1
|
Zhang YD, Shi DD, Wang Z. Neurobiology of Obsessive-Compulsive Disorder from Genes to Circuits: Insights from Animal Models. Neurosci Bull 2024:10.1007/s12264-024-01252-9. [PMID: 38982026 DOI: 10.1007/s12264-024-01252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/27/2024] [Indexed: 07/11/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a chronic, severe psychiatric disorder that has been ranked by the World Health Organization as one of the leading causes of illness-related disability, and first-line interventions are limited in efficacy and have side-effect issues. However, the exact pathophysiology underlying this complex, heterogeneous disorder remains unknown. This scenario is now rapidly changing due to the advancement of powerful technologies that can be used to verify the function of the specific gene and dissect the neural circuits underlying the neurobiology of OCD in rodents. Genetic and circuit-specific manipulation in rodents has provided important insights into the neurobiology of OCD by identifying the molecular, cellular, and circuit events that induce OCD-like behaviors. This review will highlight recent progress specifically toward classic genetic animal models and advanced neural circuit findings, which provide theoretical evidence for targeted intervention on specific molecular, cellular, and neural circuit events.
Collapse
Affiliation(s)
- Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
- Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center, Shanghai, 200030, China.
| |
Collapse
|
2
|
Yin L, Han F, Yu Y, Wang Q. A computational network dynamical modeling for abnormal oscillation and deep brain stimulation control of obsessive-compulsive disorder. Cogn Neurodyn 2023; 17:1167-1184. [PMID: 37786657 PMCID: PMC10542091 DOI: 10.1007/s11571-022-09858-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is associated with multi-nodal abnormalities in brain networks, characterized by recurrent intrusive thoughts (obsessions) and repetitive behaviours or mental acts (compulsions), which might manifest as pathological low-frequency oscillations in the frontal EEG and low-frequency bursting firing patterns in the subthalamus nucleus (STN). Abnormalities in the cortical-striatal-thalamic-cortical (CSTC) loop, including dysregulation of serotonin, dopamine, and glutamate systems, are considered to contribute to certain types of OCD. Here, we extend a biophysical computational model to investigate the effect of orbitofronto-subcortical loop abnormalities on network oscillations. Particularly, the OCD lesion process is simulated by the loss of connectivity from striatal parvalbumin interneurons (PV) to medium spiny neurons (MSNs), excessive activation to the hyperdirect pathway, and high dopamine concentrations. By calculating low-frequency oscillation power in the STN, STN burst index, and average firing rates levels of the cortex and thalamus, we demonstrate that the model can explain the pathology of glutamatergic and dopamine system dysregulation, the effects of pathway imbalance, and neuropsychiatric treatment in OCD. In addition, results indicate the abnormal brain rhythms caused by the dysregulation of orbitofronto-subcortical loop may serve as a biomarker of OCD. Our studies can help to understand the cause of OCD, thereby facilitating the diagnosis of OCD and the development of new therapeutics.
