1
|
Sakamuru S, Travers J, Klumpp-Thomas C, Huang R, Witt KL, Ferguson SS, Simmons SO, Reif DM, Simeonov A, Xia M. Profiling the Tox21 Compound Library for Their Inhibitory Effects on Cytochrome P450 Enzymes. Int J Mol Sci 2025; 26:4976. [PMID: 40507787 PMCID: PMC12155096 DOI: 10.3390/ijms26114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/15/2025] [Accepted: 05/19/2025] [Indexed: 06/16/2025] Open
Abstract
Cytochrome P450 (CYP) enzymes are membrane-bound hemoproteins crucial for drug and xenobiotic metabolism. While more than 50 CYPs have been identified in humans, the isoforms from CYP1, 2, and 3 families contribute to the metabolism of about 80% of clinically approved drugs. To evaluate the effects of environmental chemicals on the activities of these important CYP enzyme families, we screened the Tox21 10K compound library to identify chemicals that inhibit CYP1A2, 2C9, 2C19, 2D6, and 3A4 enzymes. The data obtained from these five screenings were analyzed to reveal the structural classes responsible for inhibiting multiple and/or selective CYPs. Some known structural compound classes exhibiting pan-CYP inhibition, such as azole fungicides, along with established clinical inhibitors of CYPs, including erythromycin and verapamil inhibiting CYP3A4 and paroxetine and terbinafine inhibiting CYP2D6, were all confirmed in the current study. In addition, some selective CYP inhibitors, previously unknown but with potent activity (IC50 values < 1 µM), were identified. Examples included yohimbine, an indole alkaloid, and loteprednol, a corticosteroid, which showed inhibitory activity in CYP2D6 and 3A4 assays, respectively. These findings suggest that assessment of a candidate compound's impact on CYP function may allow pre-emptive mitigation of potential adverse reactions and toxicity during drug development or toxicological characterization of environmental chemicals.
Collapse
Affiliation(s)
- Srilatha Sakamuru
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA; (S.S.); (J.T.); (C.K.-T.); (R.H.); (A.S.)
| | - Jameson Travers
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA; (S.S.); (J.T.); (C.K.-T.); (R.H.); (A.S.)
| | - Carleen Klumpp-Thomas
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA; (S.S.); (J.T.); (C.K.-T.); (R.H.); (A.S.)
| | - Ruili Huang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA; (S.S.); (J.T.); (C.K.-T.); (R.H.); (A.S.)
| | - Kristine L. Witt
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA (S.S.F.); (D.M.R.)
| | - Stephen S. Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA (S.S.F.); (D.M.R.)
| | - Steven O. Simmons
- Center for Computational Toxicology & Exposure, U.S. Environmental Protection Agency, Durham, NC 27711, USA;
| | - David M. Reif
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA (S.S.F.); (D.M.R.)
| | - Anton Simeonov
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA; (S.S.); (J.T.); (C.K.-T.); (R.H.); (A.S.)
| | - Menghang Xia
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA; (S.S.); (J.T.); (C.K.-T.); (R.H.); (A.S.)
| |
Collapse
|
2
|
Poulter S, Austin N, Watson SP, Bucknell SJ, O'Brien MA, Tolonen A, Lassila T, Stott LA, Mead A, MacSweeney C. Preclinical pharmacokinetics, metabolism, and disposition of NXE0041178, a novel orally bioavailable agonist of the GPR52 receptor with potential for treatment of schizophrenia and related psychiatric disorders. Xenobiotica 2025:1-16. [PMID: 40367121 DOI: 10.1080/00498254.2025.2501593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
The physico-chemical properties, protein binding, metabolism, permeability, transporter interactions, chemical toxicity, and drug-drug interaction potential of the novel GPR52 agonist NXE0041178 were characterised.NXE0041178 demonstrated high cellular permeability, little interaction with efflux transporters P-gp and BCRP, and extensive brain exposure in rodent, consistent with its intended use in CNS disorders.In vivo pharmacokinetic profiling in mouse, rat and monkey demonstrated that NXE0041178 was well-absorbed, with low clearance, a moderate volume-of-distribution and moderate terminal half-life. Oxidative metabolism was the major elimination pathway, with negligible renal or biliary excretion.NXE0041178 displayed good in vitro-to-in vivo correlation in metabolic clearance in preclinical species and low turnover in human in vitro metabolic systems, suggestive of a human pharmacokinetic profile commensurate with once-daily dosing.Early in vitro metabolite identification studies suggested similar metabolic pathways in human and preclinical species, but a distinct metabolic profile in dog.NXE0041178 caused weak heterotropic catalytic activation of CYP3A4, and weak transcriptional induction of CYP3A4 and CYP2B6. No reactive metabolites of NXE0041178 were detected, and no genotoxicity or clinically relevant inhibition of P450 enzymes were observed.These findings extend our knowledge of the preclinical ADME profile of NXE0041178, supporting its continued development.
Collapse
Affiliation(s)
| | | | | | | | | | - Ari Tolonen
- Admescope, Symeres Finland Oy, Oulu, Finland
| | | | | | - Andy Mead
- Nxera Pharma Ltd, Cambridge, United Kingdom
| | | |
Collapse
|
3
|
Hegde P, Rodriguez B, Bell A, Hall SD, Rougée LRA. Improvement in static and dynamic projections of drug-drug interactions caused by cytochrome P4503A time-dependent inhibitors through in vitro allosteric modulation by progesterone. Drug Metab Dispos 2025; 53:100030. [PMID: 40023571 DOI: 10.1016/j.dmd.2024.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/12/2024] [Indexed: 03/04/2025] Open
Abstract
Current drug discovery screens to assess the drug-drug interaction (DDI) risk caused by time-dependent inhibition (TDI) of cytochrome P450 (CYP) 3A4 are known to overpredict or produce false positives that do not translate in vivo. Recent work identified that inclusion of the allosteric modulator progesterone (PGS), at a concentration of 45 μM to human liver microsomal incubations, generated in vitro TDI values that replicated clinical DDI predictions for 2 well established mechanism-based inhibitors. Further application of this approach across a diverse set of compounds was undertaken in this study, with 56 molecules reported in literature as time-dependent inhibitors in vitro tested in the human liver microsomal TDI kinetic assay in the absence and presence of 45 μM PGS. No TDI signal was observed for 15 molecules under control conditions despite literature reports. For the remaining compounds observed to have a TDI signal under control conditions, presence of PGS modified the inactivation efficiency for 36 compounds and eliminated the TDI signal for 5 compounds that were false positives. In vitro kinetic values were incorporated into mechanistic static and dynamic physiologically based pharmacokinetic models to project DDIs. TDI parameters established in the presence of PGS decreased the magnitude of overprediction while maintaining a high sensitivity (96% and 100%) for the detection of TDI with improved specificity (69% and 89%) when using mechanistic static and dynamic models, respectively. Inclusion of PGS into in vitro TDI assays provides a simple, rapid, and cost-effective solution for identifying true CYP3A4 TDIs and improving TDI-related DDI predictions. SIGNIFICANCE STATEMENT: The impact of the previously determined optimal concentration of the allosteric modulator progesterone (45 μM) was evaluated across a set of 56 compounds reported to be time-dependent inhibitors in vitro. In vitro generated values were incorporated into mechanistic static and physiologically based pharmacokinetic models to predict extent of drug-drug interactions and compared to clinical reports. Inclusion of progesterone into the assay identified in vitro false positives and improved risk predictions.
Collapse
Affiliation(s)
- Pooja Hegde
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana.
| | - Brianna Rodriguez
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Alec Bell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Stephen D Hall
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Luc R A Rougée
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
4
|
Ryu JH, Yu J, Jeon JS, Jo S, Lee SM, Kim H, Park HJ, Oh SJ, Kim SK. Heterotropic Activation of Cytochrome P450 3A4 by Perillyl Alcohol. Pharmaceutics 2024; 16:1581. [PMID: 39771560 PMCID: PMC11676982 DOI: 10.3390/pharmaceutics16121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Perillyl alcohol (POH), a monoterpene natural product derived from the essential oils of plants such as perilla (Perilla frutescens), is currently in phase I and II clinical trials as a chemotherapeutic agent. In this study, we investigated the effect of POH on cytochrome P450 (CYP) activity for evaluating POH-drug interaction potential. Methods: The investigation was conducted using pooled human liver microsomes (HLMs), recombinant CYP3A4 (rCYP3A4) enzymes, and human pluripotent stem cell-derived hepatic organoids (hHOs) employing liquid chromatography-tandem mass spectrometry. Results: POH inhibited the activities of CYP2A6 and CYP2B6 with Ki of 6.35 and 3.78 μM, respectively, whereas it stimulated CYP3A4 activity in pooled HLMs incubated with midazolam (MDZ). In a direct CYP inhibition assay using HLMs, activities of CYP2C9, CYP2C19, and CYP2E1 were also inhibited by POH, with IC50 values greater than 50 μM, but those of CYP1A2, CYP2C8, CYP2D6, and CYP3A4 (testosterone) were not significantly inhibited. In pooled HLMs, the Vmax/Km value of 1'-hydroxy MDZ, but not that of 4-hydroxy MDZ, was increased 2.7-fold by 100 μM POH compared with that in the absence of POH. Moreover, stimulation of MDZ 1'-hydroxylation by CYP3A4 was observed in hHOs and rCYP3A4 with cytochrome b5 but not rCYP3A4 without cytochrome b5. Furthermore, activation of CYP3A4-mediated metabolism by POH was observed in HLMs incubated with fimasartan but not atorvastatin, buspirone, donepezil, nifedipine, or tadalafil, suggesting a substrate-dependent activation of CYP3A4 by POH. Conclusions: POH inhibits CYP2A6 and CYP2B6, but it activates CYP3A4. These findings underscore the need for further evaluation of the interactions of clinical drugs with POH.
Collapse
Affiliation(s)
- Ji Hyeon Ryu
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (J.H.R.); (J.Y.); (J.S.J.)
- Center for Biomimetic Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; (S.J.); (H.K.); (H.-J.P.)
| | - Jieun Yu
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (J.H.R.); (J.Y.); (J.S.J.)
| | - Jang Su Jeon
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (J.H.R.); (J.Y.); (J.S.J.)
| | - Seongyea Jo
- Center for Biomimetic Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; (S.J.); (H.K.); (H.-J.P.)
| | - Soo Min Lee
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Hyemin Kim
- Center for Biomimetic Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; (S.J.); (H.K.); (H.-J.P.)
| | - Han-Jin Park
- Center for Biomimetic Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; (S.J.); (H.K.); (H.-J.P.)
| | - Soo Jin Oh
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (J.H.R.); (J.Y.); (J.S.J.)
| |
Collapse
|
5
|
Kandel SE, Tooker BC, Lampe JN. Drug metabolism of ciprofloxacin, ivacaftor, and raloxifene by Pseudomonas aeruginosa cytochrome P450 CYP107S1. J Biol Chem 2024; 300:107594. [PMID: 39032655 PMCID: PMC11382314 DOI: 10.1016/j.jbc.2024.107594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/29/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024] Open
Abstract
Drug metabolism is one of the main processes governing the pharmacokinetics and toxicity of drugs via their chemical biotransformation and elimination. In humans, the liver, enriched with cytochrome P450 (CYP) enzymes, plays a major metabolic and detoxification role. The gut microbiome and its complex community of microorganisms can also contribute to some extent to drug metabolism. However, during an infection when pathogenic microorganisms invade the host, our knowledge of the impact on drug metabolism by this pathobiome remains limited. The intrinsic resistance mechanisms and rapid metabolic adaptation to new environments often allow the human bacterial pathogens to persist, despite the many antibiotic therapies available. Here, we demonstrate that a bacterial CYP enzyme, CYP107S1, from Pseudomonas aeruginosa, a predominant bacterial pathogen in cystic fibrosis patients, can metabolize multiple drugs from different classes. CYP107S1 demonstrated high substrate promiscuity and allosteric properties much like human hepatic CYP3A4. Our findings demonstrated binding and metabolism by the recombinant CYP107S1 of fluoroquinolone antibiotics (ciprofloxacin and fleroxacin), a cystic fibrosis transmembrane conductance regulator potentiator (ivacaftor), and a selective estrogen receptor modulator antimicrobial adjuvant (raloxifene). Our in vitro metabolism data were further corroborated by molecular docking of each drug to the heme active site using a CYP107S1 homology model. Our findings raise the potential for microbial pathogens modulating drug concentrations locally at the site of infection, if not systemically, via CYP-mediated biotransformation reactions. To our knowledge, this is the first report of a CYP enzyme from a known bacterial pathogen that is capable of metabolizing clinically utilized drugs.
