1
|
Xu H, Mao X, Wang Y, Zhu C, Liang B, Zhao Y, Zhou M, Ye L, Hong M, Shao H, Wang Y, Li H, Qi Y, Yang Y, Chen L, Guan Y, Zhang X. Targeting the E Prostanoid Receptor EP4 Mitigates Cardiac Fibrosis Induced by β-Adrenergic Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413324. [PMID: 39921269 PMCID: PMC11948031 DOI: 10.1002/advs.202413324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/10/2025] [Indexed: 02/10/2025]
Abstract
Sustained β-adrenergic activation induces cardiac fibrosis characterized by excessive deposition of extracellular matrix (ECM). Prostaglandin E2 (PGE2) receptor EP4 is essential for cardiovascular homeostasis. This study aims to investigate the roles of cardiomyocyte (CM) and cardiac fibroblast (CF) EP4 in isoproterenol (ISO)-induced cardiac fibrosis. By crossing the EP4f/f mice with α-MyHC-Cre or S100A4-Cre mice, this work obtains the CM-EP4 knockout (EP4f/f-α-MyHCCre+) or CF-EP4 knockout (EP4f/f-S100A4Cre+) mice. The mice of both genders are subcutaneously injected with ISO (5 mg kg-1 day-1) for 7 days. Compared to the control mice, both EP4f/f-α-MyHCCre+ and EP4f/f-S100A4Cre+ mice show a significant improvement in cardiac diastolic function and fibrosis as assessed by echocardiography and histological staining, respectively. In the CMs, inhibition of EP4 suppresses ISO-induced TGF-β1 expression via blocking the cAMP/PKA pathway. In the CFs, inhibition of EP4 reversed TGF-β1-triggers production of ECM via preventing the formation of the TGF-β1/TGF-β receptor complex and blocks CF proliferation via suppressing the ERK1/2 pathway. Furthermore, double knockout of the CM- and CF-EP4 or administration of EP4 antagonist, grapiprant, markedly improves ISO-induced cardiac diastolic dysfunction and fibrosis. Collectively, this study demonstrates that both CM-EP4 and CF-EP4 contribute to β-adrenergic activation-induced cardiac fibrosis. Targeting EP4 may offer a novel therapeutic approach for cardiac fibrosis.
Collapse
Affiliation(s)
- Hu Xu
- Wuhu HospitalEast China Normal UniversityShanghai200241China
- Health Science CenterEast China Normal UniversityShanghai200241China
| | - Xiuhui Mao
- Health Science CenterEast China Normal UniversityShanghai200241China
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Yali Wang
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Chunhua Zhu
- Health Science CenterEast China Normal UniversityShanghai200241China
| | - Bo Liang
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Yihang Zhao
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Mengfei Zhou
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Lan Ye
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Mengting Hong
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Huishu Shao
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Yashuo Wang
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Haonan Li
- MOE Key Laboratory of Bio‐Intelligent ManufacturingSchool of BioengineeringDalian University of TechnologyDalian116024China
| | - Yinghui Qi
- Department of NephrologyPudong New District Punan HospitalShanghai200125China
| | - Yongliang Yang
- MOE Key Laboratory of Bio‐Intelligent ManufacturingSchool of BioengineeringDalian University of TechnologyDalian116024China
| | - Lihong Chen
- Health Science CenterEast China Normal UniversityShanghai200241China
| | - Youfei Guan
- Health Science CenterEast China Normal UniversityShanghai200241China
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Xiaoyan Zhang
- Wuhu HospitalEast China Normal UniversityShanghai200241China
- Health Science CenterEast China Normal UniversityShanghai200241China
| |
Collapse
|
2
|
Wang C, Lv J, Yang M, Fu Y, Wang W, Li X, Yang Z, Lu J. Recent advances in surface functionalization of cardiovascular stents. Bioact Mater 2025; 44:389-410. [PMID: 39539518 PMCID: PMC11558551 DOI: 10.1016/j.bioactmat.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading global threat to human health. The clinical application of vascular stents improved the survival rates and quality of life for patients with cardiovascular diseases. However, despite the benefits stents bring to patients, there are still notable complications such as thrombosis and in-stent restenosis (ISR). Surface modification techniques represent an effective strategy to enhance the clinical efficacy of vascular stents and reduce complications. This paper reviews the development strategies of vascular stents based on surface functional coating technologies aimed at addressing the limitations in clinical application, including the inhibition of intimal hyperplasia, promotion of re-endothelialization. These strategies have improved endothelial repair and inhibited vascular remodeling, thereby promoting vascular healing post-stent implantation. However, the pathological microenvironment of target vessels and the lipid plaques are key pathological factors in the development of atherosclerosis (AS) and impaired vascular repair after percutaneous coronary intervention (PCI). Therefore, restoring normal physiological environment and removing the plaques are also treatment focuses after PCI for promoting vascular repair. Unfortunately, research in this area is limited. This paper reviews the advancements in vascular stents based on surface engineering technologies over the past decade, providing guidance for the development of stents.
Collapse
Affiliation(s)
- Chuanzhe Wang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, 523059, Dongguan, Guangdong, China
| | - Jie Lv
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| | - Mengyi Yang
- School of Materials Science and Engineering, Key Lab of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yan Fu
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, 523059, Dongguan, Guangdong, China
| | - Wenxuan Wang
- School of Materials Science and Engineering, Key Lab of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, 610031, Chengdu, China
| | - Xin Li
- Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, 610072, Chengdu, Sichuan, China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, 523059, Dongguan, Guangdong, China
| | - Jing Lu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Mola S, Yıldırım A, Kandemir NO, Deniz G, Gül EB, Ünal EU. Unlocking vascular vitality: Exploring the impact of LIMA harvesting technique on endothelial health. Cardiovasc Pathol 2025; 74:107699. [PMID: 39357782 DOI: 10.1016/j.carpath.2024.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND This study investigates the impact of different harvesting techniques on the morphology and endothelial function of the left internal mammary artery (LIMA) grafts in coronary artery bypass grafting (CABG). METHODS Fifty-three patients undergoing elective CABG were randomly assigned to two groups based on the harvesting technique: traditional clipping and nonclipping. Histological analyses revealed that arteries in the nonclipped group exhibited greater dilation and preserved endothelial integrity compared to the control group. RESULTS The nonclipped group exhibited greater arterial dilation and preserved endothelial integrity compared to the clipped group. Immunostaining for endothelial nitric oxide synthase (eNOS) showed significantly higher expression in the nonclipped group, conversly COX-2 staining showed fewer expression in the nonclipped group indicating better endothelial function preservation. CONCLUSION These findings suggest that maintaining perfusion during LIMA harvesting may improve endothelial function and potentially enhance graft patency in the long term. Further research is warranted to validate these results and optimize harvesting techniques for CABG procedures.
Collapse
Affiliation(s)
- Serkan Mola
- Cardiovascular Surgery Department, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Alp Yıldırım
- Cardiovascular Surgery Department, Ankara Atatürk Sanatoryum Training and Research Hospital, Ankara, Turkey.
| | | | - Gökay Deniz
- Cardiovascular Surgery Department, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Enis Burak Gül
- Cardiovascular Surgery Department, Ankara Bilkent City Hospital, Ankara, Turkey
| | | |
Collapse
|
4
|
Ikdahl E, Kerola A, Sollerud E, Semb AG. Cardiovascular Implications of Non-steroidal Anti-inflammatory Drugs: A Comprehensive Review, with Emphasis on Patients with Rheumatoid Arthritis. Eur Cardiol 2024; 19:e27. [PMID: 39872418 PMCID: PMC11770528 DOI: 10.15420/ecr.2024.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/06/2024] [Indexed: 01/30/2025] Open
Abstract
This review examines the cardiovascular risks associated with the use of non-steroidal anti-inflammatory drugs (NSAIDs), both traditional NSAIDs and cyclooxygenase-2 selective inhibitors (COXIBs). It describes the history of traditional NSAIDs and the development of COXIBs to explain why their cardiovascular side effects were unnoticed for many decades. Further, the review presents the mechanism of action of NSAIDs, to elucidate the possible underlying basis for why they are associated with an increased risk of cardiovascular disease. Finally, data on the cardiovascular risk with NSAID use in patients with rheumatoid arthritis are presented, and we propose possible explanations for why the risk of cardiovascular side effects in these patients seems to be less pronounced than in the general population.
Collapse
Affiliation(s)
- Eirik Ikdahl
- REMEDY Center for Treatment of Rheumatic and Musculoskeletal Diseases, Diakonhjemmet HospitalOslo, Norway
| | - Anne Kerola
- Department of Rheumatology, Päijät-Häme Joint Authority for Health and WellbeingLahti, Finland
- Faculty of Medicine, University of HelsinkiHelsinki, Finland
| | - Eli Sollerud
- REMEDY Center for Treatment of Rheumatic and Musculoskeletal Diseases, Diakonhjemmet HospitalOslo, Norway
| | - Anne Grete Semb
- REMEDY Center for Treatment of Rheumatic and Musculoskeletal Diseases, Diakonhjemmet HospitalOslo, Norway
| |
Collapse
|
5
|
Chen XD, Li X, Li XM, Yang SQ, Wang BG. Eremophilane- and Acorane-Type Sesquiterpenes from the Deep-Sea Cold-Seep-Derived Fungus Furcasterigmium furcatum CS-280 Cultured in the Presence of Autoclaved Pseudomonas aeruginosa QDIO-4. Mar Drugs 2024; 22:574. [PMID: 39728148 DOI: 10.3390/md22120574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Six new sesquiterpenes, including four eremophilane derivatives fureremophilanes A-D (1-4) and two acorane analogues furacoranes A and B (5 and 6), were characterized from the culture extract of the cold-seep derived fungus Furcasterigmium furcatum CS-280 co-cultured with autoclaved Pseudomonas aeruginosa QDIO-4. All the six compounds were highly oxygenated especially 2 and 3 with infrequent epoxyethane and tetrahydrofuran ring systems. The structures of 1-6 were established on the basis of detailed interpretation of 1D and 2D NMR and MS data. Their relative and absolute configurations were assigned by a combination of NOESY and single crystal X-ray crystallographic analysis, and by time-dependent density functional (TDDFT) ECD calculations as well. All compounds were tested the anti-inflammatory activity against human COX-2 protein, among which, compounds 2 and 3 displayed activities with IC50 values 123.00 µM and 93.45 µM, respectively. The interaction mechanism was interpreted by molecular docking.
Collapse
Affiliation(s)
- Xiao-Dan Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| |
Collapse
|
6
|
Vaja R, Ferreira P, Portas L, Ahmetaj-Shala B, Cypaite N, Gashaw H, Quint J, Khamis R, Hartley A, MacDonald TM, Mackenzie IS, Kirkby NS, Mitchell JA. Vascular and inflammatory biomarkers of cardiovascular events in non-steroidal anti-inflammatory drug users. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae088. [PMID: 39660078 PMCID: PMC11630077 DOI: 10.1093/ehjopen/oeae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 12/12/2024]
Abstract
Aims The Standard care vs. Celecoxib Outcome Trial (SCOT) found similar risk of cardiovascular events with traditional non-steroidal anti-inflammatory drugs (NSAIDs) and the cyclooxygenase-2-selective drug celecoxib. While pre-clinical work has suggested roles for vascular and renal dysfunction in NSAID cardiovascular toxicity, our understanding of these mechanisms remains incomplete. A post hoc analysis of the SCOT cohort was performed to identify clinical risk factors and circulating biomarkers of cardiovascular events in NSAID users. Methods and results Within SCOT (7295 NSAID users with osteoarthritis or rheumatoid arthritis), clinical risk factors associated with cardiovascular events were identified using least absolute shrinkage and selection operator regression. A nested case-control study of serum biomarkers including targeted proteomics was performed in individuals who experienced a cardiovascular event within 1 year (n = 49), matched 2:1 with controls who did not (n = 97). Risk factors significantly associated with cardiovascular events included increasing age, male sex, smoking, total cholesterol:HDL ratio ≥5, and aspirin use. Statin use was cardioprotective [odds ratio (OR) 0.68; 95% confidence interval (CI) 0.46-0.98]. There was significantly higher immunoglobulin (Ig)G anti-malondialdehyde-modified LDL (MDA-LDL), asymmetric dimethylarginine (ADMA), and lower arginine/ADMA. Targeted proteomic analysis identified serum growth differentiation factor 15 (GDF-15) as a candidate biomarker [area under the curve of 0.715 (95% CI 0.63-0.81)]. Conclusion Growth differentiation factor 15 has been identified as a candidate biomarker and should be explored for its mechanistic contribution to NSAID cardiovascular toxicity, particularly given the remarkable providence that GDF-15 was originally described as NSAID-activated gene-1.
