1
|
Wang J, Zhang B, Li L, Tang X, Zeng J, Song Y, Xu C, Zhao K, Liu G, Lu Y, Li X, Shu K. Repetitive traumatic brain injury-induced complement C1-related inflammation impairs long-term hippocampal neurogenesis. Neural Regen Res 2025; 20:821-835. [PMID: 38886955 PMCID: PMC11433904 DOI: 10.4103/nrr.nrr-d-23-01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00027/figure1/v/2024-06-17T092413Z/r/image-tiff Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus, leading to long-term cognitive impairment. However, the mechanism underlying this neurogenesis impairment remains unknown. In this study, we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury. Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development, delayed neuronal maturation, and reduced the complexity of neuronal dendrites and spines. Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval. Moreover, following repetitive traumatic brain injury, neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased, C1q binding protein levels were decreased, and canonical Wnt/β-catenin signaling was downregulated. An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function. These findings suggest that repetitive traumatic brain injury-induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Bing Zhang
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lanfang Li
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaomei Tang
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jinyu Zeng
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yige Song
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chao Xu
- Department of Graduate Student, Chongqing Medical University, Chongqing, China
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guoqiang Liu
- Department of Basic Medicine, School of Medical Science, Hubei University for Nationalities, Enshi, Hubei Province, China
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xinyan Li
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Knapp CP, Papadopoulos E, Loweth JA, Raghupathi R, Floresco SB, Waterhouse BD, Navarra RL. Sex-dependent perturbations in risky choice behavior and prefrontal tyrosine hydroxylase levels induced by repetitive mild traumatic brain injury. Behav Brain Res 2025; 476:115244. [PMID: 39241835 DOI: 10.1016/j.bbr.2024.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Head trauma often impairs cognitive processes mediated within the prefrontal cortex (PFC), leading to impaired decision making and risk-taking behavior. Mild traumatic brain injury (mTBI) accounts for approximately 80 % of reported head injury cases. Most neurological symptoms of a single mTBI are transient; however, growing evidence suggests that repeated mTBI (rmTBI) results in more severe impairments that worsen with each subsequent injury. Although mTBI-induced disruption of risk/reward decision making has been characterized, the potential for rmTBI to exacerbate these effects and the neural mechanisms involved are unknown. Catecholamine neurotransmitters, dopamine (DA) and norepinephrine (NE), modulate PFC-mediated functions. Imbalances in catecholamine function have been associated with TBI and may underlie aberrant decision making. We used a closed head-controlled cortical impact (CH-CCI) model in rats to evaluate the effects of rmTBI on performance of a probabilistic discounting task of risk/reward decision making behavior and expression levels of catecholamine regulatory proteins within the PFC. RmTBI produced transient increases in risky choice preference in both male and female rats, with these effects persisting longer in females. Additionally, rmTBI increased expression of the catecholamine synthetic enzyme, tyrosine hydroxylase (TH), within the orbitofrontal (OFC) region of the PFC in females only. These results suggest females are more susceptible to rmTBI-induced disruption of risk/reward decision making behavior and dysregulation of catecholamine synthesis within the OFC. Together, using the CH-CCI model of rodent rmTBI to evaluate the effects of multiple insults on risk-taking behavior and PFC catecholamine regulation begins to differentiate how mTBI occurrences affect neuropathological outcomes across different sexes.
Collapse
Affiliation(s)
- Christopher P Knapp
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084, USA.
| | - Eleni Papadopoulos
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084, USA.
| | - Jessica A Loweth
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084, USA.
| | - Ramesh Raghupathi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, USA.
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Barry D Waterhouse
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084, USA.
| | - Rachel L Navarra
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084, USA.
| |
Collapse
|
3
|
Balakin E, Yurku K, Fomina T, Butkova T, Nakhod V, Izotov A, Kaysheva A, Pustovoyt V. A Systematic Review of Traumatic Brain Injury in Modern Rodent Models: Current Status and Future Prospects. BIOLOGY 2024; 13:813. [PMID: 39452122 PMCID: PMC11504108 DOI: 10.3390/biology13100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
According to the Centers for Disease Control and Prevention (CDC), the national public health agency of the United States, traumatic brain injury is among the leading causes of mortality and disability worldwide. The consequences of TBI include diffuse brain atrophy, local post-traumatic atrophy, arachnoiditis, pachymeningitis, meningocerebral cicatrices, cranial nerve lesions, and cranial defects. In 2019, the economic cost of injuries in the USA alone was USD 4.2 trillion, which included USD 327 billion for medical care, USD 69 billion for work loss, and USD 3.8 trillion for the value of statistical life and quality of life losses. More than half of this cost (USD 2.4 trillion) was among working-age adults (25-64 years old). Currently, the development of new diagnostic approaches and the improvement of treatment techniques require further experimental studies focused on modeling TBI of varying severity.
Collapse
Affiliation(s)
- Evgenii Balakin
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Ksenia Yurku
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Tatiana Fomina
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | | | | | | | - Anna Kaysheva
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Vasiliy Pustovoyt
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| |
Collapse
|
4
|
Duan S, Wang Z, Zhang W, Lu Y, Ma G. Effect of blast orientation, multi-point blasts, and repetitive blasts on brain injury. Med Eng Phys 2024; 127:104163. [PMID: 38692763 DOI: 10.1016/j.medengphy.2024.104163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Explosions in the battlefield can result in brain damage. Research on the effects of shock waves on brain tissue mainly focuses on the effects of single-orientation blast waves, while there have been few studies on the dynamic response of the human brain to directional explosions in different planes, multi-point explosions and repetitive explosions. Therefore, the brain tissue response and the intracranial pressure (ICP) caused by different blast loadings were numerically simulated using the CONWEP method. In the study of the blast in different directions, the lateral explosion blast wave was found to cause greater ICP than did blasts from other directions. When multi-point explosions occurred in the sagittal plane simultaneously, the ICP in the temporal lobe increased by 37.8 % and the ICP in the parietal lobe decreased by 17.6 %. When multi-point explosions occurred in the horizontal plane, the ICP in the frontal lobe increased by 61.8 % and the ICP in the temporal lobe increased by 12.2 %. In a study of repetitive explosions, the maximum ICP of the second blast increased by 40.6 % over that of the first blast, and that of the third blast increased by 61.2 % over that of the second blast. The ICP on the brain tissue from repetitive blasts can exceed 200 % of that of a single explosion blast wave.
