1
|
Wang Z, Gonzalez KM, Cordova LE, Lu J. Nanotechnology-empowered therapeutics targeting neurodegenerative diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1907. [PMID: 37248794 PMCID: PMC10525015 DOI: 10.1002/wnan.1907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 04/15/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
Neurodegenerative diseases are posing pressing health issues due to the high prevalence among aging populations in the 21st century. They are evidenced by the progressive loss of neuronal function, often associated with neuronal necrosis and many related devastating complications. Nevertheless, effective therapeutical strategies to treat neurodegenerative diseases remain a tremendous challenge due to the multisystemic nature and limited drug delivery to the central nervous system. As a result, there is a pressing need to develop effective alternative therapeutics to manage the progression of neurodegenerative diseases. By utilizing the functional reconstructive materials and technologies with specific targeting ability at the nanoscale level, nanotechnology-empowered medicines can transform the therapeutic paradigms of neurodegenerative diseases with minimal systemic side effects. This review outlines the current applications and progresses of the nanotechnology-enabled drug delivery systems to enhance the therapeutic efficacy in treating neurodegenerative diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Leyla Estrella Cordova
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, United States
- Clinical and Translational Oncology Program, The University of Arizona Cancer Center, Tucson, Arizona, 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States
| |
Collapse
|
2
|
Siafaka PI, Okur ME, Erim PD, Çağlar EŞ, Özgenç E, Gündoğdu E, Köprülü REP, Karantas ID, Üstündağ Okur N. Protein and Gene Delivery Systems for Neurodegenerative Disorders: Where Do We Stand Today? Pharmaceutics 2022; 14:2425. [PMID: 36365243 PMCID: PMC9698227 DOI: 10.3390/pharmaceutics14112425] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2023] Open
Abstract
It has been estimated that every year, millions of people are affected by neurodegenerative disorders, which complicate their lives and their caregivers' lives. To date, there has not been an approved pharmacological approach to provide the complete treatment of neurodegenerative disorders. The only available drugs may only relieve the symptoms or slow down the progression of the disease. The absence of any treatment is quite rational given that neurodegeneration occurs by the progressive loss of the function or structure of the nerve cells of the brain or the peripheral nervous system, which eventually leads to their death either by apoptosis or necrotic cell death. According to a recent study, even though adult brain cells are injured, they can revert to an embryonic state, which may help to restore their function. These interesting findings might open a new path for the development of more efficient therapeutic strategies to combat devastating neurodegenerative disorders. Gene and protein therapies have emerged as a rapidly growing field for various disorders, especially neurodegenerative diseases. Despite these promising therapies, the complete treatment of neurodegenerative disorders has not yet been achieved. Therefore, the aim of this review is to address the most up-to-date data for neurodegenerative diseases, but most importantly, to summarize the available delivery systems incorporating proteins, peptides, and genes that can potentially target such diseases and pass into the blood-brain barrier. The authors highlight the advancements, at present, on delivery based on the carrier, i.e., lipid, polymeric, and inorganic, as well as the recent studies on radiopharmaceutical theranostics.
Collapse
Affiliation(s)
| | - Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| | - Pelin Dilsiz Erim
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul 34810, Turkey
- Faculty of Pharmacy, Altınbaş University, Istanbul 34217, Turkey
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| | - Emre Özgenç
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Evren Gündoğdu
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Rabia Edibe Parlar Köprülü
- Department of Medical Pharmacology, Institute of Health Sciences, İstanbul Medipol University, Istanbul 34810, Turkey
| | | | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| |
Collapse
|
3
|
Altinoglu G, Adali T. Alzheimer's Disease Targeted Nano-Based Drug Delivery Systems. Curr Drug Targets 2021; 21:628-646. [PMID: 31744447 DOI: 10.2174/1389450120666191118123151] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and is part of a massive and growing health care burden that is destroying the cognitive function of more than 50 million individuals worldwide. Today, therapeutic options are limited to approaches with mild symptomatic benefits. The failure in developing effective drugs is attributed to, but not limited to the highly heterogeneous nature of AD with multiple underlying hypotheses and multifactorial pathology. In addition, targeted drug delivery to the central nervous system (CNS), for the diagnosis and therapy of neurological diseases like AD, is restricted by the challenges posed by blood-brain interfaces surrounding the CNS, limiting the bioavailability of therapeutics. Research done over the last decade has focused on developing new strategies to overcome these limitations and successfully deliver drugs to the CNS. Nanoparticles, that are capable of encapsulating drugs with sustained drug release profiles and adjustable physiochemical properties, can cross the protective barriers surrounding the CNS. Thus, nanotechnology offers new hope for AD treatment as a strong alternative to conventional drug delivery mechanisms. In this review, the potential application of nanoparticle based approaches in Alzheimer's disease and their implications in therapy is discussed.
Collapse
Affiliation(s)
- Gülcem Altinoglu
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, P.O. Box: 99138, North Cyprus via Mersin 10, Turkey.,Tissue Engineering and Biomaterials Research Centre, Centre of Excellence, Near East University, P.O. Box: 99138, North Cyprus via Mersin 10 Turkey
| | - Terin Adali
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, P.O. Box: 99138, North Cyprus via Mersin 10, Turkey.,Tissue Engineering and Biomaterials Research Centre, Centre of Excellence, Near East University, P.O. Box: 99138, North Cyprus via Mersin 10 Turkey
| |
Collapse
|
4
|
Bahadur S, Pardhi DM, Rautio J, Rosenholm JM, Pathak K. Intranasal Nanoemulsions for Direct Nose-to-Brain Delivery of Actives for CNS Disorders. Pharmaceutics 2020; 12:E1230. [PMID: 33352959 PMCID: PMC7767046 DOI: 10.3390/pharmaceutics12121230] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
The treatment of various central nervous system (CNS) diseases has been challenging, despite the rapid development of several novel treatment approaches. The blood-brain barrier (BBB) is one of the major issues in the treatment of CNS diseases, having major role in the protection of the brain but simultaneously constituting the main limiting hurdle for drugs targeting the brain. Nasal drug delivery has gained significant interest for brain targeting over the past decades, wherein the drug is directly delivered to the brain by the trigeminal and olfactory pathway. Various novel and promising formulation approaches have been explored for drug targeting to the brain by nasal administration. Nanoemulsions have the potential to avoid problems, including low solubility, poor bioavailability, slow onset of action, and enzymatic degradation. The present review highlights research scenarios of nanoemulsions for nose-to-brain delivery for the management of CNS ailments classified on the basis of brain disorders and further identifies the areas that remain unexplored. The significance of the total dose delivered to the target region, biodistribution studies, and long-term toxicity studies have been identified as the key areas of future research.
