR2 cross-linking positively correlates with the degree of calmodulin (CaM) dissociation from the hRyR2 complex. In skeletal muscle RyR (RyR1), cysteine 3635 (C3635) is viewed as dominantly responsible for the redox regulation of the channel. Here, we showed that the corresponding cysteine 3602 (C3602) in hRyR2 does not participate in intersubunit cross-linking and plays a limited role in the hRyR2 regulation by CaM during oxidative stress. Collectively, these results suggest that redox-mediated intersubunit cross-linking is an important regulator of hRyR2 function under pathological conditions associated with oxidative stress. Oxidative stress promotes cardiac ryanodine receptor (RyR2) intersubunit crosslinking. Human RyR2 crosslinking promotes Ca leak and calmodulin dissociation. RyR2 C3602 is not involved in crosslinking, slightly affects calmodulin binding. RyR2 crosslinking is an important pathology related RyR2 regulator.
Collapse
Affiliation(s)
- Roman Nikolaienko
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Daniel Kahn
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA.
| |
Collapse
|
15
|
Altered Organelle Calcium Transport in Ovarian Physiology and Cancer. Cancers (Basel) 2020; 12:cancers12082232. [PMID: 32785177 PMCID: PMC7464720 DOI: 10.3390/cancers12082232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium levels have a huge impact on the physiology of the female reproductive system, in particular, of the ovaries. Cytosolic calcium levels are influenced by regulatory proteins (i.e., ion channels and pumps) localized in the plasmalemma and/or in the endomembranes of membrane-bound organelles. Imbalances between plasma membrane and organelle-based mechanisms for calcium regulation in different ovarian cell subtypes are contributing to ovarian pathologies, including ovarian cancer. In this review, we focused our attention on altered calcium transport and its role as a contributor to tumor progression in ovarian cancer. The most important proteins described as contributing to ovarian cancer progression are inositol trisphosphate receptors, ryanodine receptors, transient receptor potential channels, calcium ATPases, hormone receptors, G-protein-coupled receptors, and/or mitochondrial calcium uniporters. The involvement of mitochondrial and/or endoplasmic reticulum calcium imbalance in the development of resistance to chemotherapeutic drugs in ovarian cancer is also discussed, since Ca2+ channels and/or pumps are nowadays regarded as potential therapeutic targets and are even correlated with prognosis.
Collapse
|
16
|
Sarcoplasmic reticulum calcium mishandling: central tenet in heart failure? Biophys Rev 2020; 12:865-878. [PMID: 32696300 DOI: 10.1007/s12551-020-00736-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Excitation-contraction coupling links excitation of the sarcolemmal surface membrane to mechanical contraction. In the heart this link is established via a Ca2+-induced Ca2+ release process, which, following sarcolemmal depolarisation, prompts Ca2+ release from the sarcoplasmic reticulum (SR) though the ryanodine receptor (RyR2). This substantially raises the cytoplasmic Ca2+ concentration to trigger systole. In diastole, Ca2+ is removed from the cytoplasm, primarily via the sarcoplasmic-endoplasmic reticulum Ca2+-dependent ATPase (SERCA) pump on the SR membrane, returning Ca2+ to the SR store. Ca2+ movement across the SR is thus fundamental to the systole/diastole cycle and plays an essential role in maintaining cardiac contractile function. Altered SR Ca2+ homeostasis (due to disrupted Ca2+ release, storage, and reuptake pathways) is a central tenet of heart failure and contributes to depressed contractility, impaired relaxation, and propensity to arrhythmia. This review will focus on the molecular mechanisms that underlie asynchronous Ca2+ cycling around the SR in the failing heart. Further, this review will illustrate that the combined effects of expression changes and disruptions to RyR2 and SERCA2a regulatory pathways are critical to the pathogenesis of heart failure.
Collapse
|
17
|
Role of oxidative stress-related biomarkers in heart failure: galectin 3, α1-antitrypsin and LOX-1: new therapeutic perspective? Mol Cell Biochem 2019; 464:143-152. [DOI: 10.1007/s11010-019-03656-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023]
|
18
|
Basaki M, Tabandeh MR, Aminlari M, Asasi K, Mohsenifard E, Abdi-Hachesoo B. Sequence and expression analysis of cardiac ryanodine receptor 2 in broilers that died from sudden death syndrome. Avian Pathol 2019; 48:444-453. [PMID: 31081346 DOI: 10.1080/03079457.2019.1618439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sudden death syndrome (SDS) is a stress-related disease in broilers with no diagnostic clinical or necropsy findings. SDS is associated with ventricular tachycardia (VT) and ventricular fibrillation (VF); however, its pathogenesis is not precisely described at the molecular level. Dysfunction of ryanodine receptor 2 (RYR2), that controls rapid release of Ca2+ from the sarcoplasmic reticulum (SR) into the cytosol during muscle contraction, has been associated with VT and sudden cardiac death (SCD) in human patients with structurally normal heart, but there is no report describing abnormalities in RYR2 in diseased broilers. In order to advance our knowledge on the molecular mechanisms predisposing broilers to fatal arrhythmia, the present study was conducted to determine the occurrence of possible mutations and changes in the expression level of the chicken RYR2 gene (chRYR2) in broilers that died from SDS. An increase in mRNA expression level and nine novel point mutations in chRYR2 were found in relation to SDS. In conclusion, susceptibility to lethal cardiac arrhythmia in SDS may be associated with specific changes in intracellular Ca2+ cycling components such as RYR2 due to mutation and dysregulation. Finding the probable association of SDS with gene defects can be applied to select for chickens with lower susceptibility to SDS and decrease the poultry industry losses due to SDS mortality. RESEARCH HIGHLIGHTS Investigation of the occurrence of possible mutations and changes in the expression level of chicken RYR2 gene (chRYR2) in broilers that died from SDS. Increase in the mRNA expression level of chRYR2 in relation to SDS. Nine novel point mutations in chRYR2 of broilers that died from SDS. Possible connection between susceptibility to lethal cardiac arrhythmia in SDS and changes in intracellular Ca2+ cycling machinery, such as RYR2, due to mutation and dysregulation.
Collapse
Affiliation(s)
- M Basaki
- Department of Basic Sciences, School of Veterinary Medicine, University of Tabriz , Tabriz , Iran
| | - M R Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz , Ahvaz , Iran
| | - M Aminlari
- Department of Biochemistry, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - K Asasi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - E Mohsenifard
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - B Abdi-Hachesoo
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| |
Collapse
|
19
|
Hidden Complexity in Routine Adult and Pediatric Arrhythmias Interpretation: The Future of Precision Electrocardiology. Card Electrophysiol Clin 2019; 11:391-404. [PMID: 31084858 DOI: 10.1016/j.ccep.2019.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Classic ECG interpretation is based on identification of waveforms and deductive analysis of the electrical events the waveforms represent. The more in depth the understanding of electrophysiologic cellular interactions, the more precise the interpretation of ECG tracing. Surface ECG has limitations; yet, it is accurate in representing myocytes' pathologic behaviors. Recent advances have improved understanding of arrhythmias by reconstructing their mechanisms of induction and maintenance and exploring cellular channel dysfunction. Translating this knowledge to ECG analysis will create the link that allows ECG interpretation to reach the level of precision electrocardiology. This article presents cases illustrating new techniques for electrophysiologists.
