1
|
Du X, Yu W, Chen F, Jin X, Xue L, Zhang Y, Wu Q, Tong H. HDAC inhibitors and IBD: Charting new approaches in disease management. Int Immunopharmacol 2025; 148:114193. [PMID: 39892171 DOI: 10.1016/j.intimp.2025.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/14/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Inflammatory bowel disease (IBD) represents a group of chronic inflammatory disorders of the gastrointestinal tract. Despite substantial advances in our understanding of IBD pathogenesis, the currently available therapeutic options remain limited in their efficacy and often come with significant side effects. Therefore, there is an urgent need to explore novel approaches for the management of IBD. One promising avenue of investigation revolves around the use of histone deacetylase (HDAC) inhibitors, which have garnered considerable attention for their potential in modulating gene expression and curbing inflammatory responses. This review emphasizes the pressing need for innovative drugs in the treatment of IBD, and drawing from a wealth of preclinical studies and clinical trials, we underscore the multifaceted roles and the therapeutic effects of HDAC inhibitors in IBD models and patients. This review aims to contribute significantly to the understanding of HDAC inhibitors' importance and prospects in the management of IBD, ultimately paving the way for improved therapeutic strategies in this challenging clinical landscape.
Collapse
Affiliation(s)
- Xueting Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Weilai Yu
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Fangyu Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Xiaosheng Jin
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Liwei Xue
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Ya Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China.
| |
Collapse
|
2
|
Ihrig CM, Montgomery MM, Nomura Y, Nakano M, Pandey D, La Favor JD. Histone deacetylase 6 inhibition prevents hypercholesterolemia-induced erectile dysfunction independent of changes in markers of autophagy. Sex Med 2024; 12:qfae096. [PMID: 39790566 PMCID: PMC11717367 DOI: 10.1093/sexmed/qfae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Background Erectile dysfunction is a condition with a rapidly increasing prevalence globally with a strong correlation to the increase in obesity and cardiovascular disease rates. Aim The aim of the current study is to investigate the potential role of tubacin, a histone deacetylase 6 (HDAC6) inhibitor, in restoring erectile function in a hypercholesterolemia-induced endothelial dysfunction model. Methods Thirty-nine male C57Bl/6 J mice were divided into 3 groups. Two groups were administered an adeno-associated virus encoding for the gain of function of proprotein convertase subtilisin/kexin type 9 (PCSK9) and placed on a high-fat diet (HFD) with 1.25% cholesterol added for 18 weeks in order to induce a prolonged state of hypercholesterolemia. One of the PCSK9 groups received daily intraperitoneal injections of the HDAC6 inhibitor tubacin, while the other 2 groups received daily vehicle injections. Erectile function was assessed through measurement of intracavernosal pressure and mean arterial pressure during cavernous nerve stimulation, as well as assessment of agonist-stimulated ex vivo relaxation of the corpus cavernosum (CC). Western blotting was performed from CC tissue samples. Outcomes Erectile and endothelial functions were assessed, as well as protein markers of mitochondrial dynamics, mitophagy, and autophagy. Results Erectile function was impaired in the HFD + PCSK9 group throughout the entire voltage range of stimulation. However, the HFD + PCSK9 mice that were treated with tubacin experienced significant restoration of erectile function at the medium and high voltages of nerve stimulation. Similarly, ex vivo CC relaxation responses to acetylcholine and the cystathionine γ-lyase (CSE) substrate L-cysteine were reduced in the vehicle-treated HFD + PCSK9 mice, both of which were restored in the HFD + PCSK9 mice treated with tubacin. Corpus-cavernosum protein expression of CSE was significantly elevated in the tubacin-treated HFD + PCSK9 mice relative to both other groups. There were no significant differences observed in any of the protein markers of mitochondrial dynamics, mitophagy, or autophagy investigated. Clinical translation Histone deacetylase 6 inhibition may protect against erectile and endothelial dysfunction associated with hypercholesterolemia. Strengths and limitations This was the first study to investigate HDAC6-specific inhibition for treatment of erectile dysfunction. A study limitation was the exclusive focus on the CC, rather than structure and function of the pre-penile arteries that may develop a substantial atherosclerotic plaque burden under hypercholesterolemic conditions. Conclusions Tubacin may prevent hypercholesterolemia-induced erectile dysfunction through a hydrogen sulfide-related mechanism unrelated to regulation of mitophagy or autophagy.
Collapse
Affiliation(s)
- Colin M Ihrig
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, United States
| | - McLane M Montgomery
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, United States
| | - Yohei Nomura
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8507, Japan
| | - Mitsunori Nakano
- Department of Cardiovascular Surgery, Tokyo Metropolitan Bokutoh Hospital, Tokyo, 130-8575, Japan
| | - Deepesh Pandey
- Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States
| | - Justin D La Favor
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, United States
| |
Collapse
|
3
|
Liu K, Yang Y, Yang JH. Underlying mechanisms of ketotherapy in heart failure: current evidence for clinical implementations. Front Pharmacol 2024; 15:1463381. [PMID: 39512825 PMCID: PMC11540999 DOI: 10.3389/fphar.2024.1463381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Heart failure (HF) is a life-threatening cardiac syndrome characterized by high morbidity and mortality, but current anti-heart failure therapies have limited efficacy, necessitating the urgent development of new treatment drugs. Exogenous ketone supplementation helps prevent heart failure development in HF models, but therapeutic ketosis in failing hearts has not been systematically elucidated, limiting the use of ketones to treat HF. Here, we summarize current evidence supporting ketotherapy in HF, emphasizing ketone metabolism in the failing heart, metabolic and non-metabolic therapeutic effects, and mechanisms of ketotherapy in HF, involving the dynamics within the mitochondria. We also discuss clinical strategies for therapeutic ketosis, aiming to deepen the understanding of the characteristics of ketone metabolism, including mitochondrial involvement, and its clinical therapeutic potential in HF.
Collapse
Affiliation(s)
| | | | - Jing-Hua Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Liang X, Li Y, Wang P, Liu H. Key regulators of vascular calcification in chronic kidney disease: Hyperphosphatemia, BMP2, and RUNX2. PeerJ 2024; 12:e18063. [PMID: 39308809 PMCID: PMC11416758 DOI: 10.7717/peerj.18063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Vascular calcification is quite common in patients with end-stage chronic kidney disease and is a major trigger for cardiovascular complications in these patients. These complications significantly impact the survival rate and long-term prognosis of individuals with chronic kidney disease. Numerous studies have demonstrated that the development of vascular calcification involves various pathophysiological mechanisms, with the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) being of utmost importance. High phosphate levels, bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (RUNX2) play crucial roles in the osteogenic transdifferentiation process of VSMCs. This article primarily reviews the molecular mechanisms by which high phosphate, BMP2, and RUNX2 regulate vascular calcification secondary to chronic kidney disease, and discusses the complex interactions among these factors and their impact on the progression of vascular calcification. The insights provided here aim to offer new perspectives for future research on the phenotypic switching and osteogenic transdifferentiation of VSMCs, as well as to aid in optimizing clinical treatment strategies for this condition, bearing significant clinical and scientific implications.
Collapse
Affiliation(s)
- Xinhua Liang
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Zhanjiang, Guangdong Province, China
| | - Yankun Li
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Zhanjiang, Guangdong Province, China
| | - Peng Wang
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Zhanjiang, Guangdong, China
| | - Huafeng Liu
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Feng G, Wu Z, Yang L, Wang K, Wang H. β-hydroxybutyrate and ischemic stroke: roles and mechanisms. Mol Brain 2024; 17:48. [PMID: 39075604 PMCID: PMC11287974 DOI: 10.1186/s13041-024-01119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
Stroke is a significant global burden, causing extensive morbidity and mortality. In metabolic states where glucose is limited, ketone bodies, predominantly β-hydroxybutyrate (BHB), act as alternative fuel sources. Elevated levels of BHB have been found in the ischemic hemispheres of animal models of stroke, supporting its role in the pathophysiology of cerebral ischemia. Clinically, higher serum and urinary BHB concentrations have been associated with adverse outcomes in ischemic stroke, highlighting its potential utility as a prognostic biomarker. In both animal and cellular models, exogenous BHB administration has exhibited neuroprotective effects, reduction of infarct size, and improvement of neurological outcomes. In this review, we focus on the role of BHB before and after ischemic stroke, with an emphasis on the therapeutic potential and mechanisms of ketone administration after ischemic stroke.
Collapse
Affiliation(s)
- Ge Feng
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Zongkai Wu
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Leyi Yang
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Kaimeng Wang
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China.
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, China.
| |
Collapse
|
6
|
Wu Y, Li B, Yu X, Liu Y, Chui R, Sun K, Geng D, Ma L. Histone deacetylase 6 as a novel promising target to treat cardiovascular disease. CANCER INNOVATION 2024; 3:e114. [PMID: 38947757 PMCID: PMC11212282 DOI: 10.1002/cai2.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 07/02/2024]
Abstract
Histone deacetylase 6 (HDAC6) belongs to a class of epigenetic targets that have been found to be a key protein in the association between tumors and cardiovascular disease. Recent studies have focused on the crucial role of HDAC6 in regulating cardiovascular diseases such as atherosclerosis, myocardial infarction, myocardial hypertrophy, myocardial fibrosis, hypertension, pulmonary hypertension, and arrhythmia. Here, we review the association between HDAC6 and cardiovascular disease, the research progress of HDAC6 inhibitors in the treatment of cardiovascular disease, and discuss the feasibility of combining HDAC6 inhibitors with other therapeutic agents to treat cardiovascular disease.
Collapse
Affiliation(s)
- Ya‐Xi Wu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Bing‐Qian Li
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Xiao‐Qian Yu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Yu‐Lin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Rui‐Hao Chui
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Kai Sun
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
| | - Dian‐Guang Geng
- Key Laboratory of Cardio‐Cerebrovascular Drugs'China Meheco Topfond Pharmaceutical Co.ZhumadianHenanChina
| | - Li‐Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical ScienceZhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardio‐Cerebrovascular Drugs'China Meheco Topfond Pharmaceutical Co.ZhumadianHenanChina
| |
Collapse
|
7
|
Patil RS, Maloney ME, Lucas R, Fulton DJR, Patel V, Bagi Z, Kovacs-Kasa A, Kovacs L, Su Y, Verin AD. Zinc-Dependent Histone Deacetylases in Lung Endothelial Pathobiology. Biomolecules 2024; 14:140. [PMID: 38397377 PMCID: PMC10886568 DOI: 10.3390/biom14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and, as such, provides a semi-selective barrier between the blood and the interstitial space. Compromise of the lung EC barrier due to inflammatory or toxic events may result in pulmonary edema, which is a cardinal feature of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). The EC functions are controlled, at least in part, via epigenetic mechanisms mediated by histone deacetylases (HDACs). Zinc-dependent HDACs represent the largest group of HDACs and are activated by Zn2+. Members of this HDAC group are involved in epigenetic regulation primarily by modifying the structure of chromatin upon removal of acetyl groups from histones. In addition, they can deacetylate many non-histone histone proteins, including those located in extranuclear compartments. Recently, the therapeutic potential of inhibiting zinc-dependent HDACs for EC barrier preservation has gained momentum. However, the role of specific HDAC subtypes in EC barrier regulation remains largely unknown. This review aims to provide an update on the role of zinc-dependent HDACs in endothelial dysfunction and its related diseases. We will broadly focus on biological contributions, signaling pathways and transcriptional roles of HDACs in endothelial pathobiology associated mainly with lung diseases, and we will discuss the potential of their inhibitors for lung injury prevention.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - McKenzie E. Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vijay Patel
- Department of Cardiothoracic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Laszlo Kovacs
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Huang L, Wang Q, Gu S, Cao N. Integrated metabolic and epigenetic mechanisms in cardiomyocyte proliferation. J Mol Cell Cardiol 2023; 181:79-88. [PMID: 37331466 DOI: 10.1016/j.yjmcc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
Heart disease continues to be the leading cause of mortality worldwide, primarily attributed to the restricted regenerative potential of the adult human heart following injury. In contrast to their adult counterparts, many neonatal mammals can spontaneously regenerate their myocardium in the first few days of life via extensive proliferation of the pre-existing cardiomyocytes. Reasons for the decline in regenerative capacity during postnatal development, and how to control it, remain largely unexplored. Accumulated evidence suggests that the preservation of regenerative potential depends on a conducive metabolic state in the embryonic and neonatal heart. Along with the postnatal increase in oxygenation and workload, the mammalian heart undergoes a metabolic transition, shifting its primary metabolic substrate from glucose to fatty acids shortly after birth for energy advantage. This metabolic switch causes cardiomyocyte cell-cycle arrest, which is widely regarded as a key mechanism for the loss of regenerative capacity. Beyond energy provision, emerging studies have suggested a link between this intracellular metabolism dynamics and postnatal epigenetic remodeling of the mammalian heart that reshapes the expression of many genes important for cardiomyocyte proliferation and cardiac regeneration, since many epigenetic enzymes utilize kinds of metabolites as obligate cofactors or substrates. This review summarizes the current state of knowledge of metabolism and metabolite-mediated epigenetic modifications in cardiomyocyte proliferation, with a particular focus on highlighting the potential therapeutic targets that hold promise to treat human heart failure via metabolic and epigenetic regulations.