Collapse
Affiliation(s)
- Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Brian C Tooker
- Pulmonary Division, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
6
|
Padayachee T, Lamb DC, Nelson DR, Syed K. Structure-Function Analysis of the Essential Mycobacterium tuberculosis P450 Drug Target, CYP121A1. Int J Mol Sci 2024; 25:4886. [PMID: 38732102 PMCID: PMC11084333 DOI: 10.3390/ijms25094886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Cytochrome P450 CYP121A1 is a well-known drug target against Mycobacterium tuberculosis, the human pathogen that causes the deadly disease tuberculosis (TB). CYP121A1 is a unique P450 enzyme because it uses classical and non-classical P450 catalytic processes and has distinct structural features among P450s. However, a detailed investigation of CYP121A1 protein structures in terms of active site cavity dynamics and key amino acids interacting with bound ligands has yet to be undertaken. To address this research knowledge gap, 53 CYP121A1 crystal structures were investigated in this study. Critical amino acids required for CYP121A1's overall activity were identified and highlighted this enzyme's rigid architecture and substrate selectivity. The CYP121A1-fluconazole crystal structure revealed a novel azole drug-P450 binding mode in which azole heme coordination was facilitated by a water molecule. Fragment-based inhibitor approaches revealed that CYP121A1 can be inhibited by molecules that block the substrate channel or by directly interacting with the P450 heme. This study serves as a reference for the precise understanding of CYP121A1 interactions with different ligands and the structure-function analysis of P450 enzymes in general. Our findings provide critical information for the synthesis of more specific CYP121A1 inhibitors and their development as novel anti-TB drugs.
Collapse
Affiliation(s)
- Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, Empangeni 3886, South Africa;
| | - David C. Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea SA2 8PP, UK;
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, Empangeni 3886, South Africa;
| |
Collapse
|
7
|
Wang PF, Yang Y, Patel V, Neiner A, Kharasch ED. Natural Products Inhibition of Cytochrome P450 2B6 Activity and Methadone Metabolism. Drug Metab Dispos 2024; 52:252-265. [PMID: 38135504 PMCID: PMC10877711 DOI: 10.1124/dmd.123.001578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023] Open
Abstract
Methadone is cleared predominately by hepatic cytochrome P450 (CYP) 2B6-catalyzed metabolism to inactive metabolites. CYP2B6 also catalyzes the metabolism of several other drugs. Methadone and CYP2B6 are susceptible to pharmacokinetic drug-drug interactions. Use of natural products such as herbals and other botanicals is substantial and growing, and concomitant use of prescription medicines and non-prescription herbals is common and may result in interactions, often precipitated by CYP inhibition. Little is known about herbal product effects on CYP2B6 activity, and CYP2B6-catalyzed methadone metabolism. We screened a family of natural product compounds used in traditional medicines, herbal teas, and synthetic analogs of compounds found in plants, including kavalactones, flavokavains, chalcones and gambogic acid, for inhibition of expressed CYP2B6 activity and specifically inhibition of CYP2B6-mediated methadone metabolism. An initial screen evaluated inhibition of CYP2B6-catalyzed 7-ethoxy-4-(trifluoromethyl) coumarin O-deethylation. Hits were further evaluated for inhibition of racemic methadone metabolism, including mechanism of inhibition and kinetic constants. In order of decreasing potency, the most effective inhibitors of methadone metabolism were dihydromethysticin (competitive, K i 0.074 µM), gambogic acid (noncompetitive, K i 6 µM), and 2,2'-dihydroxychalcone (noncompetitive, K i 16 µM). Molecular modeling of CYP2B6-methadone and inhibitor binding showed substrate and inhibitor binding position and orientation and their interactions with CYP2B6 residues. These results show that CYP2B6 and CYP2B6-catalyzed methadone metabolism are inhibited by certain natural products, at concentrations which may be clinically relevant. SIGNIFICANCE STATEMENT: This investigation identified several natural product constituents which inhibit in vitro human recombinant CYP2B6 and CYP2B6-catalyzed N-demethylation of the opioid methadone. The most potent inhibitors (K i) were dihydromethysticin (0.074 µM), gambogic acid (6 µM) and 2,2'-dihydroxychalcone (16 µM). Molecular modeling of ligand interactions with CYP2B6 found that dihydromethysticin and 2,2'-dihydroxychalcone bound at the active site, while gambogic acid interacted with an allosteric site on the CYP2B6 surface. Natural product constituents may inhibit CYP2B6 and methadone metabolism at clinically relevant concentrations.
Collapse
Affiliation(s)
- Pan-Fen Wang
- Department of Anesthesiology, Duke University, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (Y.Y., V.P., A.N.)
| | - Yanming Yang
- Department of Anesthesiology, Duke University, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (Y.Y., V.P., A.N.)
| | - Vishal Patel
- Department of Anesthesiology, Duke University, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (Y.Y., V.P., A.N.)
| | - Alicia Neiner
- Department of Anesthesiology, Duke University, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (Y.Y., V.P., A.N.)
| | - Evan D Kharasch
- Department of Anesthesiology, Duke University, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (Y.Y., V.P., A.N.)
| |
Collapse
|
8
|
Hayward A, Hunt BJ, Haas J, Bushnell‐Crowther E, Troczka BJ, Pym A, Beadle K, Field J, Nelson DR, Nauen R, Bass C. A cytochrome P450 insecticide detoxification mechanism is not conserved across the Megachilidae family of bees. Evol Appl 2024; 17:e13625. [PMID: 38283601 PMCID: PMC10810168 DOI: 10.1111/eva.13625] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Accepted: 11/19/2023] [Indexed: 01/30/2024] Open
Abstract
Recent work has demonstrated that many bee species have specific cytochrome P450 enzymes (P450s) that can efficiently detoxify certain insecticides. The presence of these P450s, belonging or closely related to the CYP9Q subfamily (CYP9Q-related), is generally well conserved across the diversity of bees. However, the alfalfa leafcutter bee, Megachile rotundata, lacks CYP9Q-related P450s and is 170-2500 times more sensitive to certain insecticides than bee pollinators with these P450s. The extent to which these findings apply to other Megachilidae bee species remains uncertain. To address this knowledge gap, we sequenced the transcriptomes of four Megachile species and leveraged the data obtained, in combination with publicly available genomic data, to investigate the evolution and function of P450s in the Megachilidae. Our analyses reveal that several Megachilidae species, belonging to the Lithurgini, Megachilini and Anthidini tribes, including all species of the Megachile genus investigated, lack CYP9Q-related genes. In place of these genes Megachile species have evolved phylogenetically distinct CYP9 genes, the CYP9DM lineage. Functional expression of these P450s from M. rotundata reveal they lack the capacity to metabolize the neonicotinoid insecticides thiacloprid and imidacloprid. In contrast, species from the Osmiini and Dioxyini tribes of Megachilidae have CYP9Q-related P450s belonging to the CYP9BU subfamily that are able to detoxify thiacloprid. These findings provide new insight into the evolution of P450s that act as key determinants of insecticide sensitivity in bees and have important applied implications for pesticide risk assessment.
Collapse
Affiliation(s)
- Angela Hayward
- Centre for Ecology and ConservationUniversity of ExeterPenryn, CornwallUK
| | - Benjamin J. Hunt
- Centre for Ecology and ConservationUniversity of ExeterPenryn, CornwallUK
| | - Julian Haas
- Bayer AG, Crop Science DivisionMonheimGermany
| | | | | | - Adam Pym
- Centre for Ecology and ConservationUniversity of ExeterPenryn, CornwallUK
| | - Katherine Beadle
- Centre for Ecology and ConservationUniversity of ExeterPenryn, CornwallUK
| | - Jeremy Field
- Centre for Ecology and ConservationUniversity of ExeterPenryn, CornwallUK
| | - David R. Nelson
- Department of Molecular SciencesUniversity of TennesseeMemphisTennesseeUSA
| | - Ralf Nauen
- Bayer AG, Crop Science DivisionMonheimGermany
| | - Chris Bass
- Centre for Ecology and ConservationUniversity of ExeterPenryn, CornwallUK
| |
Collapse
|
9
|
Padayachee T, Lamb DC, Nelson DR, Syed K. Structure-Function Analysis of the Biotechnologically Important Cytochrome P450 107 (CYP107) Enzyme Family. Biomolecules 2023; 13:1733. [PMID: 38136604 PMCID: PMC10741444 DOI: 10.3390/biom13121733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Cytochrome P450 monooxygenases (CYPs; P450s) are a superfamily of heme-containing enzymes that are recognized for their vast substrate range and oxidative multifunctionality. CYP107 family members perform hydroxylation and epoxidation processes, producing a variety of biotechnologically useful secondary metabolites. Despite their biotechnological importance, a thorough examination of CYP107 protein structures regarding active site cavity dynamics and key amino acids interacting with bound ligands has yet to be undertaken. To address this research knowledge gap, 44 CYP107 crystal structures were investigated in this study. We demonstrate that the CYP107 active site cavity is very flexible, with ligand binding reducing the volume of the active site in some situations and increasing volume size in other instances. Polar interactions between the substrate and active site residues result in crucial salt bridges and the formation of proton shuttling pathways. Hydrophobic interactions, however, anchor the substrate within the active site. The amino acid residues within the binding pocket influence substrate orientation and anchoring, determining the position of the hydroxylation site and hence direct CYP107's catalytic activity. Additionally, the amino acid dynamics within and around the binding pocket determine CYP107's multifunctionality. This study serves as a reference for understanding the structure-function analysis of CYP107 family members precisely and the structure-function analysis of P450 enzymes in general. Finally, this work will aid in the genetic engineering of CYP107 enzymes to produce novel molecules of biotechnological interest.