Collapse
|
20
|
Potenza DM, Janicek R, Fernandez-Tenorio M, Camors E, Ramos-Mondragón R, Valdivia HH, Niggli E. Phosphorylation of the ryanodine receptor 2 at serine 2030 is required for a complete β-adrenergic response. J Gen Physiol 2018; 151:131-145. [PMID: 30541771 PMCID: PMC6363414 DOI: 10.1085/jgp.201812155] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/12/2018] [Accepted: 10/22/2018] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation is thought to play a role in modulation of the ryanodine receptor 2 channel. Using a S2030A knock-in mouse model, Potenza et al. reveal that phosphorylation of RyR2-S2030 mediates channel regulation during the β-adrenergic response. During physical exercise or stress, the sympathetic system stimulates cardiac contractility via β-adrenergic receptor (β-AR) activation, resulting in protein kinase A (PKA)–mediated phosphorylation of the cardiac ryanodine receptor RyR2. PKA-dependent “hyperphosphorylation” of the RyR2 channel has been proposed as a major impairment that contributes to progression of heart failure. However, the sites of PKA phosphorylation and their phosphorylation status in cardiac diseases are not well defined. Among the known RyR2 phosphorylation sites, serine 2030 (S2030) remains highly controversial as a site of functional impact. We examined the contribution of RyR2-S2030 to Ca2+ signaling and excitation–contraction coupling (ECC) in a transgenic mouse with an ablated RyR2-S2030 phosphorylation site (RyR2-S2030A+/+). We assessed ECC gain by using whole-cell patch–clamp recordings and confocal Ca2+ imaging during β-ARs stimulation with isoproterenol (Iso) and consistent SR Ca2+ loading and L-type Ca2+ current (ICa) triggering. Under these conditions, ECC gain is diminished in mutant compared with WT cardiomyocytes. Resting Ca2+ spark frequency (CaSpF) with Iso is also reduced by mutation of S2030. In permeabilized cells, when SR Ca2+ pump activity is kept constant (using 2D12 antibody against phospholamban), cAMP does not change CaSpF in S2030A+/+ myocytes. Using Ca2+ spark recovery analysis, we found that mutant RyR Ca2+ sensitivity is not enhanced by Iso application, contrary to WT RyRs. Furthermore, ablation of RyR2-S2030 prevents acceleration of Ca2+ waves and increases latency to the first spontaneous Ca2+ release after a train of stimulations during Iso treatment. Together, these results suggest that phosphorylation at S2030 may represent an important step in the modulation of RyR2 activity during β-adrenergic stimulation and a potential target for the development of new antiarrhythmic drugs.
Collapse
Affiliation(s)
| | | | | | - Emmanuel Camors
- Center for Arrhythmia Research, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Roberto Ramos-Mondragón
- Center for Arrhythmia Research, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Héctor H Valdivia
- Department of Medicine, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI.,Center for Arrhythmia Research, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Ernst Niggli
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Nikolaienko R, Bovo E, Zima AV. Redox Dependent Modifications of Ryanodine Receptor: Basic Mechanisms and Implications in Heart Diseases. Front Physiol 2018; 9:1775. [PMID: 30574097 PMCID: PMC6291498 DOI: 10.3389/fphys.2018.01775] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
Heart contraction vitally depends on tightly controlled intracellular Ca regulation. Because contraction is mainly driven by Ca released from the sarcoplasmic reticulum (SR), this organelle plays a particularly important role in Ca regulation. The type two ryanodine receptor (RyR2) is the major SR Ca release channel in ventricular myocytes. Several cardiac pathologies, including myocardial infarction and heart failure, are associated with increased RyR2 activity and diastolic SR Ca leak. It has been suggested that the increased RyR2 activity plays an important role in arrhythmias and contractile dysfunction. Several studies have linked increased SR Ca leak during myocardial infarction and heart failure to the activation of RyR2 in response to oxidative stress. This activation might include direct oxidation of RyR2 as well as indirect activation via phosphorylation or altered interactions with regulatory proteins. Out of ninety cysteine residues per RyR2 subunit, twenty one were reported to be in reduced state that could be potential targets for redox modifications that include S-nitrosylation, S-glutathionylation, and disulfide cross-linking. Despite its clinical significance, molecular mechanisms of RyR dysfunction during oxidative stress are not fully understood. Herein we review the most recent insights into redox-dependent modulation of RyR2 during oxidative stress and heart diseases.
Collapse
Affiliation(s)
- Roman Nikolaienko
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
22
|
Gene Screening of Astrocytoma Grade III Relative to Grade II via Network Analysis: A New Molecular Insight. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2018. [DOI: 10.5812/ijcm.83201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Miyata K, Ohno S, Itoh H, Horie M. Bradycardia Is a Specific Phenotype of Catecholaminergic Polymorphic Ventricular Tachycardia Induced by RYR2 Mutations. Intern Med 2018; 57:1813-1817. [PMID: 29434162 PMCID: PMC6064684 DOI: 10.2169/internalmedicine.9843-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a lethal inherited disease characterized by ventricular arrhythmias induced by physical exercise or emotional stress. The major cause of CPVT is mutations in RYR2, which encodes the cardiac ryanodine receptor channel. Recent advances in sequencing technology have yielded incidental findings of RYR2 variants in other cardiac diseases. Analyzing the characteristics of RYR2 variants related to CPVT will be useful for differentiation from those related to other cardiac diseases. We examined the phenotypic characteristics of patients with RYR2 variants. Methods Seventy-nine probands carrying RYR2 variants whose diagnoses were either CPVT (n=68) or long QT syndrome (LQTS; n=11) were enrolled. We compared the characteristics of the electrocardiogram (ECG) and the location of the RYR2 mutations-N-terminal (NT), central region (CR) or C-terminal (CT)-between the two patient groups. Results Using the ECGs available from 53 probands before β-blocker therapies, we analyzed the heart rates (HRs). CPVT probands showed bradycardia more frequently (25/44; 57%) than LQTS probands (1/9; 11%; p=0.024). In CPVT patients, 20 mutations were located in NT, 25 in CR and 23 in CT. In LQTS patients, 5 mutations were located in NT, 2 in CR and 4 in CT. There were no significant differences in the locations of the RYR2 mutations between the phenotypes. Conclusion Bradycardia was highly correlated with the phenotype of CPVT. When a clinically-diagnosed LQTS patient with bradycardia carries an RYR2 mutation, we should be careful to avoid making a misdiagnosis, as the patient may actually have CPVT.
Collapse
Affiliation(s)
- Kazuaki Miyata
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Japan
- Department of Cardiovascular Medicine, Iga City General Hospital, Japan
| | - Seiko Ohno
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Japan
| | - Hideki Itoh
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Japan
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Japan
| |
Collapse
|
24
|
Whole exome sequencing identified a pathogenic mutation in RYR2 in a Chinese family with unexplained sudden death. J Electrocardiol 2017; 51:309-315. [PMID: 29132927 DOI: 10.1016/j.jelectrocard.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE This study aimed to identify the pathogenic mutation in a Chinese family with unexplained sudden death (USD) or occasional syncope. MATERIALS AND METHODS Whole exome sequencing and target capture sequencing were respectively conducted for two related patients. The genetic data was screened using the 1000 genomes project and SNP database (PubMed), and the identified mutations were assessed for predicted pathogenicity using the SIFT and Polyphen-2 algorithms. RESULTS We identified a heterozygous mutation in the RYR2 gene at c.490C>T (p.P164S), highly conserved across all species, in three family members of USD, syncope and malignant ventricular tachycardias induced by treadmill exercise test, while another heterozygous de novo mutation in SCN5A at c.5576G>A p.R1859H was detected in one family member. Both variants were verified by Sanger sequencing. Importantly, RYR2 p.P164S is associated with the risk of sudden cardiac death, such as in catecholaminergic polymorphic ventricular tachycardia. CONCLUSIONS A pathogenic mutation in RYR2 (p.P164S) is the likely cause of USD in a Chinese family associated with malignant ventricular arrhythmias. Whole exome and target capture sequencing can be useful for discovering the genetic causes of USD.
