1
|
Ni H, Chen M, Dong D, Zhou Y, Cao Y, Ge R, Luo X, Wang Y, Dong X, Zhou J, Li D, Xie S, Liu M. CYLD/HDAC6 signaling regulates the interplay between epithelial-mesenchymal transition and ciliary homeostasis during pulmonary fibrosis. Cell Death Dis 2024; 15:581. [PMID: 39122680 PMCID: PMC11316090 DOI: 10.1038/s41419-024-06972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
The primary cilium behaves as a platform for sensing and integrating extracellular cues to control a plethora of cellular activities. However, the functional interaction of this sensory organelle with epithelial-mesenchymal transition (EMT) during pulmonary fibrosis remains unclear. Here, we reveal a critical role for cylindromatosis (CYLD) in reciprocally linking the EMT program and ciliary homeostasis during pulmonary fibrosis. A close correlation between the EMT program and primary cilia is observed in bleomycin-induced pulmonary fibrosis as well as TGF-β-induced EMT model. Mechanistic study reveals that downregulation of CYLD underlies the crosstalk between EMT and ciliary homeostasis by inactivating histone deacetylase 6 (HDAC6) during pulmonary fibrosis. Moreover, manipulation of primary cilia is an effective means to modulate the EMT program. Collectively, these results identify a pivotal role for the CYLD/HDAC6 signaling in regulating the reciprocal interplay between the EMT program and ciliary homeostasis during pulmonary fibrosis.
Collapse
Affiliation(s)
- Hua Ni
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Miao Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dan Dong
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunqiang Zhou
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Cao
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ruixin Ge
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiangrui Luo
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yutao Wang
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Xifeng Dong
- Department of Hematology, Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin Institute of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China.
| | - Songbo Xie
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, 300052, China.
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, Tianjin, China.
| |
Collapse
|
2
|
Silva ED, Pereira-Sousa D, Ribeiro-Costa F, Cerqueira R, Enguita FJ, Gomes RN, Dias-Ferreira J, Pereira C, Castanheira A, Pinto-do-Ó P, Leite-Moreira AF, Nascimento DS. Pericardial Fluid Accumulates microRNAs That Regulate Heart Fibrosis after Myocardial Infarction. Int J Mol Sci 2024; 25:8329. [PMID: 39125899 PMCID: PMC11313565 DOI: 10.3390/ijms25158329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Pericardial fluid (PF) has been suggested as a reservoir of molecular targets that can be modulated for efficient repair after myocardial infarction (MI). Here, we set out to address the content of this biofluid after MI, namely in terms of microRNAs (miRs) that are important modulators of the cardiac pathological response. PF was collected during coronary artery bypass grafting (CABG) from two MI cohorts, patients with non-ST-segment elevation MI (NSTEMI) and patients with ST-segment elevation MI (STEMI), and a control group composed of patients with stable angina and without previous history of MI. The PF miR content was analyzed by small RNA sequencing, and its biological effect was assessed on human cardiac fibroblasts. PF accumulates fibrotic and inflammatory molecules in STEMI patients, namely causing the soluble suppression of tumorigenicity 2 (ST-2), which inversely correlates with the left ventricle ejection fraction. Although the PF of the three patient groups induce similar levels of fibroblast-to-myofibroblast activation in vitro, RNA sequencing revealed that PF from STEMI patients is particularly enriched not only in pro-fibrotic miRs but also anti-fibrotic miRs. Among those, miR-22-3p was herein found to inhibit TGF-β-induced human cardiac fibroblast activation in vitro. PF constitutes an attractive source for screening diagnostic/prognostic miRs and for unveiling novel therapeutic targets in cardiac fibrosis.
Collapse
Affiliation(s)
- Elsa D. Silva
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| | - Daniel Pereira-Sousa
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Center for Translational Medicine (CTM), International Clinical Research Centre (ICRC), St. Anne’s Hospital, 60200 Brno, Czech Republic
- Department of Biomedical Sciences, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Francisco Ribeiro-Costa
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| | - Rui Cerqueira
- Cardiovascular R&D Center, Faculty of Medicine, University of Porto, 4150-180 Porto, Portugal; (R.C.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Rita N. Gomes
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| | - João Dias-Ferreira
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| | - Cassilda Pereira
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-Health), ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
- Chemical and Biomolecular Sciences, School of Health (ESS), Polytechnic of Porto, 4200-465 Porto, Portugal
| | - Ana Castanheira
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
- INL—International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Perpétua Pinto-do-Ó
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| | - Adelino F. Leite-Moreira
- Cardiovascular R&D Center, Faculty of Medicine, University of Porto, 4150-180 Porto, Portugal; (R.C.)
| | - Diana S. Nascimento
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
3
|
Foglio E, D'Avorio E, Nieri R, Russo MA, Limana F. Epicardial EMT and cardiac repair: an update. Stem Cell Res Ther 2024; 15:219. [PMID: 39026298 PMCID: PMC11264588 DOI: 10.1186/s13287-024-03823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Epicardial epithelial-to-mesenchymal transition (EMT) plays a pivotal role in both heart development and injury response and involves dynamic cellular changes that are essential for cardiogenesis and myocardial repair. Specifically, epicardial EMT is a crucial process in which epicardial cells lose polarity, migrate into the myocardium, and differentiate into various cardiac cell types during development and repair. Importantly, following EMT, the epicardium becomes a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis and contribute to cardiac remodeling after injury. As such, EMT seems to represent a fundamental step in cardiac repair. Nevertheless, endogenous EMT alone is insufficient to stimulate adequate repair. Redirecting and amplifying epicardial EMT pathways offers promising avenues for the development of innovative therapeutic strategies and treatment approaches for heart disease. In this review, we present a synthesis of recent literature highlighting the significance of epicardial EMT reactivation in adult heart disease patients.
Collapse
Affiliation(s)
- Eleonora Foglio
- Technoscience, Parco Scientifico e Tecnologico Pontino, Latina, Italy
| | - Erica D'Avorio
- Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, San Raffaele University of Rome, Rome, Italy
| | - Riccardo Nieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Federica Limana
- Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, San Raffaele University of Rome, Rome, Italy.