Collapse
Affiliation(s)
- Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa;
| | - David C. Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea SA2 8PP, UK;
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa;
| |
Collapse
|
10
|
Nair PC, Burns K, Chau N, McKinnon RA, Miners JO. The molecular basis of dapsone activation of CYP2C9-catalyzed nonsteroidal anti-inflammatory drug oxidation. J Biol Chem 2023; 299:105368. [PMID: 37866634 PMCID: PMC10696402 DOI: 10.1016/j.jbc.2023.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023] Open
Abstract
Positive heterotropic cooperativity, or "activation," results in an instantaneous increase in enzyme activity in the absence of an increase in protein expression. Thus, cytochrome P450 (CYP) enzyme activation presents as a potential drug-drug interaction mechanism. It has been demonstrated previously that dapsone activates the CYP2C9-catalyzed oxidation of a number of nonsteroidal anti-inflammatory drugs in vitro. Here, we conducted molecular dynamics simulations (MDS) together with enzyme kinetic investigations and site-directed mutagenesis to elucidate the molecular basis of the activation of CYP2C9-catalyzed S-flurbiprofen 4'-hydroxylation and S-naproxen O-demethylation by dapsone. Supplementation of incubations of recombinant CYP2C9 with dapsone increased the catalytic efficiency of flurbiprofen and naproxen oxidation by 2.3- and 16.5-fold, respectively. MDS demonstrated that activation arises predominantly from aromatic interactions between the substrate, dapsone, and the phenyl rings of Phe114 and Phe476 within a common binding domain of the CYP2C9 active site, rather than involvement of a distinct effector site. Mutagenesis of Phe114 and Phe476 abrogated flurbiprofen and naproxen oxidation, and MDS and kinetic studies with the CYP2C9 mutants further identified a pivotal role of Phe476 in dapsone activation. MDS additionally showed that aromatic stacking interactions between two molecules of naproxen are necessary for binding in a catalytically favorable orientation. In contrast to flurbiprofen and naproxen, dapsone did not activate the 4'-hydroxylation of diclofenac, suggesting that the CYP2C9 active site favors cooperative binding of nonsteroidal anti-inflammatory drugs with a planar or near-planar geometry. More generally, the work confirms the utility of MDS for investigating ligand binding in CYP enzymes.
Collapse
Affiliation(s)
- Pramod C Nair
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia; FHMRI Cancer Program, Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia.
| | - Kushari Burns
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Nuy Chau
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- FHMRI Cancer Program, Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - John O Miners
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia; FHMRI Cancer Program, Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
11
|
Sahil M, Singh T, Ghosh S, Mondal J. 3site Multisubstrate-Bound State of Cytochrome P450cam. J Am Chem Soc 2023; 145:23488-23502. [PMID: 37867463 DOI: 10.1021/jacs.3c06144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
We identified a multisubstrate-bound state, hereby referred as a 3site state, in cytochrome P450cam via integrating molecular dynamics simulation with nuclear magnetic resonance (NMR) pseudocontact shift measurements. The 3site state is a result of simultaneous binding of three camphor molecules in three locations around P450cam: (a) in a well-established "catalytic" site near heme, (b) in a kink-separated "waiting" site along channel-1, and (c) in a previously reported "allosteric" site at E, F, G, and H helical junctions. These three spatially distinct binding modes in the 3site state mutually communicate with each other via homotropic allostery and act cooperatively to render P450cam functional. The 3site state shows a significantly superior fit with NMR pseudo contact shift (PCS) data with a Q-score of 0.045 than previously known bound states and consists of D251 free of salt-bridges with K178 and R186, rendering the enzyme functionally primed. To date, none of the reported cocomplex of P450cam with its redox partner putidaredoxin (pdx) has been able to match solution NMR data and controversial pdx-induced opening of P450cam's channel-1 remains a matter of recurrent discourse. In this regard, inclusion of pdx to the 3site state is able to perfectly fit the NMR PCS measurement with a Q-score of 0.08 and disfavors the pdx-induced opening of channel-1, reconciling previously unexplained remarkably fast hydroxylation kinetics with a koff of 10.2 s-1. Together, our findings hint that previous experimental observations may have inadvertently captured the 3site state as an in vitro solution state, instead of the catalytic state alone, and provided a distinct departure from the conventional understanding of cytochrome P450.
Collapse
Affiliation(s)
- Mohammad Sahil
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Tejender Singh
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Soumya Ghosh
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | | |
Collapse
|
12
|
Rougée LRA, Bedwell DW, Hansen K, Abraham TL, Hall SD. Impact of Heterotropic Allosteric Modulation on the Time-Dependent Inhibition of Cytochrome P450 3A4. Drug Metab Dispos 2023; 51:1372-1380. [PMID: 37524542 DOI: 10.1124/dmd.123.001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
The current study was designed to investigate the influence of allosteric effectors on the metabolism of the prototypical cytochrome P450 (CYP) 3A4 substrate midazolam (MDZ), and on the determination in vitro time-dependent inhibition (TDI) of CYP3A4 using human liver microsomes (HLM). As the concentration of midazolam increased to 250 µM in HLMs, homotropic cooperativity resulted in a decrease in the 1'-hydroxymidazolam to 4-hydroxymidazolam ratio to a maximum of 1.1. The presence of varying concentrations of testosterone, progesterone (PGS), or carbamazepine (CBZ) in HLMs with MDZ could recapitulate the effect of homotropic cooperativity such that the formation rates of the 1'hydroxymidazolam and 4-hydroxymidazolam were equal even at low concentrations of MDZ. The presence of PGS (10 or 100 µM) and CBZ (100 or 1000 µM) in in vitro TDI determination of four known CYP3A4 time-dependent inactivators (clarithromycin, troleandomycin, mibefradil, raloxifene) simultaneously decreased potency and inactivation rate constant, resulting in fold changes in inactivation efficiency on average of 1.6-fold and 13-fold for the low and high concentrations of allosteric modulator tested, respectively. The formation of a metabolic-intermediate complex (MIC) for clarithromycin and troleandomycin decreased in the presence of the allosteric modulators in a concentration-dependent manner, reaching a new steady state formation that could not be overcome with increased incubation time. Maximum reduction of the MIC formed by clarithromycin was up to ∼91%, while troleandomycin MIC decreased up to ∼31%. These findings suggest that the absence of endogenous allosteric modulators may contribute to the poor translation of HLM-based drug-drug interaction predictions. SIGNIFICANCE STATEMENT: The reported overprediction of in vitro human liver microsome time-dependent inhibition of CYP3A4 and observed drug interactions in vivo remains an issue in drug development. We provide characterization of allosteric modulators on the CYP3A4 metabolism of the prototypical substrate midazolam, demonstrating the ability of the modulators to recapitulate the homotropic cooperativity of midazolam. Furthermore, we demonstrate that allosteric heterotropic cooperativity of CYP3A4 can impact the time-dependent inhibition kinetics of known mechanisms-based inhibitors, providing a potential mechanism to explain the overprediction.
Collapse
Affiliation(s)
- Luc R A Rougée
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| | - David W Bedwell
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| | - Kasi Hansen
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| | - Trent L Abraham
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| | - Stephen D Hall
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
13
|
Tran NNB, Bui ATA, Jaramillo-Martinez V, Weber J, Zhang Q, Urbatsch IL. Lipid environment determines the drug-stimulated ATPase activity of P-glycoprotein. Front Mol Biosci 2023; 10:1141081. [PMID: 36911528 PMCID: PMC9995911 DOI: 10.3389/fmolb.2023.1141081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
P-glycoprotein (Pgp) is a multidrug transporter that uses the energy from ATP binding and hydrolysis to export from cells a wide variety of hydrophobic compounds including anticancer drugs, and mediates the bioavailability and pharmacokinetics of many drugs. Lipids and cholesterol have been shown to modulate the substrate-stimulated ATPase activity of purified Pgp in detergent solution and the substrate transport activity after reconstitution into proteoliposomes. While lipid extracts from E. coli, liver or brain tissues generally support well Pgp's functionality, their ill-defined composition and high UV absorbance make them less suitable for optical biophysical assays. On the other hand, studies with defined synthetic lipids, usually the bilayer-forming phosphatidylcholine with or without cholesterol, are often plagued by low ATPase activity and low binding affinity of Pgp for drugs. Drawing from the lipid composition of mammalian plasma membranes, we here investigate how different head groups modulate the verapamil-stimulated ATPase activity of purified Pgp in detergent-lipid micelles and compare them with components of E. coli lipids. Our general approach was to assay modulation of verapamil-stimulation of ATPase activity by artificial lipid mixtures starting with the bilayer-forming palmitoyloyl-phosphatidylcholine (POPC) and -phosphatidylethanolamine (POPE). We show that POPC/POPE supplemented with sphingomyelin (SM), cardiolipin, or phosphatidic acid enhanced the verapamil-stimulated activity (Vmax) and decreased the concentration required for half-maximal activity (EC50). Cholesterol (Chol) and more so its soluble hemisuccinate derivative cholesteryl hemisuccinate substantially decreased EC50, perhaps by supporting the functional integrity of the drug binding sites. High concentrations of CHS (>15%) resulted in a significantly increased basal activity which could be due to binding of CHS to the drug binding site as transport substrate or as activator, maybe acting cooperatively with verapamil. Lastly, Pgp reconstituted into liposomes or nanodiscs displayed higher basal activity and sustained high levels of verapamil stimulated activity. The findings establish a stable source of artificial lipid mixtures containing either SM and cholesterol or CHS that restore Pgp functionality with activities and affinities similar to those in the natural plasma membrane environment and will pave the way for future functional and biophysical studies.
Collapse
Affiliation(s)
- Nghi N. B. Tran
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - A. T. A. Bui
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Valeria Jaramillo-Martinez
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Joachim Weber
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Ina L. Urbatsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
14
|
Gable JA, Poulos TL, Follmer AH. Cooperative Substrate Binding Controls Catalysis in Bacterial Cytochrome P450terp (CYP108A1). J Am Chem Soc 2023; 145:10.1021/jacs.2c12388. [PMID: 36779970 PMCID: PMC10576961 DOI: 10.1021/jacs.2c12388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Despite being one of the most well-studied aspects of cytochrome P450 chemistry, important questions remain regarding the nature and ubiquity of allosteric regulation of catalysis. The crystal structure of a bacterial P450, P450terp, in the presence of substrate reveals two binding sites, one above the heme in position for regioselective hydroxylation and another in the substrate access channel. Unlike many bacterial P450s, P450terp does not exhibit an open to closed conformational change when substrate binds; instead, P450terp uses the second substrate molecule to hold the first substrate molecule in position for catalysis. Spectral titrations clearly show that substrate binding to P450terp is cooperative with a Hill coefficient of 1.4 and is supported by isothermal titration calorimetry. The importance of the allosteric site was explored by a series of mutations that weaken the second site and that help hold the first substrate in position for proper catalysis. We further measured the coupling efficiency of both the wild-type (WT) enzyme and the mutant enzymes. While the WT enzyme exhibits 97% efficiency, each of the variants showed lower catalytic efficiency. Additionally, the variants show decreased spin shifts upon binding of substrate. These results are the first clear example of positive homotropic allostery in a class 1 bacterial P450 with its natural substrate. Combined with our recent results from P450cam showing complex substrate allostery and conformational dynamics, our present study with P450terp indicates that bacterial P450s may not be as simple as once thought and share complex substrate binding properties usually associated with only mammalian P450s.
