1
|
Mostafa I, Hasan SMT, Gazi MA, Alam MA, Fahim SM, Saqeeb KN, Ahmed T. Alteration of stool pH and its association with biomarkers of gut enteropathy among slum-dwelling women of reproductive age in Bangladesh. BMC Womens Health 2023; 23:661. [PMID: 38071298 PMCID: PMC10710701 DOI: 10.1186/s12905-023-02758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Recent evidence suggests that measures of maternal gut enteropathy are associated with unfavorable fetal outcomes. It is, therefore, crucial to identify and treat the features of intestinal enteropathy among reproductive-age women living in areas where enteropathy is highly prevalent. However, there is a lack of non-invasive diagnostic tests to determine EED, making it difficult to identify the disease in field settings. In this study, we tested the potential of fecal pH as a biomarker of gut enteropathy and investigated its relationship with fecal biomarkers of intestinal enteropathy in reproductive-age women living in resource-limited environments. METHODS Data on socio-demographic information, anthropometry, and biological samples were collected from 78 apparently healthy women aged between 20 and 27 years from November 2018 to December 2019. The association of stool pH with two fecal biomarkers of gut enteropathy (i.e., intestinal alkaline phosphatase [IAP] and fecal lipocalin-2 [LCN-2] was investigated using multiple linear regression models after adjusting for relevant covariates. RESULTS In the adjusted models, alkaline stool pH (pH > 7.2) was found to be significantly associated with a decrease in the fecal IAP level by 1.05 unit (95% CI: -1.68, -0.42; p < 0.001) in the log scale, and acidic stool pH (pH < 6) was found to be significantly associated with an increase in the fecal LCN-2 level by 0.89 units (95% CI: 0.12, 1.67; p < 0.025) in the log scale. CONCLUSIONS The study findings demonstrated an association of fecal pH with biomarkers of gut enteropathy indicating its applicability as a simple tool for understanding intestinal enteropathy among reproductive-age women living in resource-limited settings.
Collapse
Affiliation(s)
- Ishita Mostafa
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh.
| | - S M Tafsir Hasan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Md Amran Gazi
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Md Ashraful Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Shah Mohammad Fahim
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Kazi Nazmus Saqeeb
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
- Office of the Executive Director, icddr,b, Dhaka, 1212, Bangladesh
- Department of Global Health, University of Washington, Seattle, WA, 98195, USA
- Department of Public Health Nutrition, James P Grant School of Public Health, BRAC University, Dhaka, 1212, Bangladesh
| |
Collapse
|
2
|
Yang J, Li D, Zhang M, Lin G, Hu S, Xu H. From the updated landscape of the emerging biologics for IBDs treatment to the new delivery systems. J Control Release 2023; 361:568-591. [PMID: 37572962 DOI: 10.1016/j.jconrel.2023.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
Inflammatory bowel diseases (IBDs) treatments have shifted from small-molecular therapeutics to the oncoming biologics. The first-line biologics against the moderate-to-severe IBDs are mainly involved in antibodies against integrins, cytokines and cell adhesion molecules. Besides, other biologics including growth factors, antioxidative enzyme, anti-inflammatory peptides, nucleic acids, stem cells and probiotics have also been explored at preclinical or clinical studies. Biologics with variety of origins have their unique potentials in attenuating immune inflammation or gut mucosa healing. Great advances in use of biologics for IBDs treatments have been archived in recent years. But delivering issues for biologic have also been confronted due to their liable nature. In this review, we will focus on biologics for IBDs treatments in the recent publications; summarize the current landscapes of biologics and their promise to control disease progress. Alternatively, the confronted challenges for delivering biologics will also be analyzed. To combat these drawbacks, some new delivering strategies are provided: firstly, designing the functional materials with high affinity toward biologics; secondly, the delivering vehicle systems to encapsulate the liable biologics; thirdly, the topical adhering delivery systems as enema. To our knowledge, this review is the first study to summarize the updated usage of the oncoming biologics for IBDs, their confronted challenges in term of delivery and the potential combating strategies.
