1
|
Levinstein MR, Budinich RC, Bonaventura J, Schatzberg AF, Zarate CA, Michaelides M. Redefining Ketamine Pharmacology for Antidepressant Action: Synergistic NMDA and Opioid Receptor Interactions? Am J Psychiatry 2025:appiajp20240378. [PMID: 39810555 DOI: 10.1176/appi.ajp.20240378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Ketamine is a racemic compound and medication comprised of (S)-ketamine and (R)-ketamine enantiomers and its metabolites. It has been used for decades as a dissociative anesthetic, analgesic, and recreational drug. More recently, ketamine, its enantiomers, and its metabolites have been used or are being investigated for the treatment of refractory depression, as well as for comorbid disorders such as anxiety, obsessive-compulsive, and opioid use disorders. Despite its complex pharmacology, ketamine is referred to as an N-methyl-d-aspartate (NMDA) receptor antagonist. In this review, the authors argue that ketamine's pharmacology should be redefined to include opioid receptors and the endogenous opioid system. They also highlight a potential mechanism of action of ketamine for depression that is attributed to bifunctional, synergistic interactions involving NMDA and opioid receptors.
Collapse
Affiliation(s)
- Marjorie R Levinstein
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Section, NIDA, Baltimore (Levinstein, Budinich, Michaelides); Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford (Schatzberg); Experimental Therapeutics and Pathophysiology Branch, NIMH, Bethesda (Zarate); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Michaelides)
| | - Reece C Budinich
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Section, NIDA, Baltimore (Levinstein, Budinich, Michaelides); Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford (Schatzberg); Experimental Therapeutics and Pathophysiology Branch, NIMH, Bethesda (Zarate); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Michaelides)
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Section, NIDA, Baltimore (Levinstein, Budinich, Michaelides); Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford (Schatzberg); Experimental Therapeutics and Pathophysiology Branch, NIMH, Bethesda (Zarate); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Michaelides)
| | - Alan F Schatzberg
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Section, NIDA, Baltimore (Levinstein, Budinich, Michaelides); Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford (Schatzberg); Experimental Therapeutics and Pathophysiology Branch, NIMH, Bethesda (Zarate); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Michaelides)
| | - Carlos A Zarate
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Section, NIDA, Baltimore (Levinstein, Budinich, Michaelides); Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford (Schatzberg); Experimental Therapeutics and Pathophysiology Branch, NIMH, Bethesda (Zarate); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Michaelides)
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Section, NIDA, Baltimore (Levinstein, Budinich, Michaelides); Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford (Schatzberg); Experimental Therapeutics and Pathophysiology Branch, NIMH, Bethesda (Zarate); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Michaelides)
| |
Collapse
|
2
|
Uysal M, Ceylan MF, Hesapçıoğlu ST. Elevated neuron specific enolase levels in post-traumatic stress disorder. Eur J Pediatr 2024; 184:41. [PMID: 39585443 DOI: 10.1007/s00431-024-05889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Neuron-specific enolase (NSE) is a biomarker indicative of neuronal cell damage. The aim of this study is to assess the NSE levels in patients diagnosed with post-traumatic stress disorder (PTSD) and major depressive disorder (MDD). Blood samples were collected from 43 individuals with PTSD (age range 11-17), 43 individuals with MDD (age range 10-17), and 40 age- and gender-matched healthy controls. The NSE levels were analyzed, and participants completed the Post-traumatic Stress Reaction Index, the Children's Depression Inventory, and the Screen for Child Anxiety Related Disorders. Additionally, the Clinical Global Impressions Scale was filled out by the researcher. Results indicated that the NSE levels in the PTSD group were significantly higher than those in both the MDD group and the healthy control group. No significant difference in NSE levels was observed between the MDD group and the healthy control group. CONCLUSIONS The findings suggest that elevated NSE levels in PTSD may be indicative of stress-related neuronal damage, distinguishing PTSD from MDD and healthy controls. These results underline the need for further research to explore the potential of NSE as a biomarker for PTSD and its implications for diagnosis and intervention strategies. WHAT IS KNOWN • Neuron-specific enolase (NSE) is a biomarker indicative of neuronal cell damage. • Elevated NSE levels have been observed in certain neuropsychiatric and neurological conditions, reflecting neuronal damage or stress. WHAT IS NEW • NSE levels in adolescents with PTSD are significantly higher than those in both MDD patients and healthy controls, suggesting a specific association with trauma-related neuronal damage. • No significant difference in NSE levels was observed between MDD patients and healthy controls, highlighting the distinct neurobiological impact of trauma compared to depressive disorders.
Collapse
Affiliation(s)
- Melike Uysal
- Department of Child and Adolescent Psychiatry, Ankara Yıldırım Beyazıt University Yenimahalle Research and Training Hospital, Ankara, Turkey.
| | - Mehmet Fatih Ceylan
- Department of Child and Adolescent Psychiatry, Ankara Yıldırım Beyazıt University Yenimahalle Research and Training Hospital, Ankara, Turkey
| | - Selma Tural Hesapçıoğlu
- Department of Child and Adolescent Psychiatry, Ankara Yıldırım Beyazıt University Yenimahalle Research and Training Hospital, Ankara, Turkey
| |
Collapse
|
3
|
Mitchell JS, Anijärv TE, Can AT, Dutton M, Hermens DF, Lagopoulos J. Resting-State Electroencephalogram Complexity Is Associated With Oral Ketamine Treatment Response: A Bayesian Analysis of Lempel-Ziv Complexity and Multiscale Entropy. Brain Behav 2024; 14:e70166. [PMID: 39607091 PMCID: PMC11603427 DOI: 10.1002/brb3.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/21/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION Subanesthetic doses of ketamine are a promising novel treatment for suicidality; however, the evidence for predictive biomarkers is sparse. Recently, measures of complexity, including Lempel-Ziv complexity (LZC) and multiscale entropy (MSE), have been implicated in ketamine's therapeutic action. We evaluated electroencephalogram (EEG)-derived LZC and MSE differences between responders and nonresponders to oral ketamine treatment. METHODS A total of 31 participants received six single, weekly (titrated) doses of oral racemic ketamine (0.5-3 mg/kg) and underwent EEG scans at baseline (Week 0), post-treatment (Week 6), and follow-up (Week 10). Resting-state (eyes closed and open) recordings were processed in EEGLAB, and complexity metrics were extracted using the Neurokit2 package. Participants were designated responders or nonresponders by clinical response (Beck Suicide Scale [BSS] score reduction of ≥ 50% from baseline to the respective timepoint or score ≤ 6) and then compared in terms of complexity across resting-state conditions and time. RESULTS Employing a Bayesian mixed effects model, we found strong evidence that LZC was higher in the eyes-open compared to eyes-closed condition, as were MSE scales 1-3. At a global level, responders displayed elevated eyes-open baseline complexity compared to nonresponders, with these values decreasing from baseline to post-treatment (Week 6) in responders only. Exploratory analyses revealed that the elevated baseline eyes-open LZC in responders was spatially localized to the left frontal lobe (F1, AF3, FC1, and F3). CONCLUSION EEG-complexity metrics may be sensitive biomarkers for evaluating and predicting oral ketamine treatment response, with the left prefrontal cortex bein a possible treatment response region.
Collapse
Affiliation(s)
- Jules S. Mitchell
- Thompson InstituteUniversity of Sunshine CoastBirtinyaQueenslandAustralia
| | - Toomas E. Anijärv
- Thompson InstituteUniversity of Sunshine CoastBirtinyaQueenslandAustralia
- Department of Clinical Sciences Malmö, Faculty of MedicineClinical Memory Research Unit, Lund UniversityLundSweden
| | - Adem T. Can
- Thompson InstituteUniversity of Sunshine CoastBirtinyaQueenslandAustralia
| | - Megan Dutton
- Thompson InstituteUniversity of Sunshine CoastBirtinyaQueenslandAustralia
| | - Daniel F. Hermens
- Thompson InstituteUniversity of Sunshine CoastBirtinyaQueenslandAustralia
| | - Jim Lagopoulos
- Thompson Brain & Mind HealthcareBirtinyaQueenslandAustralia
| |
Collapse
|
4
|
Asch RH, Abdallah CG, Carson RE, Esterlis I. Challenges and rewards of in vivo synaptic density imaging, and its application to the study of depression. Neuropsychopharmacology 2024; 50:153-163. [PMID: 39039139 PMCID: PMC11525584 DOI: 10.1038/s41386-024-01913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
The development of novel radiotracers for Positron Emission Tomography (PET) imaging agents targeting the synaptic vesicle glycoprotein 2 A (SV2A), an integral glycoprotein present in the membrane of all synaptic vesicles throughout the central nervous system, provides a method for the in vivo quantification of synaptic density. This is of particular interest in neuropsychiatric disorders given that synaptic alterations appear to underlie disease progression and symptom severity. In this review, we briefly describe the development of these SV2A tracers and the evaluation of quantification methods. Next, we discuss application of SV2A PET imaging to the study of depression, including a review of our findings demonstrating lower SV2A synaptic density in people with significant depressive symptoms and the use of a ketamine drug challenge to examine synaptogenesis in vivo. We then highlight the importance of performing translational PET imaging in animal models in conjunction with clinical imaging. We consider the ongoing challenges, possible solutions, and present preliminary findings from our lab demonstrating the translational benefit and potential of in vivo SV2A imaging in animal models of chronic stress. Finally, we discuss methodological improvements and future directions for SV2A imaging, potentially in conjunction with other neural markers.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Chadi G Abdallah
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA.
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
5
|
Kitaichi M, Kato T, Oki H, Tatara A, Kawada T, Miyazaki K, Ishikawa C, Kaneda K, Shimizu I. DSP-6745, a novel 5-hydroxytryptamine modulator with rapid antidepressant, anxiolytic, antipsychotic and procognitive effects. Psychopharmacology (Berl) 2024; 241:2223-2239. [PMID: 38856765 DOI: 10.1007/s00213-024-06629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Current treatment of major depressive disorder is facing challenges, including a low remission rate, late onset of efficacy, and worsening severity due to comorbid symptoms such as psychosis and cognitive dysfunction. Serotonin (5-HT) neurotransmission is involved in a wide variety of psychiatric diseases and its potential as a drug target continues to attract attention. OBJECTIVES The present study elucidates the effects of a novel 5-HT modulator, DSP-6745, on depression and its comorbid symptoms. RESULTS In vitro radioligand binding and functional assays showed that DSP-6745 is a potent inhibitor of 5-HT transporter and 5-HT2A, 5-HT2C, and 5-HT7 receptors. In vivo, DSP-6745 (6.4 and 19.1 mg/kg as free base, p.o.) increased the release of not only 5-HT, norepinephrine, and dopamine, but also glutamate in the medial prefrontal cortex. The results of in vivo mouse phenotypic screening by SmartCube® suggested that DSP-6745 has a behavioral signature combined with antidepressant-, anxiolytic-, and antipsychotic-like signals. A single oral dose of DSP-6745 (6.4 and 19.1 mg/kg) showed rapid antidepressant-like efficacy in the rat forced swim test, even at 24 h post-dosing, and anxiolytic activity in the rat social interaction test. Moreover, DSP-6745 (12.7 mg/kg, p.o.) led to an improvement in the apomorphine-induced prepulse inhibition deficit in rats. In the marmoset object retrieval with detour task, which is used to assess cognitive functions such as attention and behavioral inhibition, DSP-6745 (7.8 mg/kg, p.o.) enhanced cognition. CONCLUSIONS These data suggest that DSP-6745 is a multimodal 5-HT receptor antagonist and a 5-HT transporter inhibitor and has the potential to be a rapid acting antidepressant with efficacies in mitigating the comorbid symptoms of depression.
Collapse
Affiliation(s)
- Maiko Kitaichi
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Taro Kato
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan.
| | - Hitomi Oki
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Ayaka Tatara
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Takuya Kawada
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Kenji Miyazaki
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Chihiro Ishikawa
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Isao Shimizu
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| |
Collapse
|
6
|
Meiering MS, Weigner D, Gärtner M, Carstens L, Keicher C, Hertrampf R, Beckmann CF, Mennes M, Wunder A, Weigand A, Grimm S. Functional activity and connectivity signatures of ketamine and lamotrigine during negative emotional processing: a double-blind randomized controlled fMRI study. Transl Psychiatry 2024; 14:436. [PMID: 39402015 PMCID: PMC11479267 DOI: 10.1038/s41398-024-03120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/17/2024] Open
Abstract
Ketamine is a highly effective antidepressant (AD) that targets the glutamatergic system and exerts profound effects on brain circuits during negative emotional processing. Interestingly, the effects of ketamine on brain measures are sensitive to modulation by pretreatment with lamotrigine, which inhibits glutamate release. Examining the antagonistic effects of ketamine and lamotrigine on glutamate transmission holds promise to identify effects of ketamine that are mediated through changes in the glutamatergic system. Investigating this modulation in relation to both the acute and sustained effects of ketamine on functional activity and connectivity during negative emotional processing should therefore provide novel insights. 75 healthy subjects were investigated in a double-blind, single-dose, randomized, placebo-controlled, parallel-group study with three treatment conditions (ketamine, lamotrigine pre-treatment, placebo). Participants completed an emotional face viewing task during ketamine infusion and 24 h later. Acute ketamine administration decreased hippocampal and Default Mode Network (DMN) activity and increased fronto-limbic coupling during negative emotional processing. Furthermore, while lamotrigine abolished the ketamine-induced increase in functional connectivity, it had no acute effect on activity. Sustained (24 h later) effects of ketamine were only found for functional activity, with a significant reduction in the posterior DMN. This effect was blocked by pretreatment with lamotrigine. Our results suggest that both the acute increases in fronto-limbic coupling and the delayed decrease in posterior DMN activity, but not the attenuated limbic and DMN recruitment after ketamine, are mediated by altered glutamatergic transmission.