Collapse
Affiliation(s)
- Ricky Vaja
- The National Heart and Lung Institute, Imperial College LondonSW7 2AZ, UK
- The Royal Brompton Hospital, London SW3 6NP, UK
| | - Plinio Ferreira
- The National Heart and Lung Institute, Imperial College LondonSW7 2AZ, UK
| | - Laura Portas
- The National Heart and Lung Institute, Imperial College LondonSW7 2AZ, UK
| | | | - Neringa Cypaite
- The National Heart and Lung Institute, Imperial College LondonSW7 2AZ, UK
| | - Hime Gashaw
- The National Heart and Lung Institute, Imperial College LondonSW7 2AZ, UK
| | - Jennifer Quint
- The National Heart and Lung Institute, Imperial College LondonSW7 2AZ, UK
| | - Ramzi Khamis
- The National Heart and Lung Institute, Imperial College LondonSW7 2AZ, UK
| | - Adam Hartley
- The National Heart and Lung Institute, Imperial College LondonSW7 2AZ, UK
| | - Thomas M MacDonald
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD2 1SG, UK
| | - Isla S Mackenzie
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD2 1SG, UK
| | - Nicholas S Kirkby
- The National Heart and Lung Institute, Imperial College LondonSW7 2AZ, UK
| | - Jane A Mitchell
- The National Heart and Lung Institute, Imperial College LondonSW7 2AZ, UK
| |
Collapse
|
7
|
Zhang W, Zhang Y, Li J, Tang J, Wu J, Xie Z, Huang X, Tao S, Xue T. Identification of metabolites from the gut microbiota in hypertension via network pharmacology and molecular docking. BIORESOUR BIOPROCESS 2024; 11:102. [PMID: 39433698 PMCID: PMC11493893 DOI: 10.1186/s40643-024-00815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Hypertension is the most prevalent cardiovascular disease, affecting one-third of adults. All antihypertensive drugs have potential side effects. Gut metabolites influence hypertension. The objective of this study was to identify antihypertensive gut metabolites through network pharmacology and molecular docking techniques and to validate their antihypertensive mechanisms via in vitro experiments. A total of 10 core antihypertensive targets and 18 gut metabolites that act on hypertension were identified. Four groups of protein metabolites, namely, CXCL8-baicalein, CXCL8-baicalin, CYP1A1-urolithin A, and PTGS2-equol, which have binding energies of - 7.7, - 8.5, - 7.2, and - 8.8 kcal-mol-1, respectively, were found to have relatively high affinities. Based on its drug-likeness properties in silico and toxicological properties, equol was identified as a potential antihypertensive metabolite. On the basis of the results of network pharmacology and molecular docking, equol may exert antihypertensive effects by regulating the IL-17 signaling pathway and PTGS2. A phenylephrine-induced H9c2 cell model was subsequently utilized to verify that equol inhibits cell hypertrophy (P < 0.05) by inhibiting the IL-17 signaling pathway and PTGS2 (P < 0.05). This study demonstrated that equol has the potential to be developed as a novel therapeutic agent for the treatment of hypertension.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixiange, Xicheng District, Beijing, 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yinming Zhang
- Department of Emergency, Yankuang New Journey General Hospital, Zoucheng, Shandong Province, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixiange, Xicheng District, Beijing, 100053, China.
| | - Jiawei Tang
- School of Computer Science, Beijing University of Posts and Telecommunications, Beijing, China
| | - Ji Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Zicong Xie
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Xuanchun Huang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Shiyi Tao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixiange, Xicheng District, Beijing, 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Xue
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixiange, Xicheng District, Beijing, 100053, China
| |
Collapse
|
8
|
Engert LC, Ledderose C, Biniamin C, Birriel P, Buraks O, Chatterton B, Dang R, Daniel S, Eske A, Reed T, Tang A, Bertisch SM, Mullington JM, Junger WG, Haack M. Effects of low-dose acetylsalicylic acid on the inflammatory response to experimental sleep restriction in healthy humans. Brain Behav Immun 2024; 121:142-154. [PMID: 39043348 PMCID: PMC11389483 DOI: 10.1016/j.bbi.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Sleep deficiencies, such as manifested in short sleep duration or insomnia symptoms, are known to increase the risk for multiple disease conditions involving immunopathology. Inflammation is hypothesized to be a mechanism through which deficient sleep acts as a risk factor for these conditions. Thus, one potential way to mitigate negative health consequences associated with deficient sleep is to target inflammation. Few interventional sleep studies investigated whether improving sleep affects inflammatory processes, but results suggest that complementary approaches may be necessary to target inflammation associated with sleep deficiencies. We investigated whether targeting inflammation through low-dose acetylsalicylic acid (ASA, i.e., aspirin) is able to blunt the inflammatory response to experimental sleep restriction. METHODS 46 healthy participants (19F/27M, age range 19-63 years) were studied in a double-blind randomized placebo-controlled crossover trial with three protocols each consisting of a 14-day at-home monitoring phase followed by an 11-day (10-night) in-laboratory stay (sleep restriction/ASA, sleep restriction/placebo, control sleep/placebo). In the sleep restriction/ASA condition, participants took low-dose ASA (81 mg/day) daily in the evening (22:00) during the at-home phase and the subsequent in-laboratory stay. In the sleep restriction/placebo and control sleep/placebo conditions, participants took placebo daily. Each in-laboratory stay started with 2 nights with a sleep opportunity of 8 h/night (23:00-07:00) for adaptation and baseline measurements. Under the two sleep restriction conditions, participants were exposed to 5 nights of sleep restricted to a sleep opportunity of 4 h/night (03:00-07:00) followed by 3 nights of recovery sleep with a sleep opportunity of 8 h/night. Under the control sleep condition, participants had a sleep opportunity of 8 h/night throughout the in-laboratory stay. During each in-laboratory stay, participants had 3 days of intensive monitoring (at baseline, 5th day of sleep restriction/control sleep, and 2nd day of recovery sleep). Variables, including pro-inflammatory immune cell function, C-reactive protein (CRP), and actigraphy-estimated measures of sleep, were analyzed using generalized linear mixed models. RESULTS Low-dose ASA administration reduced the interleukin (IL)-6 expression in LPS-stimulated monocytes (p<0.05 for condition*day) and reduced serum CRP levels (p<0.01 for condition) after 5 nights of sleep restriction compared to placebo administration in the sleep restriction condition. Low-dose ASA also reduced the amount of cyclooxygenase (COX)-1/COX-2 double positive cells among LPS-stimulated monocytes after 2 nights of recovery sleep following 5 nights of sleep restriction compared to placebo (p<0.05 for condition). Low-dose ASA further decreased wake after sleep onset (WASO) and increased sleep efficiency (SE) during the first 2 nights of recovery sleep (p<0.001 for condition and condition*day). Baseline comparisons revealed no differences between conditions for all of the investigated variables (p>0.05 for condition). CONCLUSION This study shows that inflammatory responses to sleep restriction can be reduced by preemptive administration of low-dose ASA. This finding may open new therapeutic approaches to prevent or control inflammation and its consequences in those experiencing sleep deficiencies. TRIAL REGISTRATION ClinicalTrials.gov NCT03377543.
Collapse
Affiliation(s)
- Larissa C Engert
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Surgery, University of California San Diego, San Diego, CA, USA
| | - Careen Biniamin
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Paola Birriel
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Olivia Buraks
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bryan Chatterton
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rammy Dang
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Surya Daniel
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Annika Eske
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Taylor Reed
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ava Tang
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Suzanne M Bertisch
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Janet M Mullington
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Surgery, University of California San Diego, San Diego, CA, USA
| | - Monika Haack
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Mury P, Cagnone G, Dagher O, Wünnemann F, Voghel G, Beaudoin M, Lambert M, Miquel G, Noly PE, Perrault LP, Carrier M, Thorin-Trescases N, Joyal JS, Lettre G, Thorin E. Senescence and Inflamm-Aging Are Associated With Endothelial Dysfunction in Men But Not Women With Atherosclerosis. JACC Basic Transl Sci 2024; 9:1163-1177. [PMID: 39534645 PMCID: PMC11551873 DOI: 10.1016/j.jacbts.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 11/16/2024]
Abstract
Coronary artery disease (CAD) is more prevalent in men than in women, with endothelial dysfunction, prodromal to CAD, developing a decade earlier in middle-aged men. We investigated the molecular basis of this dimorphism ex vivo in arterial segments discarded during surgery of CAD patients. The results reveal a lower endothelial relaxant sensitivity in men, and a senescence-associated inflammaging transcriptomic signature in endothelial cells. In women, cellular metabolism and endothelial maintenance pathways are conserved. This suggests that senolytic therapies to reduce risk of cardiovascular events in women with CAD may not be as effective as in men.
Collapse
Affiliation(s)
- Pauline Mury
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Gael Cagnone
- University Hospital Sainte Justine Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Olina Dagher
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Florian Wünnemann
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Guillaume Voghel
- Department of Family Medicine and Emergency Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Melissa Beaudoin
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Mélanie Lambert
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Géraldine Miquel
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Pierre-Emmanuel Noly
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Louis P. Perrault
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Michel Carrier
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | - Jean-Sébastien Joyal
- University Hospital Sainte Justine Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Department of Ophthalmology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Guillaume Lettre
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Eric Thorin
- Montreal Heart Institute Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Yin L, Yuan L, Luo Z, Tang Y, Lin X, Wang S, Liang P, Huang L, Jiang B. COX-2 optimizes cardiac mitochondrial biogenesis and exerts a cardioprotective effect during sepsis. Cytokine 2024; 182:156733. [PMID: 39128194 DOI: 10.1016/j.cyto.2024.156733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Septic cardiomyopathy is a component of multiple organ dysfunction in sepsis. Mitochondrial dysfunction plays an important role in septic cardiomyopathy. Studies have shown that cyclooxygenase-2 (COX-2) had a protective effect on the heart, and prostaglandin E2 (PGE2), the downstream product of COX-2, was increasingly recognized to have a protective effect on mitochondrial function. OBJECTIVE This study aims to demonstrate that COX-2/PGE2 can protect against septic cardiomyopathy by regulating mitochondrial function. METHODS Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis and RAW264.7 macrophages and H9C2 cells were used to simulate sepsis in vitro. The NS-398 and celecoxib were used to inhibit the activity of COX-2. ZLN005 and SR18292 were used to activate or inhibit the PGC-1α activity. The mitochondrial biogenesis was examined through the Mitotracker Red probe, mtDNA copy number, and ATP content detection. RESULTS The experimental data suggested that COX-2 inhibition attenuated PGC-1α expression thus decreasing mitochondrial biogenesis, whereas increased PGE2 could promote mitochondrial biogenesis by activating PGC-1α. The results also showed that the effect of COX-2/PGE2 on PGC-1α was mediated by the activation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB). Finally, the effect of COX-2/PGE2 on the heart was also verified in the septic mice. CONCLUSION Collectively, these results suggested that COX-2/PGE2 pathway played a cardioprotective role in septic cardiomyopathy through improving mitochondrial biogenesis, which has changed the previous understanding that COX-2/PGE2 only acted as an inflammatory factor.
Collapse
Affiliation(s)
- Leijing Yin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Ludong Yuan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Zhengyang Luo
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Xiaofang Lin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Shuxin Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Lingjin Huang
- Department of Cardiothoracic Surgery, Xiangya Hospital Central South University, Changsha, PR China.