Collapse
Affiliation(s)
- Shuhuai Duan
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China
| | - Zhidong Wang
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China
| | - Wei Zhang
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China; State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian, China
| | - Yongtao Lu
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China; DUT-BSU joint Institute, Dalian University of Technology, Dalian, China
| | - Guojun Ma
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China; DUT-BSU joint Institute, Dalian University of Technology, Dalian, China; State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian, China.
| |
Collapse
|
5
|
Lipton ML. A Promise to Keep, but Miles to Go Before We Sleep…. J Pharmacol Exp Ther 2024; 389:133-135. [PMID: 38637018 DOI: 10.1124/jpet.123.001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 04/20/2024] Open
|
6
|
Al-Khateeb ZF, Boumenar H, Adebimpe J, Shekerzade S, Henson SM, Tremoleda JL, Michael-Titus AT. The cellular senescence response and neuroinflammation in juvenile mice following controlled cortical impact and repetitive mild traumatic brain injury. Exp Neurol 2024; 374:114714. [PMID: 38325653 DOI: 10.1016/j.expneurol.2024.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability and increases the risk of developing neurodegenerative diseases. The mechanisms linking TBI to neurodegeneration remain to be defined. It has been proposed that the induction of cellular senescence after injury could amplify neuroinflammation and induce long-term tissue changes. The induction of a senescence response post-injury in the immature brain has yet to be characterised. We carried out two types of brain injury in juvenile CD1 mice: invasive TBI using controlled cortical impact (CCI) and repetitive mild TBI (rmTBI) using weight drop injury. The analysis of senescence-related signals showed an increase in γH2AX-53BP1 nuclear foci, p53, p19ARF, and p16INK4a expression in the CCI group, 5 days post-injury (dpi). At 35 days, the difference was no longer statistically significant. Gene expression showed the activation of different senescence pathways in the ipsilateral and contralateral hemispheres in the injured mice. CCI-injured mice showed a neuroinflammatory early phase after injury (increased Iba1 and GFAP expression), which persisted for GFAP. After CCI, there was an increase at 5 days in p16INK4, whereas in rmTBI, a significant increase was seen at 35 dpi. Both injuries caused a decrease in p21 at 35 dpi. In rmTBI, other markers showed no significant change. The PCR array data predicted the activation of pathways connected to senescence after rmTBI. These results indicate the induction of a complex cellular senescence and glial reaction in the immature mouse brain, with clear differences between an invasive brain injury and a repetitive mild injury.
Collapse
Affiliation(s)
- Zahra F Al-Khateeb
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| | - Hasna Boumenar
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Joycee Adebimpe
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Shenel Shekerzade
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Siân M Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jordi L Tremoleda
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
7
|
Ding X, Cao S, Wang Q, Du B, Lu K, Qi S, Cheng Y, Tuo Q, Liang W, Lei P. DNALI1 Promotes Neurodegeneration after Traumatic Brain Injury via Inhibition of Autophagosome-Lysosome Fusion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306399. [PMID: 38348540 PMCID: PMC11022701 DOI: 10.1002/advs.202306399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/25/2024] [Indexed: 04/18/2024]
Abstract
Traumatic brain injury (TBI) leads to progressive neurodegeneration that may be caused by chronic traumatic encephalopathy (CTE). However, the precise mechanism remains unclear. Herein, the study identifies a crucial protein, axonemal dynein light intermediate polypeptide 1 (DNALI1), and elucidated its potential pathogenic role in post-TBI neurodegeneration. The DNALI1 gene is systematically screened through analyses of Aging, Dementia, and TBI studies, confirming its elevated expression both in vitro and in vivo. Moreover, it is observed that altered DNALI1 expression under normal conditions has no discernible effect. However, upon overexpression, DNALI1 inhibits autophagosome-lysosome fusion, reduces autophagic flux, and exacerbates cell death under pathological conditions. DNALI1 silencing significantly enhances autophagic flux and alleviates neurodegeneration in a CTE model. These findings highlight DNALI1 as a potential key target for preventing TBI-related neurodegeneration.
Collapse
Affiliation(s)
- Xulong Ding
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
- Center of Translational Medicine and Clinical LaboratoryThe Fourth Affiliated Hospital of Soochow UniversityMedical Center of Soochow UniversitySuzhou Dushu Lake HospitalSuzhouJiangsu215123China
| | - Shuqiang Cao
- Department of Forensic GeneticsWest China School of Basic Science and Forensic MedicineSichuan UniversityChengdu610041China
| | - Qing Wang
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Bin Du
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Kefeng Lu
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Shiqian Qi
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Ying Cheng
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Qing‐zhang Tuo
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Weibo Liang
- Department of Forensic GeneticsWest China School of Basic Science and Forensic MedicineSichuan UniversityChengdu610041China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
8
|
Gorthy AS, Balleste AF, Placeres-Uray F, Atkins CM. Chronic Stress in Early Development and Effects on Traumatic Brain Injury Outcome. ADVANCES IN NEUROBIOLOGY 2024; 42:179-204. [PMID: 39432043 DOI: 10.1007/978-3-031-69832-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
In recent years, significant advances have been made in the study of mild traumatic brain injury (mTBI). Complete recovery from mTBI normally requires days to weeks, yet a subset of the population suffers from symptoms for weeks to months after injury. The risk factors for these prolonged symptoms have not yet been fully understood. In this chapter, we address one proposed risk factor, early life stress (ELS) and its influence on mTBI recovery. To study the effects of ELS on mTBI recovery, accepted animal models of ELS, including maternal separation, limited bedding and nesting, and chronic unpredictable stress, have been implemented. Combining these ELS models with standardized mTBI models, such as fluid percussion injury or controlled cortical impact, has allowed for a deeper understanding of the neuronal, hormonal, and cognitive changes that occur after mTBI following ELS. These preclinical findings are being used to understand how adverse childhood experiences may predispose a subset of individuals to poorer recovery after mTBI.