Collapse
Affiliation(s)
- Marvin S Meiering
- Medical School Berlin, Berlin, Germany.
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.
| | - David Weigner
- Medical School Berlin, Berlin, Germany
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | | - Andreas Wunder
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Simone Grimm
- Medical School Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universitiät Zu Berlin, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Hagarty DP, Dawoud A, Brea Guerrero A, Phillips K, Strong CE, Jennings SD, Crawford M, Martinez K, Csernecky O, Saland SK, Kabbaj M. Exploring ketamine's reinforcement, cue-induced reinstatement, and nucleus accumbens cFos activation in male and female long evans rats. Neuropharmacology 2024; 255:110008. [PMID: 38797243 PMCID: PMC11610499 DOI: 10.1016/j.neuropharm.2024.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Ketamine (KET), a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, has rapid onset of antidepressant effects in Treatment-Resistant Depression patients and repeated infusions are required to sustain its antidepressant properties. However, KET is an addictive drug, and so more preclinical and clinical research is needed to assess the safety of recurring treatments in both sexes. Thus, the aim of this study was to investigate the reinforcing properties of various doses of KET (0-, 0.125-, 0.25-, 0.5 mg/kg/infusion) and assess KET's cue-induced reinstatement and neuronal activation in both sexes of Long Evans rats. Neuronal activation was assessed using the protein expression of the immediate early gene cFos in the nucleus accumbens (Nac), an important brain area implicated in reward, reinforcement and reinstatement to most drug-related cues. Our findings show that KET has reinforcing effects in both male and female rats, albeit exclusively at the highest two doses (0.25 and 0.5 mg/kg/infusion). Furthermore, we noted sex differences, particularly at the highest dose of ketamine, with female rats displaying a higher rate of self-administration. Interestingly, all groups that self-administered KET reinstated to drug-cues. Following drug cue-induced reinstatement test in rats exposed to KET (0.25 mg/kg/infusion) or saline, there was higher cFos protein expression in KET-treated animals compared to saline controls, and higher cFos expression in the core compared to the shell subregions of the Nac. As for reinstatement, there were no notable sex differences reported for cFos expression in the Nac. These findings reveal some sex and dose dependent effects in KET's reinforcing properties and that KET at all doses induced similar reinstatement in both sexes. This study also demonstrated that cues associated with ketamine induce comparable neuronal activation in the Nac of both male and female rats. This work warrants further research into the potential addictive properties of KET, especially when administered at lower doses which are now being used in the clinic for treating various psychopathologies.
Collapse
Affiliation(s)
- Devin P Hagarty
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Adam Dawoud
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Alfonso Brea Guerrero
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Kaynas Phillips
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Caroline E Strong
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Sarah Dollie Jennings
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Michelle Crawford
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Katherine Martinez
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Olivia Csernecky
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Samantha K Saland
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
8
|
De Jager JE, Boesjes R, Roelandt GHJ, Koliaki I, Sommer IEC, Schoevers RA, Nuninga JO. Shared effects of electroconvulsive shocks and ketamine on neuroplasticity: A systematic review of animal models of depression. Neurosci Biobehav Rev 2024; 164:105796. [PMID: 38981574 DOI: 10.1016/j.neubiorev.2024.105796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Electroconvulsive shocks (ECS) and ketamine are antidepressant treatments with a relatively fast onset of therapeutic effects compared to conventional medication and psychotherapy. While the exact neurobiological mechanisms underlying the antidepressant response of ECS and ketamine are unknown, both interventions are associated with neuroplasticity. Restoration of neuroplasticity may be a shared mechanism underlying the antidepressant efficacy of these interventions. In this systematic review, literature of animal models of depression is summarized to examine the possible role of neuroplasticity in ECS and ketamine on a molecular, neuronal, synaptic and functional level, and specifically to what extent these mechanisms are shared between both interventions. The results highlight that hippocampal neurogenesis and brain-derived neurotrophic factor (BDNF) levels are consistently increased after ECS and ketamine. Moreover, both interventions positively affect glutamatergic neurotransmission, astrocyte and neuronal morphology, synaptic density, vasculature and functional plasticity. However, a small number of studies investigated these processes after ECS. Understanding the shared fundamental mechanisms of fast-acting antidepressants can contribute to the development of novel therapeutic approaches for patients with severe depression.
Collapse
Affiliation(s)
- Jesca E De Jager
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands.
| | - Rutger Boesjes
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Gijs H J Roelandt
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Ilektra Koliaki
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands
| | - Robert A Schoevers
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Jasper O Nuninga
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands; University Medical Centre Utrecht, Department of Psychiatry, the Netherlands
| |
Collapse
|
9
|
Freudenberg F, Reif-Leonhard C, Reif A. Advancing past ketamine: emerging glutamatergic compounds for the treatment of depression. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01875-z. [PMID: 39207462 DOI: 10.1007/s00406-024-01875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Changes in glutamatergic neuroplasticity has been proposed as one of the core mechanisms underlying the pathophysiology of depression. In consequence components of the glutamatergic synapse have been explored as potential targets for antidepressant treatment. The rapid antidepressant effect of the NMDA receptor antagonist ketamine and subsequent approval of its S-enantiomer (i.e. esketamine), have set the precedent for investigation into other glutamatergic rapid acting antidepressants (RAADs). In this review, we discuss the potential of the different glutamatergic targets for antidepressant treatment. We describe important clinical outcomes of several key molecules targeting components of the glutamatergic synapse and their applicability as RAADs. Specifically, here we focus on substances beyond (es)ketamine, for which meaningful data from clinical trials are available, including arketamine, esmethadone, nitrous oxide and other glutamate receptor modulators. Molecules only successful in preclinical settings and case reports/series are only marginally discussed. With this review, we aim underscore the critical role of glutamatergic modulation in advancing antidepressant therapy, thereby possibly enhancing clinical outcomes but also to reducing the burden of depression through faster therapeutic effects.
Collapse
Affiliation(s)
- Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany.
| | - Christine Reif-Leonhard
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany
| |
Collapse
|
10
|
Papp M, Gruca P, Litwa E, Lason M, Newman-Tancredi A, Depoortère R. The 5-HT1A receptor biased agonists, NLX-204 and NLX-101, like ketamine, elicit rapid-acting antidepressant activity in the rat chronic mild stress model via cortical mechanisms. J Psychopharmacol 2024; 38:661-671. [PMID: 38825869 DOI: 10.1177/02698811241254832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
BACKGROUND The highly selective 5-HT1A serotonin receptor "biased" agonists NLX-101 and NLX-204 display, like ketamine, potent and efficacious rapid-acting antidepressant (RAAD) activity in the rat chronic mild stress (CMS) model with systemic (i.p.) administration. They rapidly (within 1 day) reverse anhedonia (i.e., CMS-induced sucrose consumption deficit), attenuate working memory deficit (novel object recognition: NOR), and decrease anxiety behavior in the elevated-plus maze (EPM). AIMS Here, we sought to explore the contribution of prefrontal cortex (PFC) 5-HT1A receptor activation in the RAAD activity of NLX compounds. RESULTS/OUTCOMES In male Wistar rats, unilateral PFC microinjections of NLX-204 and NLX-101 (16 µg), like ketamine (10 µg), reproduced the effects of their systemic administration: they reversed CMS-induced sucrose consumption deficit, attenuated anxiety (EPM), and reduced working memory deficits (NOR). In addition, unilateral PFC microinjections of the selective 5-HT1A antagonist, WAY-100,635 (2 µg), attenuated the beneficial effects of systemic NLX-204 and NLX-101 (0.16 mg/kg i.p.) in the sucrose intake and NOR models, indicating that these compounds exert their RAAD activity specifically through activation of PFC 5-HT1A receptors. CONCLUSIONS/INTERPRETATION These data indicate that 5-HT1A receptor biased agonists share with ketamine a common neuroanatomical site for RAAD activity, which can be obtained not only by targeting glutamatergic/NMDA neurotransmission (ketamine's primary mechanism of action) but also by activating 5-HT1A receptors, as is the case for the NLX compounds. The present observations also reinforce the notion that biased agonism at 5-HT1A receptors constitutes a promising strategy to achieve RAAD effects, with additional benefits against cognitive deficits and anxiety in depressed patients, without ketamine's troublesome side effects.
Collapse
MESH Headings
- Animals
- Ketamine/pharmacology
- Ketamine/administration & dosage
- Male
- Rats
- Antidepressive Agents/pharmacology
- Antidepressive Agents/administration & dosage
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
- Serotonin 5-HT1 Receptor Agonists/pharmacology
- Disease Models, Animal
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/drug effects
- Rats, Wistar
- Anhedonia/drug effects
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Pyridines/pharmacology
- Memory, Short-Term/drug effects
- Piperazines/pharmacology
- Piperazines/administration & dosage
- Depression/drug therapy
- Behavior, Animal/drug effects
- Piperidines
- Pyrimidines
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | | |
Collapse
|
11
|
Cui R, Hao X, Huang P, He M, Ma W, Gong D, Yao D. Behavioral state-dependent associations between EEG temporal correlations and depressive symptoms. Psychiatry Res Neuroimaging 2024; 341:111811. [PMID: 38583274 DOI: 10.1016/j.pscychresns.2024.111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
Previous studies have shown abnormal long-range temporal correlations in neuronal oscillations among individuals with Major Depressive Disorders, occurring during both resting states and transitions between resting and task states. However, the understanding of this effect in preclinical individuals with depression remains limited. This study investigated the association between temporal correlations of neuronal oscillations and depressive symptoms during resting and task states in preclinical individuals, specifically focusing on male action video gaming experts. Detrended fluctuation analysis (DFA), Lifetimes, and Waitingtimes were employed to explore temporal correlations across long-range and short-range scales. The results indicated widespread changes from the resting state to the task state across all frequency bands and temporal scales. Rest-task DFA changes in the alpha band exhibited a negative correlation with depressive scores at most electrodes. Significant positive correlations between DFA values and depressive scores were observed in the alpha band during the resting state but not in the task state. Similar patterns of results emerged concerning maladaptive negative emotion regulation strategies. Additionally, short-range temporal correlations in the alpha band echoed the DFA results. These findings underscore the state-dependent relationships between temporal correlations of neuronal oscillations and depressive symptoms, as well as maladaptive emotion regulation strategies, in preclinical individuals.
Collapse
Affiliation(s)
- Ruifang Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyang Hao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Pei Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Weiyi Ma
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Diankun Gong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
12
|
Gärtner M, Weigand A, Meiering MS, Weigner D, Carstens L, Keicher C, Hertrampf R, Beckmann C, Mennes M, Wunder A, Grimm S. Negative emotionality shapes the modulatory effects of ketamine and lamotrigine in subregions of the anterior cingulate cortex. Transl Psychiatry 2024; 14:258. [PMID: 38890270 PMCID: PMC11189565 DOI: 10.1038/s41398-024-02977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Neuroimaging studies have identified the anterior cingulate cortex (ACC) as one of the major targets of ketamine in the human brain, which may be related to ketamine's antidepressant (AD) mechanisms of action. However, due to different methodological approaches, different investigated populations, and varying measurement timepoints, results are not consistent, and the functional significance of the observed brain changes remains a matter of open debate. Inhibition of glutamate release during acute ketamine administration by lamotrigine provides the opportunity to gain additional insight into the functional significance of ketamine-induced brain changes. Furthermore, the assessment of trait negative emotionality holds promise to link findings in healthy participants to potential AD mechanisms of ketamine. In this double-blind, placebo-controlled, randomized, single dose, parallel-group study, we collected resting-state fMRI data before, during, and 24 h after ketamine administration in a sample of 75 healthy male and female participants who were randomly allocated to one of three treatment conditions (ketamine, ketamine with lamotrigine pre- treatment, placebo). Spontaneous brain activity was extracted from two ventral and one dorsal subregions of the ACC. Our results showed activity decreases during the administration of ketamine in all three ACC subregions. However, only in the ventral subregions of the ACC this effect was attenuated by lamotrigine. 24 h after administration, ACC activity returned to baseline levels, but group differences were observed between the lamotrigine and the ketamine group. Trait negative emotionality was closely linked to activity changes in the subgenual ACC after ketamine administration. These results contribute to an understanding of the functional significance of ketamine effects in different subregions of the ACC by combining an approach to modulate glutamate release with the assessment of multiple timepoints and associations with trait negative emotionality in healthy participants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andreas Wunder
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Simone Grimm
- Medical School Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Nicosia N, Giovenzana M, Misztak P, Mingardi J, Musazzi L. Glutamate-Mediated Excitotoxicity in the Pathogenesis and Treatment of Neurodevelopmental and Adult Mental Disorders. Int J Mol Sci 2024; 25:6521. [PMID: 38928227 PMCID: PMC11203689 DOI: 10.3390/ijms25126521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the brain wherein it controls cognitive functional domains and mood. Indeed, brain areas involved in memory formation and consolidation as well as in fear and emotional processing, such as the hippocampus, prefrontal cortex, and amygdala, are predominantly glutamatergic. To ensure the physiological activity of the brain, glutamatergic transmission is finely tuned at synaptic sites. Disruption of the mechanisms responsible for glutamate homeostasis may result in the accumulation of excessive glutamate levels, which in turn leads to increased calcium levels, mitochondrial abnormalities, oxidative stress, and eventually cell atrophy and death. This condition is known as glutamate-induced excitotoxicity and is considered as a pathogenic mechanism in several diseases of the central nervous system, including neurodevelopmental, substance abuse, and psychiatric disorders. On the other hand, these disorders share neuroplasticity impairments in glutamatergic brain areas, which are accompanied by structural remodeling of glutamatergic neurons. In the current narrative review, we will summarize the role of glutamate-induced excitotoxicity in both the pathophysiology and therapeutic interventions of neurodevelopmental and adult mental diseases with a focus on autism spectrum disorders, substance abuse, and psychiatric disorders. Indeed, glutamatergic drugs are under preclinical and clinical development for the treatment of different mental diseases that share glutamatergic neuroplasticity dysfunctions. Although clinical evidence is still limited and more studies are required, the regulation of glutamate homeostasis is attracting attention as a potential crucial target for the control of brain diseases.