Collapse
Affiliation(s)
- Liying Huang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Qiyuan Wang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Shanshan Gu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Nan Cao
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China.
| |
Collapse
|
9
|
Meng Y, Du J, Liu N, Qiang Y, Xiao L, Lan X, Ma L, Yang J, Yu J, Lu G. Epigenetic modulation: Research progress on histone acetylation levels in major depressive disorders. J Drug Target 2023; 31:142-151. [PMID: 36112185 DOI: 10.1080/1061186x.2022.2125978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Depression is a serious mental illness and a prevalent condition with multiple aetiologies. The impact of the current therapeutic strategies is limited and the pathogenesis of the illness is not well understood. According to previous studies, depression onset is influenced by a variety of environmental and genetic factors, including chronic stress, aberrant changes in gene expression, and hereditary predisposition. Transcriptional regulation in eukaryotes is closely related to chromosome packing and is controlled by histone post-translational modifications. The development of new antidepressants may proceed along a new path with medications that target epigenetics. Histone deacetylase inhibitors (HDACis) are a class of compounds that interfere with the function of histone deacetylases (HDACs). This review explores the relationship between HDACs and depression and focuses on the current knowledge on their regulatory mechanism in depression and the potential therapeutic use of HDACis with antidepressant efficacy in preclinical research. Future research on inhibitors is also proposed and discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China.,Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Juan Du
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China.,Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Yuanyuan Qiang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Lin Ma
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Guangyuan Lu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| |
Collapse
|
10
|
Guo Y, Jiang H, Wang J, Li P, Zeng X, Zhang T, Feng J, Nie R, Liu Y, Dong X, Hu Q. 5mC modification patterns provide novel direction for early acute myocardial infarction detection and personalized therapy. Front Cardiovasc Med 2022; 9:1053697. [PMID: 36620624 PMCID: PMC9816341 DOI: 10.3389/fcvm.2022.1053697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Most deaths from coronary artery disease (CAD) are due to acute myocardial infarction (AMI). There is an urgent need for early AMI detection, particularly in patients with stable CAD. 5-methylcytosine (5mC) regulatory genes have been demonstrated to involve in the progression and prognosis of cardiovascular diseases, while little research examined 5mC regulators in CAD to AMI progression. Method Two datasets (GSE59867 and GSE62646) were downloaded from Gene Expression Omnibus (GEO) database, and 21 m5C regulators were extracted from previous literature. Dysregulated 5mC regulators were screened out by "limma." The least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) algorithm were employed to identify hub 5mC regulators in CAD to AMI progression, and 43 clinical samples (Quantitative real-time PCR) were performed for expression validation. Then a logistic model was built to construct 5mC regulator signatures, and a series of bioinformatics algorithms were performed for model validation. Besides, 5mC-associated molecular clusters were studied via unsupervised clustering analysis, and correlation analysis between immunocyte and 5mC regulators in each cluster was conducted. Results Nine hub 5mC regulators were identified. A robust model was constructed, and its prominent classification accuracy was verified via ROC curve analysis (area under the curve [AUC] = 0.936 in the training cohort and AUC = 0.888 in the external validation cohort). Besides, the clinical effect of the model was validated by decision curve analysis. Then, 5mC modification clusters in AMI patients were identified, along with the immunocyte infiltration levels of each cluster. The correlation analysis found the strongest correlations were TET3-Mast cell in cluster-1 and TET3-MDSC in cluster-2. Conclusion Nine hub 5mC regulators (DNMT3B, MBD3, UHRF1, UHRF2, NTHL1, SMUG1, ZBTB33, TET1, and TET3) formed a diagnostic model, and concomitant results unraveled the critical impact of 5mC regulators, providing interesting epigenetics findings in AMI population vs. stable CAD.
Collapse
Affiliation(s)
- Yiqun Guo
- Department of Interventional Radiology and Vascular, Guangzhou Women and Children’s Medical Center, The Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hua Jiang
- Department of Interventional Radiology and Vascular, Guangzhou Women and Children’s Medical Center, The Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinlong Wang
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ping Li
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaoquan Zeng
- Department of Cardiology, Xinfeng County People’s Hospital, Shaoguan, Guangdong, China
| | - Tao Zhang
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jianyi Feng
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ruqiong Nie
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yulong Liu
- Department of Intervention and Vascular Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China,*Correspondence: Yulong Liu,
| | - Xiaobian Dong
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China,Xiaobian Dong,
| | - Qingsong Hu
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China,Qingsong Hu,
| |
Collapse
|
11
|
Fadaei S, Zarepour F, Parvaresh M, Motamedzadeh A, Tamehri Zadeh SS, Sheida A, Shabani M, Hamblin MR, Rezaee M, Zarei M, Mirzaei H. Epigenetic regulation in myocardial infarction: Non-coding RNAs and exosomal non-coding RNAs. Front Cardiovasc Med 2022; 9:1014961. [PMID: 36440025 PMCID: PMC9685618 DOI: 10.3389/fcvm.2022.1014961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 08/13/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of deaths globally. The early diagnosis of MI lowers the rate of subsequent complications and maximizes the benefits of cardiovascular interventions. Many efforts have been made to explore new therapeutic targets for MI, and the therapeutic potential of non-coding RNAs (ncRNAs) is one good example. NcRNAs are a group of RNAs with many different subgroups, but they are not translated into proteins. MicroRNAs (miRNAs) are the most studied type of ncRNAs, and have been found to regulate several pathological processes in MI, including cardiomyocyte inflammation, apoptosis, angiogenesis, and fibrosis. These processes can also be modulated by circular RNAs and long ncRNAs via different mechanisms. However, the regulatory role of ncRNAs and their underlying mechanisms in MI are underexplored. Exosomes play a crucial role in communication between cells, and can affect both homeostasis and disease conditions. Exosomal ncRNAs have been shown to affect many biological functions. Tissue-specific changes in exosomal ncRNAs contribute to aging, tissue dysfunction, and human diseases. Here we provide a comprehensive review of recent findings on epigenetic changes in cardiovascular diseases as well as the role of ncRNAs and exosomal ncRNAs in MI, focusing on their function, diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Sara Fadaei
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrnoosh Parvaresh
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shabani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Anesthesiology, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mehdi Rezaee
- Department of Anesthesiology, School of Medicine, Shahid Madani Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Zarei
- Tehran Heart Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Ginkgolic acid improves bleomycin-induced pulmonary fibrosis by inhibiting SMAD4 SUMOylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8002566. [PMID: 35707278 PMCID: PMC9192210 DOI: 10.1155/2022/8002566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/24/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a refractory chronic respiratory disease with progressively exacerbating symptoms and a high mortality rate. There are currently only two effective drugs for IPF; thus, there is an urgent need to develop new therapeutics. Previous experiments have shown that ginkgolic acid (GA), as a SUMO-1 inhibitor, exerted an inhibitory effect on cardiac fibrosis induced by myocardial infarction. Regarding the pathogenesis of PF, previous studies have concluded that small ubiquitin-like modifier (SUMO) polypeptides bind multiple target proteins and participate in fibrosis of multiple organs, including PF. In this study, we found altered expression of SUMO family members in lung tissues from IPF patients. GA mediated the reduced expression of SUMO1/2/3 and the overexpression of SENP1 in a PF mouse model, which improved PF phenotypes. At the same time, the protective effect of GA on PF was also confirmed in the SENP1-KO transgenic mice model. Subsequent experiments showed that SUMOylation of SMAD4 was involved in PF. It was inhibited by TGF-β1, but GA could reverse the effects of TGF-β1. SENP1 also inhibited the SUMOylation of SMAD4 and then participated in epithelial-mesenchymal transition (EMT) downstream of TGF-β1. We also found that SENP1 regulation of SMAD4 SUMOylation affected reactive oxygen species (ROS) production during TGF-β1-induced EMT and that GA prevented this oxidative stress through SENP1. Therefore, GA may inhibit the SUMOylation of SMAD4 through SENP1 and participate in TGF-β1-mediated pulmonary EMT, all of which reduce the degree of PF. This study provided potential novel targets and a new alternative for the future clinical testing in PF.
Collapse
|
13
|
Onosato H, Fujimoto G, Higami T, Sakamoto T, Yamada A, Suzuki T, Ozawa R, Matsunaga S, Seki M, Ueda M, Sako K, Galis I, Arimura GI. Sustained defense response via volatile signaling and its epigenetic transcriptional regulation. PLANT PHYSIOLOGY 2022; 189:922-933. [PMID: 35201346 PMCID: PMC9157098 DOI: 10.1093/plphys/kiac077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/29/2022] [Indexed: 05/11/2023]
Abstract
Plants perceive volatiles emitted from herbivore-damaged neighboring plants to urgently adapt or prime their defense responses to prepare for forthcoming herbivores. Mechanistically, these volatiles can induce epigenetic regulation based on histone modifications that alter the transcriptional status of defense genes, but little is known about the underlying mechanisms. To understand the roles of such epigenetic regulation of plant volatile signaling, we explored the response of Arabidopsis (Arabidopsis thaliana) plants to the volatile β-ocimene. Defense traits of Arabidopsis plants toward larvae of Spodoptera litura were induced in response to β-ocimene, through enriched histone acetylation and elevated transcriptional levels of defense gene regulators, including ethylene response factor genes (ERF8 and ERF104) in leaves. The enhanced defense ability of the plants was maintained for 5 d but not over 10 d after exposure to β-ocimene, and this coincided with elevated expression of those ERFs in their leaves. An array of histone acetyltransferases, including HAC1, HAC5, and HAM1, were responsible for the induction and maintenance of the anti-herbivore property. HDA6, a histone deacetylase, played a role in the reverse histone remodeling. Collectively, our findings illuminate the role of epigenetic regulation in plant volatile signaling.