Collapse
Affiliation(s)
- Aditi S Gorthy
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alyssa F Balleste
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fabiola Placeres-Uray
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Coleen M Atkins
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
9
|
Pasam T, Dandekar MP. Insights from Rodent Models for Improving Bench-to-Bedside Translation in Traumatic Brain Injury. Methods Mol Biol 2024; 2761:599-622. [PMID: 38427264 DOI: 10.1007/978-1-0716-3662-6_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Road accidents, domestic falls, and persons associated with sports and military services exhibited the concussion or contusion type of traumatic brain injury (TBI) that resulted in chronic traumatic encephalopathy. In some instances, these complex neurological aberrations pose severe brain damage and devastating long-term neurological sequelae. Several preclinical (rat and mouse) TBI models simulate the clinical TBI endophenotypes. Moreover, many investigational neuroprotective candidates showed promising effects in these models; however, the therapeutic success of these screening candidates has been discouraging at various stages of clinical trials. Thus, a correct selection of screening model that recapitulates the clinical neurobiology and endophenotypes of concussion or contusion is essential. Herein, we summarize the advantages and caveats of different preclinical models adopted for TBI research. We suggest that an accurate selection of experimental TBI models may improve the translational viability of the investigational entity.
Collapse
Affiliation(s)
- Tulasi Pasam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
10
|
Hoogenboom WS, Rubin TG, Ambadipudi K, Cui MH, Ye K, Foster H, Elkouby E, Liu J, Branch CA, Lipton ML. Evolving brain and behaviour changes in rats following repetitive subconcussive head impacts. Brain Commun 2023; 5:fcad316. [PMID: 38046094 PMCID: PMC10691880 DOI: 10.1093/braincomms/fcad316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/26/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023] Open
Abstract
There is growing concern that repetitive subconcussive head impacts, independent of concussion, alter brain structure and function, and may disproportionately affect the developing brain. Animal studies of repetitive subconcussive head impacts are needed to begin to characterize the pathological basis and mechanisms underlying imaging and functional effects of repetitive subconcussive head impacts seen in humans. Since repetitive subconcussive head impacts have been largely unexplored in animals, we aimed to characterize the evolution of imaging, behavioural and pathological effects of repetitive subconcussive head impacts in awake adolescent rodents. Awake male and female Sprague Dawley rats (postnatal Day 35) received 140 closed-head impacts over the course of a week. Impacted and sham-impacted animals were restrained in a plastic cone, and unrestrained control animals were included to account for effects of restraint and normal development. Animals (n = 43) underwent repeated diffusion tensor imaging prior to and over 1 month following the final impact. A separate cohort (n = 53) was assessed behaviourally for fine motor control, emotional-affective behaviour and memory at acute and chronic time points. Histological and immunohistochemical analyses, which were exploratory in nature due to smaller sample sizes, were completed at 1 month following the final impact. All animals tolerated the protocol with no overt changes in behaviour or stigmata of traumatic brain injury, such as alteration of consciousness, intracranial haemorrhage or skull fracture. We detected longitudinal, sex-dependent diffusion tensor imaging changes (fractional anisotropy and axial diffusivity decline) in corpus callosum and external capsule of repetitive subconcussive head impact animals, which diverged from both sham and control. Compared to sham animals, repetitive subconcussive head impact animals exhibited acute but transient mild motor deficits. Repetitive subconcussive head impact animals also exhibited chronic anxiety and spatial memory impairment that differed from the control animals, but these effects were not different from those seen in the sham condition. We observed trends in the data for thinning of the corpus callosum as well as regions with elevated Iba-1 in the corpus callosum and cerebral white matter among repetitive subconcussive head impact animals. While replication with larger study samples is needed, our findings suggest that subconcussive head impacts cause microstructural tissue changes in the developing rat brain, which are detectable with diffusion tensor imaging, with suggestion of correlates in tissue pathology and behaviour. The results point to potential mechanisms underpinning consequences of subconcussive head impacts that have been described in humans. The congruence of our imaging findings with human subconcussive head impacts suggests that neuroimaging could serve as a translational bridge to advance study of injury mechanisms and development of interventions.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Clinical Investigation, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Todd G Rubin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NewYork, NY 10029, USA
| | - Kamalakar Ambadipudi
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Min-Hui Cui
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Kenny Ye
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Henry Foster
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
| | - Esther Elkouby
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
| | - Jinyuan Liu
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
| | - Craig A Branch
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Michael L Lipton
- Department of Radiology, Columbia University Irving Medical Center, NewYork, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, NewYork, NY 10032, USA
| |
Collapse
|
11
|
Liu Y, Fan Z, Wang J, Dong X, Ouyang W. Modified mouse model of repeated mild traumatic brain injury through a thinned-skull window and fluid percussion. J Neurosci Res 2023; 101:1633-1650. [PMID: 37382058 DOI: 10.1002/jnr.25227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Mild traumatic brain injury (mTBI) is a clinically highly heterogeneous neurological disorder, none of the existing animal models can replicate the entire sequelae. This study aimed to develop a modified closed head injury (CHI) model of repeated mTBI (rmTBI) for investigating Ca2+ fluctuations of the affected neural network, the alternations of electrophysiology, and behavioral dysfunctions. The transcranial Ca2+ study protocol includes AAV-GCaMP6s infection in the right motor cortex, thinned-skull preparation, and two-photon laser scanning microscopy (TPLSM) imaging. The CHI rmTBI model is fabricated using the thinned-skull site and applying 2.0 atm fluid percussion with 48-h interval. The neurological dysfunction, minor motor performance, evident mood, spatial working, and reference deficits we found in this study mimic the clinically relevant syndromes after mTBI. Besides, our study revealed that there was a trend of transition from Ca2+ singlepeak to multipeak and plateau, and the total Ca2+ activities of multipeaks and plateaus (p < .001 vs. pre-rmTBI value) were significantly increased in ipsilateral layer 2/3 motor neurons after rm TBI. In parallel, there is a low-frequency power shift from delta to theta band (p < .01 vs. control) in the ipsilateral layer 2/3 of motor cortex of the rmTBI mice, and the overall firing rates significantly increased (p < .01 vs. control). Moreover, rmTBI causes slight cortical and hippocampal neuron damage and possibly induces neurogenesis in the dentate gyrus (DG). The alternations of Ca2+ and electrophysiological characteristics in layer 2/3 neuronal network, histopathological changes, and possible neurogenesis may play concertedly and partially contribute to the functional outcome post-rmTBI.