Collapse
Affiliation(s)
- Noemi Nicosia
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Mattia Giovenzana
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Paulina Misztak
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
14
|
Freitas AE, Feng B, Woo T, Galli S, Baker C, Ban Y, Truong J, Beyeler A, Zou Y. Planar cell polarity proteins mediate ketamine-induced restoration of glutamatergic synapses in prefrontal cortical neurons in a mouse model for chronic stress. Nat Commun 2024; 15:4945. [PMID: 38858386 PMCID: PMC11165002 DOI: 10.1038/s41467-024-48257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/23/2024] [Indexed: 06/12/2024] Open
Abstract
Single administration of low-dose ketamine has both acute and sustained anti-depressant effects. Sustained effect is associated with restoration of glutamatergic synapses in medial prefrontal cortic (mFPC) neurons. Ketamine induced profound changes in a number of molecular pathways in a mouse model for chronic stress. Cell-cell communication analyses predicted that planar-cell-polarity (PCP) signaling was decreased after chronic administration of corticosterone but increased following ketamine administration in most of the excitatory neurons. Similar decrease of PCP signaling in excitatory neurons was predicted in dorsolateral prefrontal cortical (dl-PFC) neurons of patients with major depressive disorder (MDD). We showed that the basolateral amygdala (BLA)-projecting infralimbic prefrontal cortex (IL PFC) neurons regulate immobility time in the tail suspension test and food consumption. Conditionally knocking out Celsr2 and Celsr3 or Prickle2 in the BLA-projecting IL PFC neurons abolished ketamine-induced synapse restoration and behavioral remission. Therefore, PCP proteins in IL PFC-BLA neurons mediate synapse restoration induced by of low-dose ketamine.
Collapse
Affiliation(s)
- Andiara E Freitas
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bo Feng
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Timothy Woo
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shae Galli
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Clayton Baker
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yue Ban
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jonathan Truong
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anna Beyeler
- Neurocentre Magendie, University of Bordeaux, 146, Rue Leo Saignat, 33000, Bordeaux, France
| | - Yimin Zou
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
15
|
Rozov S, Saarreharju R, Khirug S, Storvik M, Rivera C, Rantamäki T. Effects of nitrous oxide and ketamine on electrophysiological and molecular responses in the prefrontal cortex of mice: A comparative study. Eur J Pharmacol 2024; 968:176426. [PMID: 38387719 DOI: 10.1016/j.ejphar.2024.176426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Nitrous oxide (N2O; laughing gas) has recently reported to produce rapid antidepressant effects, but little is known about the underlying mechanisms. We performed transcriptomics, in situ hybridization, and electrophysiological studies to examine the potential shared signatures induced by 1 h inhalation of 50% N2O and a single subanesthetic dose of ketamine (10 mg/kg, i.p.) in the medial prefrontal cortex (mPFC) in adult mice. Both treatments similarly affected the transcription of several negative regulators of mitogen-activated protein kinases (MAPKs), namely, dual specificity phosphatases (DUSPs). The effects were primarily located in the pyramidal cells. Notably, the overall effects of N2O on mRNA expression were much more prominent and widespread compared to ketamine. Ketamine caused an elevation of the spiking frequency of putative pyramidal neurons and increased gamma activity (30-100 Hz) of cortical local field potentials. However, N2O produced no such effects. Spiking amplitudes and spike-to-local field potential phase locking of putative pyramidal neurons and interneurons in this brain area showed no uniform changes across treatments. Our findings suggest that N2O and subanesthetic-dose ketamine target MAPK pathway in the mPFC but produce varying acute electrophysiological responses.
Collapse
Affiliation(s)
- Stanislav Rozov
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
| | - Roosa Saarreharju
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Stanislav Khirug
- Neuroscience Center, University of Helsinki, Helsinki, 00014, Finland
| | | | - Claudio Rivera
- Neuroscience Center, University of Helsinki, Helsinki, 00014, Finland; Aix Marseille Univ, INSERM, INMED, Marseille, 13007, France
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
16
|
Brown KA, Gould TD. Targeting metaplasticity mechanisms to promote sustained antidepressant actions. Mol Psychiatry 2024; 29:1114-1127. [PMID: 38177353 PMCID: PMC11176041 DOI: 10.1038/s41380-023-02397-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The discovery that subanesthetic doses of (R, S)-ketamine (ketamine) and (S)-ketamine (esketamine) rapidly induce antidepressant effects and promote sustained actions following drug clearance in depressed patients who are treatment-resistant to other therapies has resulted in a paradigm shift in the conceptualization of how rapidly and effectively depression can be treated. Consequently, the mechanism(s) that next generation antidepressants may engage to improve pathophysiology and resultant symptomology are being reconceptualized. Impaired excitatory glutamatergic synapses in mood-regulating circuits are likely a substantial contributor to the pathophysiology of depression. Metaplasticity is the process of regulating future capacity for plasticity by priming neurons with a stimulation that alters later neuronal plasticity responses. Accordingly, the development of treatment modalities that specifically modulate the duration, direction, or magnitude of glutamatergic synaptic plasticity events such as long-term potentiation (LTP), defined here as metaplastogens, may be an effective approach to reverse the pathophysiology underlying depression and improve depression symptoms. We review evidence that the initiating mechanisms of pharmacologically diverse rapid-acting antidepressants (i.e., ketamine mimetics) converge on consistent downstream molecular mediators that facilitate the expression/maintenance of increased synaptic strength and resultant persisting antidepressant effects. Specifically, while the initiating mechanisms of these therapies may differ (e.g., cell type-specificity, N-methyl-D-aspartate receptor (NMDAR) subtype-selective inhibition vs activation, metabotropic glutamate receptor 2/3 antagonism, AMPA receptor potentiation, 5-HT receptor-activating psychedelics, etc.), the sustained therapeutic mechanisms of putative rapid-acting antidepressants will be mediated, in part, by metaplastic effects that converge on consistent molecular mediators to enhance excitatory neurotransmission and altered capacity for synaptic plasticity. We conclude that the convergence of these therapeutic mechanisms provides the opportunity for metaplasticity processes to be harnessed as a druggable plasticity mechanism by next-generation therapeutics. Further, targeting metaplastic mechanisms presents therapeutic advantages including decreased dosing frequency and associated diminished adverse responses by eliminating the requirement for the drug to be continuously present.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
17
|
Mitsi V, Ruiz A, Polizu C, Farzinpour Z, Ramakrishnan A, Serafini RA, Parise EM, Floodstrand M, Sial OK, Gaspari S, Tang CY, Nestler EJ, Schmidt EF, Shen L, Zachariou V. RGS4 Actions in Mouse Prefrontal Cortex Modulate Behavioral and Transcriptomic Responses to Chronic Stress and Ketamine. Mol Pharmacol 2024; 105:272-285. [PMID: 38351270 PMCID: PMC10949159 DOI: 10.1124/molpharm.123.000753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/16/2024] [Indexed: 03/16/2024] Open
Abstract
The signal transduction protein, regulator of G protein signaling 4 (RGS4), plays a prominent role in physiologic and pharmacological responses by controlling multiple intracellular pathways. Our earlier work identified the dynamic but distinct roles of RGS4 in the efficacy of monoamine-targeting versus fast-acting antidepressants. Using a modified chronic variable stress (CVS) paradigm in mice, we demonstrate that stress-induced behavioral abnormalities are associated with the downregulation of RGS4 in the medial prefrontal cortex (mPFC). Knockout of RGS4 (RGS4KO) increases susceptibility to CVS, as mutant mice develop behavioral abnormalities as early as 2 weeks after CVS resting-state functional magnetic resonance imaging I (rs-fMRI) experiments indicate that stress susceptibility in RGS4KO mice is associated with changes in connectivity between the mediodorsal thalamus (MD-THL) and the mPFC. Notably, RGS4KO also paradoxically enhances the antidepressant efficacy of ketamine in the CVS paradigm. RNA-sequencing analysis of naive and CVS samples obtained from mPFC reveals that RGS4KO triggers unique gene expression signatures and affects several intracellular pathways associated with human major depressive disorder. Our analysis suggests that ketamine treatment in the RGS4KO group triggers changes in pathways implicated in synaptic activity and responses to stress, including pathways associated with axonal guidance and myelination. Overall, we show that reducing RGS4 activity triggers unique gene expression adaptations that contribute to chronic stress disorders and that RGS4 is a negative modulator of ketamine actions. SIGNIFICANCE STATEMENT: Chronic stress promotes robust maladaptation in the brain, but the exact intracellular pathways contributing to stress vulnerability and mood disorders have not been thoroughly investigated. In this study, the authors used murine models of chronic stress and multiple methodologies to demonstrate the critical role of the signal transduction modulator regulator of G protein signaling 4 in the medial prefrontal cortex in vulnerability to chronic stress and the efficacy of the fast-acting antidepressant ketamine.
Collapse
Affiliation(s)
- Vasiliki Mitsi
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Anne Ruiz
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Claire Polizu
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Zahra Farzinpour
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Randal A Serafini
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Madeline Floodstrand
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Omar K Sial
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Sevasti Gaspari
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Cheuk Y Tang
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Eric F Schmidt
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Venetia Zachariou
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| |
Collapse
|
18
|
Elmeseiny OSA, Müller HK. A molecular perspective on mGluR5 regulation in the antidepressant effect of ketamine. Pharmacol Res 2024; 200:107081. [PMID: 38278430 DOI: 10.1016/j.phrs.2024.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Ketamine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, has received much attention for its rapid antidepressant effects. A single administration of ketamine elicits rapid and sustained antidepressant effects in both humans and animals. Current efforts are focused on uncovering molecular mechanisms responsible for ketamine's antidepressant activity. Ketamine primarily acts via the glutamatergic pathway, and increasing evidence suggests that ketamine induces synaptic and structural plasticity through increased translation and release of neurotrophic factors, activation of mammalian target of rapamycin (mTOR), and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR)-mediated synaptic potentiation. However, the initial events triggering activation of intracellular signaling cascades and the mechanisms responsible for the sustained antidepressant effects of ketamine remain poorly understood. Over the last few years, it has become apparent that in addition to the fast actions of the ligand-gated AMPARs and NMDARs, metabotropic glutamate receptors (mGluRs), and particularly mGluR5, may also play a role in the antidepressant action of ketamine. Although research on mGluR5 in relation to the beneficial actions of ketamine is still in its infancy, a careful evaluation of the existing literature can identify converging trends and provide new interpretations. Here, we review the current literature on mGluR5 regulation in response to ketamine from a molecular perspective and propose a possible mechanism linking NMDAR inhibition to mGluR5 modulation.
Collapse
Affiliation(s)
- Ola Sobhy A Elmeseiny
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
19
|
Almeida TM, Lacerda da Silva UR, Pires JP, Borges IN, Martins CRM, Cordeiro Q, Uchida RR. Effectiveness of Ketamine for the Treatment of Post-Traumatic Stress Disorder - A Systematic Review and Meta-Analysis. CLINICAL NEUROPSYCHIATRY 2024; 21:22-31. [PMID: 38559428 PMCID: PMC10979792 DOI: 10.36131/cnfioritieditore20240102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Objective Post-traumatic stress disorder (PTSD) is an enduring condition characterized by a chronic course and impairments across several areas. Despite its significance, treatment options remain limited, and remission rates are often low. Ketamine has demonstrated antidepressant properties and appears to be a promising agent in the management of PTSD. Method A systematic review was conducted in PubMed/MEDLINE, Cochrane Library, Clinicaltrials.gov, Lilacs, Scopus, and Embase, covering studies published between 2012 and December 2022 to assess the effectiveness of ketamine in the treatment of PTSD. Ten studies, consisting of five RCTs, two crossover trials, and three non-randomized trials, were included in the meta-analysis. Results Ketamine demonstrated significant improvements in PCL-5 scores, both 24 hours after the initial infusion and at the endpoint of the treatment course, which varied between 1 to 4 weeks in each study. Notably, the significance of these differences was assessed using the Two Sample T-test with pooled variance and the Two Sample Welch's T-test, revealing a statistically significant effect for ketamine solely at the endpoint of the treatment course (standardized effect size= 0.25; test power 0.9916; 95% CI = 0.57 to 17.02, p=0.0363). It is important to note that high heterogeneity was observed across all analyses. Conclusions Our findings suggest that ketamine holds promise as an effective treatment option for PTSD. However, further trials are imperative to establish robust data for this intervention.