Collapse
Affiliation(s)
- Jessica A Gable
- Departments of Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Thomas L Poulos
- Departments of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
- Departments of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-3900, United States
- Departments of Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Alec H Follmer
- Departments of Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| |
Collapse
|
15
|
Masamrekh RA, Kuzikov AV, Filippova TA, Sherbakov KA, Veselovsky AV, Shumyantseva VV. Interaction of Abiraterone and Its Pharmacologically Active Metabolite D4A with Cytochrome P450 2C9 (CYP2C9). BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2022. [DOI: 10.1134/s1990750822040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Phylogenomic and functional characterization of an evolutionary conserved cytochrome P450-based insecticide detoxification mechanism in bees. Proc Natl Acad Sci U S A 2022; 119:e2205850119. [PMID: 35733268 PMCID: PMC9245717 DOI: 10.1073/pnas.2205850119] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bee pollinator pesticide risk assessment is a regulatory requirement for pesticide registration and is largely based on experimental data collected for surrogate species such as the western honeybee. Recently, CYP9Q3, a honeybee cytochrome P450 enzyme, has been shown to efficiently detoxify certain insecticides such as the butenolide flupyradifurone and the neonicotinoid thiacloprid. Here we analyzed genomic data for 75 bee species and demonstrated by the recombinant expression of 26 CYP9Q3 putative functional orthologs that this detoxification principle is an evolutionary conserved mechanism across bee families. Our toxicogenomics approach has the potential to inform pesticide risk assessment for nonmanaged bee species that are not accessible for acute toxicity testing. The regulatory process for assessing the risks of pesticides to bees relies heavily on the use of the honeybee, Apis mellifera, as a model for other bee species. However, the validity of using A. mellifera as a surrogate for other Apis and non-Apis bees in pesticide risk assessment has been questioned. Related to this line of research, recent work on A. mellifera has shown that specific P450 enzymes belonging to the CYP9Q subfamily act as critically important determinants of insecticide sensitivity in this species by efficiently detoxifying certain insecticide chemotypes. However, the extent to which the presence of functional orthologs of these enzymes is conserved across the diversity of bees is unclear. Here we used a phylogenomic approach to identify > 100 putative CYP9Q functional orthologs across 75 bee species encompassing all major bee families. Functional analysis of 26 P450s from 20 representative bee species revealed that P450-mediated detoxification of certain systemic insecticides, including the neonicotinoid thiacloprid and the butenolide flupyradifurone, is conserved across all major bee pollinator families. However, our analyses also reveal that CYP9Q-related genes are not universal to all bee species, with some Megachilidae species lacking such genes. Thus, our results reveal an evolutionary conserved capacity to metabolize certain insecticides across all major bee families while identifying a small number of bee species where this function may have been lost. Furthermore, they illustrate the potential of a toxicogenomic approach to inform pesticide risk assessment for nonmanaged bee species by predicting the capability of bee pollinator species to break down synthetic insecticides.
Collapse
|
17
|
Denisov IG, Grinkova YV, McLean MA, Camp T, Sligar SG. Midazolam as a Probe for Heterotropic Drug-Drug Interactions Mediated by CYP3A4. Biomolecules 2022; 12:853. [PMID: 35740978 PMCID: PMC9221276 DOI: 10.3390/biom12060853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Human cytochrome P450 CYP3A4 is involved in the processing of more than 35% of current pharmaceuticals and therefore is responsible for multiple drug-drug interactions (DDI). In order to develop a method for the detection and prediction of the possible involvement of new drug candidates in CYP3A4-mediated DDI, we evaluated the application of midazolam (MDZ) as a probe substrate. MDZ is hydroxylated by CYP3A4 in two positions: 1-hydroxy MDZ formed at lower substrate concentrations, and up to 35% of 4-hydroxy MDZ at high concentrations. The ratio of the formation rates of these two products (the site of metabolism ratio, SOM) was used as a measure of allosteric heterotropic interactions caused by effector molecules using CYP3A4 incorporated in lipid nanodiscs. The extent of the changes in the SOM in the presence of effectors is determined by chemical structure and is concentration-dependent. MD simulations of CYP3A4 in the lipid bilayer suggest that experimental results can be explained by the movement of the F-F' loop and concomitant changes in the shape and volume of the substrate-binding pocket. As a result of PGS binding at the allosteric site, several residues directly contacting MDZ move away from the substrate molecule, enabling the repositioning of the latter for minor product formation.
Collapse
Affiliation(s)
- Ilia G. Denisov
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (I.G.D.); (Y.V.G.); (M.A.M.); (T.C.)
| | - Yelena V. Grinkova
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (I.G.D.); (Y.V.G.); (M.A.M.); (T.C.)
| | - Mark A. McLean
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (I.G.D.); (Y.V.G.); (M.A.M.); (T.C.)
| | - Tyler Camp
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (I.G.D.); (Y.V.G.); (M.A.M.); (T.C.)
| | - Stephen G. Sligar
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (I.G.D.); (Y.V.G.); (M.A.M.); (T.C.)
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
18
|
Masamrekh RA, Kuzikov AV, Filippova TA, Sherbakov KA, Veselovsky AV, Shumyantseva VV. [The interactions of abiraterone and its pharmacologically active metabolite D4A with cytochrome P450 2C9 (CYP2C9)]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:201-211. [PMID: 35717584 DOI: 10.18097/pbmc20226803201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interactions of cytochrome P450 2C9 (CYP2C9) were studied with the antitumor drug abiraterone and its pharmacologically active metabolite D4A, promising as an agent for prostate cancer treatment. It was shown by absorption spectroscopy, that both investigated compounds induced spectral changes of CYP2C9, indicating interactions of the pyridine nitrogen atom with the heme iron ion of the active site of the enzyme, but interactions of the ligands with the enzyme could be mediated by a water molecule bound to the heme iron ion. Based on the spectral changes, the values of dissociation constants (KS) for complexes of abiraterone and D4A with CYP2C9 were calculated as 1.73±0.14 μM and 3.95±0.16 μM. Both compounds inhibited O-demethylase activity of CYP2C9 towards its substrate. At 100 μM concentration of naproxen the concentrations of abiraterone, D4A and sulfaphenazole inhibiting CYP2C9 activity by 50% (IC50) were determined as 13.9 μM, 40 μM and 41 μM, respectively. The obtained results can be used for prognosis of drug-drug interactions at CYP2C9 level during administration of abiraterone or D4A as an antitumor agent for prostate cancer treatment in complex pharmacotherapy.
Collapse
Affiliation(s)
- R A Masamrekh
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - T A Filippova
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - A V Veselovsky
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
19
|
Structural dynamics of the cooperative binding of small inhibitors in human cytochrome P450 2C9. J Mol Graph Model 2022; 113:108151. [DOI: 10.1016/j.jmgm.2022.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/23/2022]
|
20
|
Kim JS, Arango AS, Shah S, Arnold WR, Tajkhorshid E, Das A. Anthracycline derivatives inhibit cardiac CYP2J2. J Inorg Biochem 2022; 229:111722. [PMID: 35078036 PMCID: PMC8860876 DOI: 10.1016/j.jinorgbio.2022.111722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/20/2022]
Abstract
Anthracycline chemotherapeutics are highly effective, but their clinical usefulness is hampered by adverse side effects such as cardiotoxicity. Cytochrome P450 2J2 (CYP2J2) is a cytochrome P450 epoxygenase in human cardiomyocytes that converts arachidonic acid (AA) to cardioprotective epoxyeicosatrienoic acid (EET) regioisomers. Herein, we performed biochemical studies to understand the interaction of anthracycline derivatives (daunorubicin, doxorubicin, epirubicin, idarubicin, 5-iminodaunorubicin, zorubicin, valrubicin, and aclarubicin) with CYP2J2. We utilized fluorescence polarization (FP) to assess whether anthracyclines bind to CYP2J2. We found that aclarubicin bound the strongest to CYP2J2 despite it having large bulky groups. We determined that ebastine competitively inhibits anthracycline binding, suggesting that ebastine and anthracyclines may share the same binding site. Molecular dynamics and ensemble docking revealed electrostatic interactions between the anthracyclines and CYP2J2, contributing to binding stability. In particular, the glycosamine groups in anthracyclines are stabilized by binding to glutamate and aspartate residues in CYP2J2 forming salt bridge interactions. Furthermore, we used iterative ensemble docking schemes to gauge anthracycline influence on EET regioisomer production and anthracycline inhibition on AA metabolism. This was followed by experimental validation of CYP2J2-mediated metabolism of anthracycline derivatives using liquid chromatography tandem mass spectrometry fragmentation analysis and inhibition of CYP2J2-mediated AA metabolism by these derivatives. Taken together, we use both experimental and theoretical methodologies to unveil the interactions of anthracycline derivatives with CYP2J2. These studies will help identify alternative mechanisms of how anthracycline cardiotoxicity may be mediated through the inhibition of cardiac P450, which will aid in the design of new anthracycline derivatives with lower toxicity.
Collapse
Affiliation(s)
- Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Andres S Arango
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Swapnil Shah
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Aditi Das
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
21
|
Rajakumara E, Abhishek S, Nitin K, Saniya D, Bajaj P, Schwaneberg U, Davari MD. Structure and Cooperativity in Substrate-Enzyme Interactions: Perspectives on Enzyme Engineering and Inhibitor Design. ACS Chem Biol 2022; 17:266-280. [PMID: 35041385 DOI: 10.1021/acschembio.1c00500] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enzyme-based synthetic chemistry provides a green way to synthesize industrially important chemical scaffolds and provides incomparable substrate specificity and unmatched stereo-, regio-, and chemoselective product formation. However, using biocatalysts at an industrial scale has its challenges, like their narrow substrate scope, limited stability in large-scale one-pot reactions, and low expression levels. These limitations can be overcome by engineering and fine-tuning these biocatalysts using advanced protein engineering methods. A detailed understanding of the enzyme structure and catalytic mechanism and its structure-function relationship, cooperativity in binding of substrates, and dynamics of substrate-enzyme-cofactor complexes is essential for rational enzyme engineering for a specific purpose. This Review covers all these aspects along with an in-depth categorization of various industrially and pharmaceutically crucial bisubstrate enzymes based on their reaction mechanisms and their active site and substrate/cofactor-binding site structures. As the bisubstrate enzymes constitute around 60% of the known industrially important enzymes, studying their mechanism of actions and structure-activity relationship gives significant insight into deciding the targets for protein engineering for developing industrial biocatalysts. Thus, this Review is focused on providing a comprehensive knowledge of the bisubstrate enzymes' structure, their mechanisms, and protein engineering approaches to develop them into industrial biocatalysts.