- Laboratorio di Patologia Cellulare e Molecolare, IRCCS San Raffaele Roma, Rome, Italy.
| |
Collapse
|
4
|
Zhong BH, Dong M. The implication of ciliary signaling pathways for epithelial-mesenchymal transition. Mol Cell Biochem 2024; 479:1535-1543. [PMID: 37490178 PMCID: PMC11224103 DOI: 10.1007/s11010-023-04817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT), which plays an essential role in development, tissue repair and fibrosis, and cancer progression, is a reversible cellular program that converts epithelial cells to mesenchymal cell states characterized by motility-invasive properties. The mostly signaling pathways that initiated and controlled the EMT program are regulated by a solitary, non-motile organelle named primary cilium. Acting as a signaling nexus, primary cilium dynamically concentrates signaling molecules to respond to extracellular cues. Recent research has provided direct evidence of connection between EMT and primary ciliogenesis in multiple contexts, but the mechanistic understanding of this relationship is complicated and still undergoing. In this review, we describe the current knowledge about the ciliary signaling pathways involved in EMT and list the direct evidence that shows the link between them, trying to figure out the intricate relationship between EMT and primary ciliogenesis, which may aid the future development of primary cilium as a novel therapeutic approach targeted to EMT.
Collapse
Affiliation(s)
- Bang-Hua Zhong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
5
|
Sisto M, Lisi S. Epigenetic Regulation of EMP/EMT-Dependent Fibrosis. Int J Mol Sci 2024; 25:2775. [PMID: 38474021 PMCID: PMC10931844 DOI: 10.3390/ijms25052775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Fibrosis represents a process characterized by excessive deposition of extracellular matrix (ECM) proteins. It often represents the evolution of pathological conditions, causes organ failure, and can, in extreme cases, compromise the functionality of organs to the point of causing death. In recent years, considerable efforts have been made to understand the molecular mechanisms underlying fibrotic evolution and to identify possible therapeutic strategies. Great interest has been aroused by the discovery of a molecular association between epithelial to mesenchymal plasticity (EMP), in particular epithelial to mesenchymal transition (EMT), and fibrogenesis, which has led to the identification of complex molecular mechanisms closely interconnected with each other, which could explain EMT-dependent fibrosis. However, the result remains unsatisfactory from a therapeutic point of view. In recent years, advances in epigenetics, based on chromatin remodeling through various histone modifications or through the intervention of non-coding RNAs (ncRNAs), have provided more information on the fibrotic process, and this could represent a promising path forward for the identification of innovative therapeutic strategies for organ fibrosis. In this review, we summarize current research on epigenetic mechanisms involved in organ fibrosis, with a focus on epigenetic regulation of EMP/EMT-dependent fibrosis.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari, Piazza Giulio Cesare 1, I-70124 Bari, Italy;
| | | |
Collapse
|
6
|
Lu Y, Huo H, Liang F, Xue J, Fang L, Miao Y, Shen L, He B. Role of Pericytes in Cardiomyopathy-Associated Myocardial Infarction Revealed by Multiple Single-Cell Sequencing Analysis. Biomedicines 2023; 11:2896. [PMID: 38001896 PMCID: PMC10668982 DOI: 10.3390/biomedicines11112896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of cardiovascular death worldwide. AMI with cardiomyopathy is accompanied by a poor long-term prognosis. However, limited studies have focused on the mechanism of cardiomyopathy associated with AMI. Pericytes are important to the microvascular function in the heart, yet little attention has been paid to their function in myocardial infarction until now. In this study, we integrated single-cell data from individuals with cardiomyopathy and myocardial infarction (MI) GWAS data to reveal the potential function of pericytes in cardiomyopathy-associated MI. We found that pericytes were concentrated in the left atrium and left ventricle tissues. DLC1/GUCY1A2/EGFLAM were the top three uniquely expressed genes in pericytes (p < 0.05). The marker genes of pericytes were enriched in renin secretion, vascular smooth muscle contraction, gap junction, purine metabolism, and diabetic cardiomyopathy pathways (p < 0.05). Among these pathways, the renin secretion and purine metabolism pathways were also found in the process of MI. In cardiomyopathy patients, the biosynthesis of collagen, modulating enzymes, and collagen formation were uniquely negatively regulated in pericytes compared to other cell types (p < 0.05). COL4A2/COL4A1/SMAD3 were the hub genes in pericyte function involved in cardiomyopathy and AMI. In conclusion, this study provides new evidence about the importance of pericytes in the pathogenesis of cardiomyopathy-associated MI. DLC1/GUCY1A2/EGFLAM were highly expressed in pericytes. The hub genes COL4A2/COL4A1/SMAD3 may be potential research targets for cardiomyopathy-associated MI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lan Shen
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.L.); (H.H.); (F.L.); (J.X.); (L.F.); (Y.M.)
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.L.); (H.H.); (F.L.); (J.X.); (L.F.); (Y.M.)
| |
Collapse
|
7
|
Song C, Kong F, Nong H, Cai L, Tian Y, Hou H, Wang L, Qiu X. Ammonium Persulfate-Loaded Carboxylic Gelatin-Methacrylate Nanoparticles Promote Cardiac Repair by Activating Epicardial Epithelial-Mesenchymal Transition via Autophagy and the mTOR Pathway. ACS NANO 2023; 17:20246-20261. [PMID: 37782701 DOI: 10.1021/acsnano.3c06229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Restoring damaged myocardial tissue with therapeutic exogenous cells still has some limitations, such as immunological rejection, immature cardiac properties, risk of tumorigenicity, and a low cell survival rate in the ischemic myocardium microenvironment. Activating the endogenous stem cells with functional biomaterials might overcome these limitations. Research has highlighted the multiple differentiation potential of epicardial cells via epithelial-mesenchymal transition (EMT) in both heart development and cardiac regeneration. In our previous research, a carboxylic gelatin-methacrylate (carbox-GelMA) nanoparticle (NP) was fabricated to carry ammonium persulfate (APS), and APS-loaded carbox-GelMA NPs (NPs/APS) could drive the EMT of MCF-7 cells in vitro and promote cancer cell migration and invasion in vivo. The present study explored the roles of functional NPs/APS in the EMT of Wilms' tumor 1-positive (WT1+) epicardial cells and in the repair of myocardial infarction (MI). The WT1+ epicardial cells transformed into endothelial-like cells after being treated with NPs/APS in vitro, and the cardiac functions were improved significantly after injecting NPs/APS into the infarcted hearts in vivo. Furthermore, simultaneous activation of both autophagy and the mTOR pathway was confirmed during the NPs/APS-induced EMT process in WT1+ epicardial cells. Together, this study highlights the function of NPs/APS in the repair of MI.