Collapse
Affiliation(s)
- Yuncheng Liu
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Zhiheng Fan
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Jihui Wang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Xuefen Dong
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Wei Ouyang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
12
|
Chaumeil M, Guglielmetti C, Qiao K, Tiret B, Ozen M, Krukowski K, Nolan A, Paladini MS, Lopez C, Rosi S. Hyperpolarized 13C metabolic imaging detects long-lasting metabolic alterations following mild repetitive traumatic brain injury. RESEARCH SQUARE 2023:rs.3.rs-3166656. [PMID: 37645937 PMCID: PMC10462249 DOI: 10.21203/rs.3.rs-3166656/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Career athletes, active military, and head trauma victims are at increased risk for mild repetitive traumatic brain injury (rTBI), a condition that contributes to the development of epilepsy and neurodegenerative diseases. Standard clinical imaging fails to identify rTBI-induced lesions, and novel non-invasive methods are needed. Here, we evaluated if hyperpolarized 13C magnetic resonance spectroscopic imaging (HP 13C MRSI) could detect long-lasting changes in brain metabolism 3.5 months post-injury in a rTBI mouse model. Our results show that this metabolic imaging approach can detect changes in cortical metabolism at that timepoint, whereas multimodal MR imaging did not detect any structural or contrast alterations. Using Machine Learning, we further show that HP 13C MRSI parameters can help classify rTBI vs. Sham and predict long-term rTBI-induced behavioral outcomes. Altogether, our study demonstrates the potential of metabolic imaging to improve detection, classification and outcome prediction of previously undetected rTBI.
Collapse
Affiliation(s)
| | | | - Kai Qiao
- University of California, San Francisco
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Deshetty UM, Periyasamy P. Potential Biomarkers in Experimental Animal Models for Traumatic Brain Injury. J Clin Med 2023; 12:3923. [PMID: 37373618 DOI: 10.3390/jcm12123923] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex and multifaceted disorder that has become a significant public health concern worldwide due to its contribution to mortality and morbidity. This condition encompasses a spectrum of injuries, including axonal damage, contusions, edema, and hemorrhage. Unfortunately, specific effective therapeutic interventions to improve patient outcomes following TBI are currently lacking. Various experimental animal models have been developed to mimic TBI and evaluate potential therapeutic agents to address this issue. These models are designed to recapitulate different biomarkers and mechanisms involved in TBI. However, due to the heterogeneous nature of clinical TBI, no single experimental animal model can effectively mimic all aspects of human TBI. Accurate emulation of clinical TBI mechanisms is also tricky due to ethical considerations. Therefore, the continued study of TBI mechanisms and biomarkers, of the duration and severity of brain injury, treatment strategies, and animal model optimization is necessary. This review focuses on the pathophysiology of TBI, available experimental TBI animal models, and the range of biomarkers and detection methods for TBI. Overall, this review highlights the need for further research to improve patient outcomes and reduce the global burden of TBI.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
Koza LA, Pena C, Russell M, Smith AC, Molnar J, Devine M, Serkova NJ, Linseman DA. Immunocal® limits gliosis in mouse models of repetitive mild-moderate traumatic brain injury. Brain Res 2023; 1808:148338. [PMID: 36966959 PMCID: PMC10258892 DOI: 10.1016/j.brainres.2023.148338] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Successive traumatic brain injuries (TBIs) exacerbate neuroinflammation and oxidative stress. No therapeutics exist for populations at high risk of repetitive mild TBIs (rmTBIs). We explored the preventative therapeutic effects of Immunocal®, a cysteine-rich whey protein supplement and glutathione (GSH) precursor, following rmTBI and repetitive mild-moderate TBI (rmmTBI). Populations that suffer rmTBIs largely go undiagnosed and untreated; therefore, we first examined the potential therapeutic effect of Immunocal® long-term following rmTBI. Mice were treated with Immunocal® prior to, during, and following rmTBI induced by controlled cortical impact until analysis at 2 weeks, 2 months, and 6 months following the last rmTBI. Astrogliosis and microgliosis were measured in cortex at each time point and edema and macrophage infiltration by MRI were analyzed at 2 months post-rmTBI. Immunocal® significantly reduced astrogliosis at 2 weeks and 2 months post-rmTBI. Macrophage activation was observed at 2 months post-rmTBI but Immunocal® had no significant effect on this endpoint. We did not observe significant microgliosis or edema after rmTBI. The dosing regimen was repeated in mice subjected to rmmTBI; however, using this experimental paradigm, we examined the preventative therapeutic effects of Immunocal® at a much earlier timepoint because populations that suffer more severe rmmTBIs are more likely to receive acute diagnosis and treatment. Increases in astrogliosis, microgliosis, and serum neurofilament light (NfL), as well as reductions in the GSH:GSSG ratio, were observed 72 h post-rmmTBI. Immunocal® only significantly reduced microgliosis after rmmTBI. In summary, we report that astrogliosis persists for 2 months post-rmTBI and that inflammation, neuronal damage, and altered redox homeostasis present acutely following rmmTBI. Immunocal® significantly limited gliosis in these models; however, its neuroprotection was partially overwhelmed by repetitive injury. Treatments that modulate distinct aspects of TBI pathophysiology, used in combination with GSH precursors like Immunocal®, may show more protection in these repetitive TBI models.
Collapse
Affiliation(s)
- Lilia A Koza
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Claudia Pena
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Madison Russell
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Alec C Smith
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Jacob Molnar
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Maeve Devine
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Natalie J Serkova
- University of Colorado Cancer Center, Department of Radiology, Aurora, CO 80045, United States
| | - Daniel A Linseman
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States.