Collapse
Affiliation(s)
- Thales Marcon Almeida
- Mental Health Department, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | | | - Jeully Pereira Pires
- School of Medicine, Federal University of Cariri – UFCA, Barbalha, Ceará, Brazil
| | - Isaac Neri Borges
- School of Medicine, Federal University of Cariri – UFCA, Barbalha, Ceará, Brazil
| | | | - Quirino Cordeiro
- Mental Health Department, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Ricardo R. Uchida
- Mental Health Department, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| |
Collapse
|
20
|
Portal B, Södergren M, Parés i Borrell T, Giraud R, Metzendorf NG, Hultqvist G, Nilsson P, Lindskog M. Early Astrocytic Dysfunction Is Associated with Mistuned Synapses as well as Anxiety and Depressive-Like Behavior in the AppNL-F Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 100:1017-1037. [PMID: 38995780 PMCID: PMC11307019 DOI: 10.3233/jad-231461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/14/2024]
Abstract
Background Alzheimer's disease (AD) is the most common neurodegenerative disease. Unfortunately, efficient and affordable treatments are still lacking for this neurodegenerative disorder, it is therefore urgent to identify new pharmacological targets. Astrocytes are playing a crucial role in the tuning of synaptic transmission and several studies have pointed out severe astrocyte reactivity in AD. Reactive astrocytes show altered physiology and function, suggesting they could have a role in the early pathophysiology of AD. Objective We aimed to characterize early synaptic impairments in the AppNL-F knock-in mouse model of AD, especially to understand the contribution of astrocytes to early brain dysfunctions. Methods The AppNL-F mouse model carries two disease-causing mutations inserted in the amyloid precursor protein gene. This strain does not start to develop amyloid-β plaques until 9 months of age. Thanks to electrophysiology, we investigated synaptic function, at both neuronal and astrocytic levels, in 6-month-old animals and correlate the synaptic activity with emotional behavior. Results Electrophysiological recordings in the hippocampus revealed an overall synaptic mistuning at a pre-plaque stage of the pathology, associated to an intact social memory but a stronger depressive-like behavior. Astrocytes displayed a reactive-like morphology and a higher tonic GABA current compared to control mice. Interestingly, we here show that the synaptic impairments in hippocampal slices are partially corrected by a pre-treatment with the monoamine oxidase B blocker deprenyl or the fast-acting antidepressant ketamine (5 mg/kg). Conclusions We propose that reactive astrocytes can induce synaptic mistuning early in AD, before plaques deposition, and that these changes are associated with emotional symptoms.
Collapse
Affiliation(s)
- Benjamin Portal
- Department for Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Moa Södergren
- Department for Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Romain Giraud
- Department for Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nicole G. Metzendorf
- Department of Pharmacy, Division of Protein Drug Design, Uppsala University, Uppsala, Sweden
| | - Greta Hultqvist
- Department of Pharmacy, Division of Protein Drug Design, Uppsala University, Uppsala, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Maria Lindskog
- Department for Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Riggs LM, Pereira EFR, Thompson SM, Gould TD. cAMP-dependent protein kinase signaling is required for ( 2R,6R)-hydroxynorketamine to potentiate hippocampal glutamatergic transmission. J Neurophysiol 2024; 131:64-74. [PMID: 38050689 PMCID: PMC11286304 DOI: 10.1152/jn.00326.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
(2R,6R)-Hydroxynorketamine (HNK) is a ketamine metabolite that shows rapid antidepressant-like effects in preclinical studies and lacks the adverse N-methyl-d-aspartate receptor (NMDAR) inhibition-related properties of ketamine. Investigating how (2R,6R)-HNK exerts its antidepressant actions may be informative in the design of novel pharmacotherapies with improved safety and efficacy. We sought to identify the molecular substrates through which (2R,6R)-HNK induces functional changes at excitatory synapses, a prevailing hypothesis for how rapid antidepressant effects are initiated. We recorded excitatory postsynaptic potentials in hippocampal slices from male Wistar Kyoto rats, which have impaired hippocampal plasticity and are resistant to traditional antidepressants. (2R,6R)-HNK (10 µM) led to a rapid potentiation of electrically evoked excitatory postsynaptic potentials at Schaffer collateral CA1 stratum radiatum synapses. This potentiation was associated with a decrease in paired pulse facilitation, suggesting an increase in the probability of glutamate release. The (2R,6R)-HNK-induced potentiation was blocked by inhibiting either cyclic adenosine monophosphate (cAMP) or its downstream target, cAMP-dependent protein kinase (PKA). As cAMP is a potent regulator of brain-derived neurotrophic factor (BDNF) release, we assessed whether (2R,6R)-HNK exerts this acute potentiation through a rapid increase in cAMP-dependent BDNF-TrkB signaling. We found that the cAMP-PKA-dependent potentiation was not dependent on TrkB activation by BDNF, which functionally delimits the acute synaptic effects of (2R,6R)-HNK from its sustained BDNF-dependent actions in vivo. These results suggest that, by potentiating glutamate release via cAMP-PKA signaling, (2R,6R)-HNK initiates acute adaptations in fast excitatory synaptic transmission that promote structural plasticity leading to maintained antidepressant action.NEW & NOTEWORTHY Ketamine is a rapid-acting antidepressant and its preclinical effects are mimicked by its (2R,6R)-(HNK) metabolite. We found that (2R,6R)-HNK initiates acute adaptations in fast excitatory synaptic transmission by potentiating glutamate release via cAMP-PKA signaling at hippocampal Schaffer collateral synapses. This cAMP-PKA-dependent potentiation was not dependent on TrkB activation by BDNF, which functionally delimits the rapid synaptic effects of (2R,6R)-HNK from its sustained BDNF-dependent actions that are thought to maintain antidepressant action in vivo.
Collapse
Affiliation(s)
- Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Edna F R Pereira
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Veterans Affairs Maryland Health Care System, Baltimore, Maryland, United States
| |
Collapse
|
22
|
Dutton M, Boyes A, Can AT, Mohamed AZ, Hajishafiee M, Shan ZY, Lagopoulos J, Hermens DF. Hippocampal subfield volumes predict treatment response to oral ketamine in people with suicidality. J Psychiatr Res 2024; 169:192-200. [PMID: 38042058 DOI: 10.1016/j.jpsychires.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Ongoing stress results in hippocampal neuro-structural alterations which produce pathological consequences, including depression and suicidality. Ketamine may ameliorate stress related illnesses, including suicidality, via neuroplasticity processes. This novel study sought to determine whether oral ketamine treatment specifically affects hippocampal (whole and subfield) volumes in patients with chronic suicidality and MDD. It was hypothesised that oral ketamine treatment would differentially alter hippocampal volumes in trial participants categorised as ketamine responders, versus those who were non-responders. Twenty-eight participants received 6 single, weekly doses of oral ketamine (0.5-3 mg/kg) and underwent MRI scans at pre-ketamine (week 0), post-ketamine (week 6), and follow up (week 10). Hippocampal subfield volumes were extracted using the longitudinal pipeline in FreeSurfer. Participants were grouped according to ketamine response status and then compared in terms of grey matter volume (GMV) changes, among 10 hippocampal regions, over 6 and 10 weeks. Mixed ANOVAs were used to analyse interactions between time and group. Post treatment analysis revealed a significant main effect of group for three left hippocampal GMVs as well in the left and right whole hippocampus. Ketamine acute responders (Week 6) showed increased GMVs in both left and right whole hippocampus and in three subfields compared to acute non-responders, across all three timepoints, suggesting that pre-treatment increased hippocampal GMVs (particularly left hemisphere) may be predictive biomarkers of acute treatment response. Future studies should further investigate the potential of hippocampal volumes as a biomarker of ketamine treatment response.
Collapse
Affiliation(s)
- Megan Dutton
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia.
| | - Amanda Boyes
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Adem T Can
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Abdalla Z Mohamed
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Maryam Hajishafiee
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Zack Y Shan
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
23
|
Su WJ, Hu T, Jiang CL. Cool the Inflamed Brain: A Novel Anti-inflammatory Strategy for the Treatment of Major Depressive Disorder. Curr Neuropharmacol 2024; 22:810-842. [PMID: 37559243 PMCID: PMC10845090 DOI: 10.2174/1570159x21666230809112028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/21/2023] [Accepted: 02/23/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Abundant evidence suggests that inflammatory cytokines contribute to the symptoms of major depressive disorder (MDD) by altering neurotransmission, neuroplasticity, and neuroendocrine processes. Given the unsatisfactory response and remission of monoaminergic antidepressants, anti-inflammatory therapy is proposed as a feasible way to augment the antidepressant effect. Recently, there have been emerging studies investigating the efficiency and efficacy of anti-inflammatory agents in the treatment of MDD and depressive symptoms comorbid with somatic diseases. METHODS In this narrative review, prospective clinical trials focusing on anti-inflammatory treatment for depression have been comprehensively searched and screened. Based on the included studies, we summarize the rationale for the anti-inflammatory therapy of depression and discuss the utilities and confusions regarding the anti-inflammatory strategy for MDD. RESULTS This review included over 45 eligible trials. For ease of discussion, we have grouped them into six categories based on their mechanism of action, and added some other anti-inflammatory modalities, including Chinese herbal medicine and non-drug therapy. Pooled results suggest that anti-inflammatory therapy is effective in improving depressive symptoms, whether used as monotherapy or add-on therapy. However, there remain confusions in the application of anti-inflammatory therapy for MDD. CONCLUSION Based on current clinical evidence, anti-inflammatory therapy is a promisingly effective treatment for depression. This study proposes a novel strategy for clinical diagnosis, disease classification, personalized treatment, and prognostic prediction of depression. Inflammatory biomarkers are recommended to be assessed at the first admission of MDD patients, and anti-inflammatory therapy are recommended to be included in the clinical practice guidelines for diagnosis and treatment. Those patients with high levels of baseline inflammation (e.g., CRP > 3 mg/L) may benefit from adjunctive anti-inflammatory therapy.
Collapse
Affiliation(s)
- Wen-Jun Su
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai, 200433, China
| | - Ting Hu
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai, 200433, China
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
24
|
Wojtas A, Bysiek A, Wawrzczak-Bargiela A, Maćkowiak M, Gołembiowska K. Limbic System Response to Psilocybin and Ketamine Administration in Rats: A Neurochemical and Behavioral Study. Int J Mol Sci 2023; 25:100. [PMID: 38203271 PMCID: PMC10779066 DOI: 10.3390/ijms25010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The pathophysiology of depression is related to the reduced volume of the hippocampus and amygdala and hypertrophy of the nucleus accumbens. The mechanism of these changes is not well understood; however, clinical studies have shown that the administration of the fast-acting antidepressant ketamine reversed the decrease in hippocampus and amygdala volume in depressed patients, and the magnitude of this effect correlated with the reduction in depressive symptoms. In the present study, we attempted to find out whether the psychedelic substance psilocybin affects neurotransmission in the limbic system in comparison to ketamine. Psilocybin and ketamine increased the release of dopamine (DA) and serotonin (5-HT) in the nucleus accumbens of naive rats as demonstrated using microdialysis. Both drugs influenced glutamate and GABA release in the nucleus accumbens, hippocampus and amygdala and increased ACh levels in the hippocampus. The changes in D2, 5-HT1A and 5-HT2A receptor density in the nucleus accumbens and hippocampus were observed as a long-lasting effect. A marked anxiolytic effect of psilocybin in the acute phase and 24 h post-treatment was shown in the open field test. These data provide the neurobiological background for psilocybin's effect on stress, anxiety and structural changes in the limbic system and translate into the antidepressant effect of psilocybin in depressed patients.