Collapse
Affiliation(s)
- Chen Song
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangdong, Guangzhou 510900, China
| | - Fanxuan Kong
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Huijia Nong
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Liu Cai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Ye Tian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Leyu Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangdong, Guangzhou 510900, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangdong, Guangzhou 510515, China
| |
Collapse
|
8
|
Kang S, Wang B, Xie Y, Cao X, Wang M. The Role of M1 and M2 Myocardial Macrophages in Promoting Proliferation and Healing via Activating Epithelial-to-Mesenchymal Transition. Biomedicines 2023; 11:2666. [PMID: 37893040 PMCID: PMC10604153 DOI: 10.3390/biomedicines11102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: The activation of sequential processes for the formation of permanent fibrotic tissue following myocardial infarction (MI) is pivotal for optimal healing of heart tissue. M1 and M2 macrophages are known to play essential roles in wound healing by the activation of cardiac fibroblasts after an episode of MI. However, the molecular and cellular mechanisms mediated by these macrophages in cellular proliferation, fibrosis, and wound healing remain unclear. (2) Methods: In the present study, we aimed to explore the mechanisms by which M1 and M2 macrophages contribute to cellular proliferation, fibrosis, and wound healing. Using both in vivo and cellular models, we examined the remodeling effects of M1 and M2 macrophages on infarcted cardiac fibroblasts and their role in promoting cardiac healing post-MI. (3) Results: Our findings indicate that M1 macrophages induce a proliferative effect on infarcted cardiac fibroblasts by exerting an anti-apoptotic effect, thereby preventing cell death. Moreover, M1 macrophages were found to activate the mechanism of epithelial-to-mesenchymal transition (EMT), resulting in wound healing and inducing the fibrotic process. The present findings suggest that M1 macrophages play a crucial role in promoting cardiac remodeling post-MI, as they activate the EMT pathway and contribute to increased collagen production and fibrotic changes. (4) Conclusions: The present study provides insights into molecular and cellular mechanisms mediated by M1 and M2 macrophages in cellular proliferation, fibrosis, and wound healing post-MI. Our findings highlight the critical role of M1 macrophages in promoting cardiac remodeling by activating the EMT pathway. Understanding these mechanisms can potentially result in the development of targeted therapies aimed at enhancing the healing process and improving outcomes following MI.
Collapse
Affiliation(s)
- Shaowei Kang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (S.K.); (B.W.); (Y.X.)
| | - Bin Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (S.K.); (B.W.); (Y.X.)
| | - Yanan Xie
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (S.K.); (B.W.); (Y.X.)
| | - Xu Cao
- Center of Endoscopy, Traditional Chinese Medicine Hospital of Shijiazhuang City, Shijiazhuang 050051, China;
| | - Mei Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (S.K.); (B.W.); (Y.X.)
| |
Collapse
|
9
|
Huang T, Chen J, Zhang Y, Chen Y, Xu C, Guo J, Ming H. Circ_0027470 promotes cadmium exposure-induced prostatic fibrosis via sponging miRNA-1236-3p and stimulating SHH signaling pathway. J Appl Toxicol 2023. [PMID: 36617218 DOI: 10.1002/jat.4436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal pollutant and serves as an important environmental endocrine-disrupting chemical. Cd exposure is believed to can enhance the risks of age-related disorders including benign prostatic hyperplasia (BPH). This study was to investigate the harms of Cd exposure on mice prostate and human nonmalignant prostate epithelial RWPE-1 cells. Mice prostate fibrosis was evaluated by visualizing the prostatic collagen deposition via Masson and Sirius red staining, and detecting the content of hydroxyproline. Additionally, the epithelial-mesenchymal transition (EMT), primary ciliogenesis and SHH signaling pathways in both mice prostate and RWPE-1 cells were evaluated. It was found that Cd exposure stimulated prostatic collagen deposition, EMT and primary ciliogenesis, as well as enhanced the circ_0027470 level and reduced the miRNA-1236-3p level. Circ_0027470 functioned as a sponge of miRNA-1236-3p, which had the inhibiting target of SHH. The whole results showed that circ_0027470 promoted Cd exposure-induced prostatic fibrosis via sponging miRNA-1236-3p and subsequently stimulating SHH signaling pathway. This study shed a light on a novel molecular mechanism involved in circRNA for Cd exposure-induced prostate deficits.
Collapse
Affiliation(s)
- Tianqi Huang
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, China
| | - Jinglou Chen
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, China
| | - Yumiao Zhang
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, China
| | - Yao Chen
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, China
| | - Congyue Xu
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Jing Guo
- Department of Basic Medicine, School of Medicine, Jianghan University, Wuhan, China
| | - Hao Ming
- Department of Traditional Chinese Medicine, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
10
|
Fan R, Yan X, Zhang W. Relationship between asporin and extracellular matrix behavior: A literature review. Medicine (Baltimore) 2022; 101:e32490. [PMID: 36595867 PMCID: PMC9794316 DOI: 10.1097/md.0000000000032490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Asporin (ASPN), as a member of the small leucine-rich repeat proteoglycan family, is a type of protein that is found in the extracellular matrix. Collagen deposition or transformation is involved in a variety of pathological processes. ASPN is identified in cancerous tissue, pathological cardiac tissue, articular cartilage, keloid, and fibrotic lung tissue, and it has a role in the development of cancer, cardiovascular, bone and joint, keloid, and pulmonary fibrosis by interfering with collagen metabolism. This review article summarizes the data on ASPN expressions in mouse and human and highlights that overexpress of ASPN might play a role in a variety of diseases. Although our knowledge of ASPN is currently limited, these instances may help us better understand how it interacts with diseases.