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
11
|
Liang S, Wang X, Zhu X. Insights from pharmacovigilance and pharmacodynamics on cardiovascular safety signals of NSAIDs. Front Pharmacol 2024; 15:1455212. [PMID: 39295938 PMCID: PMC11408209 DOI: 10.3389/fphar.2024.1455212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Background and Aim Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to treat fever, pain, and inflammation. Concerns regarding their cardiovascular safety have been raised. However, the underlying mechanism behind these events remains unknown. We aim to investigate the cardiovascular safety signals and receptor mechanisms of NSAIDs, employing a comprehensive approach that integrates pharmacovigilance and pharmacodynamics. Methods This study utilized a pharmacovigilance-pharmacodynamic approach to evaluate the cardiovascular safety of NSAIDs and explore potential receptor mechanisms involved. Data were analyzed using the OpenVigil 2.1 web application, which grants access to the FDA Adverse Event Reporting System (FAERS) database, in conjunction with the BindingDB database, which provides target information on the pharmacodynamic properties of NSAIDs. Disproportionality analysis employing the Empirical Bayes Geometric Mean (EBGM) and Reporting Odds Ratio (ROR) methods was conducted to identify signals for reporting cardiovascular-related adverse drug events (ADEs) associated with 13 NSAIDs. This analysis encompassed three System Organ Classes (SOCs) associated with the cardiovascular system: blood and lymphatic system disorders, cardiac disorders, and vascular disorders. The primary targets were identified through the receptor-NSAID interaction network. Ordinary least squares (OLS) regression models explored the relationship between pharmacovigilance signals and receptor occupancy rate. Results A total of 201,231 reports of cardiovascular-related ADEs were identified among the 13 NSAIDs. Dizziness, anemia, and hypertension were the most frequently reported Preferred Terms (PTs). Overall, nimesulide and parecoxib exhibited the strongest signal strengths of ADEs at SOC levels related to the cardiovascular system. On the other hand, our data presented naproxen and diclofenac as drugs of comparatively low signal strength. Cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) were identified as central targets. OLS regression analysis revealed that the normalized occupancy rate for either COX-1 or COX-2 was significantly inversely correlated with the log-transformed signal measures for blood and lymphatic system disorders and vascular disorders, and positively correlated with cardiac disorders and vascular disorders, respectively. This suggests that higher COX-2 receptor occupancy is associated with an increased cardiovascular risk from NSAIDs. Conclusion Cardiovascular safety of NSAIDs may depend on pharmacodynamic properties, specifically, the percentage of the occupied cyclooxygenase isoenzymes. More studies are needed to explore these relations and improve the prescription process.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Pharmacy, Hebei Medical University Third Hospital, Shijiazhuang, China
| | - Xianying Wang
- Department of Pharmacy, Hebei Medical University Third Hospital, Shijiazhuang, China
| | - Xiuqing Zhu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Uttley M, Horne G, Tsigkinopoulou A, Del Carratore F, Hawari A, Kiezel-Tsugunova M, Kendall AC, Jones J, Messenger D, Bhogal RK, Breitling R, Nicolaou A. An adaptable in silico ensemble model of the arachidonic acid cascade. Mol Omics 2024; 20:453-468. [PMID: 38860509 PMCID: PMC11318654 DOI: 10.1039/d3mo00187c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
Eicosanoids are a family of bioactive lipids, including derivatives of the ubiquitous fatty acid arachidonic acid (AA). The intimate involvement of eicosanoids in inflammation motivates the development of predictive in silico models for a systems-level exploration of disease mechanisms, drug development and replacement of animal models. Using an ensemble modelling strategy, we developed a computational model of the AA cascade. This approach allows the visualisation of plausible and thermodynamically feasible predictions, overcoming the limitations of fixed-parameter modelling. A quality scoring method was developed to quantify the accuracy of ensemble predictions relative to experimental data, measuring the overall uncertainty of the process. Monte Carlo ensemble modelling was used to quantify the prediction confidence levels. Model applicability was demonstrated using mass spectrometry mediator lipidomics to measure eicosanoids produced by HaCaT epidermal keratinocytes and 46BR.1N dermal fibroblasts, treated with stimuli (calcium ionophore A23187), (ultraviolet radiation, adenosine triphosphate) and a cyclooxygenase inhibitor (indomethacin). Experimentation and predictions were in good qualitative agreement, demonstrating the ability of the model to be adapted to cell types exhibiting differences in AA release and enzyme concentration profiles. The quantitative agreement between experimental and predicted outputs could be improved by expanding network topology to include additional reactions. Overall, our approach generated an adaptable, tuneable ensemble model of the AA cascade that can be tailored to represent different cell types and demonstrated that the integration of in silico and in vitro methods can facilitate a greater understanding of complex biological networks such as the AA cascade.
Collapse
Affiliation(s)
- Megan Uttley
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Grace Horne
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Areti Tsigkinopoulou
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Francesco Del Carratore
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
- Department of Biochemistry, Cell and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, UK
| | - Aliah Hawari
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Magdalena Kiezel-Tsugunova
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Janette Jones
- Unilever R&D, Quarry Road East, Bebington, Wirral, CH63 3JW, UK
| | - David Messenger
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Ranjit Kaur Bhogal
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Carvalho-Silva JM, Reis ACD. Anti-inflammatory action of silver nanoparticles in vivo: systematic review and meta-analysis. Heliyon 2024; 10:e34564. [PMID: 39113960 PMCID: PMC11305315 DOI: 10.1016/j.heliyon.2024.e34564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
The aim of this study was to systematically review the literature to investigate whether silver nanoparticles (AgNPs) have an anti-inflammatory effect in vivo. The guidelines of PRISMA were applied, and a registration was made in PROSPERO. A personalized search of the PubMed, Web of Science, Scopus, Embase, Lilacs, and Google Scholar databases was conducted in September 2023. For the data analysis, the inverse variance in the random effects model was used. The tools of SYRCLE and GRADE were used to assess the risk of bias and the certainty of evidence, respectively. From the 9185 identified studies, 5685 duplicate studies were excluded; 52 were read in full text, and 7 were included in this review. Six studies were evaluated by the meta-analysis, and an increase in anti-inflammatory molecules (SMD -5.22; PI [-6.50, -3.94]) and an increase in anti-inflammatory ones (SMD 5.75; PI [3.79, 7.72]) were observed. Qualitative analysis showed a reduction in pro-inflammatory proteins and in the COX-2 pathway. It was concluded that AgNPs present an anti-inflammatory action in vivo through mechanisms involving the reduction of pro-inflammatory molecules and proteins, the increase of anti-inflammatory molecules, and selective inhibition of the COX-2 pathway.
Collapse
Affiliation(s)
- João Marcos Carvalho-Silva
- Department of Dental Materials and Prosthesis, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andréa Cândido dos Reis
- Department of Dental Materials and Prosthesis, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
14
|
Nicolau ST, Tres DP, Ayala TS, Menolli RA. Nonsteroidal Anti-Inflammatory Drugs and Experimental Chagas Disease: An Unsolved Question. Parasite Immunol 2024; 46:e13057. [PMID: 39008292 DOI: 10.1111/pim.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Chagas disease is a parasitic disease caused by the protozoan Trypanosoma cruzi with an acute, detectable blood parasites phase and a chronic phase, in which the parasitemia is not observable, but cardiac and gastrointestinal consequences are possible. Mice are the principal host used in experimental Chagas disease but reproduce the human infection depending on the animal and parasite strain, besides dose and route of administration. Lipidic mediators are tremendously involved in the pathogenesis of T. cruzi infection, meaning the prostaglandins and thromboxane, which participate in the immunosuppression characteristic of the acute phase. Thus, the eicosanoids inhibition caused by the nonsteroidal anti-inflammatory drugs (NSAIDs) alters the dynamic of the disease in the experimental models, both in vitro and in vivo, which can explain the participation of the different mediators in infection. However, marked differences are founded in the various NSAIDs existing because of the varied routes blocked by the drugs. So, knowing the results in the experimental models of Chagas disease with or without the NSAIDs helps comprehend the pathogenesis of this infection, which still needs a better understanding.
Collapse
Affiliation(s)
- Scheila Thaís Nicolau
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Daniela Patrícia Tres
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Thaís Soprani Ayala
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Rafael Andrade Menolli
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| |
Collapse
|
15
|
Liu J, Chen L, Sun Z, Tao Z, Pavel V, Li Y, Wang F, Cui W, Liu S. Unidirectional gene delivery electrospun fibrous membrane via charge repulsion for tendon repair. Bioact Mater 2024; 37:191-205. [PMID: 38549775 PMCID: PMC10972767 DOI: 10.1016/j.bioactmat.2024.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 11/12/2024] Open
Abstract
Gene therapy is capable of efficiently regulating the expression of abnormal genes in diseased tissues and expected to be a therapeutic option for refractory diseases. However, unidirectional targeting gene therapy is always desired at the tissue interface. In this study, inspired by the principle that like charges repulse each other, a positively charged micro-nano electrospun fibrous membrane with dual-layer structure was developed by electrospinning technology to achieve unidirectional delivery of siRNA-loaded cationic nanocarriers, thus realizing unidirectional gene therapy at the tendon-paratenon interface. Under the charge repulsion of positively charged layer, more cationic COX-2 siRNA nanocarriers were enriched in peritendinous tissue, which not only improved the bioavailability of the gene drug to prevent the peritendinous adhesion formation, but also avoided adverse effects on the fragile endogenous healing of tendon itself. In summary, this study provides an innovative strategy for unidirectional targeting gene therapy of tissue interface diseases by utilizing charge repulsion to facilitate unidirectional delivery of gene drugs.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Liang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Zhenyu Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Zaijin Tao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Belarusian State Medical University, Minsk 220024, Belarus
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| |
Collapse
|
16
|
Zhang Y, Yuan M, Cai W, Sun W, Shi X, Liu D, Song W, Yan Y, Chen T, Bao Q, Zhang B, Liu T, Zhu Y, Zhang X, Li G. Prostaglandin I 2 signaling prevents angiotensin II-induced atrial remodeling and vulnerability to atrial fibrillation in mice. Cell Mol Life Sci 2024; 81:264. [PMID: 38878214 PMCID: PMC11335301 DOI: 10.1007/s00018-024-05259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/07/2024] [Accepted: 05/02/2024] [Indexed: 06/29/2024]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia, and atrial fibrosis is a pathological hallmark of structural remodeling in AF. Prostaglandin I2 (PGI2) can prevent the process of fibrosis in various tissues via cell surface Prostaglandin I2 receptor (IP). However, the role of PGI2 in AF and atrial fibrosis remains unclear. The present study aimed to clarify the role of PGI2 in angiotensin II (Ang II)-induced AF and the underlying molecular mechanism. PGI2 content was decreased in both plasma and atrial tissue from patients with AF and mice treated with Ang II. Treatment with the PGI2 analog, iloprost, reduced Ang II-induced AF and atrial fibrosis. Iloprost prevented Ang II-induced atrial fibroblast collagen synthesis and differentiation. RNA-sequencing analysis revealed that iloprost significantly attenuated transcriptome changes in Ang II-treated atrial fibroblasts, especially mitogen-activated protein kinase (MAPK)-regulated genes. We demonstrated that iloprost elevated cAMP levels and then activated protein kinase A, resulting in a suppression of extracellular signal-regulated kinase1/2 and P38 activation, and ultimately inhibiting MAPK-dependent interleukin-6 transcription. In contrast, cardiac fibroblast-specific IP-knockdown mice had increased Ang II-induced AF inducibility and aggravated atrial fibrosis. Together, our study suggests that PGI2/IP system protects against atrial fibrosis and that PGI2 is a therapeutic target for treating AF.The prospectively registered trial was approved by the Chinese Clinical Trial Registry. The trial registration number is ChiCTR2200056733. Data of registration was 2022/02/12.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Wenbin Cai
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China
| | - Weiyan Sun
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China
| | - Xuelian Shi
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China
| | - Daiqi Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Wenhua Song
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Yingqun Yan
- Department of Cardiac Surgery, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Tienan Chen
- Department of Cardiac Surgery, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Qiankun Bao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Bangying Zhang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Xichang Road 295th, Kunming, 650032, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China.
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China.
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China.
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China.
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China.
- Department of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China.
| |
Collapse
|
17
|
Aziz YMA, Nafie MS, Hanna PA, Ramadan S, Barakat A, Elewa M. Synthesis, Docking, and DFT Studies on Novel Schiff Base Sulfonamide Analogues as Selective COX-1 Inhibitors with Anti-Platelet Aggregation Activity. Pharmaceuticals (Basel) 2024; 17:710. [PMID: 38931377 PMCID: PMC11206759 DOI: 10.3390/ph17060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Selective COX-1 inhibitors are preferential therapeutic targets for platelet aggregation and clotting responses. In this study, we examined the selective COX-1-inhibitory activities of four newly synthesized compounds, 10-13, along with their abilities to inhibit platelet aggregation against ADP and collagen. The target compounds 10-13 were synthesized using the conventional method, sonication, and microwave-assisted methods. Microanalytical and spectral data were utilized to elucidate the structures of the new compounds 10-13. Additionally, a spectral NMR experiment [NOESY] was conducted to emphasize the configuration around the double bond of the imine group C=N. The obtained results revealed no observed correlation between any of the neighboring protons, suggesting that the configuration at the C=N double bond is E. Biological results revealed that all the screened compounds 10-13 might serve as selective COX-1 inhibitors. They showed IC50 values ranging from 0.71 μM to 4.82 μM against COX-1 and IC50 values ranging from 9.26 μM to 15.24 μM against COX-2. Their COX-1 selectivity indices ranged between 2.87 and 18.69. These compounds show promise as promising anti-platelet aggregation agents. They effectively prevented platelet aggregation induced by ADP with IC50 values ranging from 0.11 μM to 0.37 μM, surpassing the standard aspirin with an IC50 value of 0.49 μM. Additionally, they inhibited the platelet aggregation induced by collagen with IC50 values ranging from 0.12 μM to 1.03 μM, demonstrating superior efficacy compared to aspirin, which has an IC50 value of 0.51 μM. In silico molecular modeling was performed for all the target compounds within the active sites of COX-1 and COX-2 to rationalize their selective inhibitory activities towards COX-1. It was found that the binding interactions of the designed compounds within the COX-1 active site had remained unaffected by the presence of celecoxib. Molecular modeling and DFT calculations using the B3LYP/6-31+G (d,p) level were performed to study the stability of E-forms with respect to Z-forms for the investigated compounds. A strong correlation was observed between the experimental observations and the quantum chemical descriptors.