Collapse
Affiliation(s)
- Adam Wojtas
- Unit II, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.W.); (A.B.)
| | - Agnieszka Bysiek
- Unit II, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.W.); (A.B.)
| | - Agnieszka Wawrzczak-Bargiela
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.W.-B.); (M.M.)
| | - Marzena Maćkowiak
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.W.-B.); (M.M.)
| | - Krystyna Gołembiowska
- Unit II, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.W.); (A.B.)
| |
Collapse
|
25
|
Dutton M, Can AT, Lagopoulos J, Hermens DF. Oral ketamine may offer a solution to the ketamine conundrum. Psychopharmacology (Berl) 2023; 240:2483-2497. [PMID: 37882811 PMCID: PMC10640543 DOI: 10.1007/s00213-023-06480-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Ketamine has received considerable attention for its rapid and robust antidepressant response over the past decade. Current evidence, in clinical populations, predominantly relates to parenterally administered ketamine, which is reported to produce significant undesirable side effects, with additional concerns regarding long-term safety and abuse potential. Attempts to produce a similar drug to ketamine, without the psychotomimetic side effects, have proved elusive. Orally administered ketamine has a different pharmacological profile to parentally administered ketamine, suggesting it may be a viable alternative. Emerging evidence regarding the efficacy and tolerability of oral ketamine suggests that it may be a favourable route of administration, as it appears to obtain similarly beneficial treatment effects, but without the cost and medical resources required in parenteral dosing. The pharmacological effects may be due to the active metabolite norketamine, which has been found to be at substantially higher levels via oral dosing, most likely due to first-pass clearance. Despite bioavailability and peak plasma concentrations both being lower than when administered parenterally, evidence suggests that low-dose oral ketamine is clinically effective in treating pain. This may also be due to the actions of norketamine and therefore, its relevance to the mental health context is explored in this narrative review.
Collapse
Affiliation(s)
- Megan Dutton
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia.
| | - Adem T Can
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| |
Collapse
|
26
|
Hilal F, Jeanblanc J, Naassila M. [Interest and mechanisms of action of ketamine in alcohol addiction- A review of clinical and preclinical studies]. Biol Aujourdhui 2023; 217:161-182. [PMID: 38018944 DOI: 10.1051/jbio/2023028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 11/30/2023]
Abstract
Alcohol Use Disorder (AUD) is a psychiatric condition characterized by chronic and excessive drinking despite negative consequences on overall health and social or occupational functioning. There are currently limited treatment options available for AUD, and the effects size and the response rates to these treatments are often low to moderate. The World Health Organization has identified the development of medications to treat AUD as one of its 24 priorities. This past decade was marked by a renewed interest in psychedelic use in psychiatry. At the centre of this renaissance, ketamine, an atypical psychedelic already used in the treatment of major depression, is an NMDA receptor antagonist that exists as a racemic compound made of two enantiomers, S-ketamine, and R-ketamine. Each form can be metabolized into different metabolites, some of which having antidepressant properties. In this article, we review both clinical and preclinical studies on ketamine and its metabolites in the treatment of AUD. Preclinical as well as clinical studies have revealed that ketamine is effective in reducing withdrawal symptoms and alcohol craving. Convergent data showed that antidepressant properties of ketamine largely contribute to the decreased likelihood of alcohol relapse, especially in patients undergoing ketamine-assisted psychotherapies. Its effectiveness is believed to be linked with its ability to regulate the glutamatergic pathway, enhance neuroplasticity, rewire brain resting state network functional connectivity and decrease depressive-like states. However, it remains to further investigate (i) why strong differences exist between male and female responses in preclinical studies and (ii) the respective roles of each of the metabolites in the ketamine effects in both genders. Interestingly, current studies are also focusing on ketamine addiction and the comorbidity between alcohol addiction and depression occurring more frequently in females.
Collapse
Affiliation(s)
- Fahd Hilal
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| | - Jérôme Jeanblanc
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| | - Mickaël Naassila
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| |
Collapse
|
27
|
Zhang T, Song N, Li S, Yu L, Xie Y, Yue Z, Zhang R, Wang L, Tan H. S-Ketamine Improves Slow Wave Sleep and the Associated Changes in Serum Protein Among Gynecological Abdominal Surgery Patients: A Randomized Controlled Trial. Nat Sci Sleep 2023; 15:903-913. [PMID: 37954026 PMCID: PMC10637210 DOI: 10.2147/nss.s430453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Purpose This study aims to evaluate the effect of S-ketamine on slow wave sleep (SWS) and the related changes in serum protein in gynecological patients after open abdomen surgery. Methods This was a randomized controlled trial. One hundred gynecological patients undergoing open abdomen surgery were randomized into an S-ketamine group (group S) or placebo group (0.9% saline; group C). During operation, patients in group S received adjuvant S-ketamine infusion (0.2 mg·kg-1·h-1) while those in group C received 0.9% saline. All patients were connected to patient-controlled intravenous analgesia (PCIA) pump in the end of the surgery and the patients in group S with an additional S-ketamine in PCIA pump. Polysomnogram (PSG) was monitored during the next night after surgery with PCIA pump. Blood samples were collected for proteomic analysis at 6:00 AM after PSG monitoring. The primary outcome was the percentage of SWS (also known as stage 3 non-rapid eye movement sleep, stage N3) on the next night after surgery, and the secondary outcome was subjective sleep quality, pain scores, and the changes in serum proteomics. Results Complete polysomnogram recordings were obtained from 64 study participants (31 in group C and 33 in group S). The administration of S-ketamine infusion resulted in a significant increase in the percentage of SWS/N3 compared to the control group (group C, median (IQR [range]), 8.9 (6.3, 12.5); group S, median (IQR [range]), 15.6 (12.4, 18.8), P<0.001). However, subjective evaluations of sleep quality revealed no significant variances between the two groups. The protein affected by S-ketamine was primarily associated with posttranslational modification, protein turnover, carbohydrate transport, and metabolism. Conclusion In patients undergoing open gynecological surgery, S-ketamine enhanced the percentage of objective sleep of SWS during the next night after surgery. Additionally, there were differences observed in serum protein levels between the two groups. Trial Registration ChiCTR2200055180. Registered on 02/01/2022.
Collapse
Affiliation(s)
- Tianzhuo Zhang
- Department of Gastroenterology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 100045, People’s Republic of China
- Department of Anesthesiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, People’s Republic of China
| | - Nan Song
- Department of Gynecology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, People’s Republic of China
| | - Shuo Li
- Department of Anesthesiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, People’s Republic of China
| | - Ling Yu
- Department of Anesthesiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, People’s Republic of China
| | - Yining Xie
- Department of Anesthesiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, People’s Republic of China
| | - Zhijie Yue
- Department of Anesthesiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, People’s Republic of China
| | - Rui Zhang
- Philips (China) Investment Co., Ltd., Beijing, 100600, People’s Republic of China
| | - Lijie Wang
- Philips (China) Investment Co., Ltd., Beijing, 100600, People’s Republic of China
| | - Hongyu Tan
- Department of Anesthesiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, People’s Republic of China
| |
Collapse
|
28
|
Yu XY, He JY, Tang F, Yu P, Wu L, Xiao ZL, Sun LX, Cao Z, Yu D. Highly sensitive determination of L-glutamic acid in pig serum with an enzyme-free molecularly imprinted polymer on a carbon-nanotube modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5589-5597. [PMID: 37850367 DOI: 10.1039/d3ay01499a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Through electrochemical polymerization using L-glutamic acid (L-Glu) as a template and 4,6-diaminoresorcinol as a functional monomer, an enzyme-free molecularly imprinted polymer (MIP) based L-Glu sensor with multi-walled carbon nanotubes (MWCNTs) decorated on a glassy carbon electrode (GCE), namely G-MIP/MWCNTs/GCE, was developed in this work. The reaction conditions were optimized as follows: electrochemical polymerization of 23 cycles, pH of 3.0, molar ratio of template/monomer of 1 : 4, volume ratio of elution reagents of acetonitrile/formic acid of 1 : 1, and elution time of 2 min. The prepared materials and molecularly imprinted polymer were characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) as well as electrochemical methods. The electrochemical properties of different electrodes were investigated via differential pulse voltammetry (DPV), showing that the electrode of G-MIP/MWCNTs/GCE exhibited excellent catalytic oxidation activity towards L-Glu. A good linear relationship between peak-currents and L-Glu concentrations in a range from 1.00 × 10-8 to 1.00 × 10-5 mol L-1 was observed, with a detection limit of 5.13 × 10-9 mol L-1 (S/N = 3). The imprinted sensor possesses excellent selectivity, high sensitivity, and good stability, which have been successfully applied for the detection of L-Glu in pig serum samples with a recovery rate of 97.4-105.5%, being comparable to commercial high-performance liquid chromatography, demonstrating a simple, rapid, and accurate way for the determination of L-Glu in the fields of animal nutrition and biomedical engineering.
Collapse
Affiliation(s)
- Xin-Yao Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Jun-Yi He
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Fei Tang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Peng Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Ling Wu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Zhong-Liang Xiao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Li-Xian Sun
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, East, Denmark.
| |
Collapse
|
29
|
Gärtner M, Weigand A, Meiering MS, Weigner D, Carstens L, Keicher C, Hertrampf R, Beckmann C, Mennes M, Wunder A, Grimm S. Region- and time- specific effects of ketamine on cerebral blood flow: a randomized controlled trial. Neuropsychopharmacology 2023; 48:1735-1741. [PMID: 37231079 PMCID: PMC10579356 DOI: 10.1038/s41386-023-01605-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
There is intriguing evidence suggesting that ketamine might have distinct acute and delayed neurofunctional effects, as its acute administration transiently induces schizophrenia-like symptoms, while antidepressant effects slowly emerge and are most pronounced 24 h after administration. Studies attempting to characterize ketamine's mechanism of action by using blood oxygen level dependent (BOLD) imaging have yielded inconsistent results regarding implicated brain regions and direction of effects. This may be due to intrinsic properties of the BOLD contrast, while cerebral blood flow (CBF), as measured with arterial spin labeling, is a single physiological marker more directly related to neural activity. As effects of acute ketamine challenge are sensitive to modulation by pretreatment with lamotrigine, which inhibits glutamate release, a combination of these approaches should be particularly suited to offer novel insights. In total, 75 healthy participants were investigated in a double blind, placebo-controlled, randomized, parallel-group study and underwent two scanning sessions (acute/post 24 h.). Acute ketamine administration was associated with higher perfusion in interior frontal gyrus (IFG) and dorsolateral prefrontal cortex (DLPFC), but no other investigated brain region. Inhibition of glutamate release by pretreatment with lamotrigine abolished ketamine's effect on perfusion. At the delayed time point, pretreatment with lamotrigine was associated with lower perfusion in IFG. These findings underscore the idea that regionally selective patterns of CBF changes reflect proximate effects of modulated glutamate release on neuronal activity. Furthermore, region- specific sustained effects indicate both a swift restoration of disturbed homeostasis in DLPFC as well changes occurring beyond the immediate effects on glutamate signaling in IFG.
Collapse
Affiliation(s)
- Matti Gärtner
- Medical School Berlin, Berlin, Germany.
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | - Andreas Wunder
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Simone Grimm
- Medical School Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Ladagu AD, Olopade FE, Adejare A, Olopade JO. GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases. Pharmaceuticals (Basel) 2023; 16:1535. [PMID: 38004401 PMCID: PMC10674917 DOI: 10.3390/ph16111535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity. The presence of GluN2A and GluN2B subunits is particularly important for cognitive processes and has been strongly implicated in neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Understanding the roles of GluN2A and GluN2B NMDARs in neuropathologies provides valuable insights into the underlying causes and complexities of major nervous system disorders. This knowledge is vital for the development of selective antagonists targeting GluN2A and GluN2B subunits using pharmacological and molecular methods. Such antagonists represent a promising class of NMDA receptor inhibitors that have the potential to be developed into neuroprotective drugs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| | - Funmilayo Eniola Olopade
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| |
Collapse
|
31
|
Can AT, Mitchell JS, Dutton M, Bennett M, Hermens DF, Lagopoulos J. Insights into the neurobiology of suicidality: explicating the role of glutamatergic systems through the lens of ketamine. Psychiatry Clin Neurosci 2023; 77:513-529. [PMID: 37329495 DOI: 10.1111/pcn.13572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Suicidality is a prevalent mental health condition, and managing suicidal patients is one of the most challenging tasks for health care professionals due to the lack of rapid-acting, effective psychopharmacological treatment options. According to the literature, suicide has neurobiological underpinnings that are not fully understood, and current treatments for suicidal tendencies have considerable limitations. To treat suicidality and prevent suicide, new treatments are required; to achieve this, the neurobiological processes underlying suicidal behavior must be thoroughly investigated. Although multiple neurotransmitter systems, particularly serotonergic systems, have been studied in the past, less has been reported in relation to disruptions in glutamatergic neurotransmission, neuronal plasticity, and neurogenesis that result from stress-related abnormalities of the hypothalamic-pituitary-adrenal system. Informed by the literature, which reports robust antisuicidal and antidepressive properties of subanaesthetic doses of ketamine, this review aims to provide an examination of the neurobiology of suicidality (and relevant mood disorders) with implications of pertinent animal, clinical, and postmortem studies. We discuss dysfunctions in the glutamatergic system, which may play a role in the neuropathology of suicidality and the role of ketamine in restoring synaptic connectivity at the molecular levels.