Collapse
Affiliation(s)
- Rui Fan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Xiaoyan Yan
- Department of Geriatrics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China
- * Correspondence: Wei Zhang, Department of Respiratory and Critical Care Medicine, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong 250014, China (e-mail: )
| |
Collapse
|
11
|
Bea-Mascato B, Neira-Goyanes E, Iglesias-Rodríguez A, Valverde D. Depletion of ALMS1 affects TGF-β signalling pathway and downstream processes such as cell migration and adhesion capacity. Front Mol Biosci 2022; 9:992313. [PMID: 36325276 PMCID: PMC9621122 DOI: 10.3389/fmolb.2022.992313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/13/2022] [Indexed: 12/23/2023] Open
Abstract
Background: ALMS1 is a ubiquitous gene associated with Alström syndrome (ALMS). The main symptoms of ALMS affect multiple organs and tissues, generating at last, multi-organic fibrosis in the lungs, kidneys and liver. TGF-β is one of the main pathways implicated in fibrosis, controlling the cell cycle, apoptosis, cell migration, cell adhesion and epithelial-mesenchymal transition (EMT). Nevertheless, the role of ALMS1 gene in fibrosis generation and other implicated processes such as cell migration or cell adhesion via the TGF- β pathway has not been elucidated yet. Methods: Initially, we evaluated how depletion of ALMS1 affects different processes like apoptosis, cell cycle and mitochondrial activity in HeLa cells. Then, we performed proteomic profiling with TGF-β stimuli in HeLa ALMS1 -/- cells and validated the results by examining different EMT biomarkers using qPCR. The expression of these EMT biomarkers were also studied in hTERT-BJ-5ta ALMS1 -/-. Finally, we evaluated the SMAD3 and SMAD2 phosphorylation and cell migration capacity in both models. Results: Depletion of ALMS1 generated apoptosis resistance to thapsigargin (THAP) and C2-Ceramide (C2-C), and G2/M cell cycle arrest in HeLa cells. For mitochondrial activity, results did not show significant differences between ALMS1 +/+ and ALMS1 -/-. Proteomic results showed inhibition of downstream pathways regulated by TGF-β. The protein-coding genes (PCG) were associated with processes like focal adhesion or cell-substrate adherens junction in HeLa. SNAI1 showed an opposite pattern to what would be expected when activating the EMT in HeLa and BJ-5ta. Finally, in BJ-5ta model a reduced activation of SMAD3 but not SMAD2 were also observed. In HeLa model no alterations in the canonical TGF-β pathway were observed but both cell lines showed a reduction in migration capacity. Conclusion: ALMS1 has a role in controlling the cell cycle and the apoptosis processes. Moreover, the depletion of ALMS1 affects the signal transduction through the TGF-β and other processes like the cell migration and adhesion capacity.
Collapse
Affiliation(s)
- Brais Bea-Mascato
- CINBIO, Universidad de Vigo, Vigo, Spain
- Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Elena Neira-Goyanes
- CINBIO, Universidad de Vigo, Vigo, Spain
- Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Antía Iglesias-Rodríguez
- CINBIO, Universidad de Vigo, Vigo, Spain
- Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Diana Valverde
- CINBIO, Universidad de Vigo, Vigo, Spain
- Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
12
|
Blom JN, Wang X, Lu X, Kim MY, Wang G, Feng Q. Inhibition of intraflagellar transport protein-88 promotes epithelial-to-mesenchymal transition and reduces cardiac remodeling post-myocardial infarction. Eur J Pharmacol 2022; 933:175287. [PMID: 36150531 DOI: 10.1016/j.ejphar.2022.175287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
The epicardium is a potential source of cardiac progenitors to support reparative angiogenesis after myocardial infarction (MI) through epithelial-to-mesenchymal transition (EMT). Primary cilia are recognized as hubs of cellular signaling, and their presence can alter downstream pathways to modulate EMT. The present study aimed to examine the effects of inhibiting intraflagellar transport protein-88 (Ift88), a protein vital to ciliary assembly, on epicardial EMT and cardiac remodeling post-MI. Epicardium derived cells (EPDCs) were cultured from E13.5 heart explants and treated with adenoviral vector encoding short-hairpin RNA against the mouse Ift88 (Ad-shIft88) to disassemble the primary cilium. Effects of Ad-shIft88 on epicardial EMT and cardiac remodeling were examined in mice post-MI. Our results show that Ad-shIft88 enhanced EMT of cultured EPDCs. In adult mice, intra-myocardial administration of Ad-shIft88 increased the number of Wilms tumor 1 (Wt1) positive cells in the epicardium and myocardium, promoted expression of genes associated with epicardial EMT, and enhanced capillary and arteriolar densities post-MI. Additionally, intra-myocardial Ad-shIft88 treatment attenuated cardiac hypertrophy and improved myocardial function three weeks post-MI. In conclusion, knockdown of Ift88 improves epicardial EMT, neovascularization and cardiac remodeling in the ischemic heart. Our study highlights the primary cilium as a potential therapeutic target post-MI.
Collapse
Affiliation(s)
- Jessica N Blom
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Xiaoyan Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiangru Lu
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Mella Y Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Guoping Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingping Feng
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
13
|
Liu L, Sun Q, Davis F, Mao J, Zhao H, Ma D. Epithelial-mesenchymal transition in organ fibrosis development: current understanding and treatment strategies. BURNS & TRAUMA 2022; 10:tkac011. [PMID: 35402628 PMCID: PMC8990740 DOI: 10.1093/burnst/tkac011] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/16/2021] [Indexed: 01/10/2023]
Abstract
Organ fibrosis is a process in which cellular homeostasis is disrupted and extracellular matrix is excessively deposited. Fibrosis can lead to vital organ failure and there are no effective treatments yet. Although epithelial–mesenchymal transition (EMT) may be one of the key cellular mechanisms, the underlying mechanisms of fibrosis remain largely unknown. EMT is a cell phenotypic process in which epithelial cells lose their cell-to-cell adhesion and polarization, after which they acquire mesenchymal features such as infiltration and migration ability. Upon injurious stimulation in different organs, EMT can be triggered by multiple signaling pathways and is also regulated by epigenetic mechanisms. This narrative review summarizes the current understanding of the underlying mechanisms of EMT in fibrogenesis and discusses potential strategies for attenuating EMT to prevent and/or inhibit fibrosis. Despite better understanding the role of EMT in fibrosis development, targeting EMT and beyond in developing therapeutics to tackle fibrosis is challenging but likely feasible.