Collapse
Affiliation(s)
- Yasmine M. Abdel Aziz
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed S. Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Pierre A. Hanna
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sherif Ramadan
- Chemistry Department, Michigan State University, East Lansing, MI 48824, USA;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Marwa Elewa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
18
|
Xie L, Huang B, Zhao X, Zhu N. Exploring the mechanisms underlying effects of bisphenol a on cardiovascular disease by network toxicology and molecular docking. Heliyon 2024; 10:e31473. [PMID: 38813174 PMCID: PMC11133888 DOI: 10.1016/j.heliyon.2024.e31473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Background Globally, cardiovascular disease (CVD) has emerged as a leading cause of mortality. Bisphenol A (BPA), recognized as one of the most prevalent and widely distributed endocrine-disrupting chemicals (EDCs), has been consistently linked to the progression of CVD. This research centers on unraveling the molecular mechanisms responsible for the toxic effects of BPA exposure on CVD. Key targets and pathways involved in action of BPA on CVD were investigated by network toxicology. Binding abilities of BPA to core targets were evaluated by molecular docking. Methods and results Based on information retrieved from ChEMBL, DrugBank, and OMIM databases, a total of 27 potential targets were found to be associated with the influence of BPA on CVD. Furthermore, the STRING and Cytoscape software were employed to identify three central genes-ESR1, PPARG, and PTGS2-and to construct both the protein-protein interaction network and an interaction diagram of potential targets. Gene ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes, KEGG) pathway enrichment analyses via WebGestalt revealed key biological processes (BP), cellular components (CC), molecular functions (MF), and pathways, such as the calcium signaling pathway, inflammatory mediator regulation of TRP channels, gap junction, adrenergic signaling in cardiomyocytes, cGMP-PKG signaling pathway, and cAMP signaling pathway, predominantly involved in BPA-induced CVD toxicity. By using molecular docking investigations, it proved that BPA binds to ESR1, PPARG, and PTGS2 steadily and strongly. Conclusion This study not only establishes a theoretical framework for understanding the molecular toxicity mechanism of BPA in cardiovascular disease (CVD) but also introduces an innovative network toxicology approach to methodically investigate the influence of environmental contaminants on CVD. This methodology sets the stage for drug discovery efforts targeting CVD linked to exposure to endocrine-disrupting chemicals (EDCs).
Collapse
Affiliation(s)
- Lina Xie
- Department of Neurosurgery, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, China
| | - Bingwu Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China
| | - Xuyong Zhao
- Department of Cardiology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, China
| | - Ning Zhu
- Department of Cardiology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, China
| |
Collapse
|
19
|
Kitala-Tańska K, Socha K, Juśkiewicz J, Krajewska-Włodarczyk M, Majewski M. The Effect of an Elevated Dietary Copper Level on the Vascular Contractility and Oxidative Stress in Middle-Aged Rats. Nutrients 2024; 16:1172. [PMID: 38674863 PMCID: PMC11054332 DOI: 10.3390/nu16081172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Copper (Cu), being an essential mineral, plays a crucial role in maintaining physiological homeostasis across multiple bodily systems, notably the cardiovascular system. However, an increased Cu level in the body may cause blood vessel dysfunction and oxidative stress, which is unfavorable for the cardiovascular system. Middle-aged (7-8 months old) male Wistar rats (n/group = 12) received a diet supplemented with 6.45 mg Cu/kg (100% of the recommended daily dietary quantity of copper) for 8 weeks (Group A). The experimental group received 12.9 mg Cu/kg of diet (200%-Group B). An ex vivo study revealed that supplementation with 200% Cu decreased the contraction of isolated aortic rings to noradrenaline (0.7-fold) through FP receptor modulation. Vasodilation to sodium nitroprusside (1.10-fold) and acetylcholine (1.13-fold) was potentiated due to the increased net effect of prostacyclin derived from cyclooxygenase-1. Nitric oxide (NO, 2.08-fold), superoxide anion (O2•-, 1.5-fold), and hydrogen peroxide (H2O2, 2.33-fold) measured in the aortic rings increased. Blood serum antioxidant status (TAS, 1.6-fold), Cu (1.2-fold), Zn (1.1-fold), and the Cu/Zn ratio (1.4-fold) increased. An increase in Cu (1.12-fold) and the Cu/Zn ratio (1.09-fold) was also seen in the rats' livers. Meanwhile, cyclooxygenase-1 (0.7-fold), cyclooxygenase-2 (0.4-fold) and glyceraldehyde 3-phosphate dehydrogenase (0.5-fold) decreased. Moreover, a negative correlation between Cu and Zn was found (r = -0.80) in rat serum. Supplementation with 200% Cu did not modify the isolated heart functioning. No significant difference was found in the body weight, fat/lean body ratio, and organ weight for either the heart or liver, spleen, kidney, and brain. Neither Fe nor Se, the Cu/Se ratio, the Se/Zn ratio (in serum and liver), heme oxygenase-1 (HO-1), endothelial nitric oxide synthase (eNOS), or intercellular adhesion molecule-1 (iCAM-1) (in serum) were modified. Supplementation with 200% of Cu potentiated pro-oxidant status and modified vascular contractility in middle-aged rats.
Collapse
Affiliation(s)
- Klaudia Kitala-Tańska
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Białystok, 15-222 Białystok, Poland;
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Magdalena Krajewska-Włodarczyk
- Department of Mental and Psychosomatic Diseases, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | - Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| |
Collapse
|
20
|
Pourmal S, Green E, Bajaj R, Chemmama IE, Knudsen GM, Gupta M, Sali A, Cheng Y, Craik CS, Kroetz DL, Stroud RM. Structural basis of prostaglandin efflux by MRP4. Nat Struct Mol Biol 2024; 31:621-632. [PMID: 38216659 PMCID: PMC11145372 DOI: 10.1038/s41594-023-01176-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/07/2023] [Indexed: 01/14/2024]
Abstract
Multidrug resistance protein 4 (MRP4) is a broadly expressed ATP-binding cassette transporter that is unique among the MRP subfamily for transporting prostanoids, a group of signaling molecules derived from unsaturated fatty acids. To better understand the basis of the substrate selectivity of MRP4, we used cryogenic-electron microscopy to determine six structures of nanodisc-reconstituted MRP4 at various stages throughout its transport cycle. Substrate-bound structures of MRP4 in complex with PGE1, PGE2 and the sulfonated-sterol DHEA-S reveal a common binding site that accommodates a diverse set of organic anions and suggest an allosteric mechanism for substrate-induced enhancement of MRP4 ATPase activity. Our structure of a catalytically compromised MRP4 mutant bound to ATP-Mg2+ is outward-occluded, a conformation previously unobserved in the MRP subfamily and consistent with an alternating-access transport mechanism. Our study provides insights into the endogenous function of this versatile efflux transporter and establishes a basis for MRP4-targeted drug design.
Collapse
Affiliation(s)
- Sergei Pourmal
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Program in Chemistry and Chemical Biology, University of California, San Francisco, CA, USA
- Genentech, South San Francisco, CA, USA
| | - Evan Green
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
- Exelixis, Alameda, CA, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Ilan E Chemmama
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Brightseed, South San Francisco, CA, USA
| | - Giselle M Knudsen
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
| |
Collapse
|
21
|
Ju Z, Xu J, Tang K, Chen F. Structural modification based on the diclofenac scaffold: Achieving reduced colitis side effects through COX-2/NLRP3 selective inhibition. Eur J Med Chem 2024; 268:116257. [PMID: 38382390 DOI: 10.1016/j.ejmech.2024.116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
COX-2/NLPR3-targeted therapy might be beneficial for the inflammation diseases. To discover novel anti-inflammatory compounds with favorable safety profiles, three new series of non-carboxylic diclofenac analogues bearing various ring systems, such as oxadiazoles 4a-4w, triazoles 6a-6m, and cyclic imides 7a and 7b, were synthesized. The synthesized analogues were evaluated for their inhibitory activity against COX-2 enzyme. Among them, compound 6k exhibited potent selective COX-2 inhibition (IC50 = 1.53 μM; selectivity ((IC50 (COX-1)/IC50(COX-2) = 17.19). Treatment with compound 6k effectively suppressed the NF-κB/NLRP3 signaling pathway, resulting in reduced expression of pro-inflammatory factors. The in vivo ulcerative colitis assay demonstrated that compound 6k significantly ameliorated histological damages and showed strong protection against DSS-induced acute colitis. The collected results indicated that compound 6k displays anti-inflammatory activity through COX-2/NLRP3 inhibition. Therefore, compound 6k represents a promising candidate for further development as a new lead compound with reduced colitis side effects.
Collapse
Affiliation(s)
- Zhiran Ju
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junde Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Keshuang Tang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fener Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China.
| |
Collapse
|
22
|
Puertas-Umbert L, Puig N, Camacho M, Dantas AP, Marín R, Martí-Fàbregas J, Jiménez-Xarrié E, Benitez S, Camps-Renom P, Jiménez-Altayó F. Serum from Stroke Patients with High-Grade Carotid Stenosis Promotes Cyclooxygenase-Dependent Endothelial Dysfunction in Non-ischemic Mice Carotid Arteries. Transl Stroke Res 2024; 15:140-152. [PMID: 36536168 PMCID: PMC10796474 DOI: 10.1007/s12975-022-01117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/15/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Atherosclerosis is responsible for 20% of ischemic strokes, and severe carotid stenosis is associated with a higher incidence of first-ever and recurrent strokes. The release of pro-inflammatory mediators into the blood in severe atherosclerosis may aggravate endothelial dysfunction after stroke contributing to impair disease outcomes. We hypothesize that environments of severe carotid atherosclerotic disease worsen endothelial dysfunction in stroke linked to enhanced risk of further cerebrovascular events. We mounted nonischemic common carotid arteries from 2- to 4-month-old male Oncins France 1 mice in tissue baths for isometric contraction force measurements and exposed them to serum from men with a recent ischemic stroke and different degrees of carotid stenosis: low- or moderate-grade stenosis (LMGS; < 70%) and high-grade stenosis (HGS; ≥ 70%). The results show that serum from stroke patients induced an impairment of acetylcholine relaxations in mice carotid arteries indicative of endothelium dysfunction. This effect was more pronounced after incubation with serum from patients with a recurrent stroke or vascular death within 1 year of follow-up. When patients were stratified according to the degree of stenosis, serum from HGS patients induced more pronounced carotid artery endothelial dysfunction, an effect that was associated with enhanced circulating levels of IL-1β. Mechanistically, endothelial dysfunction was prevented by both nonselective and selective COX blockade. Altogether, the present findings add knowledge on the understanding of the mechanisms involved in the increased risk of stroke in atherosclerosis and suggest that targeting COX in the carotid artery wall may represent a potential novel therapeutic strategy for secondary stroke prevention.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB, SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Núria Puig
- Institut d'Investigació Biomèdica Sant Pau (IIB, SANT PAU), Barcelona, Spain
- Department of Molecular Biology and Biochemistry, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercedes Camacho
- Institut d'Investigació Biomèdica Sant Pau (IIB, SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Paula Dantas
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Cardiovascular Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Rebeca Marín
- Department of Neurology, IIB SANT PAU, Hospital de La Santa Creu i Sant Pau, Barcelona, Spain
| | - Joan Martí-Fàbregas
- Department of Neurology, IIB SANT PAU, Hospital de La Santa Creu i Sant Pau, Barcelona, Spain
| | - Elena Jiménez-Xarrié
- Department of Neurology, IIB SANT PAU, Hospital de La Santa Creu i Sant Pau, Barcelona, Spain
| | - Sonia Benitez
- Institut d'Investigació Biomèdica Sant Pau (IIB, SANT PAU), Barcelona, Spain
- CIBER of Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Pol Camps-Renom
- Department of Neurology, IIB SANT PAU, Hospital de La Santa Creu i Sant Pau, Barcelona, Spain
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
23
|
Wei M, Lu Z, Zhang H, Fan X, Zhang X, Jiang B, Li J, Xue M. Aspirin and Celecoxib Regulate Notch1/Hes1 Pathway to Prevent Pressure Overload-Induced Myocardial Hypertrophy. Int Heart J 2024; 65:475-486. [PMID: 38825493 DOI: 10.1536/ihj.23-614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
This study aimed to investigate the molecular mechanisms underlying the protective effects of cyclooxygenase (cox) inhibitors against myocardial hypertrophy.Rat H9c2 cardiomyocytes were induced by mechanical stretching. SD rats underwent transverse aortic constriction to induce pressure overload myocardial hypertrophy. Rats were subjected to echocardiography and tail arterial pressure in 12W. qPCR and western blot were used to detect the expression of Notch-related signaling. The inflammatory factors were tested by ELISA in serum, heart tissue, and cell culture supernatant.Compared with control, levels of pro-inflammatory cytokines IL-6, TNF-α, and IL-1β were increased and anti-inflammatory cytokine IL-10 was reduced in myocardial tissues and serum of rat models. Levels of Notch1 and Hes1 were reduced in myocardial tissues. However, cox inhibitor treatment (aspirin and celecoxib), the improvement of exacerbated myocardial hypertrophy, fibrosis, dysfunction, and inflammation was parallel to the activation of Notch1/Hes1 pathway. Moreover, in vitro experiments showed that, in cardiomyocyte H9c2 cells, application of ~20% mechanical stretching activated inflammatory mediators (IL-6, TNF-α, and IL-1β) and hypertrophic markers (ANP and BNP). Moreover, expression levels of Notch1 and Hes1 were decreased. These changes were effectively alleviated by aspirin and celecoxib.Cox inhibitors may protect heart from hypertrophy and inflammation possibly via the Notch1/Hes1 signaling pathway.