Collapse
Affiliation(s)
- Lining Yin
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai, 201620 China
| | - Ying Yu
- School of Engineering Medicine, Beihang University, Beijing, 100191 China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| |
Collapse
|
3
|
Cruz S, Gutiérrez-Rojas L, González-Domenech P, Díaz-Atienza F, Martínez-Ortega JM, Jiménez-Fernández S. Deep brain stimulation in obsessive-compulsive disorder: Results from meta-analysis. Psychiatry Res 2022; 317:114869. [PMID: 36240634 DOI: 10.1016/j.psychres.2022.114869] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 01/04/2023]
Abstract
The aim of this work is to investigate the effectiveness of Deep Brain Stimulation (DBS) in patients with severe Obsessive Compulsive Disorder (OCD) who are resistant to pharmacological treatments, focusing on obsessive compulsive, depressive and anxiety symptoms as well as global function. A systematic review and meta-analysis including 25 studies (without language restrictions) from between 2003 and 2020 was performed. A total of 303 patients were evaluated twice (before and after DBS). After DBS treatment OCD patients with resistance to pharmacological treatments showed a significant improvement of obsessive-compulsive symptoms (25 studies; SMD=2.39; 95% CI, 1.91 to 2.87; P<0.0001), depression (9 studies; SMD= 1.19; 95%CI, 0.84 to 1.54; P<0.0001), anxiety (5 studies; SMD=1.00; 95%CI, 0.32 to 1.69; P=0.004) and functionality (7 studies; SMD=-3.51; 95%CI, -5.00 to -2.02; P=0.005) measured by the standardized scales: Yale Brown Obsessive Compulsive Scale (YBOCS), Hamilton Depression Rating Scale (HAM-D), Hamilton Anxiety Rating Scale (HAM-A) and Global Assessment of Function (GAF). Publication bias were discarded by using funnel plot. The main conclusions of this meta-analysis highlight the statistically significant effectiveness of DBS in patients with severe OCD who are resistant to conventional pharmacological treatments, underlying its role in global functioning apart from obsessive-compulsive symptoms.
Collapse
Affiliation(s)
- Sheila Cruz
- Child and Adolescent Mental Health Service, Jaén University Hospital Complex, Jaén, Spain
| | - Luis Gutiérrez-Rojas
- Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain; Psychiatry Service, Hospital San Cecilio, Granada, Spain.
| | | | - Francisco Díaz-Atienza
- Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain; Child and Adolescent Mental Health Service, Granada Virgen de las Nieves University Hospital, Granada, Spain
| | - José M Martínez-Ortega
- Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | - Sara Jiménez-Fernández
- Child and Adolescent Mental Health Service, Jaén University Hospital Complex, Jaén, Spain; Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Gadot R, Najera R, Hirani S, Anand A, Storch E, Goodman WK, Shofty B, Sheth SA. Efficacy of deep brain stimulation for treatment-resistant obsessive-compulsive disorder: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328738. [PMID: 36127157 DOI: 10.1136/jnnp-2021-328738] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/22/2022] [Indexed: 11/03/2022]
Abstract
Deep brain stimulation (DBS) is an established and growing intervention for treatment-resistant obsessive-compulsive disorder (TROCD). We assessed current evidence on the efficacy of DBS in alleviating OCD and comorbid depressive symptoms including newly available evidence from recent trials and a deeper risk of bias analysis than previously available. PubMed and EMBASE databases were systematically queried using Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. We included studies reporting primary data on multiple patients who received DBS therapy with outcomes reported through the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). Primary effect measures included Y-BOCS mean difference and per cent reduction as well as responder rate (≥35% Y-BOCS reduction) at last follow-up. Secondary effect measures included standardised depression scale reduction. Risk of bias assessments were performed on randomised controlled (RCTs) and non-randomised trials. Thirty-four studies from 2005 to 2021, 9 RCTs (n=97) and 25 non-RCTs (n=255), were included in systematic review and meta-analysis based on available outcome data. A random-effects model indicated a meta-analytical average 14.3 point or 47% reduction (p<0.01) in Y-BOCS scores without significant difference between RCTs and non-RCTs. At last follow-up, 66% of patients were full responders to DBS therapy. Sensitivity analyses indicated a low likelihood of small study effect bias in reported outcomes. Secondary analysis revealed a 1 standardised effect size (Hedges' g) reduction in depressive scale symptoms. Both RCTs and non-RCTs were determined to have a predominantly low risk of bias. A strong evidence base supports DBS for TROCD in relieving both OCD and comorbid depression symptoms in appropriately selected patients.