Collapse
Affiliation(s)
- Haruki Onosato
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Genya Fujimoto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Tomota Higami
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Takuya Sakamoto
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Ayaka Yamada
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | - Sachihiro Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan
| | - Minoru Ueda
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Gen-ichiro Arimura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
- Author for correspondence:
| |
Collapse
|
14
|
Liao L, He Y, Li SJ, Zhang GG, Yu W, Yang J, Huang ZJ, Zheng CC, He QY, Li Y, Li B. Anti-HIV drug elvitegravir suppresses cancer metastasis via increased proteasomal degradation of m6A methyltransferase METTL3. Cancer Res 2022; 82:2444-2457. [PMID: 35507004 DOI: 10.1158/0008-5472.can-21-4124] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/21/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
N6-methyladenosine (m6A) methylation is an abundant modification in eukaryotic mRNAs. Accumulating evidence suggests a role for RNA m6A methylation in various aspects of cancer biology. In this study, we aimed to explore the biological role of RNA m6A modification in tumor metastasis and to identify novel therapeutic strategies for esophageal squamous cell carcinoma (ESCC). Integration of genome-wide CRISPR/Cas9 functional screening with highly invasive and metastatic ESCC subline models led to the identification of METTL3, the catalytic subunit of the N6-adenosine-methyltransferase complex, as a promoter of cancer metastasis. METTL3 expression was upregulated in ESCC tumors and metastatic tissues. In vitro and in vivo experiments indicated that METTL3 increased m6A in EGR1 mRNA and enhanced its stability in a YTHDF3-dependent manner, activating EGR1/Snail signaling. Investigation into regulation of METTL3 expression found that KAT2A increased H3K27 acetylation levels in the METTL3 promoter region and activated transcription of METTL3 while SIRT2 exerted the opposite effects. Molecular docking and computational screening in a Food and Drug Administration (FDA)-approved compound library consisting of 1,443 small molecules identified compounds targeting METTL3 to suppress cancer metastasis. Elvitegravir, originally developed to treat human immunodeficiency virus (HIV) infection, suppressed metastasis by directly targeting METTL3 and enhancing its STUB1-mediated proteasomal degradation. Overall, RNA m6A modifications are important in cancer metastasis, and targeting METTL3 with elvitegravir has therapeutic potential for treating ESCC.
Collapse
Affiliation(s)
- Long Liao
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan He
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shu Jun Li
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guo Geng Zhang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Yu
- Jinan University, Guangzhou, China
| | | | | | - Can-Can Zheng
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | | - Yan Li
- Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Bin Li
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Quantitative Proteomics Reveals the Role of Lysine 2-Hydroxyisobutyrylation Pathway Mediated by Tip60. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4571319. [PMID: 35178156 PMCID: PMC8847014 DOI: 10.1155/2022/4571319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
Lysine 2-hydroxyisobutyrylation (Khib) is a new type of posttranslational modifications (PTMs) extensively reported on eukaryotic cell histones. It is evolutionarily conserved and participates in diverse important biological processes, such as transcription and cell metabolism. Recently, it has been demonstrated that Khib can be regulated by p300 and Tip60. Although the specific Khib substrates mediated by p300 have been revealed, how Tip60 regulates diverse cellular processes through the Khib pathway and the different roles between Tip60 and p300 in regulating Khib remain largely unknown, which prevents us from understanding how this modification executes its biological functions. In this study, we report the first Khib proteome mediated by Tip60. In total, 3502 unique Khib sites from 1050 proteins were identified. Among them, 536 Khib sites from 406 proteins were present only in Tip60 overexpressing cells and 13 Khib sites increased more than 2-fold in response to Tip60 overexpression, indicating that Tip60 significantly affected global Khib. Notably, only 5 of the 549 Tip60-targeted Khib sites overlapped with the 149 known Khib sites targeted by p300, indicating the different Khib substrate preferences of Tip60 and p300. In addition, the Khib substrates regulated by Tip60 are deeply involved in processes such as nucleic acid metabolism and translation, and some are associated with Parkinson’s and Prion diseases. In summary, our research reveals the Khib substrates targeted by Tip60, which elucidates the effect of Tip60 in regulating various cellular processes through the Khib pathway, and proposes novel views into the functional mechanism of Tip60.
Collapse
|
16
|
Huo M, Zhang J, Huang W, Wang Y. Interplay Among Metabolism, Epigenetic Modifications, and Gene Expression in Cancer. Front Cell Dev Biol 2022; 9:793428. [PMID: 35004688 PMCID: PMC8740611 DOI: 10.3389/fcell.2021.793428] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modifications and metabolism are two fundamental biological processes. During tumorigenesis and cancer development both epigenetic and metabolic alterations occur and are often intertwined together. Epigenetic modifications contribute to metabolic reprogramming by modifying the transcriptional regulation of metabolic enzymes, which is crucial for glucose metabolism, lipid metabolism, and amino acid metabolism. Metabolites provide substrates for epigenetic modifications, including histone modification (methylation, acetylation, and phosphorylation), DNA and RNA methylation and non-coding RNAs. Simultaneously, some metabolites can also serve as substrates for nonhistone post-translational modifications that have an impact on the development of tumors. And metabolic enzymes also regulate epigenetic modifications independent of their metabolites. In addition, metabolites produced by gut microbiota influence host metabolism. Understanding the crosstalk among metabolism, epigenetic modifications, and gene expression in cancer may help researchers explore the mechanisms of carcinogenesis and progression to metastasis, thereby provide strategies for the prevention and therapy of cancer. In this review, we summarize the progress in the understanding of the interactions between cancer metabolism and epigenetics.
Collapse
Affiliation(s)
- Miaomiao Huo
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyao Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Huang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Chen J, Liu Z, Ma L, Gao S, Fu H, Wang C, Lu A, Wang B, Gu X. Targeting Epigenetics and Non-coding RNAs in Myocardial Infarction: From Mechanisms to Therapeutics. Front Genet 2022; 12:780649. [PMID: 34987550 PMCID: PMC8721121 DOI: 10.3389/fgene.2021.780649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) is a complicated pathology triggered by numerous environmental and genetic factors. Understanding the effect of epigenetic regulation mechanisms on the cardiovascular disease would advance the field and promote prophylactic methods targeting epigenetic mechanisms. Genetic screening guides individualised MI therapies and surveillance. The present review reported the latest development on the epigenetic regulation of MI in terms of DNA methylation, histone modifications, and microRNA-dependent MI mechanisms and the novel therapies based on epigenetics.
Collapse
Affiliation(s)
- Jinhong Chen
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Zhichao Liu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Li Ma
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Shengwei Gao
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Huanjie Fu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Can Wang
- Acupuncture Department, The First Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Anmin Lu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Baohe Wang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Xufang Gu
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| |
Collapse
|
18
|
Yoon S, Eom GH, Kang G. Nitrosative Stress and Human Disease: Therapeutic Potential of Denitrosylation. Int J Mol Sci 2021; 22:ijms22189794. [PMID: 34575960 PMCID: PMC8464666 DOI: 10.3390/ijms22189794] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
Proteins dynamically contribute towards maintaining cellular homeostasis. Posttranslational modification regulates the function of target proteins through their immediate activation, sudden inhibition, or permanent degradation. Among numerous protein modifications, protein nitrosation and its functional relevance have emerged. Nitrosation generally initiates nitric oxide (NO) production in association with NO synthase. NO is conjugated to free thiol in the cysteine side chain (S-nitrosylation) and is propagated via the transnitrosylation mechanism. S-nitrosylation is a signaling pathway frequently involved in physiologic regulation. NO forms peroxynitrite in excessive oxidation conditions and induces tyrosine nitration, which is quite stable and is considered irreversible. Two main reducing systems are attributed to denitrosylation: glutathione and thioredoxin (TRX). Glutathione captures NO from S-nitrosylated protein and forms S-nitrosoglutathione (GSNO). The intracellular reducing system catalyzes GSNO into GSH again. TRX can remove NO-like glutathione and break down the disulfide bridge. Although NO is usually beneficial in the basal context, cumulative stress from chronic inflammation or oxidative insult produces a large amount of NO, which induces atypical protein nitrosation. Herein, we (1) provide a brief introduction to the nitrosation and denitrosylation processes, (2) discuss nitrosation-associated human diseases, and (3) discuss a possible denitrosylation strategy and its therapeutic applications.
Collapse
Affiliation(s)
- Somy Yoon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea;
- Correspondence: (G.-H.E.); (G.K.); Tel.: +82-61-379-2837 (G.-H.E.); +82-62-220-5262 (G.K.)
| | - Gaeun Kang
- Division of Clinical Pharmacology, Chonnam National University Hospital, Gwangju 61469, Korea
- Correspondence: (G.-H.E.); (G.K.); Tel.: +82-61-379-2837 (G.-H.E.); +82-62-220-5262 (G.K.)
| |
Collapse
|
19
|
Applegate TJ, Krafsur GM, Boon JA, Zhang H, Li M, Holt TN, Ambler SK, Abrams BA, Gustafson DL, Bartels K, Garry FB, Stenmark KR, Brown RD. Brief Report: Case Comparison of Therapy With the Histone Deacetylase Inhibitor Vorinostat in a Neonatal Calf Model of Pulmonary Hypertension. Front Physiol 2021; 12:712583. [PMID: 34552503 PMCID: PMC8450341 DOI: 10.3389/fphys.2021.712583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Pulmonary hypertension (PH) is an incurable condition in humans; driven by pulmonary vascular remodeling partially mediated by epigenetic mechanisms; and leading to right ventricular hypertrophy, failure, and death. We hypothesized that targeting chromatin-modifying histone deacetylases may provide benefit. In this Brief Report we describe case comparison studies using the histone deacetylase inhibitor vorinostat (suberanilohydroxamic acid, 5 mg/kg/day for the first 5 study days) in an established model of severe neonatal bovine PH induced by 14 days of environmental hypoxia. Echocardiographic, hemodynamic, and pharmacokinetic data were obtained in hypoxia-exposed (one each, vorinostat-treated vs. untreated) and normoxic vorinostat-treated control animals (n = 2). Echocardiography detected PH changes by day 4 and severe PH over 14 days of continued hypoxic exposure. RV dysfunction at day 4 was less severe in vorinostat-treated compared to untreated hypoxic calves. Cardioprotective effects were partially maintained following cessation of treatment through the duration of hypoxic exposure, accompanied by hemodynamic evidence suggestive of reduced pulmonary vascular stiffening, and modulated expression of HDAC1 protein and genes involved in RV and pulmonary vascular remodeling and pathological RV hypertrophy. Control calves did not develop PH, nor show adverse cardiac or clinical effects. These results provide novel translation of epigenetic-directed therapy to a large animal severe PH model that recapitulates important features of human disease.
Collapse
Affiliation(s)
- Tanya J. Applegate
- Department of Clinical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, United States
| | - Greta M. Krafsur
- Division of Clinical Research, Medicine and Pathobiologic Services, RTI, L.L.C., Brookings, SD, United States
- Departments of Pediatrics and Medicine, University of Colorado Denver, Aurora, CO, United States
| | - June A. Boon
- Department of Clinical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, United States
| | - Hui Zhang
- Departments of Pediatrics and Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Min Li
- Departments of Pediatrics and Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Timothy N. Holt
- Department of Clinical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, United States
| | - S. Kelly Ambler
- Departments of Pediatrics and Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Benjamin A. Abrams
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO, United States
| | - Daniel L. Gustafson
- Department of Clinical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, United States
| | - Karsten Bartels
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO, United States
| | - Franklyn B. Garry
- Department of Clinical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, United States
| | - Kurt R. Stenmark
- Departments of Pediatrics and Medicine, University of Colorado Denver, Aurora, CO, United States
| | - R. Dale Brown
- Departments of Pediatrics and Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
20
|
Wang K, Li Y, Qiang T, Chen J, Wang X. Role of epigenetic regulation in myocardial ischemia/reperfusion injury. Pharmacol Res 2021; 170:105743. [PMID: 34182132 DOI: 10.1016/j.phrs.2021.105743] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 12/30/2022]
Abstract
Nowadays acute myocardial infarction (AMI) is a serious cardiovascular disease threatening the human life and health worldwide. The most effective treatment is to quickly restore coronary blood flow through revascularization. However, timely revascularization may lead to reperfusion injury, thereby reducing the clinical benefits of revascularization. At present, no effective treatment is available for myocardial ischemia/reperfusion injury. Emerging evidence indicates that epigenetic regulation is closely related to the pathogenesis of myocardial ischemia/reperfusion injury, indicating that epigenetics may serve as a novel therapeutic target to ameliorate or prevent ischemia/reperfusion injury. This review aimed to briefly summarize the role of histone modification, DNA methylation, noncoding RNAs, and N6-methyladenosine (m6A) methylation in myocardial ischemia/reperfusion injury, with a view to providing new methods and ideas for the research and treatment of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Keyan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China
| | - Yiping Li
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China
| | - Tingting Qiang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China
| | - Jie Chen
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China
| | - Xiaolong Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China.