Collapse
Affiliation(s)
- Adem Tevfik Can
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Jules Shamus Mitchell
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Megan Dutton
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Maxwell Bennett
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | | | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| |
Collapse
|
32
|
Murphy N, Tamman AJF, Lijffijt M, Amarneh D, Iqbal S, Swann A, Averill LA, O'Brien B, Mathew SJ. Neural complexity EEG biomarkers of rapid and post-rapid ketamine effects in late-life treatment-resistant depression: a randomized control trial. Neuropsychopharmacology 2023; 48:1586-1593. [PMID: 37076582 PMCID: PMC10516885 DOI: 10.1038/s41386-023-01586-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023]
Abstract
Ketamine is an effective intervention for treatment-resistant depression (TRD), including late-in-life (LL-TRD). The proposed mechanism of antidepressant effects of ketamine is a glutamatergic surge, which can be measured by electroencephalogram (EEG) gamma oscillations. Yet, non-linear EEG biomarkers of ketamine effects such as neural complexity are needed to capture broader systemic effects, represent the level of organization of synaptic communication, and elucidate mechanisms of action for treatment responders. In a secondary analysis of a randomized control trial, we investigated two EEG neural complexity markers (Lempel-Ziv complexity [LZC] and multiscale entropy [MSE]) of rapid (baseline to 240 min) and post-rapid ketamine (24 h and 7 days) effects after one 40-min infusion of IV ketamine or midazolam (active control) in 33 military veterans with LL-TRD. We also studied the relationship between complexity and Montgomery-Åsberg Depression Rating Scale score change at 7 days post-infusion. We found that LZC and MSE both increased 30 min post-infusion, with effects not localized to a single timescale for MSE. Post-rapid effects of reduced complexity with ketamine were observed for MSE. No relationship was observed between complexity and reduction in depressive symptoms. Our findings support the hypothesis that a single sub-anesthetic ketamine infusion has time-varying effects on system-wide contributions to the evoked glutamatergic surge in LL-TRD. Further, changes to complexity were observable outside the time-window previously shown for effects on gamma oscillations. These preliminary results have clinical implications in providing a functional marker of ketamine that is non-linear, amplitude-independent, and represents larger dynamic properties, providing strong advantages over linear measures in highlighting ketamine's effects.
Collapse
Affiliation(s)
- Nicholas Murphy
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
| | - Amanda J F Tamman
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA.
| | - Marijn Lijffijt
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Dania Amarneh
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
| | - Sidra Iqbal
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Alan Swann
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Lynnette A Averill
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Brittany O'Brien
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
| | - Sanjay J Mathew
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
33
|
Kalkman HO. Activation of σ1-Receptors by R-Ketamine May Enhance the Antidepressant Effect of S-Ketamine. Biomedicines 2023; 11:2664. [PMID: 37893038 PMCID: PMC10604479 DOI: 10.3390/biomedicines11102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ketamine is a racemic mixture composed of two enantiomers, S-ketamine and R-ketamine. In preclinical studies, both enantiomers have exhibited antidepressant effects, but these effects are attributed to distinct pharmacological activities. The S-enantiomer acts as an NMDA-channel blocker and as an opioid μ-receptor agonist, whereas the R-enantiomer binds to σ1-receptors and is believed to act as an agonist. As racemate, ketamine potentially triggers four biochemical pathways involving the AGC-kinases, PKA, Akt (PKB), PKC and RSK that ultimately lead to inhibitory phosphorylation of GSK3β in microglia. In patients with major depressive disorder, S-ketamine administered as a nasal spray has shown clear antidepressant activity. However, when compared to intravenously infused racemic ketamine, the response rate, duration of action and anti-suicidal activity of S-ketamine appear to be less pronounced. The σ1-protein interacts with μ-opioid and TrkB-receptors, whereas in preclinical experiments σ1-agonists reduce μ-receptor desensitization and improve TrkB signal transduction. TrkB activation occurs as a response to NMDA blockade. So, the σ1-activity of R-ketamine may not only enhance two pathways via which S-ketamine produces an antidepressant response, but it furthermore provides an antidepressant activity in its own right. These two factors could explain the apparently superior antidepressant effect observed with racemic ketamine compared to S-ketamine alone.
Collapse
Affiliation(s)
- Hans O Kalkman
- Retired Pharmacologist, Gänsbühlgartenweg 7, 4132 Muttenz, Switzerland
| |
Collapse
|
34
|
Koncz S, Papp N, Pothorszki D, Bagdy G. (S)-Ketamine but Not (R)-Ketamine Shows Acute Effects on Depression-Like Behavior and Sleep-Wake Architecture in Rats. Int J Neuropsychopharmacol 2023; 26:618-626. [PMID: 37578355 PMCID: PMC10519815 DOI: 10.1093/ijnp/pyad050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Racemic ketamine consists of two enantiomers, namely (R)-ketamine and (S)-ketamine, with distinguishable pharmacological properties. Both enantiomers have been reported to show rapid antidepressant effects in rodents. Currently, the (S)-enantiomer has been approved for the treatment of major depression, whereas (R)-ketamine failed to show antidepressant effect in recent clinical studies. Major depressive disorder is frequently characterized by disinhibition of rapid eye movement (REM) sleep and disruption of non-REM (NREM) sleep. Racemic ketamine and most conventional antidepressants affect these parameters. However, it remains largely unknown which enantiomer is responsible for these effects. METHODS Here, we compared acute effects of the two ketamine enantiomers (15 mg/kg i.p.) on different sleep-wake stages in freely moving, EEG-equipped rats. We also evaluated the antidepressant-like activity of the enantiomers in a chronic restraint stress model of depression. RESULTS (S)-ketamine but not (R)-ketamine increased REM sleep latency and decreased REM sleep time at 2 and 3 hours, and increased electroencephalogram delta power during NREM sleep. In addition, only (S)-ketamine increased wakefulness and decreased NREM sleep in the first 2 hours. In the forced swimming test, only (S)-ketamine decreased the immobility time of chronically stressed rats. CONCLUSION Effects of the two ketamine enantiomers on rat sleep-wake architecture and behavior are markedly different when administered in the same dose. (S)-ketamine remarkably affects the sleep-wake cycle and very likely sleep-related neuroplasticity, which may be relevant for its antidepressant efficacy. Our results regarding (R)-ketamine's lack of effect on vigilance and behavior are in line with recent clinical studies.
Collapse
Affiliation(s)
- Szabolcs Koncz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Noémi Papp
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Dóra Pothorszki
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - György Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| |
Collapse
|
35
|
Meshkat S, Haikazian S, Di Vincenzo JD, Fancy F, Johnson D, Chen-Li D, McIntyre RS, Mansur R, Rosenblat JD. Oral ketamine for depression: An updated systematic review. World J Biol Psychiatry 2023; 24:545-557. [PMID: 36651238 DOI: 10.1080/15622975.2023.2169349] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Objectives: Ketamine is a glutamate N-methyl-D-aspartate receptor antagonist that can be used to treat major depressive disorder by single or repeated infusions. However, the accessibility and scalability of oral ketamine make it preferred over intravenous ketamine. In this systematic review, we aim to evaluate the efficacy, tolerability, and safety of oral ketamine, esketamine and r-ketamine for unipolar and bipolar depression. Materials and methods: Electronic databases were searched from inception to September 2022 to identify relevant articles. Results: Twenty-two studies, including four randomized clinical trials (RCTs), one case series, six case reports, five open-label trials and six retrospective chart review studies involving 2336 patients with depression were included. All included studies reported significant improvement following ketamine administration. Ketamine was well tolerated without serious adverse events. However, RCTs had a high risk of bias due to analysis methods and adverse events monitoring. Ketamine dosage varied from 0.5 to 1.25 mg/kg. The frequency of administration was daily to monthly. Several important limitations were identified, most notably the small number of RCTs. Conclusions: Taken together, preliminary evidence suggests the potential for antidepressant effect of oral ketamine. However, further research with large sample size and long follow-up period is needed to better determine the antisuicidal effect and efficacy in treatment-resistant depression.
Collapse
Affiliation(s)
- Shakila Meshkat
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Canada
| | - Sipan Haikazian
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Joshua D Di Vincenzo
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Canada
| | - Farhan Fancy
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Danica Johnson
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Canada
| | - David Chen-Li
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Rodrigo Mansur
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
36
|
Johnston JN, Allen J, Shkolnikov I, Sanchez-Lafuente CL, Reive BS, Scheil K, Liang S, Christie BR, Kalynchuk LE, Caruncho HJ. Reelin Rescues Behavioral, Electrophysiological, and Molecular Metrics of a Chronic Stress Phenotype in a Similar Manner to Ketamine. eNeuro 2023; 10:ENEURO.0106-23.2023. [PMID: 37550058 PMCID: PMC10431216 DOI: 10.1523/eneuro.0106-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 08/09/2023] Open
Abstract
Over the past decade, ketamine, an NMDA receptor antagonist, has demonstrated fast-acting antidepressant effects previously unseen with monoaminergic-based therapeutics. Concerns regarding psychotomimetic effects limit the use of ketamine for certain patient populations. Reelin, an extracellular matrix glycoprotein, has shown promise as a putative fast-acting antidepressant in a model of chronic stress. However, research has not yet demonstrated the changes that occur rapidly after peripheral reelin administration. To address this key gap in knowledge, male Long-Evans rats underwent a chronic corticosterone (CORT; or vehicle) paradigm (40 mg/kg, 21 d). On day 21, rats were then administered an acute dose of ketamine (10 mg/kg, i.p.), reelin (3 µg, i.v.), or vehicle. Twenty-four hours after administration, rats underwent behavioral or in vivo electrophysiological testing before killing. Immunohistochemistry was used to confirm changes in hippocampal reelin immunoreactivity. Lastly, the hippocampus was microdissected from fresh tissue to ascertain whole cell and synaptic-specific changes in protein expression through Western blotting. Chronic corticosterone induced a chronic stress phenotype in the forced swim test and sucrose preference test (SPT). Both reelin and ketamine rescued immobility and swimming, however reelin alone rescued latency to immobility. In vivo electrophysiology revealed decreases in hippocampal long-term potentiation (LTP) after chronic stress which was increased significantly by both ketamine and reelin. Reelin immunoreactivity in the dentate gyrus paralleled the behavioral and electrophysiological findings, but no significant changes were observed in synaptic-level protein expression. This exploratory research supports the putative rapid-acting antidepressant effects of an acute dose of reelin across behavioral, electrophysiological, and molecular measures.
Collapse
Affiliation(s)
- Jenessa N Johnston
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Josh Allen
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Irene Shkolnikov
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Carla L Sanchez-Lafuente
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Brady S Reive
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Kaylene Scheil
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Stanley Liang
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
37
|
Castillo A, Dubois J, Field RM, Fishburn F, Gundran A, Ho WC, Jawhar S, Kates-Harbeck J, M Aghajan Z, Miller N, Perdue KL, Phillips J, Ryan WC, Shafiei M, Scholkmann F, Taylor M. Measuring acute effects of subanesthetic ketamine on cerebrovascular hemodynamics in humans using TD-fNIRS. Sci Rep 2023; 13:11665. [PMID: 37468572 PMCID: PMC10356754 DOI: 10.1038/s41598-023-38258-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
Quantifying neural activity in natural conditions (i.e. conditions comparable to the standard clinical patient experience) during the administration of psychedelics may further our scientific understanding of the effects and mechanisms of action. This data may facilitate the discovery of novel biomarkers enabling more personalized treatments and improved patient outcomes. In this single-blind, placebo-controlled study with a non-randomized design, we use time-domain functional near-infrared spectroscopy (TD-fNIRS) to measure acute brain dynamics after intramuscular subanesthetic ketamine (0.75 mg/kg) and placebo (saline) administration in healthy participants (n = 15, 8 females, 7 males, age 32.4 ± 7.5 years) in a clinical setting. We found that the ketamine administration caused an altered state of consciousness and changes in systemic physiology (e.g. increase in pulse rate and electrodermal activity). Furthermore, ketamine led to a brain-wide reduction in the fractional amplitude of low frequency fluctuations, and a decrease in the global brain connectivity of the prefrontal region. Lastly, we provide preliminary evidence that a combination of neural and physiological metrics may serve as predictors of subjective mystical experiences and reductions in depressive symptomatology. Overall, our study demonstrated the successful application of fNIRS neuroimaging to study the physiological effects of the psychoactive substance ketamine in humans, and can be regarded as an important step toward larger scale clinical fNIRS studies that can quantify the impact of psychedelics on the brain in standard clinical settings.