| |
Collapse
|
15
|
Wilson RJ, Bell MR, Giordano KR, Seyburn S, Kozlowski DA. Repeat subconcussion in the adult rat gives rise to behavioral deficits similar to a single concussion but different depending upon sex. Behav Brain Res 2023; 438:114206. [PMID: 36356721 DOI: 10.1016/j.bbr.2022.114206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Although concussions are a popular focus of neurotrauma research, subconcussions occur with higher frequency but are less well-studied. A subconcussion is an impact to the head that does not result in immediately diagnosable concussion but can result in later neurological consequences. Repeat subconcussions can produce behavioral impairments and neuropathology that is similar to or worse than those seen following a single concussion. The current study modified a previously established closed head injury model of concussion to create a subconcussion model and examines sex differences in behavioral responses to repeated subconcussion in the adult rat. Rats received a single concussion, single or repeat subconcussions, or no impact and behavior was monitored from 2 h through 31 days post-injury. A single concussion or repeat subconcussion resulted in deficits in locomotion, righting reflexes, and recognition memory. The degree of deficit induced by repeat subconcussions were either similar (righting reflexes) or greater/more persistent (locomotor deficits and recognition memory) than that of a concussion. Single subconcussion resulted in acute deficits that were mild and limited to righting reflexes and locomotion. Sex differences were observed in responses to repeat subconcussion: females showed greater deficits in righting reflexes, locomotion, and vestibular function, while males showed greater alterations in anxiety and depressive-like behavior. This study established a model of subconcussive impact where a single subconcussive impact resulted in minimal behavioral deficits but repeat subconcussions resulted in deficits similar to or worse than a single concussion. Our data also suggest sex differences in behavioral responses to both concussive and subconcussive impacts.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA.
| | - Margaret R Bell
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA; Department of Health Sciences, DePaul University, 1110 W. Belden, Chicago, IL, USA.
| | - Katherine R Giordano
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA.
| | - Serena Seyburn
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA.
| | - Dorothy A Kozlowski
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA; Neuroscience Program, DePaul University, 2325 N. Clifton, Chicago, IL, USA.
| |
Collapse
|
16
|
Juan SMA, Daglas M, Gunn AP, Lago L, Adlard PA. Characterization of the spatial distribution of metals and profile of metalloprotein complexes in a mouse model of repetitive mild traumatic brain injury. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6865363. [PMID: 36460052 DOI: 10.1093/mtomcs/mfac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Metal dyshomeostasis is a well-established consequence of neurodegenerative diseases and traumatic brain injury. While the significance of metals continues to be uncovered in many neurological disorders, their implication in repetitive mild traumatic brain injury remains uncharted. To address this gap, we characterized the spatial distribution of metal levels (iron, zinc, and copper) using laser ablation-inductively coupled plasma-mass spectrometry, the profile of metal-binding proteins via size exclusion chromatography-inductively coupled plasma-mass spectrometry and the expression of the major iron storing protein ferritin via western blotting. Using a mouse model of repetitive mild traumatic brain injury, 3-month-old male and female C57Bl6 mice received one or five impacts (48 h apart). At 1 month following 5× TBI (traumatic brain injury), iron and ferritin levels were significantly elevated in the contralateral cortex. There was a trend toward increased iron levels in the entire contralateral hemisphere and a reduction in contralateral cortical iron-binding proteins following 1× TBI. No major changes in zinc levels were seen in both hemispheres following 5× or 1× TBI, although there was a reduction in ipsilateral zinc-binding proteins following 5× TBI and a contralateral increase in zinc-binding proteins following 1× TBI. Copper levels were significantly increased in both hemispheres following 5× TBI, without changes in copper-binding proteins. This study shows for the first time that repetitive mild TBI (r-mTBI) leads to metal dyshomeostasis, highlighting its potential involvement in promoting neurodegeneration, which provides a rationale for examining the benefit of metal-targeting drugs, which have shown promising results in neurodegenerative conditions and single TBI, but have yet to be tested following r-mTBI.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Adam P Gunn
- Neuropathology Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Larissa Lago
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| |
Collapse
|
17
|
Development of a Weight Drop Injury Device Suitable for Blunt, Closed-Head Injury Using a Rodent Model. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Fronczak KM, Roberts A, Svirsky S, Parry M, Holets E, Henchir J, Dixon CE, Carlson SW. Assessment of behavioral, neuroinflammatory, and histological responses in a model of rat repetitive mild fluid percussion injury at 2 weeks post-injury. Front Neurol 2022; 13:945735. [PMID: 36341117 PMCID: PMC9630846 DOI: 10.3389/fneur.2022.945735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Repetitive mild traumatic brain injury (rmTBI) is a prominent public health concern, with linkage to debilitating chronic sequelae. Developing reliable and well-characterized preclinical models of rmTBI is imperative in the investigation of the underlying pathophysiological mechanisms, as models can have varying parameters, affecting the overall pathology of the resulting injury. The lateral fluid percussion injury (FPI) model is a reliable and frequently used method of TBI replication in rodent subjects, though it is currently relatively underutilized in rmTBI research. In this study, we have performed a novel description of a variation of the lateral repetitive mild FPI (rmFPI) model, showing the graded acute behavioral impairment and histopathology occurring in response to one, two or four mild FPI (1.25 atm) or sham surgeries, implemented 24h apart. Beam walking performance revealed significant motor impairment in injured animals, with dysfunction increasing with additional injury. Based upon behavioral responses and histological observations, we further investigated the subacute pathophysiological outcomes of the dual FPI (dFPI). Immunoreactivity assessments showed that dFPI led to regionally-specific reductions in the post-synaptic protein neurogranin and increased subcortical white matter staining of the presynaptic protein synaptophysin at 2 weeks following dFPI. Immunohistochemical assessments of the microglial marker Iba-1 showed a striking increase in in several brain regions, and assessment of the astrocytic marker GFAP showed significantly increased immunoreactivity in the subcortical white matter and thalamus. With this study, we have provided a novel account of the subacute post injury outcomes occurring in response to a rmFPI utilizing these injury and frequency parameters, and thereby also demonstrating the reliability of the lateral FPI model in rmTBI replication.
Collapse
Affiliation(s)
| | - Andrea Roberts
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah Svirsky
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Madison Parry
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Erik Holets
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jeremy Henchir
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - C. Edward Dixon
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Shaun W. Carlson
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Ackermans NL, Varghese M, Wicinski B, Torres J, De Gasperi R, Pryor D, Elder GA, Gama Sosa MA, Reidenberg JS, Williams TM, Hof PR. Unconventional animal models for traumatic brain injury and chronic traumatic encephalopathy. J Neurosci Res 2021; 99:2463-2477. [PMID: 34255876 PMCID: PMC8596618 DOI: 10.1002/jnr.24920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is one of the main causes of death worldwide. It is a complex injury that influences cellular physiology, causes neuronal cell death, and affects molecular pathways in the brain. This in turn can result in sensory, motor, and behavioral alterations that deeply impact the quality of life. Repetitive mild TBI can progress into chronic traumatic encephalopathy (CTE), a neurodegenerative condition linked to severe behavioral changes. While current animal models of TBI and CTE such as rodents, are useful to explore affected pathways, clinical findings therein have rarely translated into clinical applications, possibly because of the many morphofunctional differences between the model animals and humans. It is therefore important to complement these studies with alternative animal models that may better replicate the individuality of human TBI. Comparative studies in animals with naturally evolved brain protection such as bighorn sheep, woodpeckers, and whales, may provide preventive applications in humans. The advantages of an in-depth study of these unconventional animals are threefold. First, to increase knowledge of the often-understudied species in question; second, to improve common animal models based on the study of their extreme counterparts; and finally, to tap into a source of biological inspiration for comparative studies and translational applications in humans.