| |
Collapse
|
21
|
Hu C, Peng K, Wu Q, Wang Y, Fan X, Zhang DM, Passerini AG, Sun C. HDAC1 and 2 regulate endothelial VCAM-1 expression and atherogenesis by suppressing methylation of the GATA6 promoter. Am J Cancer Res 2021; 11:5605-5619. [PMID: 33859766 PMCID: PMC8039941 DOI: 10.7150/thno.55878] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/04/2021] [Indexed: 12/16/2022] Open
Abstract
Increased expression of vascular cell adhesion molecule (VCAM)-1 on the activated arterial endothelial cell (EC) surface critically contributes to atherosclerosis which may in part be regulated by epigenetic mechanisms. This study investigated whether and how the clinically available histone deacetylases 1 and 2 (HDAC1/2) inhibitor drug Romidepsin epigenetically modulates VCAM-1 expression to suppress atherosclerosis. Methods: VCAM-1 expression was analyzed in primary human aortic EC (HAEC) treated with Romidepsin or transfected with HDAC1/2-targeting siRNA. Methylation of GATA6 promoter region was examined with methylation-specific PCR assay. Enrichment of STAT3 to GATA6 promoter was detected with chromatin immunoprecipitation. Lys685Arg mutation was constructed to block STAT3 acetylation. The potential therapeutic effect of Romidepsin on atherosclerosis was evaluated in Apoe-/- mice fed with a high-fat diet. Results: Romidepsin significantly attenuated TNFα-induced VCAM-1 expression on HAEC surface and monocyte adhesion through simultaneous inhibition of HDAC1/2. This downregulation of VCAM-1 was attributable to reduced expression of transcription factor GATA6. Romidepsin enhanced STAT3 acetylation and its binding to DNA methyltransferase 1 (DNMT1), leading to hypermethylation of the GATA6 promoter CpG-rich region at +140/+255. Blocking STAT3 acetylation at Lys685 disrupted DNMT1-STAT3 interaction, decreased GATA6 promoter methylation, and reversed the suppressive effects of HDAC1/2 inhibition on GATA6 and VCAM-1 expression. Finally, intraperitoneal administration of Romidepsin reduced diet-induced atherosclerotic lesion development in Apoe-/- mice, accompanied by a reduction in GATA6/VCAM-1 expression in the aorta. Conclusions: HDAC1/2 contributes to VCAM-1 expression and atherosclerosis by suppressing STAT3 acetylation-dependent GATA6 promoter methylation. These findings may provide a rationale for HDAC1/2-targeting therapy in atherosclerotic heart disease.
Collapse
|
22
|
Yoon S, Kim M, Lee H, Kang G, Bedi K, Margulies KB, Jain R, Nam KI, Kook H, Eom GH. S-Nitrosylation of Histone Deacetylase 2 by Neuronal Nitric Oxide Synthase as a Mechanism of Diastolic Dysfunction. Circulation 2021; 143:1912-1925. [PMID: 33715387 DOI: 10.1161/circulationaha.119.043578] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although the clinical importance of heart failure with preserved ejection fraction has been extensively explored, most therapeutic regimens, including nitric oxide (NO) donors, lack therapeutic benefit. Although the clinical characteristics of heart failure with preserved ejection fraction are somewhat heterogeneous, diastolic dysfunction (DD) is one of the most important features. Here we report that neuronal NO synthase (nNOS) induces DD by S-nitrosylation of HDAC2 (histone deacetylase 2). METHODS Two animal models of DD-SAUNA (SAlty drinking water/Unilateral Nephrectomy/Aldosterone) and mild transverse aortic constriction mice-as well as human heart samples from patients with left ventricular hypertrophy were used. Genetically modified mice that were either nNOS-ablated or HDAC2 S-nitrosylation-resistant were also challenged. N(ω)-propyl-L-arginine, an nNOS selective inhibitor, and dimethyl fumarate, an NRF2 (nuclear factor erythroid 2-related factor 2) inducer, were used. Molecular events were further checked in human left ventricle specimens. RESULTS SAUNA or mild transverse aortic constriction stress impaired diastolic function and exercise tolerance without overt systolic failure. Among the posttranslational modifications tested, S-nitrosylation was most dramatically increased in both models. Utilizing heart samples from both mice and humans, we observed increases in nNOS expression and NO production. N(ω)-propyl-L-arginine alleviated the development of DD in vivo. Similarly, nNOS knockout mice were resistant to SAUNA stress. nNOS-induced S-nitrosylation of HDAC2 was relayed by transnitrosylation of GAPDH. HDAC2 S-nitrosylation was confirmed in both DD mouse and human left ventricular hypertrophy. S-nitrosylation of HDAC2 took place at C262 and C274. When DD was induced, HDAC2 S-nitrosylation was detected in wild-type mouse, but not in HDAC2 knock-in mouse heart that expressed HDAC2 C262A/C274A. In addition, HDAC2 C262A/C274A mice maintained normal diastolic function under DD stimuli. Gene delivery with adenovirus-associated virus 9 (AAV9)-NRF2, a putative denitrosylase of HDAC2, or pharmacological intervention by dimethyl fumarate successfully induced HDAC2 denitrosylation and mitigated DD in vivo. CONCLUSIONS Our observations are the first to demonstrate a new mechanism underlying DD pathophysiology. Our results provide theoretical and experimental evidence to explain the ineffectiveness of conventional NO enhancement trials for improving DD with heart failure symptoms. More important, our results suggest that reduction of NO or denitrosylation of HDAC2 may provide a new therapeutic platform for the treatment of refractory heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Somy Yoon
- Department of Pharmacology (S.Y., M.K., H.L., H.K., G.H.E.), Chonnam National University Medical School, Hwasun, Korea
| | - Mira Kim
- Department of Pharmacology (S.Y., M.K., H.L., H.K., G.H.E.), Chonnam National University Medical School, Hwasun, Korea
| | - Hangyeol Lee
- Department of Pharmacology (S.Y., M.K., H.L., H.K., G.H.E.), Chonnam National University Medical School, Hwasun, Korea
| | - Gaeun Kang
- Division of Clinical Pharmacology, Chonnam National University Hospital, Gwangju, Korea (G.K.)
| | - Kenneth Bedi
- Cardiovascular Institute, Department of Medicine (K.B., K.B.M., R.J), University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Kenneth B Margulies
- Cardiovascular Institute, Department of Medicine (K.B., K.B.M., R.J), University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Rajan Jain
- Cardiovascular Institute, Department of Medicine (K.B., K.B.M., R.J), University of Pennsylvania, Perelman School of Medicine, Philadelphia.,Penn Epigenetic Institute, Department of Cell and Developmental Biology (R.J.), University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Kwang-Il Nam
- Department of Anatomy (K.-I.N.), Chonnam National University Medical School, Hwasun, Korea
| | - Hyun Kook
- Department of Pharmacology (S.Y., M.K., H.L., H.K., G.H.E.), Chonnam National University Medical School, Hwasun, Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology (S.Y., M.K., H.L., H.K., G.H.E.), Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
23
|
Wang Z, Zhao YT, Zhao TC. Histone deacetylases in modulating cardiac disease and their clinical translational and therapeutic implications. Exp Biol Med (Maywood) 2020; 246:213-225. [PMID: 32727215 DOI: 10.1177/1535370220944128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases are the leading cause of mortality and morbidity worldwide. Histone deacetylases (HDACs) play an important role in the epigenetic regulation of genetic transcription in response to stress or pathological conditions. HDACs interact with a complex co-regulatory network of transcriptional regulators, deacetylate histones or non-histone proteins, and modulate gene expression in the heart. The selective HDAC inhibitors have been considered to be a critical target for the treatment of cardiac disease, especially for ameliorating cardiac dysfunction. In this review, we discuss our current knowledge of the cellular and molecular basis of HDACs in mediating cardiac development and hypertrophy and related pharmacologic interventions in heart disease.
Collapse
Affiliation(s)
- Zhengke Wang
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, RI 02908, USA
| | - Yu Tina Zhao
- University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ting C Zhao
- Departments of Surgery and Plastic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
24
|
Roles of Histone Acetylation Modifiers and Other Epigenetic Regulators in Vascular Calcification. Int J Mol Sci 2020; 21:ijms21093246. [PMID: 32375326 PMCID: PMC7247359 DOI: 10.3390/ijms21093246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification (VC) is characterized by calcium deposition inside arteries and is closely associated with the morbidity and mortality of atherosclerosis, chronic kidney disease, diabetes, and other cardiovascular diseases (CVDs). VC is now widely known to be an active process occurring in vascular smooth muscle cells (VSMCs) involving multiple mechanisms and factors. These mechanisms share features with the process of bone formation, since the phenotype switching from the contractile to the osteochondrogenic phenotype also occurs in VSMCs during VC. In addition, VC can be regulated by epigenetic factors, including DNA methylation, histone modification, and noncoding RNAs. Although VC is commonly observed in patients with chronic kidney disease and CVD, specific drugs for VC have not been developed. Thus, discovering novel therapeutic targets may be necessary. In this review, we summarize the current experimental evidence regarding the role of epigenetic regulators including histone deacetylases and propose the therapeutic implication of these regulators in the treatment of VC.
Collapse
|
25
|
Kenny RG, Ude Z, Docherty JR, Marmion CJ. Vorinostat and Belinostat, hydroxamate-based anti-cancer agents, are nitric oxide donors. J Inorg Biochem 2020; 206:110981. [DOI: 10.1016/j.jinorgbio.2019.110981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/10/2019] [Accepted: 12/24/2019] [Indexed: 01/26/2023]
|
26
|
Selvakumar P, Badgeley A, Murphy P, Anwar H, Sharma U, Lawrence K, Lakshmikuttyamma A. Flavonoids and Other Polyphenols Act as Epigenetic Modifiers in Breast Cancer. Nutrients 2020; 12:nu12030761. [PMID: 32183060 PMCID: PMC7146477 DOI: 10.3390/nu12030761] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a common cancer that occurs due to different epigenetic alterations and genetic mutations. Various epidemiological studies have demonstrated an inverse correlation between breast cancer incidence and flavonoid intake. The anti-cancer action of flavonoids, a class of polyphenolic compounds that are present in plants, as secondary metabolites has been a major topic of research for many years. Our review analysis demonstrates that flavonoids exhibit anti-cancer activity against breast cancer occurring in different ethnic populations. Breast cancer subtype and menopausal status are the key factors in inducing the flavonoid's anti-cancer action in breast cancer. The dose is another key factor, with research showing that approximately 10 mg/day of isoflavones is required to inhibit breast cancer occurrence. In addition, flavonoids also influence the epigenetic machinery in breast cancer, with research demonstrating that epigallocatechin, genistein, and resveratrol all inhibited DNA methyltransferase and altered chromatin modification in breast cancer. These flavonoids can induce the expression of different tumor suppressor genes that may contribute to decreasing breast cancer progression and metastasis. Additional studies are required to confirm the contribution of epigenetic modifications by flavonoids to breast cancer prevention.