Collapse
Affiliation(s)
- Jiaojiao Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Dingwei Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Mengjiao Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Gaolong Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Sunkuan Hu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China
| | - Helin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
3
|
Wu H, Wang Y, Li H, Meng L, Zheng N, Wang J. Protective Effect of Alkaline Phosphatase Supplementation on Infant Health. Foods 2022; 11:foods11091212. [PMID: 35563935 PMCID: PMC9101100 DOI: 10.3390/foods11091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
Alkaline phosphatase (ALP) is abundant in raw milk. Because of its high heat resistance, ALP negative is used as an indicator of successful sterilization. However, pasteurized milk loses its immune protection against allergy. Clinically, ALP is also used as an indicator of organ diseases. When the activity of ALP in blood increases, it is considered that diseases occur in viscera and organs. Oral administration or injecting ALP will not cause harm to the body and has a variety of probiotic effects. For infants with low immunity, ALP intake is a good prebiotic for protecting the infant’s intestine from potential pathogenic bacteria. In addition, ALP has a variety of probiotic effects for any age group, including prevention and treatment intestinal diseases, allergies, hepatitis, acute kidney injury (AKI), diabetes, and even the prevention of aging. The prebiotic effects of alkaline phosphatase on the health of infants and consumers and the content of ALP in different mammalian raw milk are summarized. The review calls on consumers and manufacturers to pay more attention to ALP, especially for infants with incomplete immune development. ALP supplementation is conducive to the healthy growth of infants.
Collapse
Affiliation(s)
- Haoming Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Huiying Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62816069
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Intestinal Alkaline Phosphatase: A Review of This Enzyme Role in the Intestinal Barrier Function. Microorganisms 2022; 10:microorganisms10040746. [PMID: 35456797 PMCID: PMC9026380 DOI: 10.3390/microorganisms10040746] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Intestinal alkaline phosphatase (IALP) has recently assumed a special relevance, being the subject of study in the prevention and treatment of certain diseases related to leaky gut. This brush border enzyme (ecto-enzyme) plays an important role in the maintenance of intestinal microbial homeostasis and intestinal barrier function through its ability to dephosphorylate lipopolysaccharide (LPS). This review addresses how IALP and intestinal barrier dysfunction may be implicated in the pathophysiology of specific diseases such as inflammatory bowel disease, necrotizing enterocolitis, and metabolic syndrome. The use of IALP as a possible biomarker to assess intestinal barrier function and strategies to modulate IALP activity are also discussed.
Collapse
|
5
|
Tena-Garitaonaindia M, Arredondo-Amador M, Mascaraque C, Asensio M, Marin JJG, Martínez-Augustin O, Sánchez de Medina F. MODULATION OF INTESTINAL BARRIER FUNCTION BY GLUCOCORTICOIDS: LESSONS FROM PRECLINICAL MODELS. Pharmacol Res 2022; 177:106056. [PMID: 34995794 DOI: 10.1016/j.phrs.2022.106056] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 01/01/2022] [Indexed: 12/15/2022]
Abstract
Glucocorticoids (GCs) are widely used drugs for their anti-inflammatory and immunosuppressant effects, but they are associated with multiple adverse effects. Despite their frequent oral administration, relatively little attention has been paid to the effects of GCs on intestinal barrier function. In this review, we present a summary of the published studies on this matter carried out in animal models and cultured cells. In cultured intestinal epithelial cells, GCs have variable effects in basal conditions and generally enhance barrier function in the presence of inflammatory cytokines such as tumor necrosis factor (TNF). In turn, in rodents and other animals, GCs have been shown to weaken barrier function, with increased permeability and lower production of IgA, which may account for some features observed in stress models. When given to animals with experimental colitis, barrier function may be debilitated or strengthened, despite a positive anti-inflammatory activity. In sepsis models, GCs have a barrier-enhancing effect. These effects are probably related to the inhibition of epithelial cell proliferation and wound healing, modulation of the microbiota and mucus production, and interference with the mucosal immune system. The available information on underlying mechanisms is described and discussed.
Collapse
Affiliation(s)
- Mireia Tena-Garitaonaindia
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María Arredondo-Amador
- Department of Pharmacology, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Mascaraque
- Department of Pharmacology, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Fermín Sánchez de Medina
- Department of Pharmacology, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Kühn F, Duan R, Ilmer M, Wirth U, Adiliaghdam F, Schiergens TS, Andrassy J, Bazhin AV, Werner J. Targeting the Intestinal Barrier to Prevent Gut-Derived Inflammation and Disease: A Role for Intestinal Alkaline Phosphatase. Visc Med 2021; 37:383-393. [PMID: 34722721 DOI: 10.1159/000515910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Background Intestinal alkaline phosphatase (IAP) as a tissue-specific isozyme of alkaline phosphatases is predominantly produced by enterocytes in the proximal small intestine. In recent years, an increasing number of pathologies have been identified to be associated with an IAP deficiency, making it very worthwhile to review the various roles, biological functions, and potential therapeutic aspects of IAP. Summary IAP primarily originates and acts in the intestinal tract but affects other organs through specific biological axes related to its fundamental roles such as promoting gut barrier function, dephosphorylation/detoxification of lipopolysaccharides (LPS), and regulation of gut microbiota. Key Messages Numerous studies reporting on the different roles and the potential therapeutic value of IAP across species have been published during the last decade. While IAP deficiency is linked to varying degrees of physiological dysfunctions across multiple organ systems, the supplementation of IAP has been proven to be beneficial in several translational and clinical studies. The increasing evidence of the salutary functions of IAP underlines the significance of the naturally occurring brush border enzyme.