Collapse
|
25
|
Walweel K, Oo YW, Laver DR. The emerging role of calmodulin regulation of RyR2 in controlling heart rhythm, the progression of heart failure and the antiarrhythmic action of dantrolene. Clin Exp Pharmacol Physiol 2017; 44:135-142. [PMID: 27626620 DOI: 10.1111/1440-1681.12669] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/27/2016] [Accepted: 09/09/2016] [Indexed: 11/28/2022]
Abstract
Cardiac output and rhythm depend on the release and the take-up of calcium from the sarcoplasmic reticulum (SR). Excessive diastolic calcium leak from the SR due to dysfunctional calcium release channels (RyR2) contributes to the formation of delayed after-depolarizations, which underlie the fatal arrhythmias that occur in heart failure and inherited syndromes. Calmodulin (CaM) is a calcium-binding protein that regulates target proteins and acts as a calcium sensor. CaM is comprised of two calcium-binding EF-hand domains and a flexible linker. CaM is an accessory protein that partially inhibits RyR2 channel activity. CaM is critical for normal cardiac function, and altered CaM binding and efficacy may contribute to defects in SR calcium release. The present paper reviews CaM binding to RyR2 and how it regulates RyR2 channel activity. It then goes on to review how mutations in the CaM amino acid sequence give rise to inherited syndromes such as Catecholaminergic Polymorphic Ventricular Tachychardia (CPVT) and long QT syndrome (LQTS). In addition, the role of reduced CaM binding to RyR2 that results from RyR2 phosphorylation or from oxidation of either RyR2 or CaM contributes to the progression of heart failure is reviewed. Finally, this manuscript reviews recent evidence that CaM binding to RyR2 is required for the inhibitory action of a pharmaceutical agent (dantrolene) on RyR2. Dantrolene is a clinically used muscle relaxant that has recently been found to exert antiarrhythmic effects against SR Ca2+ overload arrhythmias.
Collapse
Affiliation(s)
- Kafa Walweel
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia
| | - Ye Win Oo
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia
| | - Derek R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia
| |
Collapse
|
26
|
Mapping Ryanodine Binding Sites in the Pore Cavity of Ryanodine Receptors. Biophys J 2017; 112:1645-1653. [PMID: 28445755 DOI: 10.1016/j.bpj.2017.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/10/2017] [Accepted: 03/21/2017] [Indexed: 02/03/2023] Open
Abstract
Ryanodine (Ryd) irreversibly targets ryanodine receptors (RyRs), a family of intracellular calcium release channels essential for many cellular processes ranging from muscle contraction to learning and memory. Little is known of the atomistic details about how Ryd binds to RyRs. In this study, we used all-atom molecular dynamics simulations with both enhanced and bidirectional sampling to gain direct insights into how Ryd interacts with major residues in RyRs that were experimentally determined to be critical for its binding. We found that the pyrrolic ring of Ryd displays preference for the R4892AGGG-F4921 residues in the cavity of RyR1, which explain the effects of the corresponding mutations in RyR2 in experiments. Particularly, the mutant Q4933A (or Q4863A in RyR2) critical for both the gating and Ryd binding not only has significantly less interaction with Ryd than the wild-type, but also yields more space for Ryd and water molecules in the cavity. These results describe clear binding modes of Ryd in the RyR cavity and offer structural mechanisms explaining functional data collected on RyR blockade.
Collapse
|
27
|
Ryanodine receptors are part of the myospryn complex in cardiac muscle. Sci Rep 2017; 7:6312. [PMID: 28740084 PMCID: PMC5524797 DOI: 10.1038/s41598-017-06395-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/12/2017] [Indexed: 01/28/2023] Open
Abstract
The Cardiomyopathy-associated gene 5 (Cmya5) encodes myospryn, a large tripartite motif (TRIM)-related protein found predominantly in cardiac and skeletal muscle. Cmya5 is an expression biomarker for a number of diseases affecting striated muscle and may also be a schizophrenia risk gene. To further understand the function of myospryn in striated muscle, we searched for additional myospryn paralogs. Here we identify a novel muscle-expressed TRIM-related protein minispryn, encoded by Fsd2, that has extensive sequence similarity with the C-terminus of myospryn. Cmya5 and Fsd2 appear to have originated by a chromosomal duplication and are found within evolutionarily-conserved gene clusters on different chromosomes. Using immunoaffinity purification and mass spectrometry we show that minispryn co-purifies with myospryn and the major cardiac ryanodine receptor (RyR2) from heart. Accordingly, myospryn, minispryn and RyR2 co-localise at the junctional sarcoplasmic reticulum of isolated cardiomyocytes. Myospryn redistributes RyR2 into clusters when co-expressed in heterologous cells whereas minispryn lacks this activity. Together these data suggest a novel role for the myospryn complex in the assembly of ryanodine receptor clusters in striated muscle.
Collapse
|
28
|
Walweel K, Molenaar P, Imtiaz MS, Denniss A, Dos Remedios C, van Helden DF, Dulhunty AF, Laver DR, Beard NA. Ryanodine receptor modification and regulation by intracellular Ca 2+ and Mg 2+ in healthy and failing human hearts. J Mol Cell Cardiol 2017; 104:53-62. [PMID: 28131631 DOI: 10.1016/j.yjmcc.2017.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/01/2017] [Accepted: 01/24/2017] [Indexed: 11/30/2022]
Abstract
RATIONALE Heart failure is a multimodal disorder, of which disrupted Ca2+ homeostasis is a hallmark. Central to Ca2+ homeostasis is the major cardiac Ca2+ release channel - the ryanodine receptor (RyR2) - whose activity is influenced by associated proteins, covalent modification and by Ca2+ and Mg2+. That RyR2 is remodelled and its function disturbed in heart failure is well recognized, but poorly understood. OBJECTIVE To assess Ca2+ and Mg2+ regulation of RyR2 from left ventricles of healthy, cystic fibrosis and failing hearts, and to correlate these functional changes with RyR2 modifications and remodelling. METHODS AND RESULTS The function of RyR2 from left ventricular samples was assessed using lipid bilayer single-channel measurements, whilst RyR2 modification and protein:protein interactions were determined using Western Blots and co-immunoprecipitation. In all failing hearts there was an increase in RyR2 activity at end-diastolic cytoplasmic Ca2+ (100nM), a decreased cytoplasmic [Ca2+] required for half maximal activation (Ka) and a decrease in inhibition by cytoplasmic Mg2+. This was accompanied by significant hyperphosphorylation of RyR2 S2808 and S2814, reduced free thiol content and a reduced interaction with FKBP12.0 and FKBP12.6. Either dephosphorylation of RyR2 using PP1 or thiol reduction using DTT eliminated any significant difference in the activity of RyR2 from healthy and failing hearts. We also report a subgroup of RyR2 in failing hearts that were not responsive to regulation by intracellular Ca2+ or Mg2+. CONCLUSION Despite different aetiologies, disrupted RyR2 Ca2+ sensitivity and biochemical modification of the channel are common constituents of failing heart RyR2 and may underlie the pathological disturbances in intracellular Ca2+ signalling.
Collapse
Affiliation(s)
- K Walweel
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia
| | - P Molenaar
- Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4000, Northside Clinical School, School of Clinical Medicine, University of Queensland and Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, 4032, Australia
| | - M S Imtiaz
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - A Denniss
- Health Research Institute, Faculty of Education Science and Mathematics, University of Canberra, Bruce, ACT 2617, Australia
| | - C Dos Remedios
- Bosch Institute, Discipline of Anatomy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - D F van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia
| | - A F Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, 0200, Australia
| | - D R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia
| | - N A Beard
- Health Research Institute, Faculty of Education Science and Mathematics, University of Canberra, Bruce, ACT 2617, Australia; John Curtin School of Medical Research, Australian National University, Canberra, ACT, 0200, Australia.
| |
Collapse
|
29
|
Modification of distinct ion channels differentially modulates Ca 2+ dynamics in primary cultured rat ventricular cardiomyocytes. Sci Rep 2017; 7:40952. [PMID: 28102360 PMCID: PMC5244425 DOI: 10.1038/srep40952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 01/03/2023] Open
Abstract
Primary cultured cardiomyocytes show spontaneous Ca2+ oscillations (SCOs) which not only govern contractile events, but undergo derangements that promote arrhythmogenesis through Ca2+ -dependent mechanism. We systematically examined influence on SCOs of an array of ion channel modifiers by recording intracellular Ca2+ dynamics in rat ventricular cardiomyocytes using Ca2+ specific fluorescence dye, Fluo-8/AM. Voltage-gated sodium channels (VGSCs) activation elongates SCO duration and reduces SCO frequency while inhibition of VGSCs decreases SCO frequency without affecting amplitude and duration. Inhibition of voltage-gated potassium channel increases SCO duration. Direct activation of L-type Ca2+ channels (LTCCs) induces SCO bursts while suppressing LTCCs decreases SCO amplitude and slightly increases SCO frequency. Activation of ryanodine receptors (RyRs) increases SCO duration and decreases both SCO amplitude and frequency while inhibiting RyRs decreases SCO frequency without affecting amplitude and duration. The potencies of these ion channel modifiers on SCO responses are generally consistent with their affinities in respective targets demonstrating that modification of distinct targets produces different SCO profiles. We further demonstrate that clinically-used drugs that produce Long-QT syndrome including cisapride, dofetilide, sotalol, and quinidine all induce SCO bursts while verapamil has no effect. Therefore, occurrence of SCO bursts may have a translational value to predict cardiotoxicants causing Long-QT syndrome.