Collapse
Affiliation(s)
- Minghui Wei
- School of Basic Medicine, Inner Mongolia Medical University
| | - Ziyu Lu
- School of Basic Medicine, Inner Mongolia Medical University
| | - Haifeng Zhang
- Office of Academic Affairs, Inner Mongolia Medical University
| | - Xiaomei Fan
- Department of Physiology, Inner Mongolia Medical University
| | - Xin Zhang
- Department of Physiology, Inner Mongolia Medical University
| | - Bihui Jiang
- School of Basic Medicine, Inner Mongolia Medical University
| | - Jianying Li
- School of Basic Medicine, Inner Mongolia Medical University
| | - Mingming Xue
- Office of Academic Affairs, Inner Mongolia Medical University
| |
Collapse
|
24
|
Zhang F, Zhu G, Li Y, Qi Y, Wang Z, Li W. Dual-target inhibitors based on COX-2: a review from medicinal chemistry perspectives. Future Med Chem 2023; 15:2209-2233. [PMID: 38095081 DOI: 10.4155/fmc-2023-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Inhibitors of COX-2 constitute a class of anti-inflammatory analgesics, showing potential against certain types of cancer. However, such inhibitors are associated with cardiovascular toxicity. Moreover, although single-target molecules possess specificity for particular targets, they often lead to poor safety, low efficacy and drug resistance due to compensatory mechanisms. A new generation of dual-target drugs that simultaneously inhibit COX-2 and another target is showing strong potential to treat cancer or reduce adverse cardiac effects. The present perspective focuses on the structure and functions of COX-2, and its role as a therapeutic target. It also explores the current state and future possibilities for dual-target strategies from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Fengmei Zhang
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Guonian Zhu
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Yangqian Li
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Yawen Qi
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Zhoufeng Wang
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Weimin Li
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, 610041, Sichuan, China
| |
Collapse
|
25
|
Li X, Dai B, Han Q, Wu Y, Ran B, Wang T, Wen F, Chen J. High risks adverse events associated with usage of aspirin in chronic obstructive pulmonary disease. Expert Rev Respir Med 2023; 17:1285-1295. [PMID: 38087497 DOI: 10.1080/17476348.2023.2294927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Despite potential benefits and widespread prescription of aspirin among chronic obstructive pulmonary disease (COPD) patients, limited research has investigated its adverse effects (AEs) in COPD population. METHODS We conducted a retrospective analysis of adverse drug events (ADEs) reported in the US Food and Drug Administration Adverse Event Reporting System (FAERS) between Q1 2013 and Q2 2022. COPD patients were categorized into two groups based on aspirin use. ADEs related to aspirin use were identified using combined reporting odds ratio (ROR), proportional reporting ratio (PRR), information component (IC) methods. RESULTS A total of 56,660 ADEs reports associated with COPD patients were included in the study. Among these reports, 144 adverse events were linked to aspirin use in COPD patients, including fatigue (4.12%), diarrhea (3.13%), dyspnea exertional (2.03%), rhinorrhea (1.99%), weight increased (1.89%) and vomiting (1.84%), muscle spasms (1.79%), cardiac disorder (1.74%), heart rate increased (1.69%) and peripheral swelling (1.59%). Subgroup analysis indicates that age and gender might affect the AEs frequency in COPD patients using aspirin. CONCLUSIONS Our findings identify 10 most frequently reported ADEs associated with aspirin use in COPD patients, thus offer valuable insights into the AEs of aspirin for safer clinical utilization in COPD management.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Sixth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Bin Dai
- Department of Respiratory and Critical Care Medicine, The General Hospital of Western Theatre Command, Chengdu, Sichuan, China
| | - Qingbing Han
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Yanqiu Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Bi Ran
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Jun Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Zhang K, Yue J, Yin L, Chen J, Chen Y, Hu L, Shen J, Yu N, Gong Y, Liu Z. Comprehensive bioinformatics analysis revealed potential key genes and pathways underlying abdominal aortic aneurysm. Comput Struct Biotechnol J 2023; 21:5423-5433. [PMID: 38022704 PMCID: PMC10665597 DOI: 10.1016/j.csbj.2023.10.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a permanent, asymptomatic segmental dilatation of the abdominal aorta, with a high mortality risk upon rupture. Identification of potential key genes and pathways may help to develop curative drugs for AAA. We conducted RNA-seq on abdominal aortic tissues from both AAA patients and normal individuals as a control group. Integrated bioinformatic analysis was subsequently performed to comprehensively reveal potential key genes and pathways. A total of 1148 differential expressed genes (DEGs) (631 up-regulated and 517 down-regulated) were identified in our study. Gene Ontology (GO) analysis revealed enrichment in terms related to extracellular matrix organization, while KEGG analysis indicated enrichment in hematopoietic cell lineage and ECM-receptor interaction. Protein-protein interaction (PPI) network analysis revealed several candidate key genes, and differential expression of 6 key genes (CXCL8, CCL2, PTGS2, SELL, CCR7, and CXCL1) was validated by Gene Expression Omnibus (GEO) datasets. Receiver operating characteristic curve (ROC) analysis demonstrated these genes' high discriminatory ability between AAA and normal tissues. Immunohistochemistry indicated that several key genes were highly expressed in AAA tissues. Single-cell RNA sequencing revealed differential distribution patterns of these identified key genes among various cell types. 26 potential drugs linked to our key genes were found through DGIdb. Overall, our study provides a comprehensive evaluation of potential key genes and pathways in AAA, which could pave the way for the development of curative pharmacological therapies.
Collapse
Affiliation(s)
- Kaijie Zhang
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Jianing Yue
- Department of Vascular Surgery, Zhongshan Hospital of Fudan University School of Medicine, Shanghai 200032, China
| | - Li Yin
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Jinyi Chen
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Yunlu Chen
- Clinical Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Lanting Hu
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Jian Shen
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Naiji Yu
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Yunxia Gong
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Zhenjie Liu
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| |
Collapse
|
27
|
Zeng W, Jin Q, Wang X. Reassessing the Effects of Dietary Fat on Cardiovascular Disease in China: A Review of the Last Three Decades. Nutrients 2023; 15:4214. [PMID: 37836498 PMCID: PMC10574257 DOI: 10.3390/nu15194214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of global mortality, and is considered one of diseases with the most rapid growth rate in China. Numerous studies have indicated a closed relationship between an increased incidence of CVD and dietary factors. Dietary fat is one of the three primary nutrients of consumption; however, high fat dietary in causing CVD has been neglected in some official dietary guidelines. Our present review has analyzed the relationship between dietary fat consumption and CVD in China over the past 30 years (from 1990 to 2019). There is a significant correlation between CVD incidence and mortality for consumption of both vegetable oils and animal fats, per capita consumption, and the relative weight of dietary fat exceeding that of other food ingredients (e.g., salt, fruit, and marine food). For fatty acid species, the proportion of ω6 fatty acid consumption increased, causing a significant increase in the ratios of ω6/ω3 fatty acids, whereas the proportion of monounsaturated fatty acid consumption decreased. Such changes have been considered a characteristic of dietary fat consumption in Chinese residents over the past 30 years, and are closely related to the incidence of CVD. Therefore, we suggest that the government should spread awareness regarding the consumption of dietary fat intake to prevent CVD and related health disorders. The public should be educated to avoid high fat diet and increase the intake of monounsaturated fatty acids and ω3 fatty acids.
Collapse
Affiliation(s)
- Wei Zeng
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (W.Z.); (Q.J.)
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Basic Medicine, Gannan Medical University, 1 Hexie Avenue, Ganzhou 341000, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (W.Z.); (Q.J.)
| | - Xingguo Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (W.Z.); (Q.J.)
| |
Collapse
|
28
|
Wang Y, Li X, Qi M, Li X, Zhang F, Wang Y, Wu J, Shu L, Fan S, Li Y, Li Y. Pharmacological effects and mechanisms of YiYiFuZi powder in chronic heart disease revealed by metabolomics and network pharmacology. Front Mol Biosci 2023; 10:1203208. [PMID: 37426419 PMCID: PMC10327484 DOI: 10.3389/fmolb.2023.1203208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction: YiYiFuZi powder (YYFZ) is a classical formula in Chinese medicine, which is commonly used clinically for the treatment of Chronic Heart Disease (CHD), but it's pharmacological effects and mechanism of action are currently unclear. Methods: An adriamycin-induced CHD model rat was established to evaluate the pharmacological effects of YYFZ on CHD by the results of inflammatory factor level, histopathology and echocardiography. Metabolomic studies were performed on rat plasma using UPLC-Q-TOF/MS to screen biomarkers and enrich metabolic pathways; network pharmacology analysis was also performed to obtain the potential targets and pathways of YYFZ for the treatment of CHD. Results: The results showed that YYFZ significantly reduced the levels of TNF-α and BNP in the serum of rats, alleviated the disorder of cardiomyocyte arrangement and inflammatory cell infiltration, and improved the cardiac function of rats with CHD. The metabolomic analysis identified a total of 19 metabolites, related to amino acid metabolism, fatty acid metabolism, and other metabolic pathways. Network pharmacology showed that YYFZ acts through PI3K/Akt signaling pathway, MAPK signaling pathway and Ras signaling pathway. Discussion: YYFZ treatment of CHD modulates blood metabolic pattern and several protein phosphorylation cascades but importance specific changes for therapeutic effect require further studies.
Collapse
Affiliation(s)
- Yuming Wang
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Li
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Qi
- TIPRHUYA Advancing Innovative Medicines Ltd., Tianjin, China
| | - Xiaokai Li
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangfang Zhang
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuyu Wang
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junke Wu
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lexin Shu
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Simiao Fan
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunfei Li
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
29
|
Gao LC, Gong FQ. [Recent research on platelet-leukocyte aggregates and their role in the pathogenesis of Kawasaki disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:587-594. [PMID: 37382127 DOI: 10.7499/j.issn.1008-8830.2302066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Activated platelets may interact with various types of leukocytes such as monocytes, neutrophils, dendritic cells, and lymphocytes, trigger intercellular signal transduction, and thus lead to thrombosis and synthesis of massive inflammatory mediators. Elevated levels of circulating platelet-leukocyte aggregates have been found in patients with thrombotic or inflammatory diseases. This article reviews the latest research on the formation, function, and detection methods of platelet-leukocyte aggregates and their role in the onset of Kawasaki disease, so as to provide new ideas for studying the pathogenesis of Kawasaki disease.
Collapse
Affiliation(s)
- Li-Chao Gao
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine/National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Fang-Qi Gong
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine/National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
30
|
Wei M, Liu X, Tan Z, Tian X, Li M, Wei J. Ferroptosis: a new strategy for Chinese herbal medicine treatment of diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1188003. [PMID: 37361521 PMCID: PMC10289168 DOI: 10.3389/fendo.2023.1188003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication of diabetes. It has become a leading cause of death in patients with diabetes and end-stage renal disease. Ferroptosis is a newly discovered pattern of programmed cell death. Its main manifestation is the excessive accumulation of intracellular iron ion-dependent lipid peroxides. Recent studies have shown that ferroptosis is an important driving factor in the onset and development of DN. Ferroptosis is closely associated with renal intrinsic cell (including renal tubular epithelial cells, podocytes, and mesangial cells) damage in diabetes. Chinese herbal medicine is widely used in the treatment of DN, with a long history and definite curative effect. Accumulating evidence suggests that Chinese herbal medicine can modulate ferroptosis in renal intrinsic cells and show great potential for improving DN. In this review, we outline the key regulators and pathways of ferroptosis in DN and summarize the herbs, mainly monomers and extracts, that target the inhibition of ferroptosis.