Collapse
Affiliation(s)
- Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Suman Abhishek
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Kulhar Nitin
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Dubey Saniya
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Priyanka Bajaj
- National Institute of Pharmaceutical Education and Research (NIPER), NH-44, Balanagar, Hyderabad 500037, India
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| |
Collapse
|
22
|
The impact of legacy and novel perfluoroalkyl substances on human cytochrome P450: An in vitro study on the inhibitory potential and underlying mechanisms. Toxicology 2022; 468:153116. [PMID: 35121066 DOI: 10.1016/j.tox.2022.153116] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a group of synthetic compounds with a wide range of industrial applications. PFOA and PFOS have been the most extensively studied and have been associated with hepatotoxicity. Recently, the interaction with cytochrome P450 (CYP) has been proposed as a potential key molecular event leading to PFAS-induced hepatotoxicity. In the present study, we aimed to determine a structure-activity relationship between thirteen PFASs and their inhibitory potential on the activities of four CYPs (CYP2E1, CYP2D6, CYP3A4 and CYP2C19). The influence of PFASs (5- 3200 µM) on CYP enzyme activities was measured using the Vivid® P450 metabolism assays. Using the same assays, Michaelis-Menten saturation curves were determined to explore the type of PFAS-induced CYP inhibition. Most PFASs were capable of inhibiting activity of the tested CYPs, as shown by their IC50 values. CYP2E1 is particularly inhibited by 3:1 FTOH, PFOA, and PFOS, whereas CYP2D6 is inhibited by PFHxS, PFHpA, PFOA, PFOS, PFNA, and PFDA. Additionally, CYP3A4 is most strongly inhibited by PFHxS, PFOA, PFOS, PFNA, and PFDA. Finally, CYP2C19 is inhibited by PFBS, PFHxS, PFHpA, PFOA, PFOS, PFNA, and PFDA. Interestingly, PFHxA and PFHxS induced an increase in CYP2E1 activity, whereas 4:2 FTOH strongly induced CYP2D6 activity. The mechanism of inhibition of CYPs by PFASs differed per CYP isoenzyme. CYP3A4 was competitively inhibited by PFBS, PFHxS, PFOS, PFNA and PFDA and non-competitively by PFOA. Additionally, CYP2C19 was competitively inhibited by PFHxA, PFOS and PFNA, whereas PFBS and PFHxS induced a mixed inhibition. Inhibition of CYP2C19 by PFHpA was atypical with an increased Vmax and a decreased Km. Finally, PFHxS competitively inhibited CYP2D6, whereas PFBS, PFOA, PFOS, PFDA and PFNA induced an atypical inhibition. Our results show that CYP inhibition by PFASs appears to be structure-dependent as well as CYP dependent. Inhibition of CYP2D6, CYP2C19 and CYP3A4 increased with increasing chain-lengths between six and nine carbons. The PFTOHs were only able to inhibit CYP2E1 and did not affect any of the other CYPS. Some PFASs remarkably induced the enzyme activity of CYPs. These results indicate that in addition to PFOA and PFOS, multiple novel PFASs may alter drug metabolism by the interference with CYPs.
Collapse
|
23
|
Gonzalez E, Jain S, Shah P, Torimoto-Katori N, Zakharov A, Nguyễn ÐT, Sakamuru S, Huang R, Xia M, Obach RS, Hop CECA, Simeonov A, Xu X. Development of Robust Quantitative Structure-Activity Relationship Models for CYP2C9, CYP2D6, and CYP3A4 Catalysis and Inhibition. Drug Metab Dispos 2021; 49:822-832. [PMID: 34183376 PMCID: PMC11022912 DOI: 10.1124/dmd.120.000320] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/17/2021] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 enzymes are responsible for the metabolism of >75% of marketed drugs, making it essential to identify the contributions of individual cytochromes P450 to the total clearance of a new candidate drug. Overreliance on one cytochrome P450 for clearance levies a high risk of drug-drug interactions; and considering that several human cytochrome P450 enzymes are polymorphic, it can also lead to highly variable pharmacokinetics in the clinic. Thus, it would be advantageous to understand the likelihood of new chemical entities to interact with the major cytochrome P450 enzymes at an early stage in the drug discovery process. Typical screening assays using human liver microsomes do not provide sufficient information to distinguish the specific cytochromes P450 responsible for clearance. In this regard, we experimentally assessed the metabolic stability of ∼5000 compounds for the three most prominent xenobiotic metabolizing human cytochromes P450, i.e., CYP2C9, CYP2D6, and CYP3A4, and used the data sets to develop quantitative structure-activity relationship models for the prediction of high-clearance substrates for these enzymes. Screening library included the NCATS Pharmaceutical Collection, comprising clinically approved low-molecular-weight compounds, and an annotated library consisting of drug-like compounds. To identify inhibitors, the library was screened against a luminescence-based cytochrome P450 inhibition assay; and through crossreferencing hits from the two assays, we were able to distinguish substrates and inhibitors of these enzymes. The best substrate and inhibitor models (balanced accuracies ∼0.7), as well as the data used to develop these models, have been made publicly available (https://opendata.ncats.nih.gov/adme) to advance drug discovery across all research groups. SIGNIFICANCE STATEMENT: In drug discovery and development, drug candidates with indiscriminate cytochrome P450 metabolic profiles are considered advantageous, since they provide less risk of potential issues with cytochrome P450 polymorphisms and drug-drug interactions. This study developed robust substrate and inhibitor quantitative structure-activity relationship models for the three major xenobiotic metabolizing cytochromes P450, i.e., CYP2C9, CYP2D6, and CYP3A4. The use of these models early in drug discovery will enable project teams to strategize or pivot when necessary, thereby accelerating drug discovery research.
Collapse
Affiliation(s)
- Eric Gonzalez
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Sankalp Jain
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Pranav Shah
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Nao Torimoto-Katori
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Alexey Zakharov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Ðắc-Trung Nguyễn
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Srilatha Sakamuru
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - R Scott Obach
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Cornelis E C A Hop
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Xin Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| |
Collapse
|
24
|
Numerical Methods for Modeling Enzyme Kinetics. Methods Mol Biol 2021; 2342:147-168. [PMID: 34272694 DOI: 10.1007/978-1-0716-1554-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Differential equations are used to describe time-dependent changes in enzyme kinetics and pharmacokinetics. Analytical and numerical methods can be used to solve differential equations. This chapter describes the use of numerical methods in solving differential equations and its applications in characterizing the complexities observed in enzyme kinetics. A discussion is included on the use of numerical methods to overcome limitations of explicit equations in the analysis of metabolism kinetics, reversible inhibition kinetics, and inactivation kinetics. The chapter describes the advantages of using numerical methods when Michaelis-Menten assumptions do not hold.
Collapse
|
25
|
Denisov IG, Grinkova YV, Camp T, McLean MA, Sligar SG. Midazolam as a Probe for Drug-Drug Interactions Mediated by CYP3A4: Homotropic Allosteric Mechanism of Site-Specific Hydroxylation. Biochemistry 2021; 60:1670-1681. [PMID: 34015213 DOI: 10.1021/acs.biochem.1c00161] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We developed an efficient and sensitive probe for drug-drug interactions mediated by human CYP3A4 by using midazolam (MDZ) as a probe substrate. Using global analysis of four parameters over several experimental data sets, we demonstrate that the first MDZ molecule (MDZ1) binds with high affinity at the productive site near the heme iron and gives only hydroxylation at the 1 position (1OH). The second midazolam molecule (MDZ2) binds at an allosteric site at the membrane surface and perturbs the position and mobility of MDZ1 such that the minor hydroxylation product at the 4 position (4OH) is formed in a 1:2 ratio (35%). No increase in catalytic rate is observed after the second MDZ binding. Hence, the site of the 1OH:4OH metabolism ratio is a sensitive probe for drugs, such as progesterone, that bind with high affinity to the allosteric site and serve as effectors. We observe similar changes in the MDZ 1OH:4OH ratio in the presence of progesterone (PGS), suggesting a direct communication between the active and allosteric sites. Mutations introduced into the F-F' loop indicate that residues F213 and D214 are directly involved in allosteric interactions leading to MDZ homotropic cooperativity, and these same residues, together with L211, are involved in heterotropic allosteric interactions in which PGS is the effector and MDZ the substrate. Molecular dynamics simulations provide a mechanistic picture of the origin of this cooperativity. These results show that the midazolam can be used as a sensitive probe for drug-drug interactions in human P450 CYP3A4.
Collapse
|
26
|
Li J, Chen Y, Tang Y, Li W, Tu Y. Homotropic Cooperativity of Midazolam Metabolism by Cytochrome P450 3A4: Insight from Computational Studies. J Chem Inf Model 2021; 61:2418-2426. [PMID: 33884878 PMCID: PMC8278384 DOI: 10.1021/acs.jcim.1c00266] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Human cytochrome
P450 3A4 (CYP3A4) is responsible for the metabolism
of ∼50% clinically used drugs. Midazolam (MDZ) is a commonly
used sedative drug and serves as a marker substrate for the CYP3A4
activity assessment. MDZ is metabolized by CYP3A4 to two hydroxylation
products, 1′-OH-MDZ and 4-OH-MDZ. It has been reported that
the ratio of 1′-OH-MDZ and 4-OH-MDZ is dependent on the MDZ
concentration, which reflects the homotropic cooperative behavior
in MDZ metabolism by CYP3A4. Here, we used quantum chemistry (QC),
molecular docking, conventional molecular dynamics (cMD), and Gaussian
accelerated molecular dynamics (GaMD) approaches to investigate the
mechanism of the interactions between CYP3A4 and MDZ. QC calculations
suggest that C1′ is less reactive for hydroxylation than C4,
which is a pro-chirality carbon. However, the 4-OH-MDZ product is
likely to be racemic due to the chirality inversion in the rebound
step. The MD simulation results indicate that MDZ at the peripheral
allosteric site is not stable and the binding modes of the MDZ molecules
at the productive site are in line with the experimental observations.
Collapse
Affiliation(s)
- Junhao Li
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Yue Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yaoquan Tu
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
27
|
Screening a Strain of Klebsiella sp. O852 and the Optimization of Fermentation Conditions for Trans-Dihydrocarvone Production. Molecules 2021; 26:molecules26092432. [PMID: 33922023 PMCID: PMC8122266 DOI: 10.3390/molecules26092432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/28/2022] Open
Abstract
Flavors and fragrances have high commercial value in the food, cosmetic, chemical and pharmaceutical industries. It is interesting to investigate the isolation and characterization of new microorganisms with the ability to produce flavor compounds. In this study, a new strain of Klebsiella sp. O852 (accession number CCTCC M2020509) was isolated from decayed navel orange (Citrus sinensis (L.) Osbeck), which was proved to be capable of converting limonene to trans-dihydrocarvone. Besides, the optimization of various reaction parameters to enhance the trans-dihydrocarvone production in shake flask was performed for Klebsiella sp. O852. The results showed that the yield of trans-dihydrocarvone reached up to 1 058 mg/L when Klebsiella sp. O852 was incubated using LB-M medium for 4 h at 36 °C and 150 rpm, and the biotransformation process was monitored for 36 h after adding 1680 mg/L limonene/ethanol (final ethanol concentration of 0.8% (v/v)). The content of trans-dihydrocarvone increased 16 times after optimization. This study provided a basis and reference for producing trans-dihydrocarvone by biotransformation.
Collapse
|
28
|
Dangi B, Davydova NY, Maldonado MA, Abbasi A, Vavilov NE, Zgoda VG, Davydov DR. Effects of alcohol-induced increase in CYP2E1 content in human liver microsomes on the activity and cooperativity of CYP3A4. Arch Biochem Biophys 2021; 698:108677. [PMID: 33197431 PMCID: PMC7856178 DOI: 10.1016/j.abb.2020.108677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/15/2020] [Accepted: 11/08/2020] [Indexed: 12/23/2022]
Abstract
We investigate the effect of the alcohol-induced increase in the content of CYP2E1 in human liver microsomes (HLM) on the function of CYP3A4. Membrane incorporation of the purified CYP2E1 into HLM considerably increases the rate of metabolism of 7-benzyloxyquinoline (BQ) and attenuates the homotropic cooperativity observed with this CYP3A4-specific substrate. It also eliminates the activating effect of α-naphthoflavone (ANF) seen in some HLM samples. To probe the physiological relevance of these effects, we compared three pooled preparations of HLM from normal donors (HLM-N) with a pooled preparation from ten heavy alcohol consumers (HLM-A). The composition of the P450 pool in all samples was characterized by the mass-spectrometric determination of 11 cytochrome P450 species. The fractional content of CYP2E1 in HLM-A was from 2.0 to 3.4 times higher than in HLM-N. In contrast, the content of CYP3A4 in HLM-A was the lowest among all samples. Despite that, HLM-A exhibited a much higher metabolism rate and a lower homotropic cooperativity with BQ, similar to CYP2E1-enriched HLM-N. To substantiate the involvement of interactions between CYP2E1 and CYP3A4 in these effects, we probed hetero-association of these proteins in CYP3A4-containing Supersomes™ with a technique employing CYP2E1 labeled with BODIPY-618 maleimide. These experiments evinced the interactions between the two enzymes and revealed an inhibitory effect of ANF on their association. Our results demonstrate that the functional properties of CYP3A4 are fundamentally dependent on the composition of the cytochrome P450 ensemble and suggest a possible impact of chronic alcohol exposure on the pharmacokinetics of drugs metabolized by CYP3A4.