Collapse
Affiliation(s)
- Florian Kühn
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Ruifeng Duan
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Matthias Ilmer
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Ulrich Wirth
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Fatemeh Adiliaghdam
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias S Schiergens
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Joachim Andrassy
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Markou G. Bioprocess Optimization for the Production of Arthrospira (Spirulina) platensis Biomass Enriched in the Enzyme Alkaline Phosphatase. Bioengineering (Basel) 2021; 8:142. [PMID: 34677215 PMCID: PMC8533315 DOI: 10.3390/bioengineering8100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022] Open
Abstract
The enzyme alkaline phosphatase (ALP) is gaining interest because it exerts bioactive properties and may be a potentially important therapeutic agent for many disorders and diseases. Microalgae are considered an important novel source for the production of diverse bio-compounds and are gaining momentum as functional foods/feeds supplements. So far, studies for the production of ALP are limited to mammalian and partly to some heterotrophic microbial sources after its extraction and/or purification. Methods: Arthrospira was cultivated under P-limitation bioprocess and the effect of the P-limitation degree on the ALP enrichment was studied. The aim of this work was to optimize the cultivation of the edible and generally-recognized-as-safe (GRAS) cyanobacterium Arthrospira platensis for the production of single-cell (SC) biomass enriched in ALP as a potential novel functional diet supplement. Results: The results revealed that the relationship between intracellular-P and single-cell alkaline phosphatase (SC-ALP) activity was inverse; SC-ALP activity was the highest (around 50 U g-1) when intracellular-P was the lowest possible (around 1.7 mg-P g-1) and decreased gradually as P availability increased reaching around 0.5 U g-1 in the control cultures. Under the strongest P-limited conditions, a more than 100-fold increase in SC-ALP activity was obtained; however, protein content of A. platensis decreased significantly (around 22-23% from 58%). Under a moderate P-limitation degree (at intracellular-P of 3.6 mg-P g-1), there was a relatively high SC-ALP activity (>28 U g-1) while simultaneously, a relative high protein content (46%) was attained, which reflects the possibility to produce A. platensis enriched in ALP retaining though its nutritional value as a protein rich biomass source. The paper presents also results on how several parameters of the ALP activity assay, such as pH, temperature etc., and post-harvest treatment (hydrothermal treatment and biomass drying), influence the SC-ALP activity.
Collapse
Affiliation(s)
- Giorgos Markou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter, L. Sof. Venizelou 1, 14123 Lykovrysi, Greece
| |
Collapse
|
8
|
Arredondo-Amador M, Aranda CJ, Ocón B, González R, Martínez-Augustin O, Sánchez de Medina F. Epithelial deletion of the glucocorticoid receptor (Nr3c1) protects the mouse intestine against experimental inflammation. Br J Pharmacol 2021; 178:2482-2495. [PMID: 33684964 DOI: 10.1111/bph.15434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucocorticoids are the first line treatment for the flare-ups of inflammatory bowel disease, but they have significant limitations. The objective of this study is to investigate whether glucocorticoid epithelial actions contribute to such limitations. EXPERIMENTAL APPROACH Intestinal epithelium glucocorticoid receptor knockout mice (Nr3c1ΔIEC ) received dextran sulfate sodium (DSS) to induce colitis. Inflammatory status was assessed by morphological and biochemical methods, and corticoid production was measured in colonic explants. Some mice were administered budesonide. KEY RESULTS After 7 days of DSS Nr3c1ΔIEC , mice exhibited 23.1% lower disease activity index (DAI) and 37% lower diarrheal score than WT mice, with decreased weight loss in days 5-7 of colitis, attenuated tissue damage, reduced colonic expression of S100A9 and STAT3 phosphorylation, and a better overall state. Ki67 immunoreactivity was increased at the crypt base, indicating enhanced epithelial proliferation. Mice administered budesonide (6 μg·day-1 PO) showed modest antiinflammatory effects but increased weight loss, which was prevented in knockout mice. Epithelial deletion of the glucocorticoid receptor also protected mice in a protracted colitis protocol. Conversely, knockout mice presented a worse status compared to the control group at 1 day post DSS. In a separate experiment, colonic corticosterone production was shown to be significantly increased in knockout mice at 7 days of colitis but not at earlier stages. CONCLUSIONS AND IMPLICATIONS The intestinal epithelial glucocorticoid receptor has