Collapse
Affiliation(s)
- Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Dinesh M. Pardhi
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (D.M.P.); (J.R.)
| | - Jarkko Rautio
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (D.M.P.); (J.R.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| |
Collapse
|
5
|
Gräfe C, Müller EK, Gresing L, Weidner A, Radon P, Friedrich RP, Alexiou C, Wiekhorst F, Dutz S, Clement JH. Magnetic hybrid materials interact with biological matrices. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
Magnetic hybrid materials are a promising group of substances. Their interaction with matrices is challenging with regard to the underlying physical and chemical mechanisms. But thinking matrices as biological membranes or even structured cell layers they become interesting with regard to potential biomedical applications. Therefore, we established in vitro blood-organ barrier models to study the interaction and processing of superparamagnetic iron oxide nanoparticles (SPIONs) with these cellular structures in the presence of a magnetic field gradient. A one-cell-type–based blood-brain barrier model was used to investigate the attachment and uptake mechanisms of differentially charged magnetic hybrid materials. Inhibition of clathrin-dependent endocytosis and F-actin depolymerization led to a dramatic reduction of cellular uptake. Furthermore, the subsequent transportation of SPIONs through the barrier and the ability to detect these particles was of interest. Negatively charged SPIONs could be detected behind the barrier as well as in a reporter cell line. These observations could be confirmed with a two-cell-type–based blood-placenta barrier model. While positively charged SPIONs heavily interact with the apical cell layer, neutrally charged SPIONs showed a retarded interaction behavior. Behind the blood-placenta barrier, negatively charged SPIONs could be clearly detected. Finally, the transfer of the in vitro blood-placenta model in a microfluidic biochip allows the integration of shear stress into the system. Even without particle accumulation in a magnetic field gradient, the negatively charged SPIONs were detectable behind the barrier. In conclusion, in vitro blood-organ barrier models allow the broad investigation of magnetic hybrid materials with regard to biocompatibility, cell interaction, and transfer through cell layers on their way to biomedical application.
Collapse
Affiliation(s)
- Christine Gräfe
- Department of Internal Medicine II, Hematology and Medical Oncology , Jena University Hospital , Jena , Germany
| | - Elena K. Müller
- Department of Internal Medicine II, Hematology and Medical Oncology , Jena University Hospital , Jena , Germany
| | - Lennart Gresing
- Department of Internal Medicine II, Hematology and Medical Oncology , Jena University Hospital , Jena , Germany
| | - Andreas Weidner
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau , Ilmenau , Germany
| | - Patricia Radon
- Physikalisch-Technische Bundesanstalt , Berlin , Germany
| | - Ralf P. Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON) , Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen , Erlangen , Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON) , Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen , Erlangen , Germany
| | | | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau , Ilmenau , Germany
| | - Joachim H. Clement
- Department of Internal Medicine II, Hematology and Medical Oncology , Jena University Hospital , Jena , Germany
| |
Collapse
|
6
|
Nehal N, Nabi B, Rehman S, Pathak A, Iqubal A, Khan SA, Yar MS, Parvez S, Baboota S, Ali J. Chitosan coated synergistically engineered nanoemulsion of Ropinirole and nigella oil in the management of Parkinson's disease: Formulation perspective and In vitro and In vivo assessment. Int J Biol Macromol 2020; 167:605-619. [PMID: 33278450 DOI: 10.1016/j.ijbiomac.2020.11.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/22/2022]
Abstract
The research presented aims at developing Ropinirole hydrochloride (RHCl) nanoemulsion (NE) with nigella oil for Parkinson's disease (PD). In silico study was done to explore interactions of ropinirole and thymoquinone at receptor site (TNF-α and NFK-β). Ropinirole and Thymoquinone forms a hydrogen bond with residue Arginine 201 and residue Arginine 253 with a bond length of 1.89 Å and 2.30 Å at the NF-κβ receptor. NE was optimized using Central Composite Rotatable Design (CCRD). The globule size of chitosan coated NE, Polydispersity index (PDI) and zeta potential were 183.7 ± 5.2 nm, 0.263 ± 0.005, and 24.9 mV respectively. NE exhibited 85.28% transmittance showing the formulation was clear and transparent. TEM showed that NE had spherical globules with no aggregation. The formulation had a stable pH value of 5.8 ± 0.18. In vitro release and permeation studies exhibited 2 folds and 3.4 folds enhancement when compared with the drug suspension. Neurobehavioral activity and biochemical parameters corroborated well with the pharmacokinetic results. Histopathological study and immunohistochemical analysis were performed to get better picture of 6-OHDA induced toxicity and reversal of PD symptoms. Thus, the NE tailored is a promising synergistic approach yielding enticing outcomes for better management of PD related symptoms.