Collapse
Affiliation(s)
- Bikash Dangi
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Nadezhda Y Davydova
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Marc A Maldonado
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Armina Abbasi
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | | | - Victor G Zgoda
- Institute of Biomedical Chemistry, Moscow, 119121, Russia; Skolkovo Institute of Science and Technology, 143025, Skolkovo, Moscow Region, Russia
| | - Dmitri R Davydov
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
29
|
Anti-inflammatory dopamine- and serotonin-based endocannabinoid epoxides reciprocally regulate cannabinoid receptors and the TRPV1 channel. Nat Commun 2021; 12:926. [PMID: 33568652 PMCID: PMC7876028 DOI: 10.1038/s41467-021-20946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
The endocannabinoid system is a promising target to mitigate pain as the endocannabinoids are endogenous ligands of the pain-mediating receptors—cannabinoid receptors 1 and 2 (CB1 and CB2) and TRPV1. Herein, we report on a class of lipids formed by the epoxidation of N-arachidonoyl-dopamine (NADA) and N-arachidonoyl-serotonin (NA5HT) by epoxygenases. EpoNADA and epoNA5HT are dual-functional rheostat modulators of the endocannabinoid-TRPV1 axis. EpoNADA and epoNA5HT are stronger modulators of TRPV1 than either NADA or NA5HT, and epoNA5HT displays a significantly stronger inhibition on TRPV1-mediated responses in primary afferent neurons. Moreover, epoNA5HT is a full CB1 agonist. These epoxides reduce the pro-inflammatory biomarkers IL-6, IL-1β, TNF-α and nitrous oxide and raise anti-inflammatory IL-10 cytokine in activated microglial cells. The epoxides are spontaneously generated by activated microglia cells and their formation is potentiated in the presence of anandamide. Detailed kinetics and molecular dynamics simulation studies provide evidence for this potentiation using the epoxygenase human CYP2J2. Taken together, inflammation leads to an increase in the metabolism of NADA, NA5HT and other eCBs by epoxygenases to form the corresponding epoxides. The epoxide metabolites are bioactive lipids that are potent, multi-faceted molecules, capable of influencing the activity of CB1, CB2 and TRPV1 receptors. Endocannabinoids are ligands of cannabinoid receptors and a promising target for pain management. Here, the authors report a class of lipids formed by the epoxidation of N-arachidonoyl dopamine and N-arachidonoyl serotonin by cytochrome P450 epoxygenases, which reciprocally regulate canabinoid receptors and display anti-inflammatory activity.
Collapse
|
30
|
Schleiff MA, Flynn NR, Payakachat S, Schleiff BM, Pinson AO, Province DW, Swamidass SJ, Boysen G, Miller GP. Significance of Multiple Bioactivation Pathways for Meclofenamate as Revealed through Modeling and Reaction Kinetics. Drug Metab Dispos 2021; 49:133-141. [PMID: 33239334 PMCID: PMC7841419 DOI: 10.1124/dmd.120.000254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
Meclofenamate is a nonsteroidal anti-inflammatory drug used in the treatment of mild-to-moderate pain yet poses a rare risk of hepatotoxicity through an unknown mechanism. Nonsteroidal anti-inflammatory drug (NSAID) bioactivation is a common molecular initiating event for hepatotoxicity. Thus, we hypothesized a similar mechanism for meclofenamate and leveraged computational and experimental approaches to identify and characterize its bioactivation. Analyses employing our XenoNet model indicated possible pathways to meclofenamate bioactivation into 19 reactive metabolites subsequently trapped into glutathione adducts. We describe the first reported bioactivation kinetics for meclofenamate and relative importance of those pathways using human liver microsomes. The findings validated only four of the many bioactivation pathways predicted by modeling. For experimental studies, dansyl glutathione was a critical trap for reactive quinone metabolites and provided a way to characterize adduct structures by mass spectrometry and quantitate yields during reactions. Of the four quinone adducts, we were able to characterize structures for three of them. Based on kinetics, the most efficient bioactivation pathway led to the monohydroxy para-quinone-imine followed by the dechloro-ortho-quinone-imine. Two very inefficient pathways led to the dihydroxy ortho-quinone and a likely multiply adducted quinone. When taken together, bioactivation pathways for meclofenamate accounted for approximately 13% of total metabolism. In sum, XenoNet facilitated prediction of reactive metabolite structures, whereas quantitative experimental studies provided a tractable approach to validate actual bioactivation pathways for meclofenamate. Our results provide a foundation for assessing reactive metabolite load more accurately for future comparative studies with other NSAIDs and drugs in general. SIGNIFICANCE STATEMENT: Meclofenamate bioactivation may initiate hepatotoxicity, yet common risk assessment approaches are often cumbersome and inefficient and yield qualitative insights that do not scale relative bioactivation risks. We developed and applied innovative computational modeling and quantitative kinetics to identify and validate meclofenamate bioactivation pathways and relevance as a function of time and concentration. This strategy yielded novel insights on meclofenamate bioactivation and provides a tractable approach to more accurately and efficiently assess other drug bioactivations and correlate risks to toxicological outcomes.
Collapse
Affiliation(s)
- Mary Alexandra Schleiff
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| | - Noah R Flynn
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| | - Sasin Payakachat
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| | - Benjamin Mark Schleiff
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| | - Anna O Pinson
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| | - Dennis W Province
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| | - S Joshua Swamidass
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| | - Gunnar Boysen
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| | - Grover P Miller
- Departments of Biochemistry and Molecular Biology (M.A.S, G.P.M.) and Environmental and Occupational Health (G.B.), University of Arkansas for Medical Sciences, Little Rock, Arizona (M.A.S.); Department of Pathology and Immunology, Washington University, St. Louis, Missouri (N.R.F., S.J.S.); Department of Chemistry, Hendrix College, Conway, Arizona (S.P.); and Independent Researcher (B.M.S.) and Department of Chemistry and Biochemistry (A.O.P., D.W.P.), Harding University, Searcy, Arkansas
| |
Collapse
|
31
|
Haas J, Nauen R. Pesticide risk assessment at the molecular level using honey bee cytochrome P450 enzymes: A complementary approach. ENVIRONMENT INTERNATIONAL 2021; 147:106372. [PMID: 33418197 DOI: 10.1016/j.envint.2020.106372] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 05/21/2023]
Abstract
Honey bee (Apis mellifera) first-tier pesticide risk assessment is largely based on standardized laboratory toxicity bioassays after both acute and chronic exposure. Recent research on honey bee cytochrome P450 monooxygenases (P450s) uncovered CYP9Q3 as the molecular determinant mediating neonicotinoid insecticide selectivity and explaining why certain neonicotinoids such as thiacloprid show > 1000-fold lower acute toxicity than others (e.g. imidacloprid). Here this knowledge is leveraged for mechanistic risk assessment at the molecular level using a fluorescence-based high-throughput in vitro assay, predicting the interaction of diverse pesticidal chemotypes, including azole fungicides, with recombinantly expressed honey bee CYP9Q enzymes, known to metabolize thiacloprid, acetamiprid and tau-fluvalinate. Some azole fungicides were shown to be synergistic in combination with certain insecticides, including neonicotinoids and pyrethroids, whereas others such as prothioconazole were not. We demonstrate that biochemical CYP9Q2/CYP9Q3 inhibition data of azoles revealed a striking correlation with their synergistic potential at the organismal level, and even allow to explain combined toxicity effects observed for tank mixtures under field conditions. Our novel toxicogenomics-based approach is designed to complement existing methods for pesticide risk assessment with unprecedented screening capacity, by utilizing honey bee P450 enzymes known to confer pesticide selectivity, in order to biochemically address issues of ecotoxicological concern.
Collapse
Affiliation(s)
- Julian Haas
- Bayer AG, Crop Science Division, R&D, Alfred Nobel Str. 50, 40789 Monheim, Germany; Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel Str. 50, 40789 Monheim, Germany.
| |
Collapse
|
32
|
Koroleva PI, Kuzikov AV, Masamrekh RA, Filimonov DA, Dmitriev AV, Zaviyalova MG, Rikova SM, Shich EV, Makhova AA, Bulko TV, Gilep AA, Shumyantseva VV. Modeling of Drug-Drug Interactions between Omeprazole and Erythromycin in the Cytochrome P450-Dependent System In vitro. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2021; 15:62-70. [DOI: 10.1134/s1990750821010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2025]
|
33
|
Barnette DA, Schleiff MA, Datta A, Flynn N, Swamidass SJ, Miller GP. Meloxicam methyl group determines enzyme specificity for thiazole bioactivation compared to sudoxicam. Toxicol Lett 2020; 338:10-20. [PMID: 33253783 DOI: 10.1016/j.toxlet.2020.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
Meloxicam is a thiazole-containing NSAID that was approved for marketing with favorable clinical outcomes despite being structurally similar to the hepatotoxic sudoxicam. Introduction of a single methyl group on the thiazole results in an overall lower toxic risk, yet the group's impact on P450 isozyme bioactivation is unclear. Through analytical methods, we used inhibitor phenotyping and recombinant P450s to identify contributing P450s, and then measured steady-state kinetics for bioactivation of sudoxicam and meloxicam by the recombinant P450s to determine relative efficiencies. Experiments showed that CYP2C8, 2C19, and 3A4 catalyze sudoxicam bioactivation, and CYP1A2 catalyzes meloxicam bioactivation, indicating that the methyl group not only impacts enzyme affinity for the drugs, but also alters which isozymes catalyze the metabolic pathways. Scaling of relative P450 efficiencies based on average liver concentration revealed that CYP2C8 dominates the sudoxicam bioactivation pathway and CYP2C9 dominates meloxicam detoxification. Dominant P450s were applied for an informatics assessment of electronic health records to identify potential correlations between meloxicam drug-drug interactions and drug-induced liver injury. Overall, our findings provide a cautionary tale on assumed impacts of even simple structural modifications on drug bioactivation while also revealing specific targets for clinical investigations of predictive factors that determine meloxicam-induced idiosyncratic liver injury.