Collapse
Affiliation(s)
- Maoying Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingxing Liu
- Department of Emergency, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhijuan Tan
- Department of Traditional Chinese Medicine, The Seventh Hospital of Xingtai, Xingtai, Heibei, China
| | - Xiaochan Tian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingdi Li
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Ferreira P, Vaja R, Lopes-Pires M, Crescente M, Yu H, Nüsing R, Liu B, Zhou Y, Yaqoob M, Zhang A, Rickman M, Longhurst H, White WE, Knowles RB, Chan MV, Warner TD, Want E, Kirkby NS, Mitchell JA. Renal Function Underpins the Cyclooxygenase-2: Asymmetric Dimethylarginine Axis in Mouse and Man. Kidney Int Rep 2023; 8:1231-1238. [PMID: 37284684 PMCID: PMC10239776 DOI: 10.1016/j.ekir.2023.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Through the production of prostacyclin, cyclooxygenase (COX)-2 protects the cardiorenal system. Asymmetric dimethylarginine (ADMA), is a biomarker of cardiovascular and renal disease. Here we determined the relationship between COX-2/prostacyclin, ADMA, and renal function in mouse and human models. Methods We used plasma from COX-2 or prostacyclin synthase knockout mice and from a unique individual lacking COX-derived prostaglandins (PGs) because of a loss of function mutation in cytosolic phospholipase A2 (cPLA2), before and after receiving a cPLA2-replete transplanted donor kidney. ADMA, arginine, and citrulline were measured using ultra-high performance liquid-chromatography tandem mass spectrometry. ADMA and arginine were also measured by enzyme-linked immunosorbent assay (ELISA). Renal function was assessed by measuring cystatin C by ELISA. ADMA and prostacyclin release from organotypic kidney slices were also measured by ELISA. Results Loss of COX-2 or prostacyclin synthase in mice increased plasma levels of ADMA, citrulline, arginine, and cystatin C. ADMA, citrulline, and arginine positively correlated with cystatin C. Plasma ADMA, citrulline, and cystatin C, but not arginine, were elevated in samples from the patient lacking COX/prostacyclin capacity compared to levels in healthy volunteers. Renal function, ADMA, and citrulline were returned toward normal range when the patient received a genetically normal kidney, capable of COX/prostacyclin activity; and cystatin C positively correlated with ADMA and citrulline. Levels of ADMA and prostacyclin in conditioned media of kidney slices were not altered in tissue from COX-2 knockout mice compared to wildtype controls. Conclusion In human and mouse models, where renal function is compromised because of loss of COX-2/PGI2 signaling, ADMA levels are increased.
Collapse
Affiliation(s)
- Plinio Ferreira
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Ricky Vaja
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Maria Lopes-Pires
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Marilena Crescente
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - He Yu
- Deparment of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Rolf Nüsing
- Clinical Pharmacology and Pharmacotherapy Department, Goethe University, Frankfurt, Germany
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Magdi Yaqoob
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
| | - Anran Zhang
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Matthew Rickman
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Hilary Longhurst
- Department of Medicine, University of Auckland, and Department of Immunology, Auckland City Hospital, Auckland, New Zealand
| | - William E. White
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
| | - Rebecca B. Knowles
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
| | - Melissa V. Chan
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
| | - Timothy D. Warner
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
| | - Elizabeth Want
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Nicholas S. Kirkby
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Jane A. Mitchell
- National Heart and Lung Institute, Imperial College London, United Kingdom
| |
Collapse
|
32
|
Zhou W, Wang C, Zhang B, Gou S. Hybrids of carbonic anhydrase and cyclooxygenase inhibitors attenuate cardiac hypoxic inflammatory injuries. Eur J Pharmacol 2023; 950:175751. [PMID: 37116562 DOI: 10.1016/j.ejphar.2023.175751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 04/30/2023]
Abstract
Cardiac inflammation is easily accompanied by hypoxia, while hypoxia-induced injury and microenvironmental variations limit the efficacy of common anti-inflammatory drugs. In order to effectively attenuate myocardial injury caused by hypoxic and inflammatory injury, we designed and synthesized a kind of anti-inflammatory compounds by coupling cyclooxygenase (COX) and carbonic anhydrase (CA) inhibitors, and evaluated the activity and their mechanism in vitro and in vivo. It was found that these compounds were structurally stable and had two enzymatic inhibition activities. By inhibiting the activity of overexpressed CA under hypoxia, the acidic microenvironment can be regulated to inhibit the hypoxic injury, in which the pH-dependent primary drug resistance can be overcome to improve the anti-inflammatory effect of the COX inhibitor. Consequently, this study provides a new strategy for the treatment of cardiac inflammation accompanied by hypoxia.
Collapse
Affiliation(s)
- Wen Zhou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, PR China
| | - Chunping Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Bin Zhang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, PR China.
| |
Collapse
|
33
|
Significance of Pulmonary Endothelial Injury and the Role of Cyclooxygenase-2 and Prostanoid Signaling. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010117. [PMID: 36671689 PMCID: PMC9855370 DOI: 10.3390/bioengineering10010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The endothelium plays a key role in the dynamic balance of hemodynamic, humoral and inflammatory processes in the human body. Its central importance and the resulting therapeutic concepts are the subject of ongoing research efforts and form the basis for the treatment of numerous diseases. The pulmonary endothelium is an essential component for the gas exchange in humans. Pulmonary endothelial dysfunction has serious consequences for the oxygenation and the gas exchange in humans with the potential of consecutive multiple organ failure. Therefore, in this review, the dysfunction of the pulmonary endothel due to viral, bacterial, and fungal infections, ventilator-related injury, and aspiration is presented in a medical context. Selected aspects of the interaction of endothelial cells with primarily alveolar macrophages are reviewed in more detail. Elucidation of underlying causes and mechanisms of damage and repair may lead to new therapeutic approaches. Specific emphasis is placed on the processes leading to the induction of cyclooxygenase-2 and downstream prostanoid-based signaling pathways associated with this enzyme.
Collapse
|
34
|
Classes of Lipid Mediators and Their Effects on Vascular Inflammation in Atherosclerosis. Int J Mol Sci 2023; 24:ijms24021637. [PMID: 36675152 PMCID: PMC9863938 DOI: 10.3390/ijms24021637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
It is commonly believed that the inactivation of inflammation is mainly due to the decay or cessation of inducers. In reality, in connection with the development of atherosclerosis, spontaneous decay of inducers is not observed. It is now known that lipid mediators originating from polyunsaturated fatty acids (PUFAs), which are important constituents of all cell membranes, can act in the inflamed tissue and bring it to resolution. In fact, PUFAs, such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are precursors to both pro-inflammatory and anti-inflammatory compounds. In this review, we describe the lipid mediators of vascular inflammation and resolution, and their biochemical activity. In addition, we highlight data from the literature that often show a worsening of atherosclerotic disease in subjects deficient in lipid mediators of inflammation resolution, and we also report on the anti-proteasic and anti-thrombotic properties of these same lipid mediators. It should be noted that despite promising data observed in both animal and in vitro studies, contradictory clinical results have been observed for omega-3 PUFAs. Many further studies will be required in order to clarify the observed conflicts, although lifestyle habits such as smoking or other biochemical factors may often influence the normal synthesis of lipid mediators of inflammation resolution.
Collapse
|
35
|
Leng J, Zhao W, Guo J, Yu G, Zhu G, Ge J, He D, Xu Y, Chen X, Zhou Y, Liu B. E-prostanoid 3 receptor deficiency on myeloid cells protects against ischemic acute kidney injury via breaking the auto-amplification loop of necroinflammation. Kidney Int 2023; 103:100-114. [PMID: 36087809 DOI: 10.1016/j.kint.2022.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023]
Abstract
Necroinflammation plays an important role in disease settings such as acute kidney injury (AKI). We and others have elucidated that prostaglandins, which are critically involved in inflammation, may activate E-prostanoid 3 receptor (EP3) at low concentrations. However, how EP3 blockade interacts with regulated cell death and affects AKI remains unknown. In this study, AKI was induced by ischemia-reperfusion (30 minutes/24 hours) in Ep3 knockout (Ep3-/-), bone marrow chimeric, myeloid conditional EP3 knockout and corresponding control mice. The production of prostaglandins E2 and I2 was markedly increased after ischemia-reperfusion, and either abrogation or antagonism of EP3 ameliorated the injury. EP3 deficiency curbed inflammatory cytokine release, neutrophil infiltration and serum high-mobility group box 1 levels, but additional TLR4 inhibition with TAK-242 did not offer further protection against the injury and inflammation. The protection of Ep3-/- was predominantly mediated by suppressing Mixed Lineage Kinase domain-Like-dependent necroptosis, resulting from the inhibition of cytokine generation and the switching of cell death modality from necroptosis to apoptosis through caspase-8 up-regulation, in part due to the restraint of IL-6/JAK2/STAT3 signaling. EP3 deficiency failed to further alleviate the injury when necroptosis was inhibited. Ep3-/- in bone marrow-derived cells, particularly that in myeloid cells, protected kidneys to the same extent as that of global EP3 deletion. Thus, our results demonstrate that EP3 deficiency especially that on myeloid cells, ameliorates ischemic AKI via curbing inflammation and breaking the auto-amplification loop of necroinflammation. Hence, EP3 may be a promising target for the prevention and/or treatment of AKI.
Collapse
Affiliation(s)
- Jing Leng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Wen Zhao
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jinwei Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Gang Yu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Guanghui Zhu
- Department of Forensic Medicine, Shantou University Medical College, Shantou, China
| | - Jiahui Ge
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Dong He
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yineng Xu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Xijian Chen
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China.
| |
Collapse
|
36
|
Fan L, Wu P, Li X, Tie L. Aquaporins in Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:125-135. [PMID: 36717490 DOI: 10.1007/978-981-19-7415-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent studies have shown that aquaporins (AQPs) are involved in the regulation of cardiovascular function and the development of related diseases, especially in cerebral ischemia, congestive heart failure, hypertension, and angiogenesis. Therefore, further studies are needed to elucidate the mechanism accounting for the association between AQPs and vascular function-related diseases, which may lead to novel approaches to the prevention and treatment of those diseases. Here we will discuss the expression and physiological roles of AQPs in vascular tissues and summarize recent progress in the research on AQPs related cardiovascular diseases.
Collapse
Affiliation(s)
- Lu Fan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Pin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Xuejun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China.
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China.
| |
Collapse
|
37
|
Meuronen T, Lankinen MA, Kolmert J, de Mello VD, Sallinen T, Ågren J, Virtanen KA, Laakso M, Wheelock CE, Pihlajamäki J, Schwab U. The FADS1 rs174550 Genotype Modifies the n-3 and n-6 PUFA and Lipid Mediator Responses to a High Alpha-Linolenic Acid and High Linoleic Acid Diets. Mol Nutr Food Res 2022; 66:e2200351. [PMID: 36367234 PMCID: PMC10077898 DOI: 10.1002/mnfr.202200351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/14/2022] [Indexed: 11/13/2022]
Abstract
SCOPE The fatty acid composition of plasma lipids, which is associated with biomarkers and risk of non-communicable diseases, is regulated by dietary polyunsaturated fatty acids (PUFAs) and variants of fatty acid desaturase (FADS). We investigated the interactions between dietary PUFAs and FADS1 rs174550 variant. METHODS AND RESULTS Participants (n = 118), homozygous for FADS1 rs174550 variant (TT and CC) followed a high alpha-linolenic acid (ALA, 5 percent of energy (E-%)) or a high linoleic acid (LA, 10 E-%) diet during an 8-week randomized controlled intervention. Fatty acid composition of plasma lipids and PUFA-derived lipid mediators were quantified by gas and liquid chromatography mass spectrometry, respectively. The high-LA diet increased the concentration of plasma LA, but not its lipid mediators. The concentration of plasma arachidonic acid decreased in carriers of CC and remained unchanged in the TT genotype. The high-ALA diet increased the concentration of plasma ALA and its cytochrome P450-derived epoxides and dihydroxys, and cyclooxygenase-derived monohydroxys. Concentrations of plasma eicosapentaenoic acid and its mono- and dihydroxys increased only in TT genotype carriers. CONCLUSIONS These findings suggest the potential for genotype-based recommendations for PUFA consumption, resulting in modulation of bioactive lipid mediators which can exert beneficial effects in maintaining health.