Collapse
Affiliation(s)
- Lexin Liu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK.,Department of Nephrology and Urology, Pediatric Urolith Center, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, 310003, China
| | - Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Frank Davis
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Jianhua Mao
- Department of Nephrology, The Children Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| |
Collapse
|
14
|
Gui Z, Suo C, Tao J, Wang Z, Zheng M, Fei S, Chen H, Sun L, Han Z, Ju X, Zhang H, Gu M, Tan R. Everolimus Alleviates Renal Allograft Interstitial Fibrosis by Inhibiting Epithelial-to-Mesenchymal Transition Not Only via Inducing Autophagy but Also via Stabilizing IκB-α. Front Immunol 2022; 12:753412. [PMID: 35140705 PMCID: PMC8818677 DOI: 10.3389/fimmu.2021.753412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Chronic allograft dysfunction (CAD) is the major cause of late graft loss in long-term renal transplantation. In our previous study, we found that epithelial–mesenchymal transition (EMT) is a significant event in the progression of renal allograft tubulointerstitial fibrosis, and impaired autophagic flux plays a critical role in renal allograft fibrosis. Everolimus (EVR) has been reported to be widely used to prevent the progression of organ fibrosis and graft rejection. However, the pharmacological mechanism of EVR in kidney transplantation remains to be determined. We used CAD rat model and the human kidney 2 (HK2) cell line treated with tumor necrosis factor-α (TNF-α) and EVR to examine the role of EVR on TNF-α-induced EMT and transplanted renal interstitial fibrosis. Here, we found that EVR could attenuate the progression of EMT and renal allograft interstitial fibrosis, and also activate autophagy in vivo. To explore the mechanism behind it, we detected the relationship among EVR, autophagy level, and TNF-α-induced EMT in HK2 cells. Our results showed that autophagy was upregulated upon mTOR pathway inhibition by EVR, which could significantly reduce expression of TNF-α-induced EMT. However, the inhibition of EVR on TNF-α-induced EMT was partly reversed following the addition of autophagy inhibitor chloroquine. In addition, we found that TNF-α activated EMT through protein kinase B (Akt) as well as nuclear factor kappa B (NF-κB) pathway according to the RNA sequencing, and EVR’s effect on the EMT was only associated with IκB-α stabilization instead of the Akt pathway. Together, our findings suggest that EVR may retard impaired autophagic flux and block NF-κB pathway activation, and thereby prevent progression of TNF-α-induced EMT and renal allograft interstitial fibrosis.
Collapse
Affiliation(s)
- Zeping Gui
- Department of Urology, the Second Affiliated Hospital With Nanjing Medical University, Nanjing, China
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Chuanjian Suo
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Shuang Fei
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Hao Chen
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Li Sun
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Xiaobing Ju
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Hengcheng Zhang
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Ruoyun Tan, ; Min Gu, ; Hengcheng Zhang,
| | - Min Gu
- Department of Urology, the Second Affiliated Hospital With Nanjing Medical University, Nanjing, China
- *Correspondence: Ruoyun Tan, ; Min Gu, ; Hengcheng Zhang,
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
- *Correspondence: Ruoyun Tan, ; Min Gu, ; Hengcheng Zhang,
| |
Collapse
|
15
|
Chen J, Rong N, Liu M, Xu C, Guo J. The exosome-circ_0001359 derived from cigarette smoke exposed-prostate stromal cells promotes epithelial cells collagen deposition and primary ciliogenesis. Toxicol Appl Pharmacol 2021; 435:115850. [PMID: 34968637 DOI: 10.1016/j.taap.2021.115850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cigarettes consumption is continued to be popular. We found that cigarette smoke (CS) exposure promoted prostatic fibrosis. In this study, human prostate epithelial RWPE-1 cells were co-cultured with exosomes derived from CS exposed-WPMY-1 cells (CS-WPMY-1-exo). The collagen deposition, primary ciliogenesis, epithelial-mesenchymal transition (EMT) and transforming growth factor (TGF)-β1 level of RWPE-1 were evaluated. The circRNAs profiles of WPMY-1-exo were explored by high-throughput RNA sequencing. It was found that CS-WPMY-1-exo significantly promoted RWPE-1 collagen deposition, EMT and primary ciliogenesis. There were 17 differentially expressed (DE) circRNAs (including circ_0001359) between CS-WPMY-1-exo and the negative control. Functional enrichment analyses showed that the DE circRNAs played important roles in ciliary basal body, spindle microtubule and TGF-β signaling pathway. Circ_0001359 siRNA attenuated CS-WPMY-1 induced RWPE-1 cells collagen deposition, EMT and primary ciliogenesis, as well as inhibited the level of TGF-β1. The whole results showed that circ_0001359 derived from CS-WPMY-1-exo contributed to prostatic fibrosis via stimulating epithelial cells phenotypes changes and collagen deposition.
Collapse
Affiliation(s)
- Jinglou Chen
- School of Medical, Jianghan University, Wuhan, China; The Gerontology Research Center of Jianghan University, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Jianghan University, Wuhan, China.
| | - Nan Rong
- The Gerontology Research Center of Jianghan University, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Jianghan University, Wuhan, China
| | - Min Liu
- The Gerontology Research Center of Jianghan University, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Jianghan University, Wuhan, China
| | - Congyue Xu
- School of Medical, Jianghan University, Wuhan, China
| | - Jing Guo
- School of Medical, Jianghan University, Wuhan, China
| |
Collapse
|
16
|
Chaumont C, Suffee N, Gandjbakhch E, Balse E, Anselme F, Hatem SN. Epicardial origin of cardiac arrhythmias: clinical evidences and pathophysiology. Cardiovasc Res 2021; 118:1693-1702. [PMID: 34152392 PMCID: PMC9215195 DOI: 10.1093/cvr/cvab213] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Recent developments in imaging, mapping, and ablation techniques have shown that the epicardial region of the heart is a key player in the occurrence of ventricular arrhythmic events in several cardiac diseases, such as Brugada syndrome, arrhythmogenic cardiomyopathy, or dilated cardiomyopathy. At the atrial level as well, the epicardial region has emerged as an important determinant of the substrate of atrial fibrillation, pointing to common underlying pathophysiological mechanisms. Alteration in the gradient of repolarization between myocardial layers favouring the occurrence of re-entry circuits has largely been described. The fibro-fatty infiltration of the subepicardium is another shared substrate between ventricular and atrial arrhythmias. Recent data have emphasized the role of the epicardial reactivation in the formation of this arrhythmogenic substrate. There are new evidences supporting this structural remodelling process to be regulated by the recruitment of epicardial progenitor cells that can differentiate into adipocytes or fibroblasts under various stimuli. In addition, immune-inflammatory processes can also contribute to fibrosis of the subepicardial layer. A better understanding of such ‘electrical fragility’ of the epicardial area will open perspectives for novel biomarkers and therapeutic strategies. In this review article, a pathophysiological scheme of epicardial-driven arrhythmias will be proposed.