Collapse
Affiliation(s)
- Nida Nehal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saleha Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saif Ahmad Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
7
|
Asha Spandana K, Bhaskaran M, Karri V, Natarajan J. A comprehensive review of nano drug delivery system in the treatment of CNS disorders. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Patel RJ, Ajazuddin, Ravichandiran V, Murty US, Alexander A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release 2020; 321:372-415. [PMID: 32061621 DOI: 10.1016/j.jconrel.2020.02.020] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
In last two decades, the lipid nanocarriers have been extensively investigated for their drug targeting efficiency towards the critical areas of the human body like CNS, cardiac region, tumor cells, etc. Owing to the flexibility and biocompatibility, the lipid-based nanocarriers, including nanoemulsion, liposomes, SLN, NLC etc. have gained much attention among various other nanocarrier systems for brain targeting of bioactives. Across different lipid nanocarriers, NLC remains to be the safest, stable, biocompatible and cost-effective drug carrier system with high encapsulation efficiency. Drug delivery to the brain always remains a challenging issue for scientists due to the complex structure and various barrier mechanisms surrounding the brain. The application of a suitable nanocarrier system and the use of any alternative route of drug administration like nose-to-brain drug delivery could overcome the hurdle and improves the therapeutic efficiency of CNS acting drugs thereof. NLC, a second-generation lipid nanocarrier, upsurges the drug permeation across the BBB due to its unique structural properties. The biocompatible lipid matrix and nano-size make it an ideal drug carrier for brain targeting. It offers many advantages over other drug carrier systems, including ease of manufacturing and scale-up to industrial level, higher drug targeting, high drug loading, control drug release, compatibility with a wide range of drug substances, non-toxic and non-irritant behavior. This review highlights recent progresses towards the development of NLC for brain targeting of bioactives with particular reference to its surface modifications, formulations aspects, pharmacokinetic behavior and efficacy towards the treatment of various neurological disorders like AD, PD, schizophrenia, epilepsy, brain cancer, CNS infection (viral and fungal), multiple sclerosis, cerebral ischemia, and cerebral malaria. This work describes in detail the role and application of NLC, along with its different fabrication techniques and associated limitations. Specific emphasis is given to compile a summary and graphical data on the area explored by scientists and researchers worldwide towards the treatment of neurological disorders with or without NLC. The article also highlights a brief insight into two prime approaches for brain targeting, including drug delivery across BBB and direct nose-to-brain drug delivery along with the current global status of specific neurological disorders.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, NCI-Frederick, NIH, Frederick, USA
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy (RPCP), Charotar University of Sciences and Technology (CHARUSAT), Gujarat 388421, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER-Kolkata), Ministry of Chemicals & Fertilizers, Govt. of India, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Upadhyayula Suryanarayana Murty
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup, 781125 Guwahati, Assam, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup, 781125 Guwahati, Assam, India.
| |
Collapse
|
9
|
Patel A, Surti N, Mahajan A. Intranasal drug delivery: Novel delivery route for effective management of neurological disorders. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Shetty Y, Prabhu P, Prabhakar B. Emerging vistas in theranostic medicine. Int J Pharm 2018; 558:29-42. [PMID: 30599229 DOI: 10.1016/j.ijpharm.2018.12.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed a paradigm shift in the focus of healthcare towards development of customized therapies which cater to the unmet needs in a myriad of disease areas such as cancer, infections, cardiovascular diseases, neurodegenerative disorders and inflammatory disorders. The term 'theranostic' refers to such multifunctional systems which combine the features of diagnosis and treatment in a single platform for superior control of the disease. Theranostic systems enable detection of disease, treatment and real time monitoring of the diseased tissue. Theranostic nanocarriers endowed with multiple features of imaging, targeting, and providing on-demand delivery of therapeutic agents have been designed for enhancement of therapeutic outcomes. Fabrication of theranostics involves utilization of materials having distinct properties for imaging, targeting, and programming drug release spatially and temporally. Although the field of theranostics has been widely researched and explored so far for treatment of different types of cancer, there have been considerable efforts in the past few years to extend its scope to other areas such as infections, neurodegenerative disorders and cardiovascular diseases. This review showcases the potential applications of theranostics in disease areas other than cancer. It also highlights the cardinal issues which need to be addressed for successful clinical translation of these theranostic tools.
Collapse
Affiliation(s)
- Yashna Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Priyanka Prabhu
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
11
|
Wan KY, Wong SN, Wong KW, Chow SF, Lum Chow AH. Interplay between Amphiphilic Stabilizers and Cholesterol in the Stabilization of Itraconazole Nanoparticles Prepared by Flash Nanoprecipitation. Mol Pharm 2018; 16:195-204. [DOI: 10.1021/acs.molpharmaceut.8b00945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ka Yee Wan
- School of Pharmacy, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Si Nga Wong
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ka Wai Wong
- Genvida (HK) Company Limited, Hong Kong, Hong Kong
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong
| | | |
Collapse
|
12
|
Poovaiah N, Davoudi Z, Peng H, Schlichtmann B, Mallapragada S, Narasimhan B, Wang Q. Treatment of neurodegenerative disorders through the blood-brain barrier using nanocarriers. NANOSCALE 2018; 10:16962-16983. [PMID: 30182106 DOI: 10.1039/c8nr04073g] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Neurodegenerative diseases refer to disorders of the central nervous system (CNS) that are caused by neuronal degradations, dysfunctions, or death. Alzheimer's disease, Parkinson's disease, and Huntington's disease (APHD) are regarded as the three major neurodegenerative diseases. There is a vast body of literature on the causes and treatments of these neurodegenerative diseases. However, the main obstacle in developing an effective treatment strategy is the permeability of the treatment components at the blood-brain barrier (BBB). Several strategies have been developed to improve this obstruction. For example, nanomaterials facilitate drug delivery to the BBB due to their size. They have been used widely in nanomedicine and as nanoprobes for diagnosis purposes among others in neuroscience. Nanomaterials in different forms, such as nanoparticles, nanoemulsions, solid lipid nanoparticles (SLN), and liposomes, have been used to treat neurodegenerative diseases. This review will cover the basic concepts and applications of nanomaterials in the therapy of APHD.
Collapse
Affiliation(s)
- N Poovaiah
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Vaz GR, Hädrich G, Bidone J, Rodrigues JL, Falkembach MC, Putaux JL, Hort MA, Monserrat JM, Varela Junior AS, Teixeira HF, Muccillo-Baisch AL, Horn AP, Dora CL. Development of Nasal Lipid Nanocarriers Containing Curcumin for Brain Targeting. J Alzheimers Dis 2018; 59:961-974. [PMID: 28731428 DOI: 10.3233/jad-160355] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Curcumin (CUR) has properties that can be useful for the treatment of Alzheimer's disease. Such properties are the inhibition of amyloid-β-protein (Aβ) aggregation, Aβ-induced inflammation, and activities of β-secretase and acetylcholinesterase. However, previous studies have revealed that CUR exhibited low bioavailability and difficulties in reaching the brain. OBJECTIVE To overcome such drawbacks, this study aims at developing nasal lipid nanocarriers loaded with CUR to effectively target the brain. METHODS The lipid nanocarriers (NE) were prepared using the hot solvent diffusion associated with the phase inversion temperature methods. Physico-chemical and morphological characterizations and in vitro drug release of the nanocarriers were carried out. The CUR permeation/retention was analyzed in Franz-type diffusion cell using porcine nasal mucosa. Confocal laser scan and histopathological studies were also performed. RESULTS The results showed that the NE sizes ranged between 18 nm and 44 nm with negative zeta potential. The CUR content ranged from 0.24 to 1.50 mg/mL with an encapsulation efficiency of 99%. The profiles of CUR release indicated a biphasic kinetics. CUR-NE permeation across the porcine nasal mucosa was higher when compared to free CUR. These results have also been validated through an analysis on a confocal microscopy. In addition, no toxicity on the nasal mucosa has been observed in a histopathological analysis. CONCLUSION These results suggest that it is possible to develop NEs with a high content of CUR and small particle size. Such an encapsulation increases the potential of CUR permeation across the porcine nasal mucosa.