Collapse
Affiliation(s)
- Nicole L Ackermans
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Torres
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita De Gasperi
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Dylan Pryor
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Gregory A Elder
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Miguel A Gama Sosa
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Joy S Reidenberg
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Terrie M Williams
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
Feng Y, Li K, Roth E, Chao D, Mecca CM, Hogan QH, Pawela C, Kwok WM, Camara AKS, Pan B. Repetitive Mild Traumatic Brain Injury in Rats Impairs Cognition, Enhances Prefrontal Cortex Neuronal Activity, and Reduces Pre-synaptic Mitochondrial Function. Front Cell Neurosci 2021; 15:689334. [PMID: 34447298 PMCID: PMC8383341 DOI: 10.3389/fncel.2021.689334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
A major hurdle preventing effective interventions for patients with mild traumatic brain injury (mTBI) is the lack of known mechanisms for the long-term cognitive impairment that follows mTBI. The closed head impact model of repeated engineered rotational acceleration (rCHIMERA), a non-surgical animal model of repeated mTBI (rmTBI), mimics key features of rmTBI in humans. Using the rCHIMERA in rats, this study was designed to characterize rmTBI-induced behavioral disruption, underlying electrophysiological changes in the medial prefrontal cortex (mPFC), and associated mitochondrial dysfunction. Rats received 6 closed-head impacts over 2 days at 2 Joules of energy. Behavioral testing included automated analysis of behavior in open field and home-cage environments, rotarod test for motor skills, novel object recognition, and fear conditioning. Following rmTBI, rats spent less time grooming and less time in the center of the open field arena. Rats in their home cage had reduced inactivity time 1 week after mTBI and increased exploration time 1 month after injury. Impaired associative fear learning and memory in fear conditioning test, and reduced short-term memory in novel object recognition test were found 4 weeks after rmTBI. Single-unit in vivo recordings showed increased neuronal activity in the mPFC after rmTBI, partially attributable to neuronal disinhibition from reduced inhibitory synaptic transmission, possibly secondary to impaired mitochondrial function. These findings help validate this rat rmTBI model as replicating clinical features, and point to impaired mitochondrial functions after injury as causing imbalanced synaptic transmission and consequent impaired long-term cognitive dysfunction.
Collapse
Affiliation(s)
- Yin Feng
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Keguo Li
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Elizabeth Roth
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dongman Chao
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christina M Mecca
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher Pawela
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
21
|
Animal models of traumatic brain injury: a review of pathophysiology to biomarkers and treatments. Exp Brain Res 2021; 239:2939-2950. [PMID: 34324019 DOI: 10.1007/s00221-021-06178-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Traumatic brain injury (TBI) is one of the main causes of death and disability in both civilian and military population. TBI may occur via a variety of etiologies, all of which involve trauma to the head. However, the neuroprotective drugs which were found to be very effective in animal TBI models failed in phase II or phase III clinical trials, emphasizing a compelling need to review the current status of animal TBI models and therapeutic strategies. No single animal model can adequately mimic all aspects of human TBI owing to the heterogeneity of clinical TBI. However, due to the ethical limitations, it is difficult to precisely emulate the TBI mechanisms that occur in humans. Therefore, many animal models with varying severity and mechanisms of brain injury have been developed, and each model has its own pros and cons in its implementation for TBI research. These challenges pose a need for study of continued TBI mechanisms, brain injury severity, duration, treatment strategies, and optimization of animal models across the neurotrauma research community. The aim of this review is to discuss (1) causes of TBI, (2) its prevalence in military and civilian population, (3) classification and pathophysiology of TBI, (4) biomarkers and detection methods, (5) animal models of TBI, and (6) the advantages and disadvantages of each model and the species used, as well as possible treatments.
Collapse
|
22
|
Rajič Bumber J, Pilipović K, Janković T, Dolenec P, Gržeta N, Križ J, Župan G. Repetitive Traumatic Brain Injury Is Associated With TDP-43 Alterations, Neurodegeneration, and Glial Activation in Mice. J Neuropathol Exp Neurol 2021; 80:2-14. [PMID: 33212475 DOI: 10.1093/jnen/nlaa130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence points to a relationship between repetitive mild traumatic brain injury (mTBI), the Tar DNA binding protein 43 (TDP-43) pathology and some neurodegenerative diseases, but the underlying pathophysiological mechanisms are still unknown. We examined TDP-43 regulation, neurodegeneration, and glial responses following repetitive mTBI in nontransgenic mice and in animals with overexpression of human mutant TDP-43 protein (TDP-43G348C). In the frontal cortices of the injured nontransgenic animals, early TDP-43 cytoplasmatic translocation and overexpression of the protein and its pathological forms were detected. In the injured animals of both genotypes, neurodegeneration and pronounced glial activity were detected in the optic tract. In TDP-43G348C mice, these changes were significantly higher at day 7 after the last mTBI compared with the values in the nontransgenic animals. Results of this study suggest that the changes in the TDP-43 regulation in the frontal cortices of the nontransgenic animals were a transient stress response to the brain injury. Repetitive mTBI did not produce additional TDP-43 dysregulation or neurodegeneration or pronounced gliosis in the frontal cortex of TDP-43G348C mice. Our research also suggests that overexpression of mutated human TDP-43 possibly predisposes the brain to more intense neurodegeneration and glial activation in the optic tract after repetitive mTBI.