Collapse
|
27
|
Leng KRW, Castañeda CA, Decroos C, Islam B, Haider SM, Christianson DW, Fierke CA. Phosphorylation of Histone Deacetylase 8: Structural and Mechanistic Analysis of the Phosphomimetic S39E Mutant. Biochemistry 2019; 58:4480-4493. [PMID: 31633931 PMCID: PMC6903415 DOI: 10.1021/acs.biochem.9b00653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post-translational modifications are frequently post-translationally modified. HDAC8 is phosphorylated within the deacetylase domain at conserved residue serine 39, which leads to decreased catalytic activity. HDAC8 phosphorylation at S39 is unique in its location and function and may represent a novel mode of deacetylation regulation. To better understand the impact of phosphorylation of HDAC8 on enzyme structure and function, we performed crystallographic, kinetic, and molecular dynamics studies of the S39E HDAC8 phosphomimetic mutant. This mutation decreases the level of deacetylation of peptides derived from acetylated nuclear and cytoplasmic proteins. However, the magnitude of the effect depends on the peptide sequence and the identity of the active site metal ion [Zn(II) vs Fe(II)], with the value of kcat/KM for the mutant decreasing 9- to >200-fold compared to that of wild-type HDAC8. Furthermore, the dissociation rate constant of the active site metal ion increases by ∼10-fold. S39E HDAC8 was crystallized in complex with the inhibitor Droxinostat, revealing that phosphorylation of S39, as mimicked by the glutamate side chain, perturbs local structure through distortion of the L1 loop. Molecular dynamics simulations of both S39E and phosphorylated S39 HDAC8 demonstrate that the perturbation of the L1 loop likely occurs because of the lost hydrogen bond between D29 and S39. Furthermore, the S39 perturbation causes structural changes that propagate through the protein scaffolding to influence function in the active site. These data demonstrate that phosphorylation plays an important regulatory role for HDAC8 by affecting ligand binding, catalytic efficiency, and substrate selectivity.
Collapse
Affiliation(s)
| | - Carol Ann Castañeda
- Interdepartmental Program in Chemical Biology, University of Michigan, 210 Washtenaw Avenue 4008 Life Sciences Institute, Ann Arbor, MI 48109
| | - Christophe Decroos
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104
| | - Barira Islam
- School of Pharmacy, University College London, 29-39 Brunswick Square London, WC1N 1AX, UK
| | - Shozeb M. Haider
- School of Pharmacy, University College London, 29-39 Brunswick Square London, WC1N 1AX, UK
| | - David W. Christianson
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
- Interdepartmental Program in Chemical Biology, University of Michigan, 210 Washtenaw Avenue 4008 Life Sciences Institute, Ann Arbor, MI 48109
- Department of Chemistry, Texas A&M University, Jack K. Williams Administration Building, Suite 100 College Station, TX 77843
| |
Collapse
|
28
|
Sung MS, Heo H, Eom GH, Kim SY, Piao H, Guo Y, Park SW. HDAC2 Regulates Glial Cell Activation in Ischemic Mouse Retina. Int J Mol Sci 2019; 20:ijms20205159. [PMID: 31627491 PMCID: PMC6829428 DOI: 10.3390/ijms20205159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022] Open
Abstract
The current study was undertaken to investigate whether histone deacetylases (HDACs) can modulate the viability of retinal ganglion cells (RGCs) and the activity of glial cells in a mouse model of retinal ischemia-reperfusion (IR) injury. C57BL/6J mice were subjected to constant elevation of intraocular pressure for 60 min to induce retinal IR injury. Expression of macroglial and microglial cell markers (GFAP and Iba1), hypoxia inducing factor (HIF)-1α, and histone acetylation was analyzed after IR injury. To investigate the role of HDACs in the activation of glial cells, overexpression of HDAC1 and HDAC2 isoforms was performed. To determine the effect of HDAC inhibition on RGC survival, trichostatin-A (TSA, 2.5 mg/kg) was injected intraperitoneally. After IR injury, retinal GFAP, Iba1, and HIF-1α were upregulated. Conversely, retinal histone acetylation was downregulated. Notably, adenoviral-induced overexpression of HDAC2 enhanced glial activation following IR injury, whereas overexpression of HDAC1 did not significantly affect glial activation. TSA treatment significantly increased RGC survival after IR injury. Our results suggest that increased activity of HDAC2 is closely related to glial activation in a mouse model of retinal IR injury and inhibition of HDACs by TSA showed neuroprotective potential in retinas with IR injuries.
Collapse
Affiliation(s)
- Mi Sun Sung
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Hwan Heo
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasungun 58128, Korea.
| | - So Young Kim
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Helong Piao
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Yue Guo
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Sang Woo Park
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| |
Collapse
|
29
|
Patsouras MD, Vlachoyiannopoulos PG. Evidence of epigenetic alterations in thrombosis and coagulation: A systematic review. J Autoimmun 2019; 104:102347. [PMID: 31607428 DOI: 10.1016/j.jaut.2019.102347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Thrombosis in the context of Cardiovascular disease (CVD) affects mainly the blood vessels supplying the heart, brain and peripheries and it is the leading cause of death worldwide. The pathophysiological thrombotic mechanisms are largely unknown. Heritability contributes to a 30% of the incidence of CVD. The remaining variation can be explained by life style factors such as smoking, dietary and exercise habits, environmental exposure to toxins, and drug usage and other comorbidities. Epigenetic variation can be acquired or inherited and constitutes an interaction between genes and the environment. Epigenetics have been implicated in atherosclerosis, ischemia/reperfusion damage and the cardiovascular response to hypoxia. Epigenetic regulators of gene expression are mainly the methylation of CpG islands, histone post translational modifications (PTMs) and microRNAs (miRNAs). These epigenetic regulators control gene expression either through activation or silencing. Epigenetic control is mostly dynamic and can potentially be manipulated to prevent or reverse the uncontrolled expression of genes, a trait that renders them putative therapeutic targets. In the current review, we systematically studied and present available data on epigenetic alterations implicated in thrombosis derived from human studies. Evidence of epigenetic alterations is observed in several thrombotic diseases such as Coronary Artery Disease and Cerebrovascular Disease, Preeclampsia and Antiphospholipid Syndrome. Differential CpG methylation and specific histone PTMs that control transcription of prothrombotic and proinflammatory genes have also been associated with predisposing factors of thrombosis and CVD, such us smoking, air pollution, hypertriglyceridemia, occupational exposure to particulate matter and comorbidities including cancer, Chronic Obstructive Pulmonary Disease and Chronic Kidney Disease. These clinical observations are further supported by in vitro experiments and indicate that epigenetic regulation affects the pathophysiology of thrombotic disorders with potential diagnostic or therapeutic utility.
Collapse
Affiliation(s)
- M D Patsouras
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - P G Vlachoyiannopoulos
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
30
|
Lee DY, Chiu JJ. Atherosclerosis and flow: roles of epigenetic modulation in vascular endothelium. J Biomed Sci 2019; 26:56. [PMID: 31387590 PMCID: PMC6685237 DOI: 10.1186/s12929-019-0551-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022] Open
Abstract
Background Endothelial cell (EC) dysfunctions, including turnover enrichment, gap junction disruption, inflammation, and oxidation, play vital roles in the initiation of vascular disorders and atherosclerosis. Hemodynamic forces, i.e., atherprotective pulsatile (PS) and pro-atherogenic oscillatory shear stress (OS), can activate mechanotransduction to modulate EC function and dysfunction. This review summarizes current studies aiming to elucidate the roles of epigenetic factors, i.e., histone deacetylases (HDACs), non-coding RNAs, and DNA methyltransferases (DNMTs), in mechanotransduction to modulate hemodynamics-regulated EC function and dysfunction. Main body of the abstract OS enhances the expression and nuclear accumulation of class I and class II HDACs to induce EC dysfunction, i.e., proliferation, oxidation, and inflammation, whereas PS induces phosphorylation-dependent nuclear export of class II HDACs to inhibit EC dysfunction. PS induces overexpression of the class III HDAC Sirt1 to enhance nitric oxide (NO) production and prevent EC dysfunction. In addition, hemodynamic forces modulate the expression and acetylation of transcription factors, i.e., retinoic acid receptor α and krüppel-like factor-2, to transcriptionally regulate the expression of microRNAs (miRs). OS-modulated miRs, which stimulate proliferative, pro-inflammatory, and oxidative signaling, promote EC dysfunction, whereas PS-regulated miRs, which induce anti-proliferative, anti-inflammatory, and anti-oxidative signaling, inhibit EC dysfunction. PS also modulates the expression of long non-coding RNAs to influence EC function. i.e., turnover, aligmant, and migration. On the other hand, OS enhances the expression of DNMT-1 and -3a to induce EC dysfunction, i.e., proliferation, inflammation, and NO repression. Conclusion Overall, epigenetic factors play vital roles in modulating hemodynamic-directed EC dysfunction and vascular disorders, i.e., atherosclerosis. Understanding the detailed mechanisms through which epigenetic factors regulate hemodynamics-directed EC dysfunction and vascular disorders can help us to elucidate the pathogenic mechanisms of atherosclerosis and develop potential therapeutic strategies for atherosclerosis treatment.
Collapse
Affiliation(s)
- Ding-Yu Lee
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 115, Taiwan
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 350, Taiwan. .,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan. .,Collage of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan. .,Institute of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan. .,Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
31
|
Aboukhatwa SM, Hanigan TW, Taha TY, Neerasa J, Ranjan R, El-Bastawissy EE, Elkersh MA, El-Moselhy TF, Frasor J, Mahmud N, McLachlan A, Petukhov PA. Structurally Diverse Histone Deacetylase Photoreactive Probes: Design, Synthesis, and Photolabeling Studies in Live Cells and Tissue. ChemMedChem 2019; 14:1096-1107. [PMID: 30921497 PMCID: PMC6548601 DOI: 10.1002/cmdc.201900114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/28/2019] [Indexed: 01/27/2023]
Abstract
Histone deacetylase (HDAC) activity is modulated in vivo by post-translational modifications and formation of multiprotein complexes. Novel chemical tools to study how these factors affect engagement of HDAC isoforms by HDAC inhibitors (HDACi) in cells and tissues are needed. In this study, a synthetic strategy to access chemically diverse photoreactive probes (PRPs) was developed and used to prepare seven novel HDAC PRPs 9-15. The class I HDAC isoform engagement by PRPs was determined in biochemical assays and photolabeling experiments in live SET-2, HepG2, HuH7, and HEK293T cell lines and in mouse liver tissue. Unlike the HDAC protein abundance and biochemical activity against recombinant HDACs, the chemotype of the PRPs and the type of cells were key in defining the engagement of HDAC isoforms in live cells. Our findings suggest that engagement of HDAC isoforms by HDACi in vivo may be substantially modulated in a cell- and tissue-type-dependent manner.
Collapse
Affiliation(s)
- Shaimaa M Aboukhatwa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Thomas W Hanigan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Taha Y Taha
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Jayaprakash Neerasa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| | - Rajeev Ranjan
- Section of Hematology/Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Eman E El-Bastawissy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Mohamed A Elkersh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University, Alexandria, 21311, Egypt
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Jonna Frasor
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Nadim Mahmud
- Section of Hematology/Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Pavel A Petukhov
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL, 60612, USA
| |
Collapse
|
32
|
HDAC Inhibitors: Therapeutic Potential in Fibrosis-Associated Human Diseases. Int J Mol Sci 2019; 20:ijms20061329. [PMID: 30884785 PMCID: PMC6471162 DOI: 10.3390/ijms20061329] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is characterized by excessive deposition of the extracellular matrix and develops because of fibroblast differentiation during the process of inflammation. Various cytokines stimulate resident fibroblasts, which differentiate into myofibroblasts. Myofibroblasts actively synthesize an excessive amount of extracellular matrix, which indicates pathologic fibrosis. Although initial fibrosis is a physiologic response, the accumulated fibrous material causes failure of normal organ function. Cardiac fibrosis interferes with proper diastole, whereas pulmonary fibrosis results in chronic hypoxia; liver cirrhosis induces portal hypertension, and overgrowth of fibroblasts in the conjunctiva is a major cause of glaucoma surgical failure. Recently, several reports have clearly demonstrated the functional relevance of certain types of histone deacetylases (HDACs) in various kinds of fibrosis and the successful alleviation of the condition in animal models using HDAC inhibitors. In this review, we discuss the therapeutic potential of HDAC inhibitors in fibrosis-associated human diseases using results obtained from animal models.