Collapse
|
30
|
Bonsu KO, Owusu IK, Buabeng KO, Reidpath DD, Kadirvelu A. Review of novel therapeutic targets for improving heart failure treatment based on experimental and clinical studies. Ther Clin Risk Manag 2016; 12:887-906. [PMID: 27350750 PMCID: PMC4902145 DOI: 10.2147/tcrm.s106065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is a major public health priority due to its epidemiological transition and the world's aging population. HF is typified by continuous loss of contractile function with reduced, normal, or preserved ejection fraction, elevated vascular resistance, fluid and autonomic imbalance, and ventricular dilatation. Despite considerable advances in the treatment of HF over the past few decades, mortality remains substantial. Pharmacological treatments including β-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone antagonists have been proven to prolong the survival of patients with HF. However, there are still instances where patients remain symptomatic, despite optimal use of existing therapeutic agents. This understanding that patients with chronic HF progress into advanced stages despite receiving optimal treatment has increased the quest for alternatives, exploring the roles of additional pathways that contribute to the development and progression of HF. Several pharmacological targets associated with pathogenesis of HF have been identified and novel therapies have emerged. In this work, we review recent evidence from proposed mechanisms to the outcomes of experimental and clinical studies of the novel pharmacological agents that have emerged for the treatment of HF.
Collapse
Affiliation(s)
- Kwadwo Osei Bonsu
- School of Medicine and Health Sciences, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Selangor, Malaysia
- Accident and Emergency Directorate, Komfo Anokye Teaching Hospital, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Isaac Kofi Owusu
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwame Ohene Buabeng
- Department of Clinical and Social Pharmacy, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Daniel Diamond Reidpath
- School of Medicine and Health Sciences, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - Amudha Kadirvelu
- School of Medicine and Health Sciences, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
31
|
Laver DR. Balancing SR Ca(2+) uptake and release in the cycle of heart rhythm. J Physiol 2016; 594:2779-80. [PMID: 27246543 DOI: 10.1113/jp272063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 01/29/2016] [Accepted: 02/09/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- D R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
32
|
Basaki M, Asasi K, Tabandeh MR, Aminlari M. Polymorphism identification and cardiac gene expression analysis of the calsequestrin 2 gene in broiler chickens with sudden death syndrome. Br Poult Sci 2016; 57:151-60. [DOI: 10.1080/00071668.2015.1099615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Weisbrod D, Khun SH, Bueno H, Peretz A, Attali B. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels. Acta Pharmacol Sin 2016; 37:82-97. [PMID: 26725737 PMCID: PMC4722971 DOI: 10.1038/aps.2015.135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022] Open
Abstract
The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.
Collapse
Affiliation(s)
- David Weisbrod
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shiraz Haron Khun
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hanna Bueno
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asher Peretz
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
34
|
Cardiotoxicity screening: a review of rapid-throughput in vitro approaches. Arch Toxicol 2015; 90:1803-16. [PMID: 26676948 DOI: 10.1007/s00204-015-1651-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/18/2015] [Indexed: 01/07/2023]
Abstract
Cardiac toxicity represents one of the leading causes of drug failure along different stages of drug development. Multiple very successful pharmaceuticals had to be pulled from the market or labeled with strict usage warnings due to adverse cardiac effects. In order to protect clinical trial participants and patients, the International Conference on Harmonization published guidelines to recommend that all new drugs to be tested preclinically for hERG (Kv11.1) channel sensitivity before submitting for regulatory reviews. However, extensive studies have demonstrated that measurement of hERG activity has limitations due to the multiple molecular targets of drug compound through which it may mitigate or abolish a potential arrhythmia, and therefore, a model measuring multiple ion channel effects is likely to be more predictive. Several phenotypic rapid-throughput methods have been developed to predict the potential cardiac toxic compounds in the early stages of drug development using embryonic stem cells- or human induced pluripotent stem cell-derived cardiomyocytes. These rapid-throughput methods include microelectrode array-based field potential assay, impedance-based or Ca(2+) dynamics-based cardiomyocytes contractility assays. This review aims to discuss advantages and limitations of these phenotypic assays for cardiac toxicity assessment.
Collapse
|
35
|
Distinctive malfunctions of calmodulin mutations associated with heart RyR2-mediated arrhythmic disease. Biochim Biophys Acta Gen Subj 2015; 1850:2168-76. [PMID: 26164367 DOI: 10.1016/j.bbagen.2015.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/22/2015] [Accepted: 07/02/2015] [Indexed: 01/11/2023]
Abstract
Calmodulin (CaM) is a cytoplasmic calcium sensor that interacts with the cardiac ryanodine receptor (RyR2), a large Ca(2+) channel complex that mediates Ca(2+) efflux from the sarcoplasmic reticulum (SR) to activate cardiac muscle contraction. Direct CaM association with RyR2 is an important physiological regulator of cardiac muscle excitation-contraction coupling and defective CaM-RyR2 protein interaction has been reported in cases of heart failure. Recent genetic studies have identified CaM missense mutations in patients with a history of severe cardiac arrhythmogenic disorders that present divergent clinical features, including catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS) and idiopathic ventricular fibrillation (IVF). Herein, we describe how two CPVT- (N54I & N98S) and three LQTS-associated (D96V, D130G & F142L) CaM mutations result in alteration of their biochemical and biophysical properties. Ca(2+)-binding studies indicate that the CPVT-associated CaM mutations, N54I & N98S, exhibit the same or a 3-fold reduced Ca(2+)-binding affinity, respectively, versus wild-type CaM, whereas the LQTS-associated CaM mutants, D96V, D130G & F142L, display more profoundly reduced Ca(2+)-binding affinity. In contrast, all five CaM mutations confer a disparate RyR2 interaction and modulation of [(3)H]ryanodine binding to RyR2, regardless of CPVT or LQTS association. Our findings suggest that the clinical presentation of CPVT or LQTS associated with these five CaM mutations may involve both altered intrinsic Ca(2+)-binding as well as defective interaction with RyR2.
Collapse
|
36
|
Marcsa B, Dénes R, Vörös K, Rácz G, Sasvári-Székely M, Rónai Z, Törő K, Keszler G. A Common Polymorphism of the Human Cardiac Sodium Channel Alpha Subunit (SCN5A) Gene Is Associated with Sudden Cardiac Death in Chronic Ischemic Heart Disease. PLoS One 2015; 10:e0132137. [PMID: 26146998 PMCID: PMC4492622 DOI: 10.1371/journal.pone.0132137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 06/10/2015] [Indexed: 11/18/2022] Open
Abstract
Cardiac death remains one of the leading causes of mortality worldwide. Recent research has shed light on pathophysiological mechanisms underlying cardiac death, and several genetic variants in novel candidate genes have been identified as risk factors. However, the vast majority of studies performed so far investigated genetic associations with specific forms of cardiac death only (sudden, arrhythmogenic, ischemic etc.). The aim of the present investigation was to find a genetic marker that can be used as a general, powerful predictor of cardiac death risk. To this end, a case-control association study was performed on a heterogeneous cohort of cardiac death victims (n=360) and age-matched controls (n=300). Five single nucleotide polymorphisms (SNPs) from five candidate genes (beta2 adrenergic receptor, nitric oxide synthase 1 adaptor protein, ryanodine receptor 2, sodium channel type V alpha subunit and transforming growth factor-beta receptor 2) that had previously been shown to associate with certain forms of cardiac death were genotyped using sequence-specific real-time PCR probes. Logistic regression analysis revealed that the CC genotype of the rs11720524 polymorphism in the SCN5A gene encoding a subunit of the cardiac voltage-gated sodium channel occurred more frequently in the highly heterogeneous cardiac death cohort compared to the control population (p=0.019, odds ratio: 1.351). A detailed subgroup analysis uncovered that this effect was due to an association of this variant with cardiac death in chronic ischemic heart disease (p=0.012, odds ratio = 1.455). None of the other investigated polymorphisms showed association with cardiac death in this context. In conclusion, our results shed light on the role of this non-coding polymorphism in cardiac death in ischemic cardiomyopathy. Functional studies are needed to explore the pathophysiological background of this association.