Collapse
Affiliation(s)
- Jelena Rajič Bumber
- From the Department of Pharmacology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Kristina Pilipović
- From the Department of Pharmacology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Tamara Janković
- From the Department of Pharmacology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Petra Dolenec
- From the Department of Pharmacology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Nika Gržeta
- From the Department of Pharmacology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jasna Križ
- Department of Psychiatry and Neuroscience, Faculty of Medicine, University of Laval, Quebec, QC, Canada
| | - Gordana Župan
- From the Department of Pharmacology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
23
|
Shi W, Dong P, Kuss MA, Gu L, Kievit F, Kim HJ, Duan B. Design and Evaluation of an In Vitro Mild Traumatic Brain Injury Modeling System Using 3D Printed Mini Impact Device on the 3D Cultured Human iPSC Derived Neural Progenitor Cells. Adv Healthc Mater 2021; 10:e2100180. [PMID: 33890428 PMCID: PMC8222191 DOI: 10.1002/adhm.202100180] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Indexed: 12/13/2022]
Abstract
Despite significant progress in understanding the disease mechanism of traumatic brain injury (TBI), promising preclinical therapeutics have seldom been translated into successful clinical outcomes, partially because the model animals have physiological and functional differences in the central nervous system (CNS) compared to humans. Human relevant models are thus urgently required. Here, an in vitro mild TBI (mTBI) modeling system is reported based on 3D cultured human induced pluripotent stem cells (iPSC) derived neural progenitor cells (iPSC-NPCs) to evaluate consequences of single and repetitive mTBI using a 3D printed mini weight-drop impact device. Computational simulation is performed to understand the single/cumulative effects of weight-drop impact on the NPC differentiated neurospheres. Experimental results reveal that neurospheres show reactive astrogliosis and glial scar formation after repetitive (10 hits) mild impacts, while no astrocyte activation is found after one or two mild impacts. A 3D co-culture model of human microglia cells with neurospheres is further developed. It is found that astrocyte response is promoted even after two mild impacts, possibly caused by the chronic neuroinflammation after microglia activation. The in vitro mTBI modeling system recapitulates several hallmarks of the brain impact injury and might serve as a good platform for future drug screening.
Collapse
Affiliation(s)
- Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
| | - Pengfei Dong
- Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
| | - Linxia Gu
- Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Forrest Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Hyung Joon Kim
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
24
|
Lerouet D, Marchand-Leroux C, Besson VC. Neuropharmacology in traumatic brain injury: from preclinical to clinical neuroprotection? Fundam Clin Pharmacol 2021; 35:524-538. [PMID: 33527472 PMCID: PMC9290810 DOI: 10.1111/fcp.12656] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) constitutes a major health problem worldwide and is a leading cause of death and disability in individuals, contributing to devastating socioeconomic consequences. Despite numerous promising pharmacological strategies reported as neuroprotective in preclinical studies, the translation to clinical trials always failed, albeit the great diversity of therapeutic targets evaluated. In this review, first, we described epidemiologic features, causes, and primary and secondary injuries of TBI. Second, we outlined the current literature on animal models of TBI, and we described their goals, their advantages and disadvantages according to the species used, the type of injury induced, and their clinical relevance. Third, we defined the concept of neuroprotection and discussed its evolution. We also identified the reasons that might explain the failure of clinical translation. Then, we reviewed post‐TBI neuroprotective treatments with a focus on the following pleiotropic drugs, considered “low hanging fruit” with high probability of success: glitazones, glibenclamide, statins, erythropoietin, and progesterone, that were largely tested and demonstrated efficient in preclinical models of TBI. Finally, our review stresses the need to establish a close cooperation between basic researchers and clinicians to ensure the best clinical translation for neuroprotective strategies for TBI.
Collapse
Affiliation(s)
- Dominique Lerouet
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Catherine Marchand-Leroux
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Valérie C Besson
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| |
Collapse
|
25
|
To XV, Nasrallah FA. A roadmap of brain recovery in a mouse model of concussion: insights from neuroimaging. Acta Neuropathol Commun 2021; 9:2. [PMID: 33407949 PMCID: PMC7789702 DOI: 10.1186/s40478-020-01098-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Concussion or mild traumatic brain injury is the most common form of traumatic brain injury with potentially long-term consequences. Current objective diagnosis and treatment options are limited to clinical assessment, cognitive rest, and symptom management, which raises the real danger of concussed patients being released back into activities where subsequent and cumulative injuries may cause disproportionate damages. This study conducted a cross-sectional multi-modal examination investigation of the temporal changes in behavioural and brain changes in a mouse model of concussion using magnetic resonance imaging. Sham and concussed mice were assessed at day 2, day 7, and day 14 post-sham or injury procedures following a single concussion event for motor deficits, psychological symptoms with open field assessment, T2-weighted structural imaging, diffusion tensor imaging (DTI), neurite orientation density dispersion imaging (NODDI), stimulus-evoked and resting-state functional magnetic resonance imaging (fMRI). Overall, a mismatch in the temporal onsets and durations of the behavioural symptoms and structural/functional changes in the brain was seen. Deficits in behaviour persisted until day 7 post-concussion but recovered at day 14 post-concussion. DTI and NODDI changes were most extensive at day 7 and persisted in some regions at day 14 post-concussion. A persistent increase in connectivity was seen at day 2 and day 14 on rsfMRI. Stimulus-invoked fMRI detected increased cortical activation at day 7 and 14 post-concussion. Our results demonstrate the capabilities of advanced MRI in detecting the effects of a single concussive impact in the brain, and highlight a mismatch in the onset and temporal evolution of behaviour, structure, and function after a concussion. These results have significant translational impact in developing methods for the detection of human concussion and the time course of brain recovery.
Collapse
|
26
|
Abstract
After a concussion, a series of complex, overlapping, and disruptive events occur within the brain, leading to symptoms and behavioral dysfunction. These events include ionic shifts, damaged neuronal architecture, higher concentrations of inflammatory chemicals, increased excitatory neurotransmitter release, and cerebral blood flow disruptions, leading to a neuronal crisis. This review summarizes the translational aspects of the pathophysiologic cascade of postconcussion events, focusing on the role of excitatory neurotransmitters and ionic fluxes, and their role in neuronal disruption. We review the relationship between physiologic disruption and behavioral alterations, and proposed treatments aimed to restore the balance of disrupted processes.