Collapse
Affiliation(s)
| | - Julien Dubois
- Kernel, 5042 Wilshire Blvd, #26878, Los Angeles, CA, 90036, USA
| | - Ryan M Field
- Kernel, 5042 Wilshire Blvd, #26878, Los Angeles, CA, 90036, USA
| | - Frank Fishburn
- Kernel, 5042 Wilshire Blvd, #26878, Los Angeles, CA, 90036, USA
| | - Andrew Gundran
- Kernel, 5042 Wilshire Blvd, #26878, Los Angeles, CA, 90036, USA
| | - Wilson C Ho
- Kernel, 5042 Wilshire Blvd, #26878, Los Angeles, CA, 90036, USA
| | - Sami Jawhar
- Kernel, 5042 Wilshire Blvd, #26878, Los Angeles, CA, 90036, USA
| | | | - Zahra M Aghajan
- Kernel, 5042 Wilshire Blvd, #26878, Los Angeles, CA, 90036, USA
| | - Naomi Miller
- Kernel, 5042 Wilshire Blvd, #26878, Los Angeles, CA, 90036, USA
| | | | - Jake Phillips
- Kernel, 5042 Wilshire Blvd, #26878, Los Angeles, CA, 90036, USA
| | - Wesley C Ryan
- Kernel, 5042 Wilshire Blvd, #26878, Los Angeles, CA, 90036, USA
| | - Mahdi Shafiei
- Kernel, 5042 Wilshire Blvd, #26878, Los Angeles, CA, 90036, USA
| | - Felix Scholkmann
- Scholkmann Data Analysis Services, Scientific Consulting and Physical Engineering, 8057, Zurich, Switzerland
- Neurophotonics and Biosignal Processing Research Group, Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Moriah Taylor
- Kernel, 5042 Wilshire Blvd, #26878, Los Angeles, CA, 90036, USA
| |
Collapse
|
38
|
Zhang M, Kong X, Chen J, Liu W, Liu C, Dou X, Jiang L, Luo Y, Song M, Miao P, Tang Y, Xiu Y. Dysfunction of GluN3A subunit is involved in depression-like behaviors through synaptic deficits. J Affect Disord 2023; 332:72-82. [PMID: 36997126 DOI: 10.1016/j.jad.2023.03.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND N-methyl-d-aspartate receptor (NMDAR) has been implicated in the pathophysiology of depression. However, as the unique inhibitory subunit of NMDARs, the role of GluN3A in depression is largely unclear. METHODS Firstly, expression of GluN3A was examined in a mouse model of depression induced by chronic restraint stress (CRS). Then, rescue experiment with rAAV-Grin3a injection into hippocampus of CRS mice was carried out. Lastly, GluN3A knockout (KO) mouse was generated via CRISPR/Cas9 technique, and the molecular mechanism underlying involvement of GluN3A in depression was initially explored using RNA-seq technique, RT-PCR and western blotting. RESULTS GluN3A expression in hippocampus was significantly decreased in CRS mice. Depression-like behaviors induced by CRS were ameliorated when the decrease of GluN3A expression in mice exposed to CRS was restored. GluN3A KO mice exhibited symptoms of anhedonia reported as reduced sucrose preference, and symptoms of despair assayed by a longer immobility time in FST. Transcriptome analysis revealed genetic ablation of GluN3A was associated with downregulation of genes implicated in synapse and axon development. Postsynaptic protein PSD95 was decreased in GluN3A KO mice. More importantly, reduction of PSD95 in CRS mice can be rescued by viral mediated Grin3a re-expression. LIMITATIONS The mechanism underlying GluN3A involvement in depression is not fully determined. CONCLUSIONS Our data suggested that GluN3A dysfunction is involved in depression, which might be mediated by synaptic deficits. These findings will facilitate the understanding of the role of GluN3A in depression, and they might provide a new strategy for the development of subunit-selective NMDAR antagonists as antidepressant drugs.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiangru Kong
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Jing Chen
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Wenqin Liu
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Can Liu
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoyun Dou
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Lab Teaching Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanmin Luo
- Department of Physiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Mingrui Song
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Peng Miao
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yun Xiu
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
39
|
Zhornitsky S, Oliva HNP, Jayne LA, Allsop ASA, Kaye AP, Potenza MN, Angarita GA. Changes in synaptic markers after administration of ketamine or psychedelics: a systematic scoping review. Front Psychiatry 2023; 14:1197890. [PMID: 37435405 PMCID: PMC10331617 DOI: 10.3389/fpsyt.2023.1197890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Background Ketamine and psychedelics have abuse liability. They can also induce "transformative experiences" where individuals experience enhanced states of awareness. This enhanced awareness can lead to changes in preexisting behavioral patterns which could be beneficial in the treatment of substance use disorders (SUDs). Preclinical and clinical studies suggest that ketamine and psychedelics may alter markers associated with synaptic density, and that these changes may underlie effects such as sensitization, conditioned place preference, drug self-administration, and verbal memory performance. In this scoping review, we examined studies that measured synaptic markers in animals and humans after exposure to ketamine and/or psychedelics. Methods A systematic search was conducted following PRISMA guidelines, through PubMed, EBSCO, Scopus, and Web of Science, based on a published protocol (Open Science Framework, DOI: 10.17605/OSF.IO/43FQ9). Both in vivo and in vitro studies were included. Studies on the following synaptic markers were included: dendritic structural changes, PSD-95, synapsin-1, synaptophysin-1, synaptotagmin-1, and SV2A. Results Eighty-four studies were included in the final analyses. Seventy-one studies examined synaptic markers following ketamine treatment, nine examined psychedelics, and four examined both. Psychedelics included psilocybin/psilocin, lysergic acid diethylamide, N,N-dimethyltryptamine, 2,5-dimethoxy-4-iodoamphetamine, and ibogaine/noribogaine. Mixed findings regarding synaptic changes in the hippocampus and prefrontal cortex (PFC) have been reported when ketamine was administered in a single dose under basal conditions. Similar mixed findings were seen under basal conditions in studies that used repeated administration of ketamine. However, studies that examined animals during stressful conditions found that a single dose of ketamine counteracted stress-related reductions in synaptic markers in the hippocampus and PFC. Repeated administration of ketamine also counteracted stress effects in the hippocampus. Psychedelics generally increased synaptic markers, but results were more consistently positive for certain agents. Conclusion Ketamine and psychedelics can increase synaptic markers under certain conditions. Heterogeneous findings may relate to methodological differences, agents administered (or different formulations of the same agent), sex, and type of markers. Future studies could address seemingly mixed results by using meta-analytical approaches or study designs that more fully consider individual differences.
Collapse
Affiliation(s)
- Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Henrique N. P. Oliva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Laura A. Jayne
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Aza S. A. Allsop
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Alfred P. Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, United States
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University, New Haven, CT, United States
- Connecticut Council on Problem Gambling, Hartford, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| | - Gustavo A. Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| |
Collapse
|
40
|
Starowicz G, Siodłak D, Nowak G, Mlyniec K. The role of GPR39 zinc receptor in the modulation of glutamatergic and GABAergic transmission. Pharmacol Rep 2023; 75:609-622. [PMID: 36997827 DOI: 10.1007/s43440-023-00478-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Despite our poor understanding of the pathophysiology of depression, a growing body of evidence indicates the role of both glutamate and gamma-aminobutyric acid (GABA) signaling behind the effects of rapid-acting antidepressants (RAADs). GPR39 is a zinc-sensing receptor whose activation leads to a prolonged antidepressant-like response in mice. Both GPR39 and zinc can modulate glutamatergic and GABAergic neurotransmission, however, exact molecular mechanisms are still elusive. In this study, we aimed to research the role of glutamatergic and GABAergic system activation in TC-G 1008 antidepressant-like effects and the disruptions in this effect caused by a low-zinc diet. METHODS In the first part of our study, we investigated the role of joint administration of the GPR39 agonist (TC-G 1008) and ligands of the glutamatergic or GABAergic systems, in antidepressant-like response. To evaluate animal behaviour we used the forced swim test in mice. In the second part of the study, we assessed the effectiveness of TC-G 1008-induced antidepressant-like response in conditions of decreased dietary zinc intake and its molecular underpinning by conducting a Western Blot analysis of selected proteins involved in glutamatergic and GABAergic neurotransmission. RESULTS The TC-G 1008-induced effect was blocked by the administration of NMDA or picrotoxin. The joint administration of TC-G 1008 along with muscimol or SCH50911 showed a trend toward decreased immobility time. Zinc-deficient diet resulted in dysregulation of GluN1, PSD95, and KCC2 protein expression. CONCLUSIONS Our findings indicate the important role of glutamate/GABA signaling in the antidepressant-like effect of TC-G 1008 and imply that GPR39 regulates the balance between excitatory and inhibitory activity in the brain. Thus, we suggest the zinc-sensing receptor be considered an interesting new target for the development of novel antidepressants.
Collapse
Affiliation(s)
- Gabriela Starowicz
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Dominika Siodłak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
- Laboratory of Trace Elements Neurobiology, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| |
Collapse
|
41
|
Inhibition of Microglial GSK3β Activity Is Common to Different Kinds of Antidepressants: A Proposal for an In Vitro Screen to Detect Novel Antidepressant Principles. Biomedicines 2023; 11:biomedicines11030806. [PMID: 36979785 PMCID: PMC10045655 DOI: 10.3390/biomedicines11030806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Depression is a major public health concern. Unfortunately, the present antidepressants often are insufficiently effective, whilst the discovery of more effective antidepressants has been extremely sluggish. The objective of this review was to combine the literature on depression with the pharmacology of antidepressant compounds, in order to formulate a conceivable pathophysiological process, allowing proposals how to accelerate the discovery process. Risk factors for depression initiate an infection-like inflammation in the brain that involves activation microglial Toll-like receptors and glycogen synthase kinase-3β (GSK3β). GSK3β activity alters the balance between two competing transcription factors, the pro-inflammatory/pro-oxidative transcription factor NFκB and the neuroprotective, anti-inflammatory and anti-oxidative transcription factor NRF2. The antidepressant activity of tricyclic antidepressants is assumed to involve activation of GS-coupled microglial receptors, raising intracellular cAMP levels and activation of protein kinase A (PKA). PKA and similar kinases inhibit the enzyme activity of GSK3β. Experimental antidepressant principles, including cannabinoid receptor-2 activation, opioid μ receptor agonists, 5HT2 agonists, valproate, ketamine and electrical stimulation of the Vagus nerve, all activate microglial pathways that result in GSK3β-inhibition. An in vitro screen for NRF2-activation in microglial cells with TLR-activated GSK3β activity, might therefore lead to the detection of totally novel antidepressant principles with, hopefully, an improved therapeutic efficacy.
Collapse
|
42
|
Cardona-Acosta AM, Bolaños-Guzmán CA. Role of the mesolimbic dopamine pathway in the antidepressant effects of ketamine. Neuropharmacology 2023; 225:109374. [PMID: 36516891 PMCID: PMC9839658 DOI: 10.1016/j.neuropharm.2022.109374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Depression is a complex and highly heterogeneous disorder which diagnosis is based on an exceedingly variable set of clinical symptoms. Current treatments focus almost exclusively on the manipulation of monoamine neurotransmitter systems, but despite considerable efforts, these remain inadequate for a significant proportion of those afflicted by the disorder. The emergence of racemic (R, S)-ketamine as a fast-acting antidepressant has provided an exciting new path for the study of major depressive disorder (MDD) and the search for better therapeutics for its treatment. Previous work suggested that ketamine's mechanism of action is primarily mediated via blockaded of N-methyl-d-aspartate (NMDA) receptors, however, this is an area of active research and clinical and preclinical evidence now indicate that ketamine acts on multiple systems. The last couple of decades have cemented the mesolimbic dopamine reward pathway's involvement in the pathogenesis of MDD and related mood disorders. Exposure to negative stress dysregulates dopamine neuronal activity disrupting reward and motivational processes resulting in anhedonia (lack of pleasure), a hallmark symptom of depression. Although the mechanism(s) underlying ketamine's antidepressant activity continue to be elucidated, current evidence indicate that its therapeutic effects are mediated, at least in part, via long-lasting synaptic changes and subsequent molecular adaptations in brain regions within the mesolimbic dopamine system. Notwithstanding, ketamine is a drug of abuse, and this liability may pose limitations for long term use as an antidepressant. This review outlines the current knowledge of ketamine's actions within the mesolimbic dopamine system and its abuse potential. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Astrid M Cardona-Acosta
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
43
|
Traxoprodil Produces Antidepressant-Like Behaviors in Chronic Unpredictable Mild Stress Mice through BDNF/ERK/CREB and AKT/FOXO/Bim Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1131422. [PMID: 36819781 PMCID: PMC9937761 DOI: 10.1155/2023/1131422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Abstract
Traxoprodil is a selective N-methyl-d-aspartate receptor subunit 2B (NR2B) receptor inhibitor with rapid and long-lasting antidepressant effects. However, the appropriate dosage, duration of administration, and underlying mechanism of traxoprodil's antidepressant effects remain unclear. The purpose of this study is to compare the antidepressant effects of traxoprodil in different doses and different durations of administration and to explore whether traxoprodil exerts antidepressant effects via the brain-derived neurotrophic factor/extracellular signal-regulated kinase/cAMP-response element binding protein (BDNF/ERK/CREB) and protein kinase B/Forkhead box O/building information modelling (AKT/FOXO/Bim) signaling pathway. Mice were randomly divided into control group, chronic unpredictable mild stress (CUMS) + vehicle group, CUMS + traxoprodil (10 mg/kg, 20 mg/kg, and 40 mg/kg) groups, and CUMS + fluoxetine (5 mg/kg) group, followed by a forced swimming test, tail suspension test, and sucrose preference test. Western blotting and immunohistochemistry were used to measure the protein expression of BDNF, p-ERK1/2, p-CREB, NR2B, AKT, FOXO1, FOXO3a, and Bim. Compared with the control group, CUMS treatment increased immobility time; decreased sucrose preference; reduced expression of BDNF, p-ERK1/2, and p-CREB; and increased expression of AKT, FOXO, and Bim in the hippocampus. These alterations were ameliorated by administration of 20 mg/kg or 40 mg/kg of traxoprodil after 7 or 14 days of administration and with 10 mg/kg of traxoprodil or 5 mg/kg of fluoxetine after 21 days of administration. At the 7-day and 14-day timepoints, traxoprodil displayed dose-dependent antidepressant effects, with 20 and 40 mg/kg doses of traxoprodil producing rapid and strong antidepressant effects. However, at 21 days of administration, 10 and 20 mg/kg doses of traxoprodil exerted more pronounced antidepressant effects. The mechanism of traxoprodil's antidepressant effects may be closely related to the BDNF/ERK/CREB and AKT/FOXO/Bim signaling pathway.