Collapse
Affiliation(s)
- Gustavo Richter Vaz
- Laboratório de Nanotecnologia Aplicada à Saúde, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Gabriela Hädrich
- Laboratório de Nanotecnologia Aplicada à Saúde, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Juliana Bidone
- Laboratório de Desenvolvimento Galênico, Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jamile Lima Rodrigues
- Laboratório de Nanotecnologia Aplicada à Saúde, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Mariana Corrêa Falkembach
- Laboratório de Nanotecnologia Aplicada à Saúde, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Jean-Luc Putaux
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales, Grenoble, France.,CNRS, Centre de Recherches sur les Macromolécules Végétales, Grenoble, France
| | - Mariana Appel Hort
- Laboratório de Nanotecnologia Aplicada à Saúde, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - José Maria Monserrat
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Antônio Sergio Varela Junior
- Laboratório de Reprodução Animal Comparada -Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Helder Ferreira Teixeira
- Laboratório de Desenvolvimento Galênico, Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Luiza Muccillo-Baisch
- Laboratório de Nanotecnologia Aplicada à Saúde, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Ana Paula Horn
- Laboratório de Neurociências -Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Cristiana Lima Dora
- Laboratório de Nanotecnologia Aplicada à Saúde, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
14
|
Wan KY, Wong KW, Chow AHL, Chow SF. Impact of molecular rearrangement of amphiphilic stabilizers on physical stability of itraconazole nanoparticles prepared by flash nanoprecipitation. Int J Pharm 2018; 542:221-231. [PMID: 29555440 DOI: 10.1016/j.ijpharm.2018.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/08/2018] [Accepted: 03/06/2018] [Indexed: 11/16/2022]
Abstract
Flash nanoprecipitation (FNP) is a controlled antisolvent precipitation process that has proven effective for consistent production of drug nanoparticles with a defined mean particle size and narrow particle size distribution. However, physical instability of the generated nanoparticles remains a major challenge in the application of this technology in pharmaceutical formulation. Aimed at resolving this problem, the present study has investigated the FNP process and associated stabilization mechanism of itraconazole (ITZ) nanoparticles through in-depth nanoparticle characterization. Results showed that ITZ nanoparticles could be reproducibly produced with a mean particle size <100 nm and a polydispersity index <0.2 in the presence of amphiphilic stabilizers (ASs). Surface analysis of freshly formed nanoparticles by X-ray photoelectron spectroscopy (XPS) revealed initially a disordered packing structure and subsequently a time-dependent molecular rearrangement of incorporated AS towards a micelle-like structure. The faster the molecular rearrangement of AS, the more stable the nanoparticles, as monitored by the change in particle size with time. These findings may have important implications for the selection of effective ASs for formulating stable drug nanoparticles. The present study is the first of its kind to demonstrate the utility of XPS to track the molecular transport of stabilizers in rapidly generated nanoparticles.
Collapse
Affiliation(s)
- Ka Yee Wan
- School of Pharmacy, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ka Wai Wong
- HL Science & Technology Limited, Kowloon, Hong Kong
| | - Albert Hee Lum Chow
- School of Pharmacy, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
15
|
Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.09.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Odiba A, Ottah V, Ottah C, Anunobi O, Ukegbu C, Edeke A, Uroko R, Omeje K. Therapeutic nanomedicine surmounts the limitations of pharmacotherapy. Open Med (Wars) 2017. [DOI: 10.1515/med-2017-0041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AbstractScience always strives to find an improved way of doing things and nanoscience is one such approach. Nanomaterials are suitable for pharmaceutical applications mostly because of their size which facilitates absorption, distribution, metabolism and excretion of the nanoparticles. Whether labile or insoluble nanoparticles, their cytotoxic effect on malignant cells has moved the use of nanomedicine into focus. Since nanomedicine can be described as the science and technology of diagnosing, treating and preventing diseases towards ultimately improving human health, a lot of nanotechnology options have received approval by various regulatory agencies. Nanodrugs also have been discovered to be more precise in targeting the desired site, hence maximizing the therapeutic effects, while minimizing side-effects on the rest of the body. This unique property and more has made nanomedicine popular in therapeutic medicine employing nanotechnology in genetic therapy, drug encapsulation, enzyme manipulation and control, tissue engineering, target drug delivery, pharmacogenomics, stem cell and cloning, and even virus-based hybrids. This review highlights nanoproducts that are in development and have gained approval through one clinical trial stage or the other.
Collapse
Affiliation(s)
- Arome Odiba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Victoria Ottah
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Comfort Ottah
- 4Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Usman Danfodio University, Sokoto, Nigeria
| | - Ogechukwu Anunobi
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Biochemistry, Faculty of Science and Technology, Bingham University Karu, Nasarawa State, Nigeria
| | - Chimere Ukegbu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Affiong Edeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Robert Uroko
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Biochemistry, Faculty of Science, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Kingsley Omeje
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
17
|
Huang L, Hu J, Huang S, Wang B, Siaw-Debrah F, Nyanzu M, Zhang Y, Zhuge Q. Nanomaterial applications for neurological diseases and central nervous system injury. Prog Neurobiol 2017; 157:29-48. [PMID: 28743465 DOI: 10.1016/j.pneurobio.2017.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
The effectiveness of noninvasive treatment for neurological disease is generally limited by the poor entry of therapeutic agents into the central nervous system (CNS). Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier thus, overcoming this problem has become one of the most significant challenges in the development of neurological therapeutics. Nanotechnology has emerged as an innovative alternative for treating neurological diseases. In fact, rapid advances in nanotechnology have provided promising solutions to this challenge. This review highlights the applications of nanomaterials in the developing neurological field and discusses the evidence for their efficacies.