Collapse
Affiliation(s)
- David R Howell
- Sports Medicine Center, Children's Hospital Colorado, 13123 East 16th Avenue, B060, Aurora, CO 80045, USA; Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Julia Southard
- Sports Medicine Center, Children's Hospital Colorado, 13123 East 16th Avenue, B060, Aurora, CO 80045, USA; Department of Psychology and Neuroscience, Regis University, 3333 Regis Boulevard, Denver, CO 80221, USA
| |
Collapse
|
27
|
Honig MG, Dorian CC, Worthen JD, Micetich AC, Mulder IA, Sanchez KB, Pierce WF, Del Mar NA, Reiner A. Progressive long-term spatial memory loss following repeat concussive and subconcussive brain injury in mice, associated with dorsal hippocampal neuron loss, microglial phenotype shift, and vascular abnormalities. Eur J Neurosci 2020; 54:5844-5879. [PMID: 32090401 PMCID: PMC7483557 DOI: 10.1111/ejn.14711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
There is considerable concern about the long‐term deleterious effects of repeat head trauma on cognition, but little is known about underlying mechanisms and pathology. To examine this, we delivered four air blasts to the left side of the mouse cranium, a week apart, with an intensity that causes deficits when delivered singly and considered “concussive,” or an intensity that does not yield significant deficits when delivered singly and considered “subconcussive.” Neither repeat concussive nor subconcussive blast produced spatial memory deficits at 4 months, but both yielded deficits at 14 months, and dorsal hippocampal neuron loss. Hierarchical cluster analysis of dorsal hippocampal microglia across the three groups based on morphology and expression of MHCII, CX3CR1, CD68 and IBA1 revealed five distinct phenotypes. Types 1A and 1B microglia were more common in sham mice, linked to better neuron survival and memory, and appeared mildly activated. By contrast, 2B and 2C microglia were more common in repeat concussive and subconcussive mice, linked to poorer neuron survival and memory, and characterized by low expression levels and attenuated processes, suggesting they were de‐activated and dysfunctional. In addition, endothelial cells in repeat concussive mice exhibited reduced CD31 and eNOS expression, which was correlated with the prevalence of type 2B and 2C microglia. Our findings suggest that both repeat concussive and subconcussive head injury engender progressive pathogenic processes, possibly through sustained effects on microglia that over time lead to increased prevalence of dysfunctional microglia, adversely affecting neurons and blood vessels, and thereby driving neurodegeneration and memory decline.
Collapse
Affiliation(s)
- Marcia G Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Conor C Dorian
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - John D Worthen
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anthony C Micetich
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Isabelle A Mulder
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Katelyn B Sanchez
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - William F Pierce
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nobel A Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
28
|
Hoogenboom WS, Rubin TG, Ye K, Cui MH, Branch KC, Liu J, Branch CA, Lipton ML. Diffusion Tensor Imaging of the Evolving Response to Mild Traumatic Brain Injury in Rats. J Exp Neurosci 2019; 13:1179069519858627. [PMID: 31308735 PMCID: PMC6613065 DOI: 10.1177/1179069519858627] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/29/2019] [Indexed: 12/30/2022] Open
Abstract
Mild traumatic brain injury (mTBI), also known as concussion, is a serious public health challenge. Although most patients recover, a substantial minority suffers chronic disability. The mechanisms underlying mTBI-related detrimental effects remain poorly understood. Although animal models contribute valuable preclinical information and improve our understanding of the underlying mechanisms following mTBI, only few studies have used diffusion tensor imaging (DTI) to study the evolution of axonal injury following mTBI in rodents. It is known that DTI shows changes after human concussion and the role of delineating imaging findings in animals is therefore to facilitate understanding of related mechanisms. In this work, we used a rodent model of mTBI to investigate longitudinal indices of axonal injury. We present the results of 45 animals that received magnetic resonance imaging (MRI) at multiple time points over a 2-week period following concussive or sham injury yielding 109 serial observations. Overall, the evolution of DTI metrics following concussive or sham injury differed by group. Diffusion tensor imaging changes within the white matter were most noticeable 1 week following injury and returned to baseline values after 2 weeks. More specifically, we observed increased fractional anisotropy in combination with decreased radial diffusivity and mean diffusivity, in the absence of changes in axial diffusivity, within the white matter of the genu corpus callosum at 1 week post-injury. Our study shows that DTI can detect microstructural white matter changes in the absence of gross abnormalities as indicated by visual screening of anatomical MRI and hematoxylin and eosin (H&E)-stained sections in a clinically relevant animal model of mTBI. Whereas additional histopathologic characterization is required to better understand the neurobiological correlates of DTI measures, our findings highlight the evolving nature of the brain’s response to injury following concussion.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Department of Clinical Investigation, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Todd G Rubin
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Kenny Ye
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Min-Hui Cui
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Kelsey C Branch
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Jinyuan Liu
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Craig A Branch
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Department of Physiology and Biophysics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Michael L Lipton
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
29
|
Danzer SC. A Hit, a Hit-A Very Palpable Hit: Mild TBI and the Development of Epilepsy. Epilepsy Curr 2019; 19:261-263. [PMID: 31208231 PMCID: PMC6891830 DOI: 10.1177/1535759719854758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
30
|
Rubin TG, Lipton ML. Sex Differences in Animal Models of Traumatic Brain Injury. J Exp Neurosci 2019; 13:1179069519844020. [PMID: 31205421 PMCID: PMC6537488 DOI: 10.1177/1179069519844020] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is highly prevalent and there is currently no adequate treatment. Understanding the underlying mechanisms governing TBI and recovery remains an elusive goal. The heterogeneous nature of injury and individual's response to injury have made understanding risk and susceptibility to TBI of great importance. Epidemiologic studies have provided evidence of sex-dependent differences following TBI. However, preclinical models of injury have largely focused on adult male animals. Here, we review 50 studies that have investigated TBI in both sexes using animal models. Results from these studies are highly variable and model dependent, but largely show females to have a protective advantage in behavioral outcomes and pathology following TBI. Further research of both sexes using newer models that better recapitulate mild and repetitive TBI is needed to characterize the nature of sex-dependent injury and recovery, and ultimately identifies targets for enhanced recovery.
Collapse
Affiliation(s)
- Todd G Rubin
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Bronx, NY, USA.,Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael L Lipton
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Bronx, NY, USA.,Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx NY, USA.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|