Collapse
Affiliation(s)
- Boglárka Marcsa
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Réka Dénes
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Krisztina Vörös
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Gergely Rácz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Mária Sasvári-Székely
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Rónai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Klára Törő
- Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gergely Keszler
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
37
|
Walweel K, Li J, Molenaar P, Imtiaz MS, Quail A, dos Remedios CG, Beard NA, Dulhunty AF, van Helden DF, Laver DR. Differences in the regulation of RyR2 from human, sheep, and rat by Ca²⁺ and Mg²⁺ in the cytoplasm and in the lumen of the sarcoplasmic reticulum. ACTA ACUST UNITED AC 2015; 144:263-71. [PMID: 25156119 PMCID: PMC4144672 DOI: 10.1085/jgp.201311157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiac ryanodine receptors (RyR2) from humans, rats, and sheep show differential sensitivity to calcium and magnesium, with regulation of human RyR2 resembling that of sheep more than that of rat. Regulation of the cardiac ryanodine receptor (RyR2) by intracellular Ca2+ and Mg2+ plays a key role in determining cardiac contraction and rhythmicity, but their role in regulating the human RyR2 remains poorly defined. The Ca2+- and Mg2+-dependent regulation of human RyR2 was recorded in artificial lipid bilayers in the presence of 2 mM ATP and compared with that in two commonly used animal models for RyR2 function (rat and sheep). Human RyR2 displayed cytoplasmic Ca2+ activation (Ka = 4 µM) and inhibition by cytoplasmic Mg2+ (Ki = 10 µM at 100 nM Ca2+) that was similar to RyR2 from rat and sheep obtained under the same experimental conditions. However, in the presence of 0.1 mM Ca2+, RyR2s from human were 3.5-fold less sensitive to cytoplasmic Mg2+ inhibition than those from sheep and rat. The Ka values for luminal Ca2+ activation were similar in the three species (35 µM for human, 12 µM for sheep, and 10 µM for rat). From the relationship between open probability and luminal [Ca2+], the peak open probability for the human RyR2 was approximately the same as that for sheep, and both were ∼10-fold greater than that for rat RyR2. Human RyR2 also showed the same sensitivity to luminal Mg2+ as that from sheep, whereas rat RyR2 was 10-fold more sensitive. In all species, modulation of RyR2 gating by luminal Ca2+ and Mg2+ only occurred when cytoplasmic [Ca2+] was <3 µM. The activation response of RyR2 to luminal and cytoplasmic Ca2+ was strongly dependent on the Mg2+ concentration. Addition of physiological levels (1 mM) of Mg2+ raised the Ka for cytoplasmic Ca2+ to 30 µM (human and sheep) or 90 µM (rat) and raised the Ka for luminal Ca2+ to ∼1 mM in all species. This is the first report of the regulation by Ca2+ and Mg2+ of native RyR2 receptor activity from healthy human hearts.
Collapse
Affiliation(s)
- Kafa Walweel
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales 2308, Australia
| | - Jiao Li
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales 2308, Australia
| | - Peter Molenaar
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4001, Australia School of Medicine, University of Queensland, Brisbane, Queensland 4006, Australia Critical Care Research Group, The Prince Charles Hospital Foundation, Chermside, Queensland 4032, Australia
| | - Mohammad S Imtiaz
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales 2308, Australia
| | - Anthony Quail
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales 2308, Australia
| | - Cris G dos Remedios
- Bosch Institute, Discipline of Anatomy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nicole A Beard
- Faculty of Education, Science, Technology, and Mathematics, University of Canberra, Canberra, Australian Capital Territory 2601, Australia
| | - Angela F Dulhunty
- The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Dirk F van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales 2308, Australia
| | - Derek R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
38
|
Vervliet T, Lemmens I, Vandermarliere E, Decrock E, Ivanova H, Monaco G, Sorrentino V, Kasri NN, Missiaen L, Martens L, De Smedt H, Leybaert L, Parys JB, Tavernier J, Bultynck G. Ryanodine receptors are targeted by anti-apoptotic Bcl-XL involving its BH4 domain and Lys87 from its BH3 domain. Sci Rep 2015; 5:9641. [PMID: 25872771 PMCID: PMC4397538 DOI: 10.1038/srep09641] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 03/13/2015] [Indexed: 11/29/2022] Open
Abstract
Anti-apoptotic B-cell lymphoma 2 (Bcl-2) family members target several intracellular Ca(2+)-transport systems. Bcl-2, via its N-terminal Bcl-2 homology (BH) 4 domain, inhibits both inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), while Bcl-XL, likely independently of its BH4 domain, sensitizes IP3Rs. It remains elusive whether Bcl-XL can also target and modulate RyRs. Here, Bcl-XL co-immunoprecipitated with RyR3 expressed in HEK293 cells. Mammalian protein-protein interaction trap (MAPPIT) and surface plasmon resonance (SPR) showed that Bcl-XL bound to the central domain of RyR3 via its BH4 domain, although to a lesser extent compared to the BH4 domain of Bcl-2. Consistent with the ability of the BH4 domain of Bcl-XL to bind to RyRs, loading the BH4-Bcl-XL peptide into RyR3-overexpressing HEK293 cells or in rat hippocampal neurons suppressed RyR-mediated Ca(2+) release. In silico superposition of the 3D-structures of Bcl-2 and Bcl-XL indicated that Lys87 of the BH3 domain of Bcl-XL could be important for interacting with RyRs. In contrast to Bcl-XL, the Bcl-XL(K87D) mutant displayed lower binding affinity for RyR3 and a reduced inhibition of RyR-mediated Ca(2+) release. These data suggest that Bcl-XL binds to RyR channels via its BH4 domain, but also its BH3 domain, more specific Lys87, contributes to the interaction.