Collapse
Affiliation(s)
- Topi Meuronen
- Institute of Public Health and Clinical NutritionSchool of MedicineUniversity of Eastern FinlandKuopio70211Finland
- Food Sciences UnitUniversity of TurkuTurku20500Finland
| | - Maria A. Lankinen
- Institute of Public Health and Clinical NutritionSchool of MedicineUniversity of Eastern FinlandKuopio70211Finland
| | - Johan Kolmert
- Unit of Integrative MetabolomicsInstitute of Environmental MedicineKarolinska InstitutetStockholm171 65Sweden
| | - Vanessa Derenji de Mello
- Institute of Public Health and Clinical NutritionSchool of MedicineUniversity of Eastern FinlandKuopio70211Finland
| | - Taisa Sallinen
- Institute of Public Health and Clinical NutritionSchool of MedicineUniversity of Eastern FinlandKuopio70211Finland
- University of Eastern Finland Library KuopioKuopio70600Finland
| | - Jyrki Ågren
- Institute of BiomedicineSchool of Medicine University of Eastern FinlandKuopio70211Finland
| | - Kirsi A. Virtanen
- Institute of Public Health and Clinical NutritionSchool of MedicineUniversity of Eastern FinlandKuopio70211Finland
- Department of MedicineEndocrinology and Clinical NutritionKuopio University HospitalKuopio70210Finland
| | - Markku Laakso
- Institute of Clinical MedicineInternal Medicine University of Eastern FinlandKuopio70029Finland
- Department of Medicine, Kuopio University HospitalKuopio70210Finland
| | - Craig E. Wheelock
- Unit of Integrative MetabolomicsInstitute of Environmental MedicineKarolinska InstitutetStockholm171 65Sweden
- Department of Respiratory Medicine and AllergyKarolinska University HospitalStockholm141 86Sweden
- Gunma University Initiative for Advanced Research (GIAR)Gunma UniversityMaebashi371‐8511Japan
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical NutritionSchool of MedicineUniversity of Eastern FinlandKuopio70211Finland
- Department of MedicineEndocrinology and Clinical NutritionKuopio University HospitalKuopio70210Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical NutritionSchool of MedicineUniversity of Eastern FinlandKuopio70211Finland
- Department of MedicineEndocrinology and Clinical NutritionKuopio University HospitalKuopio70210Finland
| |
Collapse
|
38
|
Stiller CO, Hjemdahl P. Lessons from 20 years with COX-2 inhibitors: Importance of dose-response considerations and fair play in comparative trials. J Intern Med 2022; 292:557-574. [PMID: 35585779 DOI: 10.1111/joim.13505] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit the enzyme cyclooxygenase (COX), which forms prostaglandins involved in pain and inflammation. COX inhibitors have analgesic and anti-inflammatory effects, but also increase risks for gastrointestinal ulcers, bleeding, and renal and cardiovascular adverse events. Identification of two isoforms of COX, COX-1 and COX-2, led to the development of selective COX-2 inhibitors, which were launched as having fewer gastrointestinal side effects since gastroprotective prostaglandins produced via COX-1 are spared. The balance between COX-1 mediated prothrombotic thromboxane and COX-2 mediated antithrombotic prostacyclin is important for thrombotic risk. An increased risk of suffering myocardial infarction and death with COX-2 inhibitor treatment is well established from clinical trials and observational research. Rofecoxib (Vioxx) was withdrawn from the market for this reason, but the equally COX-2 selective etoricoxib has replaced it in Europe but not in the United States. The "traditional" NSAID diclofenac is as COX-2 selective as celecoxib and increases cardiovascular risk dose dependently. COX inhibitor dosages should be lower in osteoarthritis than in rheumatoid arthritis. Randomized trials comparing COX-2 inhibitors with NSAIDs have exaggerated their gastrointestinal benefits by using maximal NSAID doses regardless of indication, and/or hidden the cardiovascular risk by comparing with COX-2 selective diclofenac instead of low-dose ibuprofen or naproxen. Observational studies show increased cardiovascular risks within weeks of treatment with COX-2 inhibitors and high doses of NSAIDs other than naproxen, which is the safest alternative. COX inhibitors are symptomatic drugs that should be used intermittently at the lowest effective dosage, especially among individuals with an increased cardiovascular risk.
Collapse
Affiliation(s)
- Carl-Olav Stiller
- Department of Medicine Solna, Clinical Epidemiology Unit/Clinical Pharmacology, Karolinska Institutet and Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Paul Hjemdahl
- Department of Medicine Solna, Clinical Epidemiology Unit/Clinical Pharmacology, Karolinska Institutet and Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
39
|
Talukder S, Ahmed KS, Hossain H, Hasan T, Liya IJ, Amanat M, Nahar N, Shuvo MSR, Daula AFMSU. Fimbristylis aestivalis Vahl: a potential source of cyclooxygenase-2 (COX-2) inhibitors. Inflammopharmacology 2022; 30:2301-2315. [PMID: 36056995 DOI: 10.1007/s10787-022-01057-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/14/2022] [Indexed: 11/27/2022]
Abstract
Cyclooxygenase-2 (COX-2) is an inducible enzyme that accelerates the biosynthesis of PGs during inflammation and has emerged as an important therapeutic target for anti-inflammatory drugs. Natural compounds may serve as a source of inspiration for pharmaceutical chemists and a foundation for developing innovative COX-2 inhibitors with fewer side effects. Therefore, the objective of this study was to identify the potent COX-2 inhibitor and anti-inflammatory activity of the Fimbristylis aestivalis whole plant extract (FAWE). The plant extract was found dominant with rosmarinic acid followed by catechin hydrate, syringic acid, rutin hydrate, (-) epicatechin, quercetin, myricetin, and catechol. FAWE exhibited considerable dose-dependent analgesic efficacy in all analgesic test models. FAWE also showed promising anti-inflammatory potential in carrageenan-induced inflammations in mice. This result was corroborated by molecular docking, revealing that the aforesaid natural polyphenols adopt the same orientation as celecoxib in the COX-2 active site. On the other hand, molecular dynamics (MD) simulations were performed between the most abundant components (rosmarinic acid, catechin hydrate, and syringic acid) and COX-2. Based on hydrogen bonding, RMSD, RMSF, radius of gyration, PCA, and Gibbs free energy landscape analysis, the results demonstrated that these compounds are very stable in the active site of COX-2, indicating substantial COX-2 inhibitory activity.
Collapse
Affiliation(s)
- Saduddin Talukder
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Sonapur, 3814, Bangladesh
| | - Khondoker Shahin Ahmed
- Chemical Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Hemayet Hossain
- Chemical Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Tarek Hasan
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Sonapur, 3814, Bangladesh
| | - Israt Jahan Liya
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Sonapur, 3814, Bangladesh
| | - Muhammed Amanat
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Sonapur, 3814, Bangladesh
| | - Nurun Nahar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Sonapur, 3814, Bangladesh
| | - Md Sadikur Rahman Shuvo
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Sonapur, 3814, Bangladesh.
| | - A F M Shahid Ud Daula
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Sonapur, 3814, Bangladesh.
| |
Collapse
|
40
|
Prostanoid Metabolites as Biomarkers in Human Disease. Metabolites 2022; 12:metabo12080721. [PMID: 36005592 PMCID: PMC9414732 DOI: 10.3390/metabo12080721] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Prostaglandins (PGD2, PGE2, PGF2α), prostacyclin (PGI2), and thromboxane A2 (TXA2) together form the prostanoid family of lipid mediators. As autacoids, these five primary prostanoids propagate intercellular signals and are involved in many physiological processes. Furthermore, alterations in their biosynthesis accompany a wide range of pathological conditions, which leads to substantially increased local levels during disease. Primary prostanoids are chemically instable and rapidly metabolized. Their metabolites are more stable, integrate the local production on a systemic level, and their analysis in various biological matrices yields valuable information under different pathological settings. Therefore, prostanoid metabolites may be used as diagnostic, predictive, or prognostic biomarkers in human disease. Although their potential as biomarkers is great and extensive research has identified major prostanoid metabolites that serve as target analytes in different biofluids, the number of studies that correlate prostanoid metabolite levels to disease outcome is still limited. We review the metabolism of primary prostanoids in humans, summarize the levels of prostanoid metabolites in healthy subjects, and highlight existing biomarker studies. Since analysis of prostanoid metabolites is challenging because of ongoing metabolism and limited half-lives, an emphasis of this review lies on the reliable measurement and interpretation of obtained levels.
Collapse
|
41
|
Okagu IU, Ezeorba TPC, Aham EC, Aguchem RN, Nechi RN. Recent findings on the cellular and molecular mechanisms of action of novel food-derived antihypertensive peptides. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100078. [PMID: 35415696 PMCID: PMC8991738 DOI: 10.1016/j.fochms.2022.100078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Hypertension has remained a silent-killer. Novel peptides recently isolated from food proteins. Molecular mechanism of blood pressure-lowering: renin and ACE-inhibition, and beyond. Proposed molecular mechanisms for future research. Novel peptides are excellent candidates for nutraceutical development.
Hypertension impacts negatively on the quality of life of sufferers, and complications associated with uncontrolled hypertension are life-threatening. Hence, many research efforts are exploring the antihypertensive properties of bioactive peptides derived from food proteins using in vitro ACE-inhibitory assay, experimentally-induced and spontaneous hypertensive rats, normotensive and hypertensive human models. In this study, the cellular and molecular mechanisms of blood pressure-lowering properties of novel peptides reported in recent studies (2015-July 30, 2021) were discussed. In addition to common mechanisms such as the inhibition of angiotensin I-converting enzyme (ACE) and renin activities, recently recognized mechanisms through which bioactive peptides exert their antihypertensive properties including the induction of vasodilation via upregulation of cyclo-oxygenase (COX) and prostaglandin receptor and endothelial nitric oxide synthase expression and L-type Ca2+ channel blockade were presented. Similarly, emerging mechanisms of blood pressure-lowering by bioactive peptides such as modulation of inflammation (TNF-α, and other cytokines signaling), oxidative stress (Keap-1/Nrf2/ARE/HO-1 and related signaling pathways), PPAR-γ/caspase3/MAPK signaling pathways and inhibition of lipid accumulation were discussed. The review also highlighted factors that influence the antihypertensive properties of peptides such as method of hydrolysis (type and number of enzymes, and chemical used for hydrolysis, and microbial fermentation), and amino acid sequence and chain length of peptides.
Collapse
Affiliation(s)
- Innocent U Okagu
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria
| | | | - Emmanuel C Aham
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria
| | - Rita N Aguchem
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria
| | - Regina N Nechi
- Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria
| |
Collapse
|
42
|
Zhang L, Li M, Wang W, Yu W, Liu H, Wang K, Chang M, Deng C, Ji Y, Shen Y, Qi L, Sun H. Celecoxib alleviates denervation-induced muscle atrophy by suppressing inflammation and oxidative stress and improving microcirculation. Biochem Pharmacol 2022; 203:115186. [PMID: 35882305 DOI: 10.1016/j.bcp.2022.115186] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
The molecular mechanism underlying denervation-induced muscle atrophy is complex and incompletely understood. Our previous results suggested that inflammation may play an important role in the early stages of muscle atrophy. Celecoxib is reported to exert anti-inflammatory effects. Here, we explored the effect of celecoxib on denervation-induced muscle atrophy and sought to identify the mechanism involved. We found that celecoxib treatment significantly increased the wet weight ratio and CSA of the tibialisanteriormuscle. Additionally, celecoxib downregulated the levels of COX-2, inflammatory factors and reduced inflammatory cell infiltration. GO and KEGG pathway enrichment analysis indicated that after 3 days of celecoxib treatment in vivo, the differentially expressed genes (DEGs) were mainly associated with the regulation of immune responses related to complement activation; after 14 days, the DEGs were mainly involved in the regulation of oxidative stress and inflammation-related responses. Celecoxib administration reduced the levels of ROS and oxidative stress-related proteins. Furthermore, we found that celecoxib treatment inhibited the denervation-induced up-regulation of the ubiquitin-proteasome and autophagy-lysosomal systems related proteins; decreased mitophagy in target muscles; and increased levels of MHC. Finally, celecoxib also attenuated microvascular damage in denervated skeletal muscle. Combined, our findings demonstrated that celecoxib inhibits inflammation and oxidative stress in denervated skeletal muscle, thereby suppressing mitophagy and proteolysis, improving blood flow in target muscles, and, ultimately, alleviating denervation-induced muscle atrophy. Our results confirmed that inflammatory responses play a key role in denervation-induced muscle atrophy and highlight a novel strategy for the prevention and treatment of this condition.
Collapse
Affiliation(s)
- Lilei Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Ming Li
- Department of Laboratory Medicine, Department of Endocrinology, Binhai County People's Hospital affiliated to Kangda College of Nanjing Medical University, Yancheng, Jiangsu Province 224500, P. R. China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China; Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, P. R. China
| | - Weiran Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, 55 Ninghai Middle Road, Haian, Nantong, Jiangsu Province 226600, P. R. China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Chunyan Deng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China.