Collapse
Affiliation(s)
- Lijie Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Jiangnan Hu
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Shengwei Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Brian Wang
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Felix Siaw-Debrah
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Mark Nyanzu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Yu Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Qichuan Zhuge
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China.
| |
Collapse
|
18
|
Fang F, Zou D, Wang W, Yin Y, Yin T, Hao S, Wang B, Wang G, Wang Y. Non-invasive approaches for drug delivery to the brain based on the receptor mediated transport. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1316-1327. [PMID: 28482500 DOI: 10.1016/j.msec.2017.02.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/13/2016] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
The blood brain barrier (BBB) is a physical and biochemical barrier that prevents entry of toxic compounds into brain for preserving homeostasis. However, the BBB also strictly limits influx of most therapeutic agents into the brain. One promising method for overcoming this problem to deliver drugs is receptor mediated transport (RMT) system, which employs the vesicular trafficking machinery to transport substrates across the BBB endothelium in a noninvasive manner. The conjugates of drug or drug-loaded vector linked with appropriate ligands specifically binds to the endogenous targeting receptor on the surface of the endothelial cells. Then drugs could enter the cell body by means of transcytosis and eventual releasing into the brain parenchyma. Over the past 20years, there have been significant developments of RMT targeting strategies. Here, we will review the recent advance of various promising RMT systems and discuss the capability of these approaches for drug delivery to the brain.
Collapse
Affiliation(s)
- Fei Fang
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China
| | - Dan Zou
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China
| | - Wei Wang
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China
| | - Ying Yin
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China
| | - Tieying Yin
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China
| | - Shilei Hao
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China
| | - Bochu Wang
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China
| | - Guixue Wang
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China
| | - Yazhou Wang
- Key Laboratory of Bio-rheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Shapingba Street 174, Chongqing 404100, China.
| |
Collapse
|
19
|
Sezgin-bayindir Z, Ergin AD, Parmaksiz M, Elcin AE, Elcin YM, Yuksel N. Evaluation of various block copolymers for micelle formation and brain drug delivery: In vitro characterization and cellular uptake studies. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Soni S, Ruhela RK, Medhi B. Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective. Adv Pharm Bull 2016; 6:319-335. [PMID: 27766216 DOI: 10.15171/apb.2016.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 08/25/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
Purpose: For the past few decades central nervous system disorders were considered as a major strike on human health and social system of developing countries. The natural therapeutic methods for CNS disorders limited for many patients. Moreover, nanotechnology-based drug delivery to the brain may an exciting and promising platform to overcome the problem of BBB crossing. In this review, first we focused on the role of the blood-brain barrier in drug delivery; and second, we summarized synthesis methods of nanomedicine and their role in different CNS disorder. Method: We reviewed the PubMed databases and extracted several kinds of literature on neuro nanomedicines using keywords, CNS disorders, nanomedicine, and nanotechnology. The inclusion criteria included chemical and green synthesis methods for synthesis of nanoparticles encapsulated drugs and, their in-vivo and in-vitro studies. We excluded nanomedicine gene therapy and nanomaterial in brain imaging. Results: In this review, we tried to identify a highly efficient method for nanomedicine synthesis and their efficacy in neuronal disorders. SLN and PNP encapsulated drugs reported highly efficient by easily crossing BBB. Although, these neuro-nanomedicine play significant role in therapeutics but some metallic nanoparticles reported the adverse effect on developing the brain. Conclusion: Although impressive advancement has made via innovative potential drug development, but their efficacy is still moderate due to limited brain permeability. To overcome this constraint,powerful tool in CNS therapeutic intervention provided by nanotechnology-based drug delivery methods. Due to its small and biofunctionalization characteristics, nanomedicine can easily penetrate and facilitate the drug through the barrier. But still, understanding of their toxicity level, optimization and standardization are a long way to go.
Collapse
Affiliation(s)
- Shringika Soni
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Rakesh Kumar Ruhela
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| |
Collapse
|
21
|
Malhotra M, Toulouse A, Godinho BMDC, Mc Carthy DJ, Cryan JF, O'Driscoll CM. RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies. MOLECULAR BIOSYSTEMS 2016; 11:2635-57. [PMID: 26135606 DOI: 10.1039/c5mb00278h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Malignant primary brain tumors are aggressive cancerous cells that invade the surrounding tissues of the central nervous system. The current treatment options for malignant brain tumors are limited due to the inability to cross the blood-brain barrier. The advancements in current research has identified and characterized certain molecular markers that are essential for tumor survival, progression, metastasis and angiogenesis. These molecular markers have served as therapeutic targets for the RNAi based therapies, which enable site-specific silencing of the gene responsible for tumor proliferation. However, to bring about therapeutic success, an efficient delivery carrier that can cross the blood-brain barrier and reach the targeted site is essential. The current review focuses on the potential of targeted, non-viral and viral particles containing RNAi therapeutic molecules as delivery strategies specifically for brain tumors.