Collapse
|
33
|
Role of Natural Products in Modulating Histone Deacetylases in Cancer. Molecules 2019; 24:molecules24061047. [PMID: 30884859 PMCID: PMC6471757 DOI: 10.3390/molecules24061047] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that can control transcription by modifying chromatin conformation, molecular interactions between the DNA and the proteins as well as the histone tail, through the catalysis of the acetyl functional sites removal of proteins from the lysine residues. Also, HDACs have been implicated in the post transcriptional process through the regulation of the proteins acetylation, and it has been found that HDAC inhibitors (HDACi) constitute a promising class of pharmacological drugs to treat various chronic diseases, including cancer. Indeed, it has been demonstrated that in several cancers, elevated HDAC enzyme activities may be associated with aberrant proliferation, survival and metastasis. Hence, the discovery and development of novel HDACi from natural products, which are known to affect the activation of various oncogenic molecules, has attracted significant attention over the last decade. This review will briefly emphasize the potential of natural products in modifying HDAC activity and thereby attenuating initiation, progression and promotion of tumors.
Collapse
|
34
|
Abstract
The prevalence of insulin resistance (IR) is increasing rapidly worldwide and it is a relevant health problem because it is associated with several diseases, such as type 2 diabetes, cardiovascular disorders and cancer. Understanding the mechanisms involved in IR onset and progression will open new avenues for identifying biomarkers for preventing and treating IR and its co-diseases. Epigenetic mechanisms such as DNA methylation are important factors that mediate the environmental effect in the genome by regulating gene expression and consequently its effect on the phenotype and the development of disease. Taking into account that IR results from a complex interplay between genes and the environment and that epigenetic marks are reversible, disentangling the relationship between IR and epigenetics will provide new tools to improve the management and prevention of IR. Here, we review the current scientific evidence regarding the association between IR and epigenetic markers as mechanisms involved in IR development and potential management.
Collapse
Affiliation(s)
- Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), C/ Choupana, s/n, 15706, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), C/ Choupana, s/n, 15706, Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.
| |
Collapse
|
35
|
Song Y, Chi DY, Yu P, Lu JJ, Xu JR, Tan PP, Wang B, Cui YY, Chen HZ. Carbocisteine Improves Histone Deacetylase 2 Deacetylation Activity via Regulating Sumoylation of Histone Deacetylase 2 in Human Tracheobronchial Epithelial Cells. Front Pharmacol 2019; 10:166. [PMID: 30873037 PMCID: PMC6400890 DOI: 10.3389/fphar.2019.00166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/11/2019] [Indexed: 11/15/2022] Open
Abstract
Histone deacetylase (HDAC) 2 plays a vital role in modifying histones to mediate inflammatory responses, while HDAC2 itself is commonly regulated by post-translational modifications. Small ubiquitin-related modifier (SUMO), as an important PTM factor, is involved in the regulation of multiple protein functions. Our previous studies have shown that carbocisteine (S-CMC) reversed cigarette smoke extract (CSE)-induced down-regulation of HDAC2 expression/activity in a thiol/GSH-dependent manner and enhanced sensitivity of steroid therapy. However, the mechanism by which S-CMC regulates HDAC2 is worth further exploring. Our study aimed to investigate the relationships between HDAC2 sumoylation and its deacetylase activity under oxidative stress and the molecular mechanism of S-CMC to regulate HDAC2 activity that mediates inflammatory responses in human bronchial epithelial cells. We found that modification of HDAC2 by SUMO1 and SUMO2/3 occurred in 16HBE cells under physiological conditions, and CSE induced SUMO1 modification of HDAC2 in a dose and time-dependent manner. K462 and K51 of HDAC2 were the two major modification sites of SUMO1, and the K51 site mediated deacetylation activity and function of HDAC2 on histone H4 that regulates IL-8 secretion. S-CMC inhibited CSE-induced SUMO1 modification of HDAC2 in the presence of thiol/GSH, increased HDAC activity, and decreased IL-8 expression. Our study may provide novel mechanistic explanation of S-CMC to ameliorate steroid sensitivity treatment in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Yun Song
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan-Yi Chi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Yu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan-Juan Lu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Rong Xu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong-Yao Cui
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Ali MM, Mahmoud AM, Le Master E, Levitan I, Phillips SA. Role of matrix metalloproteinases and histone deacetylase in oxidative stress-induced degradation of the endothelial glycocalyx. Am J Physiol Heart Circ Physiol 2019; 316:H647-H663. [PMID: 30632766 DOI: 10.1152/ajpheart.00090.2018] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glycocalyx is crucial for normal endothelial function. It also tethers extracellular superoxide dismutase (SOD3), which protects the endothelium against oxidative damage. Proteolytic enzymes [matrix metalloproteinases (MMPs)] are capable of disrupting endothelial cell surface proteins, such as syndecans, resulting in derangements of the endothelial glycocalyx. We sought to test the role of MMPs in oxidative stress-mediated disruption of the endothelial glycocalyx and examine the effect of pharmacological inhibition of MMPs on mitigating this detrimental effect. We also examined the role of histone deacetylase (HDAC) in the oxidative stress-mediated MMP induction and glycocalyx remodeling. Oxidative stress was experimentally induced in human adipose microvascular endothelial cells using H2O2 and buthionine sulfoximine in the presence and absence of potent MMP and HDAC inhibitors. H2O2 and buthionine sulfoximine resulted in a notable loss of the endothelial glycocalyx; they also increased the expression and proteolytic activity of MMP-2 and MMP-9 and subsequently increased the shedding of syndecan-1 and SOD3 from the endothelial cell surface. MMP upregulation was accompanied by a decline in mRNA and protein levels of their inhibitors, tissue inhibitors of metalloproteinase (TIMPs; TIMP-1 and TIMP-3). Furthermore, oxidative stress induced HDAC activity. Inhibition of MMPs and HDAC reversed syndecan-1 and SOD3 shedding and maintained endothelial glycocalyx integrity. HDAC inhibition increased TIMP expression and reduced MMP expression and activity in endothelial cells. Our findings shed light on MMPs and HDAC as therapeutically targetable mechanisms in oxidative stress-induced glycocalyx remodeling. NEW & NOTEWORTHY Oxidative stress, a hallmark of many diseases, damages the endothelial glycocalyx, resulting in vascular dysfunction. Studying the mechanistic link between oxidative stress and endothelial glycocalyx derangements might help discover new therapeutic targets to preserve vascular function. In this study, we investigated the involvement of matrix metalloproteinases and histone deacetylase in oxidative stress-induced endothelial glycocalyx degradation.
Collapse
Affiliation(s)
- Mohamed M Ali
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, Illinois.,Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, Illinois
| | - Abeer M Mahmoud
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, Illinois.,Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, Illinois
| | - Elizabeth Le Master
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Irena Levitan
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Shane A Phillips
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, Illinois.,Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago , Chicago, Illinois.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| |
Collapse
|
37
|
Kopp Z, Park Y. Longer lifespan in the Rpd3 and Loco signaling results from the reduced catabolism in young age with noncoding RNA. Aging (Albany NY) 2019; 11:230-239. [PMID: 30620723 PMCID: PMC6339784 DOI: 10.18632/aging.101744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/22/2018] [Indexed: 11/25/2022]
Abstract
Downregulation of Rpd3 (histone deacetylase) or Loco (regulator of G-protein signaling protein) extends Drosophila lifespan with higher stress resistance. We found rpd3-downregulated long-lived flies genetically interact with loco-upregulated short-lived flies in stress resistance and lifespan. Gene expression profiles between those flies revealed that they regulate common target genes in metabolic enzymes and signaling pathways, showing an opposite expression pattern in their contrasting lifespans. Functional analyses of more significantly changed genes indicated that the activities of catabolic enzymes and uptake/storage proteins are reduced in long-lived flies with Rpd3 downregulation. This reduced catabolism exhibited from a young age is considered to be necessary for the resultant longer lifespan of the Rpd3- and Loco-downregulated old flies, which mimics the dietary restriction (DR) effect that extends lifespan in the several species. Inversely, those catabolic activities that break down carbohydrates, lipids, and peptides were high in the short lifespan of Loco-upregulated flies. Long noncoding gene, dntRL (CR45923), was also found as a putative target modulated by Rpd3 and Loco for the longevity. Interestingly, this dntRL could affect stress resistance and lifespan, suggesting that the dntRL lncRNA may be involved in the metabolic mechanism of Rpd3 and Loco signaling.
Collapse
Affiliation(s)
- Zachary Kopp
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Yongkyu Park
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
38
|
Tian S, Lei I, Gao W, Liu L, Guo Y, Creech J, Herron TJ, Xian S, Ma PX, Eugene Chen Y, Li Y, Alam HB, Wang Z. HDAC inhibitor valproic acid protects heart function through Foxm1 pathway after acute myocardial infarction. EBioMedicine 2019; 39:83-94. [PMID: 30552062 PMCID: PMC6354709 DOI: 10.1016/j.ebiom.2018.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/24/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Epigenetic histone acetylation is a major event controlling cell functions, such as metabolism, differentiation and repair. Here, we aim to determine whether Valproic acid (VPA), a FDA approved inhibitor of histone deacetylation for bipolar disease, could protect heart against myocardial infarction (MI) injury and elucidate key molecular pathways. METHODS VPA was administrated to MI rats at different time points, onset and after MI injury. Echocardiography, histology, serum biology assays, and gene expression, inhibition, and over-expression were performed to characterize the systolic function, infarct size, gene and signaling pathways. FINDINGS VPA treatment reduced the infarct size by ~50% and preserved the systolic function of heart after acute MI in rats. Even 60 min after infarction, VPA treatment significantly decreased infarct size. Furthermore, long-term treatment of VPA markedly improved myocardial performance. VPA regulated gene expression essential for cell survival and anti-inflammatory response. Consequently, oxidative stress and cell death were notably reduced after VPA treatment. Moreover, Foxm1 was identified as a potential key target of VPA. Overexpression of Foxm1 provided similar heart protective effect to VPA treatment. Particularly, both VPA treatment and Foxm1 over-expression repressed inflammatory response after MI for heart protection. In contrast, inhibition of Foxm1 activity abolished the cardiac protective effect of VPA. VPA mediated CM protection through Foxm1 upregulation was also identified in a human ESC derived CM hypoxia/reperfusion system. INTERPRETATION VPA treatments significantly reduce cardiac damage after MI and the cardioprotective effect of VPA is likely mediated via Foxm1 pathway. FUND: This work was mainly supported by 1R01HL109054.
Collapse
Affiliation(s)
- Shuo Tian
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Ienglam Lei
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, PR China
| | - Wenbin Gao
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Liu Liu
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Yijing Guo
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jeffery Creech
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Todd J Herron
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Peter X Ma
- Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yongqing Li
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Hasan B Alam
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
39
|
Duan HY, Zhou KY, Wang T, Zhang Y, Li YF, Hua YM, Wang C. Disruption of Planar Cell Polarity Pathway Attributable to Valproic Acid-Induced Congenital Heart Disease through Hdac3 Participation in Mice. Chin Med J (Engl) 2018; 131:2080-2088. [PMID: 30127218 PMCID: PMC6111683 DOI: 10.4103/0366-6999.239311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Valproic acid (VPA) exposure during pregnancy has been proven to contribute to congenital heart disease (CHD). Our previous findings implied that disruption of planar cell polarity (PCP) signaling pathway in cardiomyocytes might be a factor for the cardiac teratogenesis of VPA. In addition, the teratogenic ability of VPA is positively correlated to its histone deacetylase (HDAC) inhibition activity. This study aimed to investigate the effect of the VPA on cardiac morphogenesis, HDAC1/2/3, and PCP key genes (Vangl2/Scrib/Rac1), subsequently screening out the specific HDACs regulating PCP pathway. Methods: VPA was administered to pregnant C57BL mice at 700 mg/kg intraperitoneally on embryonic day 10.5. Dams were sacrificed on E15.5, and death/absorption rates of embryos were evaluated. Embryonic hearts were observed by hematoxylin-eosin staining to identify cardiac abnormalities. H9C2 cells (undifferentiated rat cardiomyoblasts) were transfected with Hdac1/2/3 specific small interfering RNA (siRNA). Based on the results of siRNA transfection, cells were transfected with Hdac3 expression plasmid and subsequently mock-treated or treated with 8.0 mmol/L VPA. Hdac1/2/3 as well as Vangl2/Scrib/Rac1 mRNA and protein levels were determined by real-time quantitative polymerase chain reaction and Western blotting, respectively. Total HDAC activity was detected by colorimetric assay. Results: VPA could induce CHD (P < 0.001) and inhibit mRNA or protein expression of Hdac1/2/3 as well as Vangl2/Scrib in fetal hearts, in association with total Hdac activity repression (all P < 0.05). In vitro, Hdac3 inhibition could significantly decrease Vangl2/Scrib expression (P < 0.01), while knockdown of Hdac1/2 had no influence (P > 0.05); VPA exposure dramatically decreased the expression of Vanlg2/Scrib together with Hdac activity (P < 0.01), while overexpression of Hdac3 could rescue the VPA-induced inhibition (P > 0.05). Conclusion: VPA could inhibit Hdac1/2/3, Vangl2/Scrib, or total Hdac activity both in vitro and in vivo and Hdac3 might participate in the process of VPA-induced cardiac developmental anomalies.