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, P. R. China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, P. R. China.
| |
Collapse
|
43
|
Sui C, Wu Y, Zhang R, Zhang T, Zhang Y, Xi J, Ding Y, Wen J, Hu Y. Rutin Inhibits the Progression of Osteoarthritis Through CBS-Mediated RhoA/ROCK Signaling. DNA Cell Biol 2022; 41:617-630. [PMID: 35588172 DOI: 10.1089/dna.2021.1182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by the deterioration of cartilage and subchondral bone in the joints. Currently, there is no complete cure for OA, only treatments designed to temporarily relieve pain and improve function. Compared with the high cost of surgical treatment, medical treatment of OA is more acceptable and cost-effective. Rutin, as a flavonoid, has been shown to have anti-OA properties. We evaluated the effects of rutin on chondrocytes in lipopolysaccharide (LPS)-induced OA and on OA in rats induced by anterior cruciate ligament transection. We found that rutin effectively reduced the expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and matrix metalloproteinase 13 (MMP-13) and increased the expression of Col II and aggrecan (p < 0.001). In addition, we also found that rutin increased the expression of cystathionine-β-synthase (CBS) and inhibited the expression of Rho-related coiled-coil protein kinase (ROCK) in chondrocytes (p < 0.05), thereby effectively inhibiting the inflammatory progression of OA. We concluded that rutin inhibits the inflammatory progression of OA through the CBS-mediated RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Cong Sui
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yichao Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ran Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tiantian Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiaojiao Xi
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yanyu Ding
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yong Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Orthopedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
44
|
Prenatal Activation of Glucocorticoid Receptors Induces Memory Impairment in a Sex-Dependent Manner: Role of Cyclooxygenase-2. Mol Neurobiol 2022; 59:3767-3777. [PMID: 35396693 DOI: 10.1007/s12035-022-02820-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
Prenatal exposure to dexamethasone (DEX) results in long-lasting effects on cognitive functions such as learning and memory impairment. However, the mechanisms underlying these DEX-induced deleterious effects are not well known. Here, we assessed whether cyclooxygenase-2 (COX-2) is involved in the impact of prenatal exposure to DEX on learning and memory during adulthood. Pregnant Sprague-Dawley rats received daily injections of either DEX (0.2 mg/kg; i.p.) or saline from gestation day (GD) 14 until GD21. Gene and protein expression of COX-2, as well as presynaptic (synaptophysin) and postsynaptic (postsynaptic density protein-95) proteins, were monitored in the dorsal and ventral hippocampi of adult male and female offspring. A different cohort of adult male and female rat offspring was given daily injections of either vehicle or a specific COX-2 inhibitor (celecoxib 10 mg/kg, i.p.) for 5 consecutive days and was subsequently subjected to Morris water maze memory test. Prenatal DEX enhanced the expression of COX-2 protein and cox-2 mRNA in the dorsal hippocampus of adult female but not male rats. This enhanced COX-2 expression was associated with reduced expression in pre- and postsynaptic proteins and altered memory acquisition and retention. Administration of COX-2-specific inhibitor alleviated prenatal DEX-induced memory impairment in adult female rats. This study suggests that prenatal activation of glucocorticoid receptors stimulates COX-2 gene and protein expression and impairs hippocampal-dependent spatial memory in female but not male rat offspring. Furthermore, COX-2 selective inhibitors can be used to alleviate the long-lasting deleterious effects of corticosteroid medication during pregnancy.
Collapse
|
45
|
An Investigation into the Interaction between Double Hydroxide-Based Antioxidant Benzophenone Derivatives and Cyclooxygenase 2. Molecules 2021; 26:molecules26216622. [PMID: 34771031 PMCID: PMC8587043 DOI: 10.3390/molecules26216622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
Cyclooxygenases 2 (COX2) is a therapeutic target for many inflammation and oxidative stress associated diseases. A high-throughput technique, biolayer interferometry, was performed to primarily screen the potential COX2 binding activities of twelve newly synthesized double hydroxide-based benzophenone derivatives. Binding confirmation was achieved by molecular docking and multi-spectroscopy studies. Such a combined method provided a comprehensive understanding of binding mechanism and conformational changes. Compounds DB2, SC2 and YB2 showed effective COX2 binding activity and underlined the benefits of three phenolic hydroxyl groups adjacent to each other on the B ring. The twelve tested derivatives were further evaluated for antioxidant activity, wherein compound SC2 showed the highest activity. Its concentration for the 50% of maximal effect (EC50) value was approximately 1000 times greater than that of the positive controls. SC2 treatment effectively improved biochemical indicators caused by oxidative stress. Overall, compound SC2 could serve as a promising candidate for further development of a new potent COX2 inhibitor.
Collapse
|
46
|
Chen W, Zhong Y, Feng N, Guo Z, Wang S, Xing D. New horizons in the roles and associations of COX-2 and novel natural inhibitors in cardiovascular diseases. Mol Med 2021; 27:123. [PMID: 34592918 PMCID: PMC8482621 DOI: 10.1186/s10020-021-00358-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Age-related cardiovascular disease is the leading cause of death in elderly populations. Coxibs, including celecoxib, valdecoxib, etoricoxib, parecoxib, lumiracoxib, and rofecoxib, are selective cyclooxygenase-2 (COX-2) inhibitors used to treat osteoarthritis and rheumatoid arthritis. However, many coxibs have been discontinued due to adverse cardiovascular events. COX-2 contains cyclooxygenase (COX) and peroxidase (POX) sites. COX-2 inhibitors block COX activity without affecting POX activity. Recently, quercetin-like flavonoid compounds with OH groups in their B-rings have been found to serve as activators of COX-2 by binding the POX site. Galangin-like flavonol compounds serve as inhibitors of COX-2. Interestingly, nabumetone, flurbiprofen axetil, piketoprofen-amide, and nepafenac are ester prodrugs that inhibit COX-2. The combination of galangin-like flavonol compounds with these prodrug metabolites may lead to the development of novel COX-2 inhibitors. This review focuses on the most compelling evidence regarding the role and mechanism of COX-2 in cardiovascular diseases and demonstrates that quercetin-like compounds exert potential cardioprotective effects by serving as cofactors of COX-2.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Yingjie Zhong
- Cancer Institute, Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Nuan Feng
- Department of Nutrition, Qingdao Women and Children's Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhu Guo
- Cancer Institute, Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Shuai Wang
- School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, 261053, Shandong, China.
| | - Dongming Xing
- Cancer Institute, Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
47
|
Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, Hu J, Fleming I, Wang DW. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther 2021; 6:94. [PMID: 33637672 PMCID: PMC7910446 DOI: 10.1038/s41392-020-00443-w] [Citation(s) in RCA: 567] [Impact Index Per Article: 141.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 01/31/2023] Open
Abstract
The arachidonic acid (AA) pathway plays a key role in cardiovascular biology, carcinogenesis, and many inflammatory diseases, such as asthma, arthritis, etc. Esterified AA on the inner surface of the cell membrane is hydrolyzed to its free form by phospholipase A2 (PLA2), which is in turn further metabolized by cyclooxygenases (COXs) and lipoxygenases (LOXs) and cytochrome P450 (CYP) enzymes to a spectrum of bioactive mediators that includes prostanoids, leukotrienes (LTs), epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid (diHETEs), eicosatetraenoic acids (ETEs), and lipoxins (LXs). Many of the latter mediators are considered to be novel preventive and therapeutic targets for cardiovascular diseases (CVD), cancers, and inflammatory diseases. This review sets out to summarize the physiological and pathophysiological importance of the AA metabolizing pathways and outline the molecular mechanisms underlying the actions of AA related to its three main metabolic pathways in CVD and cancer progression will provide valuable insight for developing new therapeutic drugs for CVD and anti-cancer agents such as inhibitors of EETs or 2J2. Thus, we herein present a synopsis of AA metabolism in human health, cardiovascular and cancer biology, and the signaling pathways involved in these processes. To explore the role of the AA metabolism and potential therapies, we also introduce the current newly clinical studies targeting AA metabolisms in the different disease conditions.
Collapse
Affiliation(s)
- Bei Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jing Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China.
| |
Collapse
|
48
|
Ershov PV, Yablokov E, Zgoda V, Mezentsev Y, Gnedenko O, Kaluzhskiy L, Svirid A, Gilep A, Usanov SA, Ivanov A. A new insight into subinteractomes of functional antagonists: Thromboxane (CYP5A1) and prostacyclin (CYP8A1) synthases. Cell Biol Int 2021; 45:1175-1182. [PMID: 33527589 DOI: 10.1002/cbin.11564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/10/2020] [Accepted: 01/31/2021] [Indexed: 12/14/2022]
Abstract
The current article aims to summarize all possible spectrum of protein-protein interactions for thromboxane A synthase (CYP5A1) and prostacyclin synthase (CYP8A1). These enzymes metabolize the same substrate (prostaglandin H2 ) and can participate in cardiovascular, inflammatory, immune processes, and apoptosis modulation, as well as significantly influence the risk of cancers. Binary protein-protein and multiprotein complexes are of great importance in enzyme-regulating and signal-transduction pathways. However, protein partners of CYP5A1 and CYP8A1 are not yet fully identified, although both synthases are considered as prospective drug targets. At least 36 novel protein partners of CYP5A1 and CYP8A1 were revealed from different tissue types using an approach based on affinity isolation and mass spectrometry. Enrichment analysis showed that these proteins have different molecular functions: folding (refolding), unfolded protein and chaperon binding, protein transport (export/import), posttranslational modification, protein domain-specific binding, antioxidant activity, and glutathione homeostasis. A significant part of them, belonging to molecular chaperones, were common partners for CYP5A1 and CYP8A1, while other proteins were unique with the tissue-dependent distribution. New aspects of CYP5A1 and CYP8A1 interactomics and hetero-complex formation with different protein partners, including cytochrome P450s are discussed.
Collapse
Affiliation(s)
- Pavel V Ershov
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", Moscow, Russia.,Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks, The Federal Medical Biological Agency, Moscow, Russia
| | - Evgeniy Yablokov
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", Moscow, Russia
| | - Victor Zgoda
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", Moscow, Russia
| | - Yuri Mezentsev
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", Moscow, Russia
| | - Oksana Gnedenko
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", Moscow, Russia
| | - Leonid Kaluzhskiy
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", Moscow, Russia
| | - Andrey Svirid
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Sergey A Usanov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Alexis Ivanov
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", Moscow, Russia
| |
Collapse
|
49
|
Hong LZ, Xue Q, Shao H. Inflammatory Markers Related to Innate and Adaptive Immunity in Atherosclerosis: Implications for Disease Prediction and Prospective Therapeutics. J Inflamm Res 2021; 14:379-392. [PMID: 33628042 PMCID: PMC7897977 DOI: 10.2147/jir.s294809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Several lines of evidence have linked a dysregulated inflammatory setting to the pathogenesis of atherosclerosis, which is a form of chronic vascular inflammation. Various inflammatory biomarkers have been associated with inflammation and are recognized as potential tools to monitor the progression of atherosclerosis. A well-studied inflammatory marker in the context of cardiovascular diseases is C-reactive protein (CRP) or, more accurately, highly sensitive-CRP (hs-CRP), which has been established as an inflammatory biomarker for atherosclerotic events. In addition, a growing body of investigations has attempted to disclose the potential of inflammatory cytokines, enzymes, and genetic polymorphisms related to innate and adaptive immunity as biomarkers for predicting the development of atherosclerosis. In this review article, we clarify both traditional and novel inflammatory biomarkers related to components of the innate and adaptive immune system that may mirror the progression or phases of atherosclerotic inflammation/lesions. Furthermore, the contribution of the inflammatory biomarkers in developing potential therapeutics against atherosclerotic treatment will be discussed.
Collapse
Affiliation(s)
- Ling-Zhi Hong
- Emergency Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, 311700, Zhejiang Province, People’s Republic of China
| | - Qi Xue
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People’s Republic of China
| | - Hong Shao
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People’s Republic of China
| |
Collapse
|
50
|
Wagh SB, Maslivetc V, La Clair JJ, Kornienko A. A fluorescent target-guided Paal-Knorr reaction. RSC Adv 2020; 10:37035-37039. [PMID: 34262697 PMCID: PMC8276889 DOI: 10.1039/d0ra06962k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It has become increasingly apparent that high-diversity chemical reactions play a significant role in the discovery of bioactive small molecules. Here, we describe an expanse of this paradigm, combining a 'target-guided synthesis' concept with Paal-Knorr chemistry applied to the preparation of fluorescent ligands for human prostaglandin-endoperoxide synthase (COX-2).
Collapse
Affiliation(s)
- Sachin B Wagh
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos 78666, USA
| | - Vladimir Maslivetc
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos 78666, USA
| | | | - Alexander Kornienko
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos 78666, USA
| |
Collapse
|