Collapse
|
44
|
Onisiforou A, Georgiou P, Zanos P. Role of group II metabotropic glutamate receptors in ketamine's antidepressant actions. Pharmacol Biochem Behav 2023; 223:173531. [PMID: 36841543 DOI: 10.1016/j.pbb.2023.173531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Major Depressive Disorder (MDD) is a serious neuropsychiatric disorder afflicting around 16-17 % of the global population and is accompanied by recurrent episodes of low mood, hopelessness and suicidal thoughts. Current pharmacological interventions take several weeks to even months for an improvement in depressive symptoms to emerge, with a significant percentage of individuals not responding to these medications at all, thus highlighting the need for rapid and effective next-generation treatments for MDD. Pre-clinical studies in animals have demonstrated that antagonists of the metabotropic glutamate receptor subtype 2/3 (mGlu2/3 receptor) exert rapid antidepressant-like effects, comparable to the actions of ketamine. Therefore, it is possible that mGlu2 or mGlu3 receptors to have a regulatory role on the unique antidepressant properties of ketamine, or that convergent intracellular mechanisms exist between mGlu2/3 receptor signaling and ketamine's effects. Here, we provide a comprehensive and critical evaluation of the literature on these convergent processes underlying the antidepressant action of mGlu2/3 receptor inhibitors and ketamine. Importantly, combining sub-threshold doses of mGlu2/3 receptor inhibitors with sub-antidepressant ketamine doses induce synergistic antidepressant-relevant behavioral effects. We review the evidence supporting these combinatorial effects since sub-effective dosages of mGlu2/3 receptor antagonists and ketamine could reduce the risk for the emergence of significant adverse events compared with taking normal dosages. Overall, deconvolution of ketamine's pharmacological targets will give critical insights to influence the development of next-generation antidepressant treatments with rapid actions.
Collapse
Affiliation(s)
- Anna Onisiforou
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus
| | - Polymnia Georgiou
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; Department of Psychology, University of Wisconsin Milwaukee, WI 53211, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus.
| |
Collapse
|
45
|
Tamman AJF, Jiang L, Averill CL, Mason GF, Averill LA, Abdallah CG. Biological embedding of early trauma: the role of higher prefrontal synaptic strength. Eur J Psychotraumatol 2023; 14:2246338. [PMID: 37642398 PMCID: PMC10467533 DOI: 10.1080/20008066.2023.2246338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 08/31/2023] Open
Abstract
Background: Early trauma predicts poor psychological and physical health. Glutamatergic synaptic processes offer one avenue for understanding this relationship, given glutamate's abundance and involvement in reward and stress sensitivity, emotion, and learning. Trauma-induced glutamatergic excitotoxicity may alter neuroplasticity and approach/avoidance tendencies, increasing risk for psychiatric disorders. Studies examine upstream or downstream effects instead of glutamatergic synaptic processes in vivo, limiting understanding of how trauma affects the brain.Objective: In a pilot study using a previously published data set, we examine associations between early trauma and a proposed measure of synaptic strength in vivo in one of the largest human samples to undergo Carbon-13 (13C MRS) magnetic resonance spectroscopy. Participants were 18 healthy controls and 16 patients with PTSD (male and female).Method: Energy per cycle (EPC), which represents the ratio of neuronal oxidative energy production to glutamate neurotransmitter cycling, was generated as a putative measure of glutamatergic synaptic strength.Results: Results revealed that early trauma was positively correlated with EPC in individuals with PTSD, but not in healthy controls. Increased synaptic strength was associated with reduced behavioural inhibition, and EPC showed stronger associations between reward responsivity and early trauma for those with higher EPC.Conclusion: In the largest known human sample to undergo 13C MRS, we show that early trauma is positively correlated with EPC, a direct measure of synaptic strength. Our study findings have implications for pharmacological treatments thought to impact synaptic plasticity, such as ketamine and psilocybin.
Collapse
Affiliation(s)
- Amanda J. F. Tamman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Christopher L. Averill
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Yale School of Medicine, New Haven, CT, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
- US Department of Veterans Affairs, National Center for PTSD – Clinical Neurosciences Division, West Haven, CT, USA
| | | | - Lynnette A. Averill
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Yale School of Medicine, New Haven, CT, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
- US Department of Veterans Affairs, National Center for PTSD – Clinical Neurosciences Division, West Haven, CT, USA
| | - Chadi G. Abdallah
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Yale School of Medicine, New Haven, CT, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
- US Department of Veterans Affairs, National Center for PTSD – Clinical Neurosciences Division, West Haven, CT, USA
- Baylor College of Medicine, Core for Advanced Magnetic Resonance Imaging (CAMRI), Houston, TX, USA
| |
Collapse
|
46
|
Abu-Ata S, Shukha ON, Awad-Igbaria Y, Ginat K, Palzur E, Golani I, Shamir A. Blocking the ErbB pathway during adolescence affects the induction of anxiety-like behavior in young adult maternal immune activation offspring. Pharmacol Biochem Behav 2023; 222:173497. [PMID: 36460130 DOI: 10.1016/j.pbb.2022.173497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
Epidemiological and experimental evidence demonstrates that maternal exposure to infection during gestation increases the offspring's risk of developing schizophrenia and other neurodevelopmental disorders. In addition, the NRG-ErbB4 signaling pathway is involved in brain development and neuropsychiatric disorders. Specifically, this pathway modulates the dopaminergic and GABAergic systems and is expressed in the early stages of prenatal development. We recently demonstrated that maternal immune activation (MIA) at late gestation altered the expression of NRG1, its receptor ErbB4, and the dopamine D2 receptor four hours post-injection of viral or LPS in the fetal brain. We also reported that blocking the ErbB pathway during adolescence resulted in increased striatal DA content and reduced preference for sweetness and alcohol that persists into adulthood. However, the combined effects of MIA, re-activation of the immune system, and disruption of the ErbB signaling during adolescence would affect young adult mice's behavioral phenotype is unknown. Here, we report that the expression levels of the NRG1, ErbB4, GAD67, and BDNF were changed as responses to MIA and blocked the ErbB signaling in the frontal cortex of adolescent mice. MIA-Offspring during late gestation and immune system re-activation during adolescence spent less time in the open arms of the elevated plus-maze in adulthood. At the same time, MIA-offspring administrated with the pan-ErbB inhibitor during adolescence spent the same amount of time in the opened arm as the control mice. Combining the ErbB signaling disruption during adolescence leads to a social interaction impairment in female offspring, but not male, without affecting the offspring's motor activity, long-term recognition, and working memory. These results imply that blocking the ErbB signaling during adolescence prevents the development of anxiety-like behavior of the MIA offspring later in life and suggest that this interaction does not reduce the risk of female MIA offspring developing impaired social behavior.
Collapse
Affiliation(s)
- Saher Abu-Ata
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Orya Noa Shukha
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yaseen Awad-Igbaria
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel; The Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Karen Ginat
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel
| | - Eilam Palzur
- The Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Idit Golani
- Department of Biotechnology Engineering, Braude - College of Engineering, Karmiel, Israel
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
47
|
Abstract
Anorexia nervosa is a disorder associated with serious adverse health outcomes, for which there is currently considerable treatment ineffectiveness. Characterised by restrictive eating behaviours, distorted body image perceptions and excessive physical activity, there is growing recognition anorexia nervosa is associated with underlying dysfunction in excitatory and inhibitory neurometabolite metabolism and signalling. This narrative review critically explores the role of N-methyl-D-aspartate receptor-mediated excitatory and inhibitory neurometabolite dysfunction in anorexia nervosa and its associated biomarkers. The existing magnetic resonance spectroscopy literature in anorexia nervosa is reviewed and we outline the brain region-specific neurometabolite changes that have been reported and their connection to anorexia nervosa psychopathology. Considering the proposed role of dysfunctional neurotransmission in anorexia nervosa, the potential utility of zinc supplementation and sub-anaesthetic doses of ketamine in normalising this is discussed with reference to previous research in anorexia nervosa and other neuropsychiatric conditions. The rationale for future research to investigate the combined use of low-dose ketamine and zinc supplementation to potentially extend the therapeutic benefits in anorexia nervosa is subsequently explored and promising biological markers for assessing and potentially predicting treatment response are outlined.
Collapse
|
48
|
ERK/mTOR signaling may underlying the antidepressant actions of rapastinel in mice. Transl Psychiatry 2022; 12:522. [PMID: 36550125 PMCID: PMC9780240 DOI: 10.1038/s41398-022-02290-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Rapastinel as the allosteric modulator of N-methyl-D-aspartate receptor (NMDAR) produces rapid antidepressant-like effects dependent on brain-derived neurotrophic factor (BDNF) and VGF (nonacryonimic) release. Herein, we further explore the molecular mechanisms of the antidepressant effects of repeated administration with rapastinel in mice. Our results showed that continuous 3-day rapastinel (5 and 10 mg/kg, i.v.) produced antidepressant-like actions dependent on the increase in extracellular regulated protein kinase (ERK)/mammalian target of rapamycin (mTOR) signaling and downstream substrates p70S6 kinase (p70S6k) and the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), which may induce the expression of VGF and BDNF in the hippocampus and prefrontal cortex of mice. Furthermore, compared with a single treatment, our data indicated that 3-day repeated rapastinel treatment produced antidepressant-like actions accompanied by potentiation of ERK/mTOR/VGF/BDNF/tropomyosin-related kinase receptor B (TrkB) signaling. Based on previous and our supplementary data that showed the pivotal role of on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in the rapid release of VGF and BDNF and activation of TrkB by a single dose of rapastinel, we postulate that the antidepressant-like effects of single or repeated administration of rapastinel may result in the rapid release of VGF and BDNF or ERK/mTOR signaling pathway-mediated VGF/BDNF/TrkB autoregulatory feedback loop respectively. Our current work adds new knowledge to the molecular mechanisms that underlie the antidepressant-like actions of rapastinel in mice.
Collapse
|
49
|
Driver C, Jackson TNW, Lagopoulos J, Hermens DF. Molecular mechanisms underlying the N-methyl-d-aspartate receptor antagonists: Highlighting their potential for transdiagnostic therapeutics. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110609. [PMID: 35878675 DOI: 10.1016/j.pnpbp.2022.110609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
The so-called "psychedelic renaissance" has stimulated expanded interest in several classes of drugs that appear to possess transdiagnostic effects in the treatment of mental health disorders, specifically. N-methyl-d-aspartate receptor (NMDAR) antagonists are one such class with diverse therapeutic potential. NMDARs mediate excitatory postsynaptic signalling in the central nervous system (CNS) and are integral to normal neurobiological processes including neuronal development, synaptic transmission, and plasticity, and thus involved in learning and memory. However, NMDAR hyper-function is also implicated in acute CNS trauma, neuropsychiatric and neurodegenerative disorders, as well as chronic pain. The complex structure of NMDARs permits several locations for therapeutic inhibition, making these receptors a potential target for multiple drugs which modulate them in different ways. NMDAR antagonists, which may be competitive, non-competitive, or uncompetitive, either block glutamate from binding the receptor or modulate the response to glutamate binding. Despite longstanding concerns about side effects of NMDAR antagonists, recent research suggests that, when appropriately used, these agents have favourable safety profiles. Furthermore, their fast-acting mechanism of action, resulting in rapid effects compared to other therapeutic agents, makes them a promising class of drugs that may yield effective therapeutics for multiple CNS disorders.
Collapse
Affiliation(s)
- Christina Driver
- Mental Health and Neuroscience, Thompson Institute, University of the Sunshine Coast, Queensland, Australia.
| | - Timothy N W Jackson
- Australian Venom Research Unit, Department of Biochemistry and Pharmacology, University of Melbourne, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Daniel F Hermens
- Youth Mental Health and Neurobiology, Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
50
|
Can AT, Hermens DF, Lagopoulos J. A unique case of very low-dose subcutaneous ketamine use: Maintenance option of ketamine for treatment-resistant depression. Clin Case Rep 2022; 10:e6675. [PMID: 36523376 PMCID: PMC9748241 DOI: 10.1002/ccr3.6675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Numerous studies have demonstrated that low-dose subanesthetic intravenous ketamine infusion treatment leads to rapid improvement of treatment-resistant depression. The following case report describes the use of a very low-dose subcutaneous ketamine as a form of maintenance in a patient with severe treatment-resistant depression using a retrospective chart review.
Collapse
Affiliation(s)
- Adem T. Can
- Thompson InstituteUniversity of the Sunshine CoastBirtinyaQueenslandAustralia
| | - Daniel F. Hermens
- Thompson InstituteUniversity of the Sunshine CoastBirtinyaQueenslandAustralia
| | - Jim Lagopoulos
- Thompson InstituteUniversity of the Sunshine CoastBirtinyaQueenslandAustralia
| |
Collapse
|