Collapse
Affiliation(s)
- Dustyn A Barnette
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States
| | - Mary A Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States
| | - Arghya Datta
- Department of Pathology and Immunology, 660 S Euclid Ave, Washington University, St. Louis, MO, 63130, United States
| | - Noah Flynn
- Department of Pathology and Immunology, 660 S Euclid Ave, Washington University, St. Louis, MO, 63130, United States
| | - S Joshua Swamidass
- Department of Pathology and Immunology, 660 S Euclid Ave, Washington University, St. Louis, MO, 63130, United States
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States.
| |
Collapse
|
34
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
35
|
Koroleva PI, Kuzikov AV, Masamrekh RA, Filimonov DA, Dmitriev AV, Zaviyalova MG, Rikova SM, Shich EV, Makhova AA, Bulko TV, Gilep AA, Shumyantseva VV. [Modeling of drug-drug interactions between omeprazole and erythromycin with cytochrome P450 3A4 in vitro assay]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:241-249. [PMID: 32588830 DOI: 10.18097/pbmc20206603241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present study the electrochemical system based on recombinant cytochrome P450 3A4 (CYP3A4) was used for the investigation of potential drug-drug interaction between medicinal preparations employed for Helicobacter pylori eradication therapy. Drug interactions were demonstrated in association of omeprazole as a proton pump inhibitor (PPI) and macrolide antibiotic erythromycin during cytochrome P450 3A4-mediated metabolism. It was shown that in the presence of omeprazole the rate of N-demethylase activity of CYP3A4 to erythromycin measured by means of product (formaldehyde) formation decreased. Mass-spectrometry analysis of omeprazole sulfone as a CYP3A4-mediated metabolite demonstrated the absence of erythromycin influence on CYP3A4-dependent omeprazole metabolism. This phenomenon may be explained by lower spectral dissociation constant of CYP3A4-omeprazole complex (Kd = 18±2 μM) than that of CYP3A4-erythromycin complex (Kd = 52 μM). Using the electrochemical model of electrochemically-driven drug metabolism it is possible to register CYP3A4-mediated catalytic conversion of certain drugs. In vitro experiments of potential CYP3A4-mediated drug-drug interactions are in accordance with in silico modeling with program PASS and PoSMNA descriptors in the case of omeprazole/erythromycin combinations.
Collapse
Affiliation(s)
- P I Koroleva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - R A Masamrekh
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | | | - A V Dmitriev
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - S M Rikova
- Sechenov First Moscow Medical State University (Sechenov University), Moscow, Russia
| | - E V Shich
- Sechenov First Moscow Medical State University (Sechenov University), Moscow, Russia
| | - A A Makhova
- Sechenov First Moscow Medical State University (Sechenov University), Moscow, Russia
| | - T V Bulko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Gilep
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| |
Collapse
|
36
|
Atypical Michaelis-Menten kinetics in cytochrome P450 enzymes: A focus on substrate inhibition. Biochem Pharmacol 2019; 169:113615. [DOI: 10.1016/j.bcp.2019.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022]
|
37
|
Wang PF, Neiner A, Kharasch ED. Efavirenz Metabolism: Influence of Polymorphic CYP2B6 Variants and Stereochemistry. Drug Metab Dispos 2019; 47:1195-1205. [PMID: 31324697 PMCID: PMC6756292 DOI: 10.1124/dmd.119.086348] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/10/2019] [Indexed: 01/11/2023] Open
Abstract
Efavirenz (more specifically the S-enantiomer) is a cornerstone antiretroviral therapy for treatment of HIV infection. The major primary metabolite is S-8-hydroxyefavirenz, which does not have antiretroviral activity but is neurotoxic. Cytochrome P450 2B6 (CYP2B6) is the major enzyme catalyzing S-8-hydroxyefavirenz formation. CYP2B6 genetics and drug interactions are major determinants of clinical efavirenz disposition and dose adjustment. In addition, as a prototypic CYP2B6 substrate, S-efavirenz and analogs can inform on the structure, activity, catalytic mechanisms, and stereoselectivity of CYP2B6. Metabolism of R-efavirenz by CYP2B6 remains unexplored. This investigation assessed S-efavirenz metabolism by clinically relevant CYP2B6 genetic variants. This investigation also evaluated R-efavirenz hydroxylation by wild-type CYP2B6.1 and CYP2B6 variants. S-Efavirenz 8-hydroxylation by wild-type CYP2B6.1 and variants exhibited positive cooperativity and apparent cooperative substrate inhibition. On the basis of Clmax values, relative activities for S-efavirenz 8-hydroxylation were in the order CYP2B6.4 > CYP2B6.1 ≈ CYP2B6.5 ≈ CYP2B6.17 > CYP2B6.6 ≈ CYP2B6.7 ≈ CYP2B6.9 ≈ CYP2B6.19 ≈ CYP2B6.26; CYP2B6.16 and CYP2B6.18 showed minimal activity. Rates of R-efavirenz metabolism were approximately 1/10 those of S-efavirenz for wild-type CYP2B6.1 and variants. On the basis of Clmax values, there was 14-fold enantioselectivity (S > R-efavirenz) for wild-type CYP2B6.1, and 5- to 22-fold differences for other CYP2B6 variants. These results show that both CYP2B6 516G > T (CYP2B6*6 and CYP2B6*9) and 983T > C (CYP2B6*16 and CYP2B6*18) polymorphisms cause canonical diminishment or loss-of-function variants for S-efavirenz 8-hydroxylation, provide a mechanistic basis for known clinical pharmacogenetic differences in efavirenz disposition, and may predict additional clinically important variant alleles. Efavirenz is the most stereoselective CYP2B6 drug substrate yet identified and may be a useful probe for the CYP2B6 active site and catalytic mechanisms. SIGNIFICANCE STATEMENT: Clinical disposition of the antiretroviral S-efavirenz is affected by CYP2B6 polymorphisms. Expressed CYP2B6 with 516G>T (CYP2B6*6 and CYP2B6*9), and 983T>C (CYP2B6*16 and CYP2B6*18) polymorphisms had a diminishment or loss of function for efavirenz 8-hydroxylation. This provides a mechanistic basis for efavirenz clinical pharmacogenetics and may predict additional clinically important variant alleles. Efavirenz metabolism showed both cooperativity and cooperative substrate inhibition. With greater than 10-fold enantioselectivity (S- vs. R- metabolism), efavirenz is the most stereoselective CYP2B6 drug substrate yet identified. These findings may provide mechanistic insights.
Collapse
Affiliation(s)
- Pan-Fen Wang
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Alicia Neiner
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri.
| | - Evan D Kharasch
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
38
|
Yadav J, Korzekwa K, Nagar S. Impact of Lipid Partitioning on the Design, Analysis, and Interpretation of Microsomal Time-Dependent Inactivation. Drug Metab Dispos 2019; 47:732-742. [PMID: 31043439 PMCID: PMC6556519 DOI: 10.1124/dmd.118.085969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
Nonspecific drug partitioning into microsomal membranes must be considered for in vitro-in vivo correlations. This work evaluated the effect of including lipid partitioning in the analysis of complex TDI kinetics with numerical methods. The covariance between lipid partitioning and multiple inhibitor binding was evaluated. Simulations were performed to test the impact of lipid partitioning on the interpretation of TDI kinetics, and experimental TDI datasets for paroxetine (PAR) and itraconazole (ITZ) were modeled. For most kinetic schemes, modeling lipid partitioning results in statistically better fits. For MM-IL simulations (KI,u = 0.1 µM, kinact = 0.1 minute-1), concurrent modeling of lipid partitioning for an fumic range (0.01, 0.1, and 0.5) resulted in better fits compared with post hoc correction (AICc: -526 vs. -496, -579 vs. -499, and -636 vs. -579, respectively). Similar results were obtained with EII-IL. Lipid partitioning may be misinterpreted as double binding, leading to incorrect parameter estimates. For the MM-IL datasets, when fumic = 0.02, MM-IL, and EII model fits were indistinguishable (δAICc = 3). For less partitioned datasets (fumic = 0.1 or 0.5), the inclusion of partitioning resulted in better models. The inclusion of lipid partitioning can lead to markedly different estimates of KI,u and kinact A reasonable alternate experimental design is nondilution TDI assays, with post hoc fumic incorporation. The best fit models for PAR (MIC-M-IL) and ITZ (MIC-EII-M-IL and MIC-EII-M-Seq-IL) were consistent with their reported mechanism and kinetics. Overall, experimental fumic values should be concurrently incorporated into TDI models with complex kinetics, when dilution protocols are used.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Theoretical explanation for the pharmaceutical incompatibility through the cooperativity effect of the drug-drug intermolecular interactions in the phenobarbital∙∙∙paracetamol∙∙∙H 2O complex. J Mol Model 2019; 25:181. [PMID: 31175465 DOI: 10.1007/s00894-019-4060-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/30/2019] [Indexed: 02/08/2023]
Abstract
In order to reveal the essence of the pharmaceutical incompatibility, the cooperativity effects of the drug-drug intermolecular π∙∙∙π and H∙∙∙O H-bonding interactions involving hydration were evaluated in the phenobarbital∙∙∙paracetamol∙∙∙H2O complex at the M06-2X/6-311++G** and MP2/6-311++G** levels. The thermodynamic cooperativity effects were also investigated by the statistical thermodynamic method. The results show that the π∙∙∙π stacking ternary complexes with the moderate anti-cooperativity effects are dominant in controling the aggregation process of phenobarbital, paracetamol, and H2O, as is confirmed by the atoms-in-molecules (AIM) and reduced density gradient (RDG) analyses. Therefore, it can be inferred that the anti-cooperativity effect plays an important role in forming the pharmaceutical incompatibility, and thus a deduction on the formation process of the pharmaceutical incompatibility between phenobarbital and paracetamol, with the hydration effect, is given. Several valuable models that relate the features of molecular surface electrostatic potentials or their statistical parameters, such as the surface areas, average values ([Formula: see text]), variances ([Formula: see text], [Formula: see text] and [Formula: see text]), and product of [Formula: see text] and electrostatic balance parameter (ν) ([Formula: see text]ν), to the values of the cooperativity effects were predicted. The formation of the pharmaceutical incompatibility is a thermodynamic cooperativity process driven by the enthalpy change. Graphical abstract Anti-cooperativity effect plays an important role in forming the pharmaceutical incompatibility.
Collapse
|
40
|
Bahrami A, Iliuta I, Garnier A, Larachi F, Vincent T, Iliuta MC. Kinetics of Enzymatic Hydroxylation by Free and MNPs-Immobilized NADH-Dependent Cytochrome P450 BM3 from Bacillus megaterium. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Atieh Bahrami
- Department of Chemical Engineering, Laval University, Québec, Canada G1V 0A6
| | - Ion Iliuta
- Department of Chemical Engineering, Laval University, Québec, Canada G1V 0A6
| | - Alain Garnier
- Department of Chemical Engineering, Laval University, Québec, Canada G1V 0A6
| | - Faïçal Larachi
- Department of Chemical Engineering, Laval University, Québec, Canada G1V 0A6
| | - Thierry Vincent
- Department of Chemical Engineering, Laval University, Québec, Canada G1V 0A6
| | - Maria C. Iliuta
- Department of Chemical Engineering, Laval University, Québec, Canada G1V 0A6
| |
Collapse
|
41
|
Masamrekh R, Kuzikov A, Veselovsky A, Toropygin I, Shkel T, Strushkevich N, Gilep A, Usanov S, Archakov A, Shumyantseva V. Interaction of 17α-hydroxylase, 17(20)-lyase (CYP17A1) inhibitors – abiraterone and galeterone – with human sterol 14α-demethylase (CYP51A1). J Inorg Biochem 2018; 186:24-33. [DOI: 10.1016/j.jinorgbio.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
|
42
|
Polic V, Sevrioukova IF, Auclair K. Steroid bioconjugation to a CYP3A4 allosteric site and its effect on substrate binding and coupling efficiency. Arch Biochem Biophys 2018; 653:90-96. [PMID: 29958895 PMCID: PMC6450699 DOI: 10.1016/j.abb.2018.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
Human cytochrome P450 3A4 (CYP3A4) is an important drug metabolizing enzyme involved in a number of drug-drug and food-drug interactions. As such, much effort has been devoted into investigating its mechanism of interaction with ligands. CYP3A4 has one of the highest levels of substrate promiscuity for an enzyme, and can even bind multiple ligands simultaneously. The location and orientation of these ligands depend on the chemical structure and stoichiometry, and are generally poorly understood. In the case of the steroid testosterone, up to three copies of the molecule can associate with the enzyme at once, likely two in the active site and one at a postulated allosteric site. Recently, we demonstrated that steroid bioconjugation at the allosteric site results in an increase in activity of CYP3A4 toward testosterone and 7-benzyloxy-4-trifluoromethylcoumarin oxidation. Here, using the established bioconjugation methodology, we show how steroid bioconjugation at the allosteric site affects the heme spin state, the binding affinity (KS) of CYP3A4 for testosterone, as well as the enzyme coupling efficiency.