Collapse
Affiliation(s)
- Tim Vervliet
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Irma Lemmens
- University of Gent, Cytokine Receptor Lab, VIB Department of Medical Protein Research, B-9000 Gent, Belgium
| | - Elien Vandermarliere
- University of Gent, Computational Omics and Systems Biology Group, VIB Department of Medical Protein Research, B-9000 Gent, Belgium
| | - Elke Decrock
- University of Gent, Physiology Group, Department of Basic Medical Sciences, B-9000 Gent, Belgium
| | - Hristina Ivanova
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Giovanni Monaco
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Vincenzo Sorrentino
- University of Siena, Molecular Medicine Section, Department of Molecular and Developmental Medicine, and Interuniversitary Institute of Myology, 53100 Siena, Italy
| | - Nael Nadif Kasri
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Department of Human Genetics, 6500HB Nijmegen, The Netherlands
| | - Ludwig Missiaen
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Lennart Martens
- University of Gent, Computational Omics and Systems Biology Group, VIB Department of Medical Protein Research, B-9000 Gent, Belgium
| | - Humbert De Smedt
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Luc Leybaert
- University of Gent, Physiology Group, Department of Basic Medical Sciences, B-9000 Gent, Belgium
| | - Jan B. Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Jan Tavernier
- University of Gent, Cytokine Receptor Lab, VIB Department of Medical Protein Research, B-9000 Gent, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| |
Collapse
|
39
|
Rasheed S, Hashim R, Yan JS. Possible Biomarkers for the Early Detection of HIV-associated Heart Diseases: A Proteomics and Bioinformatics Prediction. Comput Struct Biotechnol J 2015; 13:145-52. [PMID: 25750702 PMCID: PMC4348431 DOI: 10.1016/j.csbj.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 12/30/2014] [Accepted: 02/11/2015] [Indexed: 12/12/2022] Open
Abstract
The frequency of cardiovascular disorders is increasing in HIV-infected individuals despite a significant reduction in the viral load by antiretroviral therapies (ART). Since the CD4 + T-cells are responsible for the viral load as well as immunological responses, we hypothesized that chronic HIV-infection of T-cells produces novel proteins/enzymes that cause cardiac dysfunctions. To identify specific factors that might cause cardiac disorders without the influence of numerous cofactors produced by other pathogenic microorganisms that co-inhabit most HIV-infected individuals, we analyzed genome-wide proteomes of a CD4 + T-cell line at different stages of HIV replication and cell growth over > 6 months. Subtractive analyses of several hundred differentially regulated proteins from HIV-infected and uninfected counterpart cells and comparisons with proteins expressed from the same cells after treating with the antiviral drug Zidovudine/AZT and inhibiting virus replication, identified a well-coordinated network of 12 soluble/diffusible proteins in HIV-infected cells. Functional categorization, bioinformatics and statistical analyses of each protein predicted that the expression of cardiac-specific Ca2 + kinase together with multiple Ca2 + release channels causes a sustained overload of Ca2 + in the heart which induces fetal/cardiac myosin heavy chains (MYH6 and MYH7) and a myosin light-chain kinase. Each of these proteins has been shown to cause cardiac stress, arrhythmia, hypertrophic signaling, cardiomyopathy and heart failure (p = 8 × 10− 11). Translational studies using the newly discovered proteins produced by HIV infection alone would provide additional biomarkers that could be added to the conventional markers for an early diagnosis and/or development of specific therapeutic interventions for heart diseases in HIV-infected individuals.
Collapse
Affiliation(s)
- Suraiya Rasheed
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Cancer Research Laboratory Building, 1303 North Mission Rd, Los Angeles, CA 90033, USA
| | - Rahim Hashim
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Cancer Research Laboratory Building, 1303 North Mission Rd, Los Angeles, CA 90033, USA
| | - Jasper S Yan
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Cancer Research Laboratory Building, 1303 North Mission Rd, Los Angeles, CA 90033, USA
| |
Collapse
|
40
|
Seidel M, Thomas NL, Williams AJ, Lai FA, Zissimopoulos S. Dantrolene rescues aberrant N-terminus intersubunit interactions in mutant pro-arrhythmic cardiac ryanodine receptors. Cardiovasc Res 2014; 105:118-28. [PMID: 25411383 DOI: 10.1093/cvr/cvu240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The ryanodine receptor (RyR2) is an intracellular Ca(2+) release channel essential for cardiac excitation-contraction coupling. Abnormal RyR2 channel function results in the generation of arrhythmias and sudden cardiac death. The present study was undertaken to investigate the mechanistic basis of RyR2 dysfunction in inherited arrhythmogenic cardiac disease. METHODS AND RESULTS We present several lines of complementary evidence, indicating that the arrhythmia-associated L433P mutation disrupts RyR2 N-terminus self-association. A combination of yeast two-hybrid, co-immunoprecipitation, and chemical cross-linking assays collectively demonstrate that a RyR2 N-terminal fragment carrying the L433P mutation displays substantially reduced self-interaction compared with wild type. Moreover, sucrose density gradient centrifugation reveals that the L433P mutation impairs tetramerization of the full-length channel. [(3)H]Ryanodine-binding assays demonstrate that disrupted N-terminal intersubunit interactions within RyR2(L433P) confer an altered sensitivity to Ca(2+) activation. Calcium imaging of RyR2(L433P)-expressing cells reveals substantially prolonged Ca(2+) transients and reduced Ca(2+) store content indicating defective channel closure. Importantly, dantrolene treatment reverses the L433P mutation-induced impairment and restores channel function. CONCLUSION The N-terminus domain constitutes an important structural determinant for the functional oligomerization of RyR2. Our findings are consistent with defective N-terminus self-association as a molecular mechanism underlying RyR2 channel deregulation in inherited arrhythmogenic cardiac disease. Significantly, the therapeutic action of dantrolene may occur via the restoration of normal RyR2 N-terminal intersubunit interactions.
Collapse
Affiliation(s)
- Monika Seidel
- Wales Heart Research Institute, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - N Lowri Thomas
- Wales Heart Research Institute, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Alan J Williams
- Wales Heart Research Institute, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - F Anthony Lai
- Wales Heart Research Institute, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Spyros Zissimopoulos
- Wales Heart Research Institute, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
41
|
Mehra D, Imtiaz MS, van Helden DF, Knollmann BC, Laver DR. Multiple modes of ryanodine receptor 2 inhibition by flecainide. Mol Pharmacol 2014; 86:696-706. [PMID: 25274603 DOI: 10.1124/mol.114.094623] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) causes sudden cardiac death due to mutations in cardiac ryanodine receptors (RyR2), calsequestrin, or calmodulin. Flecainide, a class I antiarrhythmic drug, inhibits Na(+) and RyR2 channels and prevents CPVT. The purpose of this study is to identify inhibitory mechanisms of flecainide on RyR2. RyR2 were isolated from sheep heart, incorporated into lipid bilayers, and investigated by single-channel recording under various activating conditions, including the presence of cytoplasmic ATP (2 mM) and a range of cytoplasmic [Ca(2+)], [Mg(2+)], pH, and [caffeine]. Flecainide applied to either the cytoplasmic or luminal sides of the membrane inhibited RyR2 by two distinct modes: 1) a fast block consisting of brief substate and closed events with a mean duration of ∼1 ms, and 2) a slow block consisting of closed events with a mean duration of ∼1 second. Both inhibition modes were alleviated by increasing cytoplasmic pH from 7.4 to 9.5 but were unaffected by luminal pH. The slow block was potentiated in RyR2 channels that had relatively low open probability, whereas the fast block was unaffected by RyR2 activation. These results show that these two modes are independent mechanisms for RyR2 inhibition, both having a cytoplasmic site of action. The slow mode is a closed-channel block, whereas the fast mode blocks RyR2 in the open state. At diastolic cytoplasmic [Ca(2+)] (100 nM), flecainide possesses an additional inhibitory mechanism that reduces RyR2 burst duration. Hence, multiple modes of action underlie RyR2 inhibition by flecainide.
Collapse
Affiliation(s)
- D Mehra
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (D.M., M.S.I., D.F.v.H., D.R.L.); and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee (B.C.K.)
| | - M S Imtiaz
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (D.M., M.S.I., D.F.v.H., D.R.L.); and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee (B.C.K.)
| | - D F van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (D.M., M.S.I., D.F.v.H., D.R.L.); and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee (B.C.K.)
| | - B C Knollmann
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (D.M., M.S.I., D.F.v.H., D.R.L.); and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee (B.C.K.)
| | - D R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (D.M., M.S.I., D.F.v.H., D.R.L.); and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee (B.C.K.)