Collapse
Affiliation(s)
- Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
22
|
Hall AM, Hemmer R, Spaulding R, Wetzel HN, Curcio J, Sabel BA, Henrich-Noack P, Pixley S, Hopkins T, Boyce RL, Schultheis PJ, Haik KL. Cytotoxicity and apoptotic gene expression in an in vitro model of the blood-brain barrier following exposure to poly(butylcyanoacrylate) nanoparticles. J Drug Target 2015; 24:635-44. [PMID: 26707984 DOI: 10.3109/1061186x.2015.1132222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Poly(butylcyanoacrylate) (PBCA) nanoparticles (NPs) loaded with doxorubicin (DOX) and coated with polysorbate 80 (PS80) have shown efficacy in the treatment of rat glioblastoma. However, cytotoxicity of this treatment remains unclear. Purpose The purpose of this study was to investigate cytotoxicity and apoptotic gene expression using a proven in vitro co-culture model of the blood-brain barrier. Methods The co-cultures were exposed to uncoated PBCA NPs, PBCA-PS80 NPs or PBCA-PS80-DOX NPs at varying concentrations and evaluated using a resazurin-based cytotoxicity assay and an 84-gene apoptosis RT-PCR array. Results The cytotoxicity assays showed PBCA-PS80-DOX NPs exhibited a decrease in metabolic function at lower concentrations than uncoated PBCA NPs and PBCA-PS80 NPs. The apoptosis arrays showed differential expression of 18 genes in PBCA-PS80-DOX treated cells compared to the untreated control. Discussion As expected, the cytotoxicity assays demonstrated enhanced dose-dependent toxicity in the DOX loaded NPs. The differentially expressed apoptotic genes participate in both the tumor necrosis factor receptor-1 and mitochondria-associated apoptotic pathways implicated in current DOX chemotherapeutic toxicity. Conclusion The following data suggest that the cytotoxic effect may be attributed to DOX and not the NPs themselves, further supporting the use of PBCA-PS80 NPs as an effective drug delivery vehicle for treating central nervous system conditions.
Collapse
Affiliation(s)
- Andrew M Hall
- a Department of Biological Sciences , Northern Kentucky University , Highland Heights , KY , USA ;,b Department of Chemistry , Northern Kentucky University , Highland Heights , KY , USA
| | - Ruth Hemmer
- a Department of Biological Sciences , Northern Kentucky University , Highland Heights , KY , USA
| | - Robert Spaulding
- a Department of Biological Sciences , Northern Kentucky University , Highland Heights , KY , USA
| | - Hanna N Wetzel
- a Department of Biological Sciences , Northern Kentucky University , Highland Heights , KY , USA
| | - Joseph Curcio
- a Department of Biological Sciences , Northern Kentucky University , Highland Heights , KY , USA
| | - Bernhard A Sabel
- c Institute of Medical Psychology, Otto-von-Guericke University , Magdeburg , Germany
| | - Petra Henrich-Noack
- c Institute of Medical Psychology, Otto-von-Guericke University , Magdeburg , Germany
| | - Sarah Pixley
- d Molecular and Cellular Physiology Department , University of Cincinnati Medical Center , Cincinnati , OH , USA
| | - Tracy Hopkins
- d Molecular and Cellular Physiology Department , University of Cincinnati Medical Center , Cincinnati , OH , USA
| | - Richard L Boyce
- a Department of Biological Sciences , Northern Kentucky University , Highland Heights , KY , USA
| | - Patrick J Schultheis
- a Department of Biological Sciences , Northern Kentucky University , Highland Heights , KY , USA
| | - Kristi L Haik
- a Department of Biological Sciences , Northern Kentucky University , Highland Heights , KY , USA
| |
Collapse
|
23
|
Wulff-Pérez M, Pavón FJ, Martín-Rodríguez A, de Vicente J, Alen F, de Fonseca FR, Gálvez-Ruiz MJ, Serrano A. Preparation, characterization and in vivo evaluation of nanoemulsions for the controlled delivery of the antiobesity agent N-oleoylethanolamine. Nanomedicine (Lond) 2015; 9:2761-72. [PMID: 24673263 DOI: 10.2217/nnm.14.35] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED > AIMS N-oleoylethanolamine (OEA) is a lipid mediator that acts as a satiety factor. The main limiting factor for its administration is its poor water solubility. We designed and characterized new nanoemulsions as delivery system for hydrophobic compounds such as OEA. MATERIALS & METHODS The nanoemulsion components and preparation methods were selected in order to achieve the desired final properties. Then, we evaluated the in vivo properties of the nanoemulsions as drug-delivery systems testing the anorectic effects of OEA in rats after both intragastric and intraperitoneal administration. The in vivo toxicity of the nanoemulsions was evaluated after a 3-week treatment. RESULTS Nanoemulsions proved to be stable, nontoxic and had no effect on feeding behavior when administered without OEA. The effects of OEA were observable after its oral and parenteral administration with the nanoemulsions to 24-h fasted rats, finding a better efficacy compared with a vehicle containing Tween(®) 20 (Sigma-Aldrich, MO, USA) after oral administration. CONCLUSION These results support the efficacy of these nanoemulsions to deliver highly hydrophobic bioactive drugs.
Collapse
Affiliation(s)
- Miguel Wulff-Pérez
- Biocolloid & Fluid Physics Group, Department of Applied Physics, Faculty of Sciences, University of Granada, 18071, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Georgieva JV, Hoekstra D, Zuhorn IS. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier. Pharmaceutics 2014; 6:557-83. [PMID: 25407801 PMCID: PMC4279133 DOI: 10.3390/pharmaceutics6040557] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022] Open
Abstract
The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood-brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier-drug system ("Trojan horse complex") is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain.
Collapse
Affiliation(s)
- Julia V Georgieva
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Dick Hoekstra
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Inge S Zuhorn
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
25
|
Cupaioli FA, Zucca FA, Boraschi D, Zecca L. Engineered nanoparticles. How brain friendly is this new guest? Prog Neurobiol 2014; 119-120:20-38. [PMID: 24820405 DOI: 10.1016/j.pneurobio.2014.05.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 12/19/2022]
Abstract
In the last 30 years, the use of engineered nanoparticles (NPs) has progressively increased in many industrial and medical applications. In therapy, NPs may allow more effective cellular and subcellular targeting of drugs. In diagnostic applications, quantum dots are exploited for their optical characteristics, while superparamagnetic iron oxides NPs are used in magnetic resonance imaging. NPs are used in semiconductors, packaging, textiles, solar cells, batteries and plastic materials. Despite the great progress in nanotechnologies, comparatively little is known to date on the effects that exposure to NPs may have on the human body, in general and specifically on the brain. NPs can enter the human body through skin, digestive tract, airways and blood and they may cross the blood-brain barrier to reach the central nervous system. In addition to the paucity of studies describing NP effects on brain function, some of them also suffer of insufficient NPs characterization, inadequate standardization of conditions and lack of contaminant evaluation, so that results from different studies can hardly be compared. It has been shown in vitro and in vivo in rodents that NPs can impair dopaminergic and serotoninergic systems. Changes of neuronal morphology and neuronal death were reported in mice treated with NPs. NPs can also affect the respiratory chain of mitochondria and Bax protein levels, thereby causing apoptosis. Changes in expression of genes involved in redox pathways in mouse brain regions were described. NPs can induce autophagy, and accumulate in lysosomes impairing their degradation capacity. Cytoskeleton and vesicle trafficking may also be affected. NPs treated animals showed neuroinflammation with microglia activation, which could induce neurodegeneration. Considering the available data, it is important to design adequate models and experimental systems to evaluate in a reliable and controlled fashion the effects of NPs on the brain, and generate data representative of effects on the human brain, thereby useful for developing robust and valid nanosafety standards.