Collapse
Affiliation(s)
- Ron Gadot
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Ricardo Najera
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Samad Hirani
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Adrish Anand
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Eric Storch
- Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Wayne K Goodman
- Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Ben Shofty
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Ruan H, Wang Y, Li Z, Tong G, Wang Z. A Systematic Review of Treatment Outcome Predictors in Deep Brain Stimulation for Refractory Obsessive-Compulsive Disorder. Brain Sci 2022; 12:brainsci12070936. [PMID: 35884742 PMCID: PMC9316868 DOI: 10.3390/brainsci12070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a chronic and debilitating mental disorder. Deep brain stimulation (DBS) is a promising approach for refractory OCD patients. Research aiming at treatment outcome prediction is vital to provide optimized treatments for different patients. The primary purpose of this systematic review was to collect and synthesize studies on outcome prediction of OCD patients with DBS implantations in recent years. This systematic review (PROSPERO registration number: CRD42022335585) followed the PRISMA (Preferred Reporting Items for Systematic Review and Meta-analysis) guidelines. The search was conducted using three different databases with the following search terms related to OCD and DBS. We identified a total of 3814 articles, and 17 studies were included in our review. A specific tract confirmed by magnetic resonance imaging (MRI) was predictable for DBS outcome regardless of implant targets, but inconsistencies still exist. Current studies showed various ways of successful treatment prediction. However, considering the heterogeneous results, we hope that future studies will use larger cohorts and more precise approaches for predictors and establish more personalized ways of DBS surgeries.
Collapse
Affiliation(s)
- Hanyang Ruan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (H.R.); (Y.W.); (Z.L.); (G.T.)
| | - Yang Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (H.R.); (Y.W.); (Z.L.); (G.T.)
| | - Zheqin Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (H.R.); (Y.W.); (Z.L.); (G.T.)
| | - Geya Tong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (H.R.); (Y.W.); (Z.L.); (G.T.)
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (H.R.); (Y.W.); (Z.L.); (G.T.)
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Shanghai 200030, China
- Correspondence: ; Tel.: +86-180-1731-1286
| |
Collapse
|
6
|
Kumar R, Aadil KR, Mondal K, Mishra YK, Oupicky D, Ramakrishna S, Kaushik A. Neurodegenerative disorders management: state-of-art and prospects of nano-biotechnology. Crit Rev Biotechnol 2021; 42:1180-1212. [PMID: 34823433 DOI: 10.1080/07388551.2021.1993126] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurodegenerative disorders (NDs) are highly prevalent among the aging population. It affects primarily the central nervous system (CNS) but the effects are also observed in the peripheral nervous system. Neural degeneration is a progressive loss of structure and function of neurons, which may ultimately involve cell death. Such patients suffer from debilitating memory loss and altered motor coordination which bring up non-affordable and unavoidable socio-economic burdens. Due to the unavailability of specific therapeutics and diagnostics, the necessity to control or manage NDs raised the demand to investigate and develop efficient alternative approaches. Keeping trends and advancements in view, this report describes both state-of-the-art and challenges in nano-biotechnology-based approaches to manage NDs, toward personalized healthcare management. Sincere efforts are being made to customize nano-theragnostics to control: therapeutic cargo packaging, delivery to the brain, nanomedicine of higher efficacy, deep brain stimulation, implanted stimulation, and managing brain cell functioning. These advancements are useful to design future therapy based on the severity of the patient's neurodegenerative disease. However, we observe a lack of knowledge shared among scientists of a variety of expertise to explore this multi-disciplinary research field for NDs management. Consequently, this review will provide a guideline platform that will be useful in developing novel smart nano-therapies by considering the aspects and advantages of nano-biotechnology to manage NDs in a personalized manner. Nano-biotechnology-based approaches have been proposed as effective and affordable alternatives at the clinical level due to recent advancements in nanotechnology-assisted theragnostics, targeted delivery, higher efficacy, and minimal side effects.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Keshaw Ram Aadil
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, India
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID, USA
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark
| | - David Oupicky
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore, Singapore
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| |
Collapse
|
7
|
Li F, Sun H, Biswal BB, Sweeney JA, Gong Q. Artificial intelligence applications in psychoradiology. PSYCHORADIOLOGY 2021; 1:94-107. [PMID: 37881257 PMCID: PMC10594695 DOI: 10.1093/psyrad/kkab009] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023]
Abstract
One important challenge in psychiatric research is to translate findings from brain imaging research studies that identified brain alterations in patient groups into an accurate diagnosis at an early stage of illness, prediction of prognosis before treatment, and guidance for selection of effective treatments that target patient-relevant pathophysiological features. This is the primary aim of the field of Psychoradiology. Using databases collected from large samples at multiple centers, sophisticated artificial intelligence (AI) algorithms may be used to develop clinically useful image analysis pipelines that can help physicians diagnose, predict, and make treatment decisions. In this review, we selectively summarize psychoradiological research using magnetic resonance imaging of the brain to explore the neural mechanism of psychiatric disorders, and outline progress and the path forward for the combination of psychoradiology and AI for complementing clinical examinations in patients with psychiatric disorders, as well as limitations in the application of AI that should be considered in future translational research.