Collapse
Affiliation(s)
- Corentin Chaumont
- Cardiology Department, Rouen University Hospital, Rouen, France.,FHU REMOD-VHF, UNIROUEN, INSERM U1096, F76000, France
| | - Nadine Suffee
- INSERM UMRS1166, ICAN-Institute of CardioMetabolism and Nutrition, Sorbonne University, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| | - Estelle Gandjbakhch
- INSERM UMRS1166, ICAN-Institute of CardioMetabolism and Nutrition, Sorbonne University, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| | - Elise Balse
- INSERM UMRS1166, ICAN-Institute of CardioMetabolism and Nutrition, Sorbonne University, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| | - Frédéric Anselme
- Cardiology Department, Rouen University Hospital, Rouen, France.,FHU REMOD-VHF, UNIROUEN, INSERM U1096, F76000, France
| | - Stéphane N Hatem
- INSERM UMRS1166, ICAN-Institute of CardioMetabolism and Nutrition, Sorbonne University, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
17
|
Davidson SM, Padró T, Bollini S, Vilahur G, Duncker DJ, Evans PC, Guzik T, Hoefer IE, Waltenberger J, Wojta J, Weber C. Progress in cardiac research - from rebooting cardiac regeneration to a complete cell atlas of the heart. Cardiovasc Res 2021; 117:2161-2174. [PMID: 34114614 PMCID: PMC8344830 DOI: 10.1093/cvr/cvab200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
We review some of the important discoveries and advances made in basic and translational cardiac research in 2020. For example, in the field of myocardial infarction (MI), new aspects of autophagy and the importance of eosinophils were described. Novel approaches such as a glycocalyx mimetic were used to improve cardiac recovery following MI. The strategy of 3D bio-printing was shown to allow the fabrication of a chambered cardiac organoid. The benefit of combining tissue engineering with paracrine therapy to heal injured myocardium is discussed. We highlight the importance of cell-to cell communication, in particular the relevance of extracellular vesicles such as exosomes, which transport proteins, lipids, non-coding RNAs and mRNAs and actively contribute to angiogenesis and myocardial regeneration. In this rapidly growing field, new strategies were developed to stimulate the release of reparative exosomes in ischaemic myocardium. Single-cell sequencing technology is causing a revolution in the study of transcriptional expression at cellular resolution, revealing unanticipated heterogeneity within cardiomyocytes, pericytes and fibroblasts, and revealing a unique subpopulation of cardiac fibroblasts. Several studies demonstrated that exosome- and non-coding RNA-mediated approaches can enhance human induced pluripotent stem cell (iPSC) viability and differentiation into mature cardiomyocytes. Important details of the mitochondrial Ca2+ uniporter and its relevance were elucidated. Novel aspects of cancer therapeutic-induced cardiotoxicity were described, such as the novel circular RNA circITCH, which may lead to novel treatments. Finally, we provide some insights into the effects of SARS-CoV-2 on the heart.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London WC1E 6HX, United Kingdom
| | - Teresa Padró
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sveva Bollini
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute, University of Sheffield, UK
| | - Tomasz Guzik
- British Heart Foundation Centre for Cardiovascular Research, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK and Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Imo E Hoefer
- Central Diagnostic Laboratory, University Medical Center Utrecht, Netherlands
| | - Johannes Waltenberger
- Department of Cardiovascular Medicine, Medical Faculty, University of Muenster, Muenster, Germany
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| |
Collapse
|
18
|
Bannerman D, Pascual-Gil S, Floryan M, Radisic M. Bioengineering strategies to control epithelial-to-mesenchymal transition for studies of cardiac development and disease. APL Bioeng 2021; 5:021504. [PMID: 33948525 PMCID: PMC8068500 DOI: 10.1063/5.0033710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process that occurs in a wide range of tissues and environments, in response to numerous factors and conditions, and plays a critical role in development, disease, and regeneration. The process involves epithelia transitioning into a mobile state and becoming mesenchymal cells. The investigation of EMT processes has been important for understanding developmental biology and disease progression, enabling the advancement of treatment approaches for a variety of disorders such as cancer and myocardial infarction. More recently, tissue engineering efforts have also recognized the importance of controlling the EMT process. In this review, we provide an overview of the EMT process and the signaling pathways and factors that control it, followed by a discussion of bioengineering strategies to control EMT. Important biological, biomaterial, biochemical, and physical factors and properties that have been utilized to control EMT are described, as well as the studies that have investigated the modulation of EMT in tissue engineering and regenerative approaches in vivo, with a specific focus on the heart. Novel tools that can be used to characterize and assess EMT are discussed and finally, we close with a perspective on new bioengineering methods that have the potential to transform our ability to control EMT, ultimately leading to new therapies.
Collapse
|
19
|
Wang YL, Yu SN, Shen HR, Wang HJ, Wu XP, Wang QL, Zhou B, Tan YZ. Thymosin β4 released from functionalized self-assembling peptide activates epicardium and enhances repair of infarcted myocardium. Am J Cancer Res 2021; 11:4262-4280. [PMID: 33754060 PMCID: PMC7977468 DOI: 10.7150/thno.52309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
The epicardium plays an important role in cardiomyogenesis during development, while it becomes quiescent in adult heart during homeostasis. This study investigates the efficiency of thymosin β4 (Tβ4) release with RPRHQGVM conjugated to the C-terminus of RADA16-I (RADA-RPR), the functionalized self-assembling peptide (SAP), to activate the epicardium and repairing the infarcted myocardium. Methods: The functionalized SAP was constituted with self-assembling motif, Tβ4-binding site, and cell adhesive ligand. Myocardial infarction (MI) models of the transgenic mice were established by ligation of the left anterior descending coronary artery. At one week after intramyocardial injection of Tβ4-conjugated SAP, the activation of the epicardium was assessed. At four weeks after implantation, the migration and differentiation of epicardium-derived cells (EPDCs) as well as angiogenesis, lymphangiogenesis and myocardial regeneration were examined. Results: We found that the designer RADA-RPR bound Tβ4 and adhered to EPDCs and that Tβ4 released from the functionalized SAP could effectively activate the epicardium and induce EPDCs to differentiate towards cardiovascular cells as well as lymphatic endothelial cells. Moreover, SAP-released Tβ4 (SAP-Tβ4) promoted proliferation of cardiomyocytes. Furthermore, angiogenesis, lymphangiogenesis and myocardial regeneration were enhanced in the MI models at 4 weeks after delivery of SAP-Tβ4 along with attenuation of adverse myocardial remodeling and significantly improved cardiac function. Conclusions: These results demonstrate that sustained release of Tβ4 from the functionalized SAP can activate the epicardium and effectively enhance the repair of infarcted myocardium. We believe the delivery of SAP-Tβ4 may be a promising strategy for MI therapy.