Collapse
Affiliation(s)
- Francesca A Cupaioli
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Diana Boraschi
- Institute of Biomedical Technologies, National Research Council of Italy, Unit of Pisa, Pisa, Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy.
| |
Collapse
|
26
|
Gaillard PJ, Visser CC, de Boer M, Appeldoorn CCM, Rip J. Blood-to-Brain Drug Delivery Using Nanocarriers. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-1-4614-9105-7_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Nanotechnology-Based Drug Delivery Systems for Targeting, Imaging and Diagnosis of Neurodegenerative Diseases. Pharm Res 2013; 30:2499-511. [DOI: 10.1007/s11095-013-1156-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 07/22/2013] [Indexed: 12/26/2022]
|
28
|
Patel M, Souto EB, Singh KK. Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles. Expert Opin Drug Deliv 2013; 10:889-905. [DOI: 10.1517/17425247.2013.784742] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Nanotechnology for neurodegenerative disorders. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8 Suppl 1:S51-8. [DOI: 10.1016/j.nano.2012.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 11/18/2022]
|
30
|
Lan Z, Yang WX. Nanoparticles and spermatogenesis: how do nanoparticles affect spermatogenesis and penetrate the blood-testis barrier. Nanomedicine (Lond) 2012; 7:579-96. [PMID: 22471721 DOI: 10.2217/nnm.12.20] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Due to the widespread use of nanomaterials in medical, industrial and military applications, the question as to whether nanoparticles (NPs) cause harmful disturbances in human health, especially on the reproductive system, remains a matter of concern. In this review, we focus mainly on the in vivo and in vitro effects of NPs on spermatogenesis at the clinical, cellular and molecular levels. In general, most NPs display adverse effects on spermatogenesis at these various levels; but, some NPs show no adverse effects. However, the mechanism underlying NP disruption of spermatogenesis and penetration of the blood-testis barrier remains unclear. In this review, we raise many hypotheses for experimental testing in order to elucidate the mechanism.
Collapse
Affiliation(s)
- Zhou Lan
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, Zhejiang, 310058, PR China
| | | |
Collapse
|
31
|
Lettiero B, Andersen AJ, Hunter AC, Moghimi SM. Complement system and the brain: Selected pathologies and avenues toward engineering of neurological nanomedicines. J Control Release 2012; 161:283-9. [DOI: 10.1016/j.jconrel.2011.10.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
|
32
|
Kundu P, Mohanty C, Sahoo SK. Antiglioma activity of curcumin-loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy. Acta Biomater 2012; 8:2670-87. [PMID: 22484149 DOI: 10.1016/j.actbio.2012.03.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/13/2012] [Accepted: 03/28/2012] [Indexed: 12/12/2022]
Abstract
Glioblastoma, the most aggressive form of brain and central nervous system tumours, is characterized by high rates proliferation, migration and invasion. The major road block in the delivery of drugs to the brain is the blood-brain barrier, along with the expression of various multi-drug resistance (MDR) proteins that cause the efflux of a wide range of chemotherapeutic drugs. Curcumin, a herbal drug, is known to inhibit cellular proliferation, migration and invasion and induce apoptosis of glioma cells. It also has the potential to modulate MDR in glioma cells. However, the greatest challenge in the administration of curcumin stems from its low bioavailability and high rate of metabolism. To circumvent the above pitfalls of curcumin we have developed curcumin-loaded glyceryl monooleate (GMO) nanoparticles (NP) coated with the surfactant Pluronic F-68 and vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) for brain delivery. We demonstrated that our curcumin-loaded NPs inhibit cellular proliferation, migration and invasion along with a higher percentage of cell cycle arrest and telomerase inhibition, thus leading to a greater percentage apoptotic cell death in glioma cells compared with native curcumin. An in vivo study demonstrated enhanced bioavailability of curcumin in blood serum and brain tissue when delivered by curcumin-loaded GMO NPs compared with native curcumin in a rat model. Thus, curcumin-loaded GMO NPs can be used as an effective delivery system to overcome the challenges of drug delivery to the brain, providing a new approach to glioblastoma therapy.
Collapse
Affiliation(s)
- Paromita Kundu
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Orissa, India
| | | | | |
Collapse
|
33
|
Xie Y, Wang Y, Zhang T, Ren G, Yang Z. Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. J Biomed Sci 2012; 19:14. [PMID: 22300475 PMCID: PMC3305542 DOI: 10.1186/1423-0127-19-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/03/2012] [Indexed: 02/02/2023] Open
Abstract
Background Nanomaterials, as a new kind of materials, have been greatly applied in different fields due to their special properties. With the industrialization of nanostructured materials and increasing public exposure, the biosafety and potential influences on central nervous system (CNS) have received more attention. Nanosized zinc oxide (nanoZnO) was suggested to up-regulate neuronal excitability and to induce glutamate release in vitro. Therefore, we hypothesized nanoparticles of nanoZnO may lead to changes in balance of neurotransmitter or neuronal excitability of CNS. This study was to investigate if there were effects of nanoZnO on animal model of depression. Methods Male Swiss mice were given lipopolysaccharides (LPS, 100 μg/kg, 100 μg/ml, every other day, 8 times, i.p.) from weaning to induce depressive-like behaviors. NanoZnO (5.6 mg/kg, 5.6 mg/ml, every other day, 8 times, i.p.) was given as the interaction. The mouse model was characterized using the methods of open field test, tail suspension test and forced swim test. Furthermore, the spatial memory was evaluated using Morris water maze (MWM) and the synaptic plasticity was assessed by measuring the long-term potentiation (LTP) in the perforant pathway (PP) to dentate gyrus (DG) in vivo. Results Results indicated that model mice showed disrupted spatial memory and LTP after LPS injections and the behavioral and electrophysiological improvements after nanoZnO treatment. Conclusion Data suggested that nanoZnO may play some roles in CNS of mental disorders, which could provide some useful direction on the new drug exploring and clinical researches.