Collapse
Affiliation(s)
- Vanja Polic
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, United States
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.
| |
Collapse
|
43
|
From electrochemistry to enzyme kinetics of cytochrome P450. Biosens Bioelectron 2018; 121:192-204. [PMID: 30218927 DOI: 10.1016/j.bios.2018.08.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/02/2018] [Accepted: 08/17/2018] [Indexed: 12/23/2022]
Abstract
This review is an attempt to describe advancements in the electrochemistry of cytochrome P450 enzymes (EC 1.14.14.1) and to study molecular aspects and catalytic behavior of enzymatic electrocatalysis. Electroanalysis of cytochrome P450 demonstrates how to translate theoretical laws and equations of classical electrochemistry for the calculation of the kinetic parameters of enzymatic reactions and then translation of kinetic parameters to interpretation of drug-drug interactions. The functional significance of cytochrome P450s (CYPs) includes the metabolism of drugs, foreign chemicals, and endogenic compounds. The pharmaceutical industry needs sensitive and cost-effective systems for screening new drugs and investigation of drug-drug interactions. The development of different types of CYP-based biosensors is now in great demand. This review also highlights the characteristics of electrode processes and electrode properties for optimization of the cytochrome P450 electroanalysis. Electrochemical cytochrome P450-biosensors are the most studied. In this review, we analyzed electrode/cytochrome P450 systems in terms of the mechanisms underlying P450-catalyzed reactions. Screening of potential substrates or inhibitors of cytochromes P450 by means of electrodes were described.
Collapse
|
44
|
Andarzi Gargari S, Barzegar A, Tarinejad A. The role of phenolic OH groups of flavonoid compounds with H-bond formation ability to suppress amyloid mature fibrils by destabilizing β-sheet conformation of monomeric Aβ17-42. PLoS One 2018; 13:e0199541. [PMID: 29953467 PMCID: PMC6023135 DOI: 10.1371/journal.pone.0199541] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/08/2018] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is a kind of brain disease that arises due to the aggregation and fibrillation of amyloid β-peptides (Aβ). The peptide Aβ17-42 forms U-shape protofilaments of amyloid mature fibrils by cross-β strands, detected in brain cells of individuals with AD. Targeting the structure of Aβ17-42 and destabilizing its β-strands by natural compounds could be effective in the treatment of AD patients. Therefore, the interaction features of monomeric U-shape Aβ17-42 with natural flavonoids including myricetin, morin and flavone at different mole ratios were comprehensively studied to recognize the mechanism of Aβ monomer instability using molecular dynamics (MD) simulations. We found that all flavonoids have tendency to interact and destabilize Aβ peptide structure with mole ratio-dependent effects. The interaction free energies of myricetin (with 6 OHs) and morin (with 5 OHs) were more negative compared to flavone, although the total binding energies of all flavonoids are favorable and negative. Myricetin, morin and flavone penetrated into the core of the Aβ17-42 and formed self-clusters of Aβ17-42-flavonoid complexes. Analysis of Aβ17-42-flavonoids interactions identified that the hydrophobic interactions related to SASA-dependent energy are weak in all complexes. However, the intermolecular H-bonds are a main binding factor for shifting U-shape rod-like state of Aβ17-42 to globular-like disordered state. Myricetin and morin polyphenols form H-bonds with both peptide's carbonyl and amine groups whereas flavone makes H-bonds only with amine substitution. As a result, polyphenols are more efficient in destabilizing β-sheet structures of peptide. Accordingly, the natural polyphenolic flavonoids are useful in forming stable Aβ17-42-flavonoid clusters to inhibit Aβ17-42 aggregation and these compounds could be an effective candidate for therapeutically targeting U-shape protofilaments' monomer in amyloid mature fibrils.
Collapse
Affiliation(s)
- Sahar Andarzi Gargari
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biophysics, Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Abolfazl Barzegar
- Department of Biophysics, Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- * E-mail: (AB); (AT)
| | - Alireza Tarinejad
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
- * E-mail: (AB); (AT)
| |
Collapse
|
45
|
Mak PJ, Denisov IG. Spectroscopic studies of the cytochrome P450 reaction mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:178-204. [PMID: 28668640 PMCID: PMC5709052 DOI: 10.1016/j.bbapap.2017.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Piotr J Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States.
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
46
|
Denisov IG, Baylon JL, Grinkova YV, Tajkhorshid E, Sligar SG. Drug-Drug Interactions between Atorvastatin and Dronedarone Mediated by Monomeric CYP3A4. Biochemistry 2017; 57:805-816. [PMID: 29200287 DOI: 10.1021/acs.biochem.7b01012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heterotropic interactions between atorvastatin (ARVS) and dronedarone (DND) have been deciphered using global analysis of the results of binding and turnover experiments for pure drugs and their mixtures. The in vivo presence of atorvastatin lactone (ARVL) was explicitly taken into account by using pure ARVL in analogous experiments. Both ARVL and ARVS inhibit DND binding and metabolism, while a significantly higher affinity of CYP3A4 for ARVL makes the latter the main modulator of activity (effector) in this system. Molecular dynamics simulations reveal significantly different modes of interactions of DND and ARVL with the substrate binding pocket and with a peripheral allosteric site. Interactions of both substrates with residues F213 and F219 at the allosteric site play a critical role in the communication of conformational changes induced by effector binding to productive binding of the substrate at the catalytic site.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, ‡Center for Biophysics and Quantitative Biology, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Javier L Baylon
- Department of Biochemistry, ‡Center for Biophysics and Quantitative Biology, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Yelena V Grinkova
- Department of Biochemistry, ‡Center for Biophysics and Quantitative Biology, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, ‡Center for Biophysics and Quantitative Biology, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry, ‡Center for Biophysics and Quantitative Biology, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
47
|
Arnold WR, Baylon JL, Tajkhorshid E, Das A. Arachidonic Acid Metabolism by Human Cardiovascular CYP2J2 Is Modulated by Doxorubicin. Biochemistry 2017; 56:6700-6712. [PMID: 29200270 DOI: 10.1021/acs.biochem.7b01025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Doxorubicin (DOX) is a chemotherapeutic that is used in the treatment of a wide variety of cancers. However, it causes cardiotoxicity partly because of the formation of reactive oxygen species. CYP2J2 is a human cytochrome P450 that is strongly expressed in cardiomyocytes. It converts arachidonic acid (AA) into four different regioisomers of epoxyeicosatrienoic acids (EETs). Using kinetic analyses, we show that AA metabolism by CYP2J2 is modulated by DOX. We show that cytochrome P450 reductase, the redox partner of CYP2J2, metabolizes DOX to 7-deoxydoxorubicin aglycone (7-de-aDOX). This metabolite then binds to CYP2J2 and inhibits and alters the preferred site of metabolism of AA, leading to a change in the ratio of the EET regioisomers. Furthermore, molecular dynamics simulations indicate that 7-de-aDOX and AA can concurrently bind to the CYP2J2 active site to produce these changes in the site of AA metabolism. To determine if these observations are unique to DOX/7-de-aDOX, we use noncardiotoxic DOX analogues, zorubicin (ZRN) and 5-iminodaunorubicin (5-IDN). ZRN and 5-IDN inhibit CYP2J2-mediated AA metabolism but do not change the ratio of EET regioisomers. Altogether, we demonstrate that DOX and 7-de-aDOX inhibit CYP2J2-mediated AA metabolism and 7-de-aDOX binds close to the active site to alter the ratio of cardioprotective EETs. These mechanistic studies of CYP2J2 can aid in the design of new alternative DOX derivatives.
Collapse
Affiliation(s)
- William R Arnold
- Department of Comparative Biosciences, ‡Department of Biochemistry, §Center for Biophysics and Computational Biology, ∥Beckman Institute for Advanced Science and Technology, and ⊥Department of Bioengineering, Neuroscience Program, University of Illinois Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Javier L Baylon
- Department of Comparative Biosciences, ‡Department of Biochemistry, §Center for Biophysics and Computational Biology, ∥Beckman Institute for Advanced Science and Technology, and ⊥Department of Bioengineering, Neuroscience Program, University of Illinois Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Comparative Biosciences, ‡Department of Biochemistry, §Center for Biophysics and Computational Biology, ∥Beckman Institute for Advanced Science and Technology, and ⊥Department of Bioengineering, Neuroscience Program, University of Illinois Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Aditi Das
- Department of Comparative Biosciences, ‡Department of Biochemistry, §Center for Biophysics and Computational Biology, ∥Beckman Institute for Advanced Science and Technology, and ⊥Department of Bioengineering, Neuroscience Program, University of Illinois Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
48
|
Ducharme J, Auclair K. Use of bioconjugation with cytochrome P450 enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28625736 DOI: 10.1016/j.bbapap.2017.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioconjugation, defined as chemical modification of biomolecules, is widely employed in biological and biophysical studies. It can expand functional diversity and enable applications ranging from biocatalysis, biosensing and even therapy. This review summarizes how chemical modifications of cytochrome P450 enzymes (P450s or CYPs) have contributed to improving our understanding of these enzymes. Genetic modifications of P450s have also proven very useful but are not covered in this review. Bioconjugation has served to gain structural information and investigate the mechanism of P450s via photoaffinity labeling, mechanism-based inhibition (MBI) and fluorescence studies. P450 surface acetylation and protein cross-linking have contributed to the investigation of protein complexes formation involving P450 and its redox partner or other P450 enzymes. Finally, covalent immobilization on polymer surfaces or electrodes has benefited the areas of biocatalysis and biosensor design. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Julie Ducharme
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
49
|
Polic V, Auclair K. Allosteric Activation of Cytochrome P450 3A4 via Progesterone Bioconjugation. Bioconjug Chem 2017; 28:885-889. [PMID: 28339191 DOI: 10.1021/acs.bioconjchem.6b00604] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human cytochrome P450 3A4 (CYP3A4) is responsible for the metabolism of the majority of drugs. As such, it is implicated in many adverse drug-drug and food-drug interactions, and is of significant interest to the pharmaceutical industry. This enzyme is known to simultaneously bind multiple ligands and display atypical enzyme kinetics, suggestive of allostery and cooperativity. As well, evidence of a postulated peripheral allosteric binding site has provoked debate around its significance and location. We report the use of bioconjugation to study the significance of substrate binding at the proposed allosteric site and its effect on CYP3A4 activity. CYP3A4 mutants were created and covalently modified with various small molecules including progesterone. The labeled mutants displayed enhanced kinetic stability and improved activity in testosterone and 7-benzyloxy-(4-trifluoromethyl)coumarin oxidation assays. Our work applies a new strategy to study cytochrome P450 allostery and supports the hypothesis that substrate binding at the postulated allosteric site of CYP3A4 may induce functional cooperativity.
Collapse
Affiliation(s)
- Vanja Polic
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Karine Auclair
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
50
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|