Collapse
|
20
|
Schneider S, De Cegli R, Nagarajan J, Kretschmer V, Matthiessen PA, Intartaglia D, Hotaling N, Ueffing M, Boldt K, Conte I, May-Simera HL. Loss of Ciliary Gene Bbs8 Results in Physiological Defects in the Retinal Pigment Epithelium. Front Cell Dev Biol 2021; 9:607121. [PMID: 33681195 PMCID: PMC7930748 DOI: 10.3389/fcell.2021.607121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Primary cilia are sensory organelles vital for developmental and physiological processes. Their dysfunction causes a range of phenotypes including retinopathies. Although primary cilia have been described in the retinal pigment epithelium (RPE), little is known about their contribution to biological processes within this tissue. Ciliary proteins are increasingly being identified in non-ciliary locations and might carry out additional functions, disruption of which possibly contributes to pathology. The RPE is essential for maintaining photoreceptor cells and visual function. We demonstrate that upon loss of Bbs8, predominantly thought to be a ciliary gene, the RPE shows changes in gene and protein expression initially involved in signaling pathways and developmental processes, and at a later time point RPE homeostasis and function. Differentially regulated molecules affecting the cytoskeleton and cellular adhesion, led to defective cellular polarization and morphology associated with a possible epithelial-to-mesenchymal transition (EMT)-like phenotype. Our data highlights the benefit of combinatorial “omics” approaches with in vivo data for investigating the function of ciliopathy proteins. It also emphasizes the importance of ciliary proteins in the RPE and their contribution to visual disorders, which must be considered when designing treatment strategies for retinal degeneration.
Collapse
Affiliation(s)
- Sandra Schneider
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | | | - Jayapriya Nagarajan
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Viola Kretschmer
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Peter Andreas Matthiessen
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | | | - Nathan Hotaling
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Marius Ueffing
- Medical Bioanalytics, Institute for Ophthalmic Research, Eberhard-Karls University, Tübingen, Germany
| | - Karsten Boldt
- Medical Bioanalytics, Institute for Ophthalmic Research, Eberhard-Karls University, Tübingen, Germany
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
21
|
NOX2 Is Critical to Endocardial to Mesenchymal Transition and Heart Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1679045. [PMID: 32655758 PMCID: PMC7320281 DOI: 10.1155/2020/1679045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/19/2020] [Accepted: 05/18/2020] [Indexed: 12/05/2022]
Abstract
NADPH oxidases (NOX) are a major source of reactive oxygen species (ROS) production in the heart. ROS signaling regulates gene expression, cell proliferation, apoptosis, and migration. However, the role of NOX2 in embryonic heart development remains elusive. We hypothesized that deficiency of Nox2 disrupts endocardial to mesenchymal transition (EndMT) and results in congenital septal and valvular defects. Our data show that 34% of Nox2−/− neonatal mice had various congenital heart defects (CHDs) including atrial septal defects (ASD), ventricular septal defects (VSD), atrioventricular canal defects (AVCD), and malformation of atrioventricular and aortic valves. Notably, Nox2−/− embryonic hearts show abnormal development of the endocardial cushion as evidenced by decreased cell proliferation and an increased rate of apoptosis. Additionally, Nox2 deficiency disrupted EndMT of atrioventricular cushion explants ex vivo. Furthermore, treatment with N-acetylcysteine (NAC) to reduce ROS levels in the wild-type endocardial cushion explants decreased the number of cells undergoing EndMT. Importantly, deficiency of Nox2 was associated with reduced expression of Gata4, Tgfβ2, Bmp2, Bmp4, and Snail1, which are critical to endocardial cushion and valvoseptal development. We conclude that NOX2 is critical to EndMT, endocardial cushion cell proliferation, and normal embryonic heart development.
Collapse
|
22
|
Zhao Y, Kang X, Barsegian A, He J, Guzman A, Lau RP, Biniwale R, Wadhra M, Reemtsen B, Garg M, Halnon N, Quintero-Rivera F, Grody WW, Van Arsdell G, Nelson SF, Touma M. Gene-environment regulation of chamber-specific maturation during hypoxemic perinatal circulatory transition. J Mol Med (Berl) 2020; 98:1009-1020. [PMID: 32533200 DOI: 10.1007/s00109-020-01933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Chamber-specific and temporally regulated perinatal cardiac growth and maturation is critical for functional adaptation of the heart and may be altered significantly in response to perinatal stress, such as systemic hypoxia (hypoxemia), leading to significant pathology, even mortality. Understanding transcriptome regulation of neonatal heart chambers in response to hypoxemia is necessary to develop chamber-specific therapies for infants with cyanotic congenital heart defects (CHDs). We sought to determine chamber-specific transcriptome programming during hypoxemic perinatal circulatory transition. We performed transcriptome-wide analysis on right ventricle (RV) and left ventricle (LV) of postnatal day 3 (P3) mouse hearts exposed to perinatal hypoxemia. Hypoxemia decreased baseline differences between RV and LV leading to significant attenuation of ventricular patterning (AVP), which involved several molecular pathways, including Wnt signaling suppression and cell cycle induction. Notably, robust changes in RV transcriptome in hypoxemic condition contributed significantly to the AVP. Remarkably, suppression of epithelial mesenchymal transition (EMT) and dysregulation of the TP53 signaling were prominent hallmarks of the AVP genes in neonatal mouse heart. Furthermore, members of the TP53-related gene family were dysregulated in the hypoxemic RVs of neonatal mouse and cyanotic Tetralogy of Fallot hearts. Integrated analysis of chamber-specific transcriptome revealed hypoxemia-specific changes that were more robust in RVs compared with LVs, leading to previously uncharacterized AVP induced by perinatal hypoxemia. Remarkably, reprogramming of EMT process and dysregulation of the TP53 network contributed to transcriptome remodeling of neonatal heart during hypoxemic circulatory transition. These insights may enhance our understanding of hypoxemia-induced pathogenesis in newborn infants with cyanotic CHD phenotypes. KEY MESSAGES: During perinatal circulatory transition, transcriptome programming is a major driving force of cardiac chamber-specific maturation and adaptation to hemodynamic load and external environment. During hypoxemic perinatal transition, transcriptome reprogramming may affect chamber-specific growth and development, particularly in newborns with congenital heart defects (CHDs). Chamber-specific transcriptome changes during hypoxemic perinatal transition are yet to be fully elucidated. Systems-based analysis of hypoxemic neonatal hearts at postnatal day 3 reveals chamber-specific transcriptome signatures during hypoxemic perinatal transition, which involve attenuation of ventricular patterning (AVP) and repression of epithelial mesenchymal transition (EMT). Key regulatory circuits involved in hypoxemia response were identified including suppression of Wnt signaling, induction of cellular proliferation and dysregulation of TP53 network.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA.,Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Xuedong Kang