Collapse
Affiliation(s)
- Hong-Yu Duan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kai-Yu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Fei Li
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Min Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
40
|
Ye Y, Zhao X, Lu Y, Long B, Zhang S. Varinostat Alters Gene Expression Profiles in Aortic Tissues from ApoE -/- Mice. HUM GENE THER CL DEV 2018; 29:214-225. [PMID: 30284929 DOI: 10.1089/humc.2018.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis (AS) is a complex, chronic inflammatory disease that is characterized by plaque buildup within arterial vessel walls. Preclinical trials have suggested that vorinostat, a pan-histone deacetylase inhibitor (HDACi), reduces vascular inflammation and AS, but the underlying protective mechanism has not been fully elucidated. The present study aimed to identify altered gene expression profiles in aortic tissues from ApoE-/- mice after vorinostat treatment. Male ApoE-/- mice fed a high-fat diet were treated with either vorinostat or vehicle, and the aortic plaque area was quantified 8 weeks after treatment. Aortic tissues were collected from both the vorinostat group (n = 3) and vehicle group (n = 3) for deep sequencing of the cDNA to construct sRNA libraries. Oral administration of vorinostat significantly reduced plaque size in the ApoE-/- mice (p < 0.05). In total, 1,550 differentially expressed mRNAs, 56 differentially expressed miRNAs, and 381 differentially expressed lncRNAs were identified in the vorinostat group compared to the vehicle group. Subsequently, a global lncRNA-miRNA-mRNA triple network was constructed based on the competitive endogenous RNA (ceRNA) theory. The hepatitis C signaling pathway was significantly enriched among the differentially expressed mRNAs from the ceRNA network, which suggests that vorinostat has anti-inflammatory properties. Importantly, the identified target pair of mmu-miR-3075-5p/lncRNA-A330023F24Rik/Ldlr may regulate drug response. Upregulation of low-density lipid receptor (Ldlr) and lncRNA-A330023F24Rik and downregulation of mmu-miR-3075-5p were further verified by quantitative real-time polymerase chain reaction. To conclude, vorinostat reduced AS in ApoE-/- mice. Differentially expressed mRNA, lncRNAs, and miRNAs, as well as their interactions and pathways, were identified, which partially explain vorinostat's anti-atherosclerotic effects.
Collapse
Affiliation(s)
- Yicong Ye
- 1 Department of Cardiology and Beijing Anzhen Hospital and Capital Medical University, Beijing, P.R. China.,2 Department of Department of Cardiology, Beijing Anzhen Hospital and Capital Medical University, Beijing, P.R. China
| | - Xiliang Zhao
- 1 Department of Cardiology and Beijing Anzhen Hospital and Capital Medical University, Beijing, P.R. China
| | - Yiyun Lu
- 1 Department of Cardiology and Beijing Anzhen Hospital and Capital Medical University, Beijing, P.R. China
| | - Bo Long
- 3 Department of Central Laboratory, Chinese Academy of Medical College and Peking Union Medical College Hospital, Peking Union Medical College Hospital, Beijing, P.R. China
| | - Shuyang Zhang
- 1 Department of Cardiology and Beijing Anzhen Hospital and Capital Medical University, Beijing, P.R. China
| |
Collapse
|
41
|
Duan HY, Zhou KY, Wang T, Zhang Y, Li YF, Hua YM, Wang C. Disruption of Planar Cell Polarity Pathway Attributable to Valproic Acid-Induced Congenital Heart Disease through Hdac3 Participation in Mice. Chin Med J (Engl) 2018. [PMID: 30127218 DOI: 10.4103/0366-6999.239311.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Valproic acid (VPA) exposure during pregnancy has been proven to contribute to congenital heart disease (CHD). Our previous findings implied that disruption of planar cell polarity (PCP) signaling pathway in cardiomyocytes might be a factor for the cardiac teratogenesis of VPA. In addition, the teratogenic ability of VPA is positively correlated to its histone deacetylase (HDAC) inhibition activity. This study aimed to investigate the effect of the VPA on cardiac morphogenesis, HDAC1/2/3, and PCP key genes (Vangl2/Scrib/Rac1), subsequently screening out the specific HDACs regulating PCP pathway. Methods VPA was administered to pregnant C57BL mice at 700 mg/kg intraperitoneally on embryonic day 10.5. Dams were sacrificed on E15.5, and death/absorption rates of embryos were evaluated. Embryonic hearts were observed by hematoxylin-eosin staining to identify cardiac abnormalities. H9C2 cells (undifferentiated rat cardiomyoblasts) were transfected with Hdac1/2/3 specific small interfering RNA (siRNA). Based on the results of siRNA transfection, cells were transfected with Hdac3 expression plasmid and subsequently mock-treated or treated with 8.0 mmol/L VPA. Hdac1/2/3 as well as Vangl2/Scrib/Rac1 mRNA and protein levels were determined by real-time quantitative polymerase chain reaction and Western blotting, respectively. Total HDAC activity was detected by colorimetric assay. Results VPA could induce CHD (P < 0.001) and inhibit mRNA or protein expression of Hdac1/2/3 as well as Vangl2/Scrib in fetal hearts, in association with total Hdac activity repression (all P < 0.05). In vitro, Hdac3 inhibition could significantly decrease Vangl2/Scrib expression (P < 0.01), while knockdown of Hdac1/2 had no influence (P > 0.05); VPA exposure dramatically decreased the expression of Vanlg2/Scrib together with Hdac activity (P < 0.01), while overexpression of Hdac3 could rescue the VPA-induced inhibition (P > 0.05). Conclusion VPA could inhibit Hdac1/2/3, Vangl2/Scrib, or total Hdac activity both in vitro and in vivo and Hdac3 might participate in the process of VPA-induced cardiac developmental anomalies.
Collapse
Affiliation(s)
- Hong-Yu Duan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kai-Yu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Fei Li
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Min Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University; Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
42
|
Saha A, Tiwari S, Dharmarajan S, Otteson DC, Belecky-Adams TL. Class I histone deacetylases in retinal progenitors and differentiating ganglion cells. Gene Expr Patterns 2018; 30:37-48. [PMID: 30179675 DOI: 10.1016/j.gep.2018.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The acetylation state of histones has been used as an indicator of the developmental state of progenitor and differentiating cells. The goal of this study was to determine the nuclear localization patterns of Class I histone deacetylases (HDACs) in retinal progenitor cells (RPCs) and retinal ganglion cells (RGCs), as the first step in understanding their potential importance in cell fate determination within the murine retina. RESULTS The only HDAC to label RPC nuclei at E16 and P5 was HDAC1. In contrast, there was generally increased nuclear localization of all Class I HDACs in differentiating RGCs. Between P5 and P30, SOX2 expression becomes restricted to Müller glial, cholinergic amacrine cells, and retinal astrocytes. Cholinergic amacrine showed a combination of changes in nuclear localization of Class I HDACs. Strikingly, although Müller glia and retinal astrocytes express many of the same genes, P30 Müller glial cells showed nuclear localization only of HDAC1, while retinal astrocytes were positive for HDACs 1, 2, and 3. CONCLUSION These results indicate there may be a role for one or more of the Class I HDACs in retinal cell type-specific differentiation.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA; Center for Developmental and Regenerative Biology, Indiana University- Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA.
| | - Sarika Tiwari
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA; Center for Developmental and Regenerative Biology, Indiana University- Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA.
| | - Subramanian Dharmarajan
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA; Center for Developmental and Regenerative Biology, Indiana University- Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA.
| | - Deborah C Otteson
- University of Houston College of Optometry, 4901 Calhoun Rd. Rm 2195, Houston, TX, 77204-2020, USA.
| | - Teri L Belecky-Adams
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA; Center for Developmental and Regenerative Biology, Indiana University- Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
43
|
In Vivo and In Vitro Neuronal Plasticity Modulation by Epigenetic Regulators. J Mol Neurosci 2018; 65:301-311. [PMID: 29931501 DOI: 10.1007/s12031-018-1101-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
Prenatal stress (PS) induces molecular changes that alter neural connectivity, increasing the risk for neuropsychiatric disorders. Here we analyzed -in the hippocampus of adult rats exposed to PS- the epigenetic signature mediating the PS-induced neuroplasticity changes. Furthermore, using cultured hippocampal neurons, we investigated the effects on neuroplasticity of an epigenetic modulator. PS induced significant modifications in the mRNA levels of stress-related transcription factor MEF2A, SUV39H1 histone methyltransferase, and TET1 hydroxylase, indicating that PS modifies gene expression through chromatin remodeling. In in vitro analysis, histone acetylation inhibition with apicidin increased filopodium density, suggesting that the external regulation of acetylation levels might modulate neuronal morphology. These results offer a way to enhance neural connectivity that could be considered to revert PS effects.
Collapse
|
44
|
Yu AZ, Ramsey SA. A Computational Systems Biology Approach for Identifying Candidate Drugs for Repositioning for Cardiovascular Disease. Interdiscip Sci 2018; 10:449-454. [PMID: 27778232 PMCID: PMC5403631 DOI: 10.1007/s12539-016-0194-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
Abstract
We report an in silico method to screen for receptors or pathways that could be targeted to elicit beneficial transcriptional changes in a cellular model of a disease of interest. In our method, we integrate: (1) a dataset of transcriptome responses of a cell line to a panel of drugs; (2) two sets of genes for the disease; and (3) mappings between drugs and the receptors or pathways that they target. We carried out a gene set enrichment analysis (GSEA) test for each of the two gene sets against a list of genes ordered by fold-change in response to a drug in a relevant cell line (HL60), with the overall score for a drug being the difference of the two enrichment scores. Next, we applied GSEA for drug targets based on drugs that have been ranked by their differential enrichment scores. The method ranks drugs by the degree of anti-correlation of their gene-level transcriptional effects on the cell line with the genes in the disease gene sets. We applied the method to data from (1) CMap 2.0; (2) gene sets from two transcriptome profiling studies of atherosclerosis; and (3) a combined dataset of drug/target information. Our analysis recapitulated known targets related to CVD (e.g., PPARγ; HMG-CoA reductase, HDACs) and novel targets (e.g., amine oxidase A, δ-opioid receptor). We conclude that combining disease-associated gene sets, drug-transcriptome-responses datasets and drug-target annotations can potentially be useful as a screening tool for diseases that lack an accepted cellular model for in vitro screening.
Collapse
Affiliation(s)
- Alvin Z Yu
- Department of Biomedical Sciences, Oregon State University, 106 Dryden Hall, Corvallis, OR, 97331, USA
| | - Stephen A Ramsey
- Department of Biomedical Sciences, Oregon State University, 106 Dryden Hall, Corvallis, OR, 97331, USA.