Collapse
Affiliation(s)
- Yongling Xie
- School of Medicine, Nankai University, Tianjin, China
| | | | | | | | | |
Collapse
|
34
|
Re F, Gregori M, Masserini M. Nanotechnology for neurodegenerative disorders. Maturitas 2012; 73:45-51. [PMID: 22261367 DOI: 10.1016/j.maturitas.2011.12.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 02/02/2023]
Abstract
The efficacy, cellular uptake and specific transport of drugs and/or imaging agents to target organs, tissues and cells are common issues in the diagnosis and treatment of different disorders. In the case of neurodegenerative diseases, they represent complex problems, since brain targeting remains a still unsolved challenge in pharmacology, due to the presence of the blood-brain barrier, a tightly packed layer of endothelial cells that prevents unwanted substances to enter the brain. Engineered nanomaterials, objects with dimensions of 1-100 nm, are providing interesting biomedical tools potentially able to solve these problems, thanks to their physico-chemical features and to the possibility of multi-functionalization, allowing to confer them different features at the same time, including the ability to cross the blood-brain barrier. This review focuses on the state-of-the-art of nanomaterials suitable for therapy and diagnostic imaging of the most common neurodegenerative disorders, as well as for neuroprotection and neuronal tissue regeneration. Finally, their potential neurotoxicity is discussed, and future nanotechnological approaches are described.
Collapse
Affiliation(s)
- Francesca Re
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy.
| | | | | |
Collapse
|
35
|
Abstract
Development of nanoparticles for drug delivery has progressed by leaps and bounds over the last few decades, facilitating the possibility of an efficacious therapy for some fatal diseases. This development has stemmed from either the unsuitable physicochemical characteristics of the existing drug molecules, such as limited solubility and hence poor bioavailability, or the inadequacy of the conventional delivery systems to provide safe and efficient delivery. This chapter focuses on the precise need for the development of these novel nanoparticulate drug carriers and reasons for their popularity with the drug delivery scientists. The text also discusses the various strategies, including different formulation and targeting approaches, which have been adopted to overcome the challenges presented by the inherent properties of the drug molecules. Examples of nanoparticulate drug delivery systems which have already gained market approval have been cited in the discussion, wherever applicable.
Collapse
|
36
|
Sharma HS, Sharma A. Nanowired drug delivery for neuroprotection in central nervous system injuries: modulation by environmental temperature, intoxication of nanoparticles, and comorbidity factors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 4:184-203. [PMID: 22162425 DOI: 10.1002/wnan.172] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent developments in nanomedicine resulted in targeted drug delivery of active compounds into the central nervous system (CNS) either through encapsulated material or attached to nanowires. Nanodrug delivery by any means is supposed to enhance neuroprotection due to rapid accumulation of drugs within the target area and a slow metabolism of the compound. These two factors enhance neuroprotection than the conventions drug delivery. However, this is still uncertain whether nanodrug delivery could alter the pharmacokinetics of compounds making it more effective or just longer exposure of the compound for extended period of time is primarily responsible for enhanced effects of the drugs. Our laboratory is engaged in understanding of the nanodrug delivery using TiO(2) nanowires in CNS injuries models, for example, spinal cord injury (SCI), hyperthermia and/or intoxication of nanoparticles with or without other comorbidity factors, that is, diabetes or hypertension in rat models. Our observations suggest that nanowired drug delivery is effective under normal situation of SCI and hyperthermia as evidenced by significant reduction in the blood-brain barrier (BBB) breakdown, brain edema formation, cognitive disturbances, neuronal damages, and brain pathologies. However, when the pathophysiology of these CNS injuries is aggravated by nanoparticles intoxication or comorbidity factors, adjustment in dosage of nanodrug delivery is needed. This indicates that further research in nanomedicine is needed to explore suitable strategies in achieving greater neuroprotection in CNS injury in combination with nanoparticles intoxication or other comorbidity factors for better clinical practices.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Cerebrovascular Research Laboratory, Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
37
|
Wise K, Brasuel M. The current state of engineered nanomaterials in consumer goods and waste streams: the need to develop nanoproperty-quantifiable sensors for monitoring engineered nanomaterials. Nanotechnol Sci Appl 2011; 4:73-86. [PMID: 24198487 DOI: 10.2147/nsa.s9039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
As nanomaterials are harnessed for medicine and other technological advances, an understanding of the toxicology of these new materials is required to inform our use. This toxicological knowledge will be required to establish the medical and environmental regulations required to protect consumers and those involved in nanomaterial manufacturing. Nanoparticles of titanium oxide, carbon nanotubes, semiconductor quantum dots, gold, and silver represent a high percentage of the nanotechnology currently available or currently poised to reach consumers. For these nanoparticles, this review aims to identify current applications, the current methods used for characterization and quantification, current environmental concentrations (if known), and an introduction to the toxicology research. Continued development of analytical tools for the characterization and quantification of nanomaterials in complex environmental and biological samples will be required for our understanding of the toxicology and environmental impact of nanomaterials. Nearly all materials exhibit toxicity at a high enough concentration. Robust, rapid, and cost effective analytical techniques will be required to determine current background levels of anthropogenic, accidental, and engineered nanoparticles in air, water, and soil. The impact of the growing number of engineered nanoparticles used in consumer goods and medical applications can then be estimated. This will allow toxicological profiles relevant to the demonstrated or predicted environmental concentrations to be determined.
Collapse
Affiliation(s)
- Kelsey Wise
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, CO, USA
| | | |
Collapse
|
38
|
Molecular nanoclinics: Dream or reality? Pharmacol Res 2010; 62:55-6. [DOI: 10.1016/j.phrs.2010.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/01/2010] [Indexed: 11/22/2022]
|