Collapse
Affiliation(s)
- Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
- Functional and Molecular Imaging Key Laboratory of Sichuan Provience, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
- Functional and Molecular Imaging Key Laboratory of Sichuan Provience, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
- Functional and Molecular Imaging Key Laboratory of Sichuan Provience, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| |
Collapse
|
8
|
Tang VM, Blumberger DM, Weissman CR, Dimitrova J, Throop A, McClintock SM, Voineskos D, Rajji TK, Downar J, Knyahnytska Y, Mulsant BH, Fitzgerald PB, Daskalakis ZJ. A pilot study of magnetic seizure therapy for treatment-resistant obsessive-compulsive disorder. Depress Anxiety 2021; 38:161-171. [PMID: 32949052 DOI: 10.1002/da.23097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/07/2020] [Accepted: 09/09/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND There is growing interest in the potential of neuromodulation options in treatment-resistant obsessive-compulsive disorder (OCD). Magnetic seizure therapy (MST), is a new treatment intervention in which generalized seizures are induced with transcranial magnetic stimulation. We conducted a pilot study to assess the efficacy and cognitive effects of MST in patients with treatment-resistant OCD. METHODS In an open-label pilot study, participants with treatment-resistant OCD and a baseline Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) scores of ≥16 were treated with up to 24 acute treatments. The primary clinical outcomes were clinical response (Y-BOCS score reduction ≥30%) and remission (final Y-BOCS score ≤8). A neurocognitive battery, the Quick Inventory for Depressive Symptoms-Self Report (QIDS-SR), the Beck Scale for Suicidal Ideation (SSI), and the Quality of Life Enjoyment and Satisfaction Questionnaire-Short Form (Q-LES-Q-SF) were also completed as secondary measures. RESULTS Ten participants with OCD who had not responded to medications or psychotherapy enrolled in the study and seven completed an adequate trial (defined as ≥8 treatments). MST was associated with minimal cognitive effects except for some decrease in autobiographical memory and no serious adverse effects. Only one participant met the predefined criteria for response, and none for remission. The baseline and endpoint Y-BOCS scores were not statistically different. CONCLUSION Overall, MST was not beneficial in a small group of patients with treatment-resistant OCD. At this time, other studies of MST for OCD are not warranted until different coil placements targeting other brain circuits can be proposed.