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA.,Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexander Barsegian
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA.,Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Jian He
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA.,Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Alejandra Guzman
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA.,Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Ryan P Lau
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Reshma Biniwale
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Madhuri Wadhra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Brian Reemtsen
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Meena Garg
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA
| | - Nancy Halnon
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Wayne W Grody
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Glen Van Arsdell
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Stanley F Nelson
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Institute of Precision Health, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Marlin Touma
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA. .,Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA, USA. .,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Children's Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,The Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA. .,Eli and Edythe Stem Cell Institute, University of California Los Angeles, Los Angeles, CA, USA. .,Institute of Precision Health, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Wang S, Yu J, Kane MA, Moise AR. Modulation of retinoid signaling: therapeutic opportunities in organ fibrosis and repair. Pharmacol Ther 2019; 205:107415. [PMID: 31629008 DOI: 10.1016/j.pharmthera.2019.107415] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
The vitamin A metabolite, retinoic acid, is an important signaling molecule during embryonic development serving critical roles in morphogenesis, organ patterning and skeletal and neural development. Retinoic acid is also important in postnatal life in the maintenance of tissue homeostasis, while retinoid-based therapies have long been used in the treatment of a variety of cancers and skin disorders. As the number of people living with chronic disorders continues to increase, there is great interest in extending the use of retinoid therapies in promoting the maintenance and repair of adult tissues. However, there are still many conflicting results as we struggle to understand the role of retinoic acid in the multitude of processes that contribute to tissue injury and repair. This review will assess our current knowledge of the role retinoic acid signaling in the development of fibroblasts, and their transformation to myofibroblasts, and of the potential use of retinoid therapies in the treatment of organ fibrosis.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
24
|
Collateral Vessels Have Unique Endothelial and Smooth Muscle Cell Phenotypes. Int J Mol Sci 2019; 20:ijms20153608. [PMID: 31344780 PMCID: PMC6695737 DOI: 10.3390/ijms20153608] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
Collaterals are unique blood vessels present in the microcirculation of most tissues that, by cross-connecting a small fraction of the outer branches of adjacent arterial trees, provide alternate routes of perfusion. However, collaterals are especially susceptible to rarefaction caused by aging, other vascular risk factors, and mouse models of Alzheimer’s disease—a vulnerability attributed to the disturbed hemodynamic environment in the watershed regions where they reside. We examined the hypothesis that endothelial and smooth muscle cells (ECs and SMCs, respectively) of collaterals have specializations, distinct from those of similarly-sized nearby distal-most arterioles (DMAs) that maintain collateral integrity despite their continuous exposure to low and oscillatory/disturbed shear stress, high wall stress, and low blood oxygen. Examination of mouse brain revealed the following: Unlike the pro-inflammatory cobble-stoned morphology of ECs exposed to low/oscillatory shear stress elsewhere in the vasculature, collateral ECs are aligned with the vessel axis. Primary cilia, which sense shear stress, are present, unexpectedly, on ECs of collaterals and DMAs but are less abundant on collaterals. Unlike DMAs, collaterals are continuously invested with SMCs, have increased expression of Pycard, Ki67, Pdgfb, Angpt2, Dll4, Ephrinb2, and eNOS, and maintain expression of Klf2/4. Collaterals lack tortuosity when first formed during development, but tortuosity becomes evident within days after birth, progresses through middle age, and then declines—results consistent with the concept that collateral wall cells have a higher turnover rate than DMAs that favors proliferative senescence and collateral rarefaction. In conclusion, endothelial and SMCs of collaterals have morphologic and functional differences from those of nearby similarly sized arterioles. Future studies are required to determine if they represent specializations that counterbalance the disturbed hemodynamic, pro-inflammatory, and pro-proliferative environment in which collaterals reside and thus mitigate their risk factor-induced rarefaction.
Collapse
|
25
|
Nebigil CG, Désaubry L. The role of GPCR signaling in cardiac Epithelial to Mesenchymal Transformation (EMT). Trends Cardiovasc Med 2018; 29:200-204. [PMID: 30172578 DOI: 10.1016/j.tcm.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
Abstract
Congenital heart disease is the most common birth defect, affecting 1.35 million newborns every year. Heart failure is a primary cause of late morbidity and mortality after myocardial infarction. Heart development is involved in several rounds of epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET). Errors in these processes contribute to congenital heart disease, and exert deleterious effects on the heart and circulation after myocardial infarction. The identification of factors that are involved in heart development and disease, and the development of new approaches for the treatment of these disorders are of great interest. G protein coupled receptors (GPCRs) comprise 40% of clinically used drug targets, and their signaling are vital components of the heart during development, cardiac repair and in cardiac disease pathogenesis. This review focuses on the importance of EMT program in the heart, and outlines the newly identified GPCRs as potential therapeutic targets of reprogramming EMT to support cardiac cell fate during heart development and after myocardial infarction. More specifically we discuss prokineticin, serotonin, sphingosine-1-phosphate and apelin receptors in heart development and diseases. Further understanding of the regulation of EMT/MET by GPCRs during development and in the adult hearts can provide the following clinical exploitation of these pathways.
Collapse
Affiliation(s)
- Canan G Nebigil
- CNRS/Université de Strasbourg, Sorbonne University-CNRS, ESBS Pole API 300 boulevard Sébastien Brant, CS 10413, Paris, Illkirch F-67412, France.
| | - Laurent Désaubry
- CNRS/Université de Strasbourg, Sorbonne University-CNRS, ESBS Pole API 300 boulevard Sébastien Brant, CS 10413, Paris, Illkirch F-67412, France
| |
Collapse
|