| |
Collapse
|
42
|
Fischer TH, Eiringhaus J, Dybkova N, Förster A, Herting J, Kleinwächter A, Ljubojevic S, Schmitto JD, Streckfuß‐Bömeke K, Renner A, Gummert J, Hasenfuss G, Maier LS, Sossalla S. Ca
2+
/calmodulin‐dependent protein kinase
II
equally induces sarcoplasmic reticulum Ca
2+
leak in human ischaemic and dilated cardiomyopathy. Eur J Heart Fail 2014; 16:1292-300. [DOI: 10.1002/ejhf.163] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/28/2014] [Accepted: 08/01/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- Thomas H. Fischer
- Abteilung Kardiologie und Pneumologie/Herzzentrum Georg‐August‐Universität Göttingen Germany
| | - Jörg Eiringhaus
- Abteilung Kardiologie und Pneumologie/Herzzentrum Georg‐August‐Universität Göttingen Germany
| | - Nataliya Dybkova
- Abteilung Kardiologie und Pneumologie/Herzzentrum Georg‐August‐Universität Göttingen Germany
| | - Anna Förster
- Abteilung Kardiologie und Pneumologie/Herzzentrum Georg‐August‐Universität Göttingen Germany
| | - Jonas Herting
- Abteilung Kardiologie und Pneumologie/Herzzentrum Georg‐August‐Universität Göttingen Germany
| | - Astrid Kleinwächter
- Abteilung Kardiologie und Pneumologie/Herzzentrum Georg‐August‐Universität Göttingen Germany
| | - Senka Ljubojevic
- Abteilung Kardiologie Medizinische Universitätsklinik Graz Austria
| | - Jan D. Schmitto
- Abteilung Herz‐, Thorax‐, Gefäß‐ und Transplantationschirurgie Medizinische Hochschule Hannover Germany
| | - Katrin Streckfuß‐Bömeke
- Abteilung Kardiologie und Pneumologie/Herzzentrum Georg‐August‐Universität Göttingen Germany
| | - André Renner
- Abteilung Thorax‐, Herz‐, Gefäßchirurgie Herz‐ und Diabeteszentrum Nordrheinwestfalen Bad Oeynhausen Germany
| | - Jan Gummert
- Abteilung Thorax‐, Herz‐, Gefäßchirurgie Herz‐ und Diabeteszentrum Nordrheinwestfalen Bad Oeynhausen Germany
| | - Gerd Hasenfuss
- Abteilung Kardiologie und Pneumologie/Herzzentrum Georg‐August‐Universität Göttingen Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Goettingen Germany
| | - Lars S. Maier
- Klinik und Poliklinik für Innere Medizin II Uiversitätsklinikum Regensburg Germany
| | - Samuel Sossalla
- Abteilung Kardiologie und Pneumologie/Herzzentrum Georg‐August‐Universität Göttingen Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Goettingen Germany
| |
Collapse
|
43
|
Reed BN, Street SE, Jensen BC. Time and technology will tell: the pathophysiologic basis of neurohormonal modulation in heart failure. Heart Fail Clin 2014; 10:543-57. [PMID: 25217430 DOI: 10.1016/j.hfc.2014.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The central roles of neurohormonal abnormalities in the pathobiology of heart failure have been defined in recent decades. Experiments have revealed both systemic involvement and intricate subcellular regulation by circulating effectors of the sympathetic nervous system, the renin-angiotensin-aldosterone system, and others. Randomized clinical trials substantiated these findings, establishing neurohormonal antagonists as cornerstones of heart failure pharmacotherapy, and occasionally offering further insight on mode of benefit. This review discusses the use of β-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone receptor antagonists in the treatment of heart failure, with particular attention to the pathophysiologic basis and mechanisms of action.
Collapse
Affiliation(s)
- Brent N Reed
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, 20 North Pine Street, Baltimore, MD 21201, USA
| | - Sarah E Street
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Brian C Jensen
- Division of Cardiology and McAllister Heart Institute, University of North Carolina School of Medicine, 160 Dental Circle, Chapel Hill, NC 27599-7075, USA.
| |
Collapse
|
44
|
Arakawa J, Hamabe A, Aiba T, Nagai T, Yoshida M, Touya T, Ishigami N, Hisadome H, Katsushika S, Tabata H, Miyamoto Y, Shimizu W. A novel cardiac ryanodine receptor gene (RyR2) mutation in an athlete with aborted sudden cardiac death: a case of adult-onset catecholaminergic polymorphic ventricular tachycardia. Heart Vessels 2014; 30:835-40. [PMID: 25092222 DOI: 10.1007/s00380-014-0555-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 07/11/2014] [Indexed: 12/26/2022]
Abstract
Sudden cardiac death (SCD) in athletes <35 years of age are mostly due to congenital or acquired cardiac malformations or hypertrophic cardiomyopathy. However, ion channelopathies such as catecholaminergic polymorphic ventricular tachycardia (CPVT) or long-QT syndromes, which are less frequently observed, are also potential pathogenesis of SCD in young athletes. CPVT is an inherited arrhythmia that is induced by physical or emotional stress and may lead to ventricular fibrillation syncope or SCD. Here, we report a case of athlete woman with adult-onset CPVT and aborted SCD who has a novel missense mutation (K4392R) in the cardiac RyR2 gene.
Collapse
Affiliation(s)
- Junko Arakawa
- Department of Cardiology, Japan Self-Defense Forces Central Hospital, Ikejiri 1-2-24, Setagaya-ku, Tokyo, 154-8532, Japan.
- Department of Cardiology, KKR Mishuku Hospital, Tokyo, Japan.
| | - Akira Hamabe
- Department of Cardiology, Japan Self-Defense Forces Central Hospital, Ikejiri 1-2-24, Setagaya-ku, Tokyo, 154-8532, Japan
- Department of Cardiology, KKR Mishuku Hospital, Tokyo, Japan
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tomoo Nagai
- Department of Cardiology, Japan Self-Defense Forces Central Hospital, Ikejiri 1-2-24, Setagaya-ku, Tokyo, 154-8532, Japan
- Department of Cardiology, KKR Mishuku Hospital, Tokyo, Japan
| | - Mikoto Yoshida
- Department of Cardiology, Japan Self-Defense Forces Central Hospital, Ikejiri 1-2-24, Setagaya-ku, Tokyo, 154-8532, Japan
- Department of Cardiology, KKR Mishuku Hospital, Tokyo, Japan
| | - Takumi Touya
- Department of Cardiology, Japan Self-Defense Forces Central Hospital, Ikejiri 1-2-24, Setagaya-ku, Tokyo, 154-8532, Japan
- Department of Cardiology, KKR Mishuku Hospital, Tokyo, Japan
| | - Norio Ishigami
- Department of Cardiology, Japan Self-Defense Forces Central Hospital, Ikejiri 1-2-24, Setagaya-ku, Tokyo, 154-8532, Japan
- Department of Cardiology, KKR Mishuku Hospital, Tokyo, Japan
| | - Hideki Hisadome
- Department of Cardiology, KKR Mishuku Hospital, Tokyo, Japan
| | - Shuichi Katsushika
- Department of Cardiology, Japan Self-Defense Forces Central Hospital, Ikejiri 1-2-24, Setagaya-ku, Tokyo, 154-8532, Japan
- Department of Cardiology, KKR Mishuku Hospital, Tokyo, Japan
| | - Hirotsugu Tabata
- Department of Cardiology, Japan Self-Defense Forces Central Hospital, Ikejiri 1-2-24, Setagaya-ku, Tokyo, 154-8532, Japan
- Department of Cardiology, KKR Mishuku Hospital, Tokyo, Japan
| | - Yoshihiro Miyamoto
- Laboratory of Molecular Genetics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
45
|
Abstract
Oligomerization of all three mammalian ryanodine receptor isoforms, a structural requirement for normal intracellular Ca2+ release channel function, is displayed by the discrete N-terminal domain which assembles into homo- and hetero-tetramers. This is demonstrated in yeast, mammalian cells and native tissue by complementary yeast two-hybrid, chemical cross-linking and co-immunoprecipitation assays. The IP3 (inositol 1,4,5-trisphosphate) receptor N-terminus (residues 1–667) similarly exhibits tetrameric association as indicated by chemical cross-linking and co-immunoprecipitation assays. The presence of either a 15-residue splice insertion or of the cognate ligand IP3 did not affect tetramerization of the IP3 receptor N-terminus. Thus N-terminus tetramerization appears to be an essential intrinsic property that is conserved in both the ryanodine receptor and IP3 receptor families of mammalian intracellular Ca2+ release channels. Intracellular Ca2+ channels are of paramount importance for numerous cellular processes. In the present paper we report on a novel N-terminus intersubunit interaction, an essential structure–function parameter, which is conserved in both families of intracellular Ca2+ channels.