Collapse
Affiliation(s)
- Victor M Tang
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Cory R Weissman
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Julia Dimitrova
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Alanah Throop
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Shawn M McClintock
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Daphne Voineskos
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Downar
- Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Mental Health and Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yuliya Knyahnytska
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Benoit H Mulsant
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Paul B Fitzgerald
- Department of Psychiatry, Epworth Centre for Innovation in Mental Health, Epworth Healthcare, Monash University, Camberwell, Victoria, Australia
| | - Zafiris J Daskalakis
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, UC San Diego Health, La Jolla, California
| |
Collapse
|
9
|
Winter L, Saryyeva A, Schwabe K, Heissler HE, Runge J, Alam M, Heitland I, Kahl KG, Krauss JK. Long-Term Deep Brain Stimulation in Treatment-Resistant Obsessive-Compulsive Disorder: Outcome and Quality of Life at Four to Eight Years Follow-Up. Neuromodulation 2020; 24:324-330. [PMID: 32667114 DOI: 10.1111/ner.13232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Obsessive compulsive disorder (OCD) is a severe disabling disease, and around 10% of patients are considered to be treatment-resistant (tr) in spite of guideline-based therapy. Deep brain stimulation (DBS) has been proposed as a promising treatment for patients with trOCD. However, the optimal site for stimulation is still a matter of debate, and clinical long-term follow-up observations including data on quality of life are sparse. We here present six trOCD patients who underwent DBS with electrodes placed in the bed nucleus of the stria terminalis/anterior limb of the internal capsule (BNST/ALIC), followed for four to eight years after lead implantation. MATERIALS AND METHODS In this prospective observational study, six patients (four men, two women) aged 32-51 years and suffering from severe to extreme trOCD underwent DBS of the BNST/ALIC. Symptom severity was assessed using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS), and quality of life using the World Health Organization Quality of Life assessment scale (WHO-QoL BREF). Follow-up was obtained at least for four years in all patients. RESULTS With chronic DBS for four to eight years, four of the six patients had sustained improvement. Two patients remitted and two patients responded (defined as >35% symptom reduction), while the other two patients were considered nonresponders on long-term. Quality of life markedly improved in remitters and responders. We did not observe peri-interventional side effects or adverse effects of chronic stimulation. CONCLUSIONS Chronic DBS of ALIC provides long-term benefit up to four to eight years in trOCD, although not all patients take profit. Targeting the BNST was not particularly relevant since no patient appeared to benefit from direct stimulation of the BNST. Quality of life improved in DBS responders, documented by improved QoL scores and, even more important, by regaining of autonomy and improving psychosocial functioning.
Collapse
Affiliation(s)
- Lotta Winter
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Hans E Heissler
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Mesbah Alam
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Ivo Heitland
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Raviv N, Staudt MD, Rock AK, MacDonell J, Slyer J, Pilitsis JG. A Systematic Review of Deep Brain Stimulation Targets for Obsessive Compulsive Disorder. Neurosurgery 2020; 87:1098-1110. [PMID: 32615588 DOI: 10.1093/neuros/nyaa249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/11/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Obsessive compulsive disorder (OCD) is a complex neuropsychiatric disease characterized by obsessions and compulsions. Deep brain stimulation (DBS) has demonstrated efficacy in improving symptoms in medically refractory patients. Multiple targets have been investigated. OBJECTIVE To systematically review the current level and quality of evidence supporting OCD-DBS by target region with the goal of establishing a common nomenclature. METHODS A systematic literature review was performed using the PubMed database and a patient/problem, intervention, comparison, outcome search with the terms "DBS" and "OCD." Of 86 eligible articles that underwent full-text review, 28 were included for review. Articles were excluded if the target was not specified, the focus on nonclinical outcomes, the follow-up period shorter than 3 mo, or the sample size smaller than 3 subjects. Level of evidence was assigned according to the American Association of Neurological Surgeons/Congress of Neurological Surgeons joint guideline committee recommendations. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation approach. RESULTS Selected publications included 9 randomized controlled trials, 1 cohort study, 1 case-control study, 1 cross-sectional study, and 16 case series. Striatal region targets such as the anterior limb of the internal capsule, ventral capsule/ventral striatum, and nucleus accumbens were identified, but stereotactic coordinates were similar despite differing structural names. Only 15 of 28 articles included coordinates. CONCLUSION The striatal area is the most commonly targeted region for OCD-DBS. We recommend a common nomenclature based on this review. To move the field forward to individualized therapy, active contact location relative to stereotactic coordinates and patient specific anatomical and clinical variances need to be reported.