- School of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR, 97331, USA.
| |
Collapse
|
45
|
Cencioni C, Spallotta F, Savoia M, Kuenne C, Guenther S, Re A, Wingert S, Rehage M, Sürün D, Siragusa M, Smith JG, Schnütgen F, von Melchner H, Rieger MA, Martelli F, Riccio A, Fleming I, Braun T, Zeiher AM, Farsetti A, Gaetano C. Zeb1-Hdac2-eNOS circuitry identifies early cardiovascular precursors in naive mouse embryonic stem cells. Nat Commun 2018; 9:1281. [PMID: 29599503 PMCID: PMC5876398 DOI: 10.1038/s41467-018-03668-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 03/02/2018] [Indexed: 01/04/2023] Open
Abstract
Nitric oxide (NO) synthesis is a late event during differentiation of mouse embryonic stem cells (mESC) and occurs after release from serum and leukemia inhibitory factor (LIF). Here we show that after release from pluripotency, a subpopulation of mESC, kept in the naive state by 2i/LIF, expresses endothelial nitric oxide synthase (eNOS) and endogenously synthesizes NO. This eNOS/NO-positive subpopulation (ESNO+) expresses mesendodermal markers and is more efficient in the generation of cardiovascular precursors than eNOS/NO-negative cells. Mechanistically, production of endogenous NO triggers rapid Hdac2 S-nitrosylation, which reduces association of Hdac2 with the transcriptional repression factor Zeb1, allowing mesendodermal gene expression. In conclusion, our results suggest that the interaction between Zeb1, Hdac2, and eNOS is required for early mesendodermal differentiation of naive mESC.
Collapse
Affiliation(s)
- Chiara Cencioni
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany. .,National Research Council, Institute of Cell Biology and Neurobiology (IBCN), Via del Fosso di Fiorano 64, 00143, Rome, Italy.
| | - Francesco Spallotta
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Matteo Savoia
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Institute of Medical Pathology, Università Cattolica di Roma, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Carsten Kuenne
- ECCPS Bioinformatics and deep sequencing platform, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Stefan Guenther
- ECCPS Bioinformatics and deep sequencing platform, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Agnese Re
- National Research Council, Institute of Cell Biology and Neurobiology (IBCN), Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Susanne Wingert
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Maike Rehage
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Duran Sürün
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Mauro Siragusa
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Jacob G Smith
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St, Kings Cross, London, WC1E 6BT, UK
| | - Frank Schnütgen
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Harald von Melchner
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Via Morandi 30 San Donato Milanese, 20097, Milan, Italy
| | - Antonella Riccio
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St, Kings Cross, London, WC1E 6BT, UK
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Andreas M Zeiher
- Internal Medicine Clinic III, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Antonella Farsetti
- National Research Council, Institute of Cell Biology and Neurobiology (IBCN), Via del Fosso di Fiorano 64, 00143, Rome, Italy. .,Internal Medicine Clinic III, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany. .,Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri, Via Maugeri 4, 27100, Pavia, Italy.
| |
Collapse
|
46
|
Duan HY, Ma D, Zhou KY, Wang T, Zhang Y, Li YF, Wu JL, Hua YM, Wang C. Effect of Histone Deacetylase Inhibition on the Expression of Multidrug Resistance-associated Protein 2 in a Human Placental Trophoblast Cell Line. Chin Med J (Engl) 2018; 130:1352-1360. [PMID: 28524836 PMCID: PMC5455046 DOI: 10.4103/0366-6999.206352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Placental multidrug resistance-associated protein 2 (MRP2), encoded by ABCC2 gene in human, plays a significant role in regulating drugs' transplacental transfer rates. Studies on placental MRP2 regulation could provide more therapeutic targets for individualized and safe pharmacotherapy during pregnancy. Currently, the roles of epigenetic mechanisms in regulating placental drug transporters are still unclear. This study aimed to investigate the effect of histone deacetylases (HDACs) inhibition on MRP2 expression in the placental trophoblast cell line and to explore whether HDAC1/2/3 are preliminarily involved in this process. METHODS The human choriocarcinoma-derived trophoblast cell line (Bewo cells) was treated with the HDAC inhibitors-trichostatin A (TSA) at different concentration gradients of 0.5, 1.0, 3.0, and 5.0 μmol/L. Cells were harvested after 24 and 48 h treatment. Small interfering RNA (siRNA) specific for HDAC1/HDAC2/HDAC3 or control siRNA was transfected into cells. Total HDAC activity was detected by colorimetric assay kits. HDAC1/2/3/ABCC2 messenger RNA (mRNA) and protein expressions were determined by real-time quantitative polymerase chain reaction and Western-blot analysis, respectively. Immunofluorescence for MRP2 protein expression was visualized and assessed using an immunofluorescence microscopy and ImageJ software, respectively. RESULTS TSA could inhibit total HDAC activity and HDAC1/2/3 expression in company with increase of MRP2 expression in Bewo cells. Reduction of HDAC1 protein level was noted after 24 h of TSA incubation at 1.0, 3.0, and 5.0 μmol/L (vs. vehicle group, all P < 0.001), accompanied with dose-dependent induction of MRP2 expression (P = 0.045 for 1.0 μmol/L, P = 0.001 for 3.0 μmol/L, and P < 0.001 for 5.0 μmol/L), whereas no significant differences in MRP2 expression were noted after HDAC2/3 silencing. Fluorescent micrograph images of MRP2 protein were expressed on the cell membrane. The fluorescent intensities of MRP2 in the control, HDAC2, and HDAC3 siRNA-transfected cells were week, and no significant differences were noticed among these three groups (all P > 0.05). However, MRP2 expression was remarkably elevated in HDAC1 siRNA-transfected cells, which displayed an almost 3.19-fold changes in comparison with the control siRNA-transfected cells (P < 0.001). CONCLUSIONS HDACs inhibition could up-regulate placental MRP2 expression in vitro, and HDAC1 was probably to be involved in this process.
Collapse
Affiliation(s)
- Hong-Yu Duan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dan Ma
- Department of Pediatric Rehabilitation, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kai-Yu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan 610041; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan 610041; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Fei Li
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin-Lin Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Min Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan 610041; Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
47
|
Sumoylation of histone deacetylase 1 regulates MyoD signaling during myogenesis. Exp Mol Med 2018; 50:e427. [PMID: 29328071 PMCID: PMC5799798 DOI: 10.1038/emm.2017.236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023] Open
Abstract
Sumoylation, the conjugation of a small ubiquitin-like modifier (SUMO) protein to a target, has diverse cellular effects. However, the functional roles of the SUMO modification during myogenesis have not been fully elucidated. Here, we report that basal sumoylation of histone deacetylase 1 (HDAC1) enhances the deacetylation of MyoD in undifferentiated myoblasts, whereas further sumoylation of HDAC1 contributes to switching its binding partners from MyoD to Rb to induce myocyte differentiation. Differentiation in C2C12 skeletal myoblasts induced new immunoblot bands above HDAC1 that were gradually enhanced during differentiation. Using SUMO inhibitors and sumoylation assays, we showed that the upper band was caused by sumoylation of HDAC1 during differentiation. Basal deacetylase activity was not altered in the SUMO modification-resistant mutant HDAC1 K444/476R (HDAC1 2R). Either differentiation or transfection of SUMO1 increased HDAC1 activity that was attenuated in HDAC1 2R. Furthermore, HDAC1 2R failed to deacetylate MyoD. Binding of HDAC1 to MyoD was attenuated by K444/476R. Binding of HDAC1 to MyoD was gradually reduced after 2 days of differentiation. Transfection of SUMO1 induced dissociation of HDAC1 from MyoD but potentiated its binding to Rb. SUMO1 transfection further attenuated HDAC1-induced inhibition of muscle creatine kinase luciferase activity that was reversed in HDAC1 2R. HDAC1 2R failed to inhibit myogenesis and muscle gene expression. In conclusion, HDAC1 sumoylation plays a dual role in MyoD signaling: enhancement of HDAC1 deacetylation of MyoD in the basally sumoylated state of undifferentiated myoblasts and dissociation of HDAC1 from MyoD during myogenesis.
Collapse
|
48
|
Yan H, Yi S, Zhuang H, Wu L, Wang DW, Jiang J. Sphingosine-1-phosphate ameliorates the cardiac hypertrophic response through inhibiting the activity of histone deacetylase-2. Int J Mol Med 2017; 41:1704-1714. [PMID: 29286094 DOI: 10.3892/ijmm.2017.3325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/29/2017] [Indexed: 11/06/2022] Open
Abstract
Inhibition of histone deacetylase-2 (HDAC2), which is a prohypertrophic factor in the heart, can functionally attenuate cardiac hypertrophy. The present study aimed to investigate whether sphingosine‑1‑phosphate (S1P), which has recently been reported to suppress HDAC2 activity, could ameliorate the cardiac hypertrophic response and improve cardiac function in mice with transverse aortic constriction (TAC), as well as to determine the underlying mechanisms. Briefly, 8‑week‑old male C57BL/6 mice were randomly divided into sham, TAC and TAC + S1P groups; the results indicated that S1P treatment attenuated TAC‑induced cardiac dysfunction. In addition, heart size and the expression levels of fetal cardiac genes were reduced in the TAC + S1P group compared with in the TAC group. Furthermore, in cultured H9c2 cells exposed to phenylephrine, S1P was revealed to decrease cardiomyocyte size and the exaggerated expression of fetal cardiac genes. The present study also demonstrated that S1P had no effect on HDAC2 expression, but it did suppress its activity and increase acetylation of histone H3 in vivo and in vitro. Krüppel‑like factor 4 (KLF4) is an antihypertrophic transcriptional regulator, which mediates HDAC inhibitor‑induced prevention of cardiac hypertrophy; in the present study, KLF4 was upregulated by S1P. Finally, the results indicated that S1P receptor 2 (S1PR2) may be involved in the antihypertrophic effects, whereas the suppressive effects of S1P on HDAC2 activity were independent of S1PR2. In conclusion, the present study demonstrated that S1P treatment may ameliorate the cardiac hypertrophic response, which may be partly mediated by the suppression of HDAC2 activity and the upregulation of KLF4; it was suggested that S1PR2 may also be involved. Therefore, S1P may be considered a potential therapy for the treatment of heart diseases caused by cardiac hypertrophy.
Collapse
Affiliation(s)
- Hui Yan
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Shaowei Yi
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hang Zhuang
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lujin Wu
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dao Wen Wang
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiangang Jiang
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
49
|
Kwon DH, Kim YK, Kook H. New Aspects of Vascular Calcification: Histone Deacetylases and Beyond. J Korean Med Sci 2017; 32:1738-1748. [PMID: 28960024 PMCID: PMC5639052 DOI: 10.3346/jkms.2017.32.11.1738] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/19/2017] [Indexed: 11/20/2022] Open
Abstract
Vascular calcification is a pathologic phenomenon in which calcium phosphate is ectopically deposited in the arteries. Previously, calcification was considered to be a passive process in response to metabolic diseases, vascular or valvular diseases, or even aging. However, now calcification is recognized as a highly-regulated consequence, like bone formation, and many clinical trials have been carried out to elucidate the correlation between vascular calcification and cardiovascular events and mortality. As a result, vascular calcification has been implicated as an independent risk factor in cardiovascular diseases. Many molecules are now known to be actively associated with this process. Recently, our laboratory found that posttranslational modification of histone deacetylase (HDAC) 1 is actively involved in the development of vascular calcification. In addition, we found that modulation of the activity of HDAC as well as its protein stability by MDM2, an HDAC1-E3 ligase, may be a therapeutic target in vascular calcification. In the present review, we overview the pathomechanism of vascular calcification and the involvement of posttranslational modification of epigenetic regulators.
Collapse
Affiliation(s)
- Duk Hwa Kwon
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
- Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea
| | - Young Kook Kim
- Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea
- Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Korea
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
- Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea.
| |
Collapse
|
50
|
HDAC inhibitors: A new promising drug class in anti-aging research. Mech Ageing Dev 2017; 166:6-15. [DOI: 10.1016/j.mad.2017.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/29/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
|