Collapse
|
46
|
Lam AK, Galione A. The endoplasmic reticulum and junctional membrane communication during calcium signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2542-59. [DOI: 10.1016/j.bbamcr.2013.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
|
47
|
Zissimopoulos S, Viero C, Seidel M, Cumbes B, White J, Cheung I, Stewart R, Jeyakumar LH, Fleischer S, Mukherjee S, Thomas NL, Williams AJ, Lai FA. N-terminus oligomerization regulates the function of cardiac ryanodine receptors. J Cell Sci 2013; 126:5042-51. [PMID: 23943880 DOI: 10.1242/jcs.133538] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ryanodine receptor (RyR) is an ion channel composed of four identical subunits mediating calcium efflux from the endo/sarcoplasmic reticulum of excitable and non-excitable cells. We present several lines of evidence indicating that the RyR2 N-terminus is capable of self-association. A combination of yeast two-hybrid screens, co-immunoprecipitation analysis, chemical crosslinking and gel filtration assays collectively demonstrate that a RyR2 N-terminal fragment possesses the intrinsic ability to oligomerize, enabling apparent tetramer formation. Interestingly, N-terminus tetramerization mediated by endogenous disulfide bond formation occurs in native RyR2, but notably not in RyR1. Disruption of N-terminal inter-subunit interactions within RyR2 results in dysregulation of channel activation at diastolic Ca(2+) concentrations from ryanodine binding and single channel measurements. Our findings suggest that the N-terminus interactions mediating tetramer assembly are involved in RyR channel closure, identifying a crucial role for this structural association in the dynamic regulation of intracellular Ca(2+) release.
Collapse
Affiliation(s)
- Spyros Zissimopoulos
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Blayney L, Beck K, MacDonald E, D'Cruz L, Nomikos M, Griffiths J, Thanassoulas A, Nounesis G, Lai FA. ATP interacts with the CPVT mutation-associated central domain of the cardiac ryanodine receptor. Biochim Biophys Acta Gen Subj 2013; 1830:4426-32. [PMID: 23747301 DOI: 10.1016/j.bbagen.2013.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/20/2013] [Accepted: 05/29/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND This study was designed to determine whether the cardiac ryanodine receptor (RyR2) central domain, a region associated with catecholamine polymorphic ventricular tachycardia (CPVT) mutations, interacts with the RyR2 regulators, ATP and the FK506-binding protein 12.6 (FKBP12.6). METHODS Wild-type (WT) RyR2 central domain constructs (G(2236)to G(2491)) and those containing the CPVT mutations P2328S and N2386I, were expressed as recombinant proteins. Folding and stability of the proteins were examined by circular dichroism (CD) spectroscopy and guanidine hydrochloride chemical denaturation. RESULTS The far-UV CD spectra showed a soluble stably-folded protein with WT and mutant proteins exhibiting a similar secondary structure. Chemical denaturation analysis also confirmed a stable protein for both WT and mutant constructs with similar two-state unfolding. ATP and caffeine binding was measured by fluorescence spectroscopy. Both ATP and caffeine bound with an EC50 of ~200-400μM, and the affinity was the same for WT and mutant constructs. Sequence alignment with other ATP binding proteins indicated the RyR2 central domain contains the signature of an ATP binding pocket. Interaction of the central domain with FKBP12.6 was tested by glutaraldehyde cross-linking and no association was found. CONCLUSIONS The RyR2 central domain, expressed as a 'correctly' folded recombinant protein, bound ATP in accord with bioinformatics evidence of conserved ATP binding sequence motifs. An interaction with FKBP12.6 was not evident. CPVT mutations did not disrupt the secondary structure nor binding to ATP. GENERAL SIGNIFICANCE Part of the RyR2 central domain CPVT mutation cluster, can be expressed independently with retention of ATP binding.
Collapse
Affiliation(s)
- Lynda Blayney
- Institute of Molecular and Experimental Medicine, Cardiff University, Cardiff, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wenxin-Keli Regulates the Calcium/Calmodulin-Dependent Protein Kinase II Signal Transduction Pathway and Inhibits Cardiac Arrhythmia in Rats with Myocardial Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:464508. [PMID: 23781262 PMCID: PMC3679760 DOI: 10.1155/2013/464508] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/21/2013] [Indexed: 12/19/2022]
Abstract
Wenxin-Keli (WXKL) is a Chinese herbal compound reported to be of benefit in the treatment of cardiac arrhythmia, cardiac inflammation, and heart failure. Amiodarone is a noncompetitive inhibitor of the α- and β-adrenergic receptors and prevents calcium influx in the slow-response cells of the sinoatrial and atrioventricular nodes. Overexpression of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in transgenic mice results in heart failure and arrhythmias. We hypothesised that administration of WXKL and amiodarone can reduce the incidence of arrhythmias by regulating CaMKII signal transduction. A total of 100 healthy Sprague Dawley rats were used in the study. The rats were randomly divided into four groups (a sham group, a myocardial infarction (MI) group, a WXKL-treated group, and an amiodarone-treated group). A myocardial infarction model was established in these rats by ligating the left anterior descending coronary artery for 4 weeks. Western blotting was used to assess CaMKII, p-CaMKII (Thr-286), PLB, p-PLB (Thr-17), RYR2, and FK binding protein 12.6 (FKBP12.6) levels. The Ca2+ content in the sarcoplasmic reticulum (SR) and the calcium transient amplitude were studied by confocal imaging using the fluorescent indicator Fura-4. In conclusion, WXKL may inhibit heart failure and cardiac arrhythmias by regulating the CaMKII signal transduction pathway similar to amiodarone.
Collapse
|
50
|
Sacherer M, Sedej S, Wakuła P, Wallner M, Vos MA, Kockskämper J, Stiegler P, Sereinigg M, von Lewinski D, Antoons G, Pieske BM, Heinzel FR. JTV519 (K201) reduces sarcoplasmic reticulum Ca²⁺ leak and improves diastolic function in vitro in murine and human non-failing myocardium. Br J Pharmacol 2013; 167:493-504. [PMID: 22509897 DOI: 10.1111/j.1476-5381.2012.01995.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Ca²⁺ leak from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyR2s) contributes to cardiomyocyte dysfunction. RyR2 Ca²⁺ leak has been related to RyR2 phosphorylation. In these conditions, JTV519 (K201), a 1,4-benzothiazepine derivative and multi-channel blocker, stabilizes RyR2s and decrease SR Ca²⁺ leak. We investigated whether JTV519 stabilizes RyR2s without increasing RyR2 phosphorylation in mice and in non-failing human myocardium and explored underlying mechanisms. EXPERIMENTAL APPROACH SR Ca²⁺ leak was induced by ouabain in murine cardiomyocytes. [Ca²⁺]-transients, SR Ca²⁺ load and RyR2-mediated Ca²⁺ leak (sparks/waves) were quantified, with or without JTV519 (1 µmol·L⁻¹). Contribution of Ca²⁺ -/calmodulin-dependent kinase II (CaMKII) was assessed by KN-93 and Western blot (RyR2-Ser(2814) phosphorylation). Effects of JTV519 on contractile force were investigated in non-failing human ventricular trabeculae. KEY RESULTS Ouabain increased systolic and diastolic cytosolic [Ca²⁺](i) , SR [Ca²⁺], and SR Ca²⁺ leak (Ca²⁺ spark (SparkF) and Ca²⁺ wave frequency), independently of CaMKII and RyR-Ser(2814) phosphorylation. JTV519 decreased SparkF but also SR Ca²⁺ load. At matched SR [Ca²⁺], Ca²⁺ leak was significantly reduced by JTV519, but it had no effect on fractional Ca²⁺ release or Ca²⁺ wave propagation velocity. In human muscle, JTV519 was negatively inotropic at baseline but significantly enhanced ouabain-induced force and reduced its deleterious effects on diastolic function. CONCLUSIONS AND IMPLICATIONS JTV519 was effective in reducing SR Ca²⁺ leak by specifically regulating RyR2 opening at diastolic [Ca²⁺](i) in the absence of increased RyR2 phosphorylation at Ser(2814) , extending the potential use of JTV519 to conditions of acute cellular Ca²⁺ overload.
Collapse
Affiliation(s)
- M Sacherer
- Division of Cardiology, Medical University of Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|