Collapse
Affiliation(s)
- Nataly Raviv
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Michael D Staudt
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Andrew K Rock
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Jacquelyn MacDonell
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Julia Slyer
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Julie G Pilitsis
- Department of Neurosurgery, Albany Medical College, Albany, New York.,Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| |
Collapse
|
11
|
Levchenko A, Nurgaliev T, Kanapin A, Samsonova A, Gainetdinov RR. Current challenges and possible future developments in personalized psychiatry with an emphasis on psychotic disorders. Heliyon 2020; 6:e03990. [PMID: 32462093 PMCID: PMC7240336 DOI: 10.1016/j.heliyon.2020.e03990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/31/2019] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
A personalized medicine approach seems to be particularly applicable to psychiatry. Indeed, considering mental illness as deregulation, unique to each patient, of molecular pathways, governing the development and functioning of the brain, seems to be the most justified way to understand and treat disorders of this medical category. In order to extract correct information about the implicated molecular pathways, data can be drawn from sampling phenotypic and genetic biomarkers and then analyzed by a machine learning algorithm. This review describes current difficulties in the field of personalized psychiatry and gives several examples of possibly actionable biomarkers of psychotic and other psychiatric disorders, including several examples of genetic studies relevant to personalized psychiatry. Most of these biomarkers are not yet ready to be introduced in clinical practice. In a next step, a perspective on the path personalized psychiatry may take in the future is given, paying particular attention to machine learning algorithms that can be used with the goal of handling multidimensional datasets.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Timur Nurgaliev
- Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Alexander Kanapin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Anastasia Samsonova
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| |
Collapse
|
12
|
Huang X, Gong Q, Sweeney JA, Biswal BB. Progress in psychoradiology, the clinical application of psychiatric neuroimaging. Br J Radiol 2019; 92:20181000. [PMID: 31170803 PMCID: PMC6732936 DOI: 10.1259/bjr.20181000] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 02/05/2023] Open
Abstract
Psychoradiology is an emerging field that applies radiological imaging technologies to psychiatric conditions. In the past three decades, brain imaging techniques have rapidly advanced understanding of illness and treatment effects in psychiatry. Based on these advances, radiologists have become increasingly interested in applying these advances for differential diagnosis and individualized patient care selection for common psychiatric illnesses. This shift from research to clinical practice represents the beginning evolution of psychoradiology. In this review, we provide a summary of recent progress relevant to this field based on their clinical functions, namely the (1) classification and subtyping; (2) prediction and monitoring of treatment outcomes; and (3) treatment selection. In addition, we provide guidelines for the practice of psychoradiology in clinical settings and suggestions for future research to validate broader clinical applications. Given the high prevalence of psychiatric disorders and the importance of increased participation of radiologists in this field, a guide regarding advances in this field and a description of relevant clinical work flow patterns help radiologists contribute to this fast-evolving field.
Collapse
Affiliation(s)
| | | | - John A. Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, USA
| | | |
Collapse
|
13
|
van Dun K, Mitoma H, Manto M. Cerebellar Cortex as a Therapeutic Target for Neurostimulation. THE CEREBELLUM 2018; 17:777-787. [PMID: 30276522 DOI: 10.1007/s12311-018-0976-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-invasive stimulation of the cerebellum is growingly applied both in the clinic and in research settings to modulate the activities of cerebello-cerebral loops. The anatomical location of the cerebellum, the high responsiveness of the cerebellar cortex to magnetic/electrical stimuli, and the implication of the cerebellum in numerous cerebello-cerebral networks make the cerebellum an ideal target for investigations and therapeutic purposes. In this mini-review, we discuss the potentials of cerebellar neuromodulation in major brain disorders in order to encourage large-scale sham-controlled research and explore this therapeutic aid further.
Collapse
Affiliation(s)
- Kim van Dun
- Clinical and Experimental Neurolinguistics, CLIN, Vrije Universiteit Brussels, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.,Service des Neurosciences, UMons, Mons, Belgium
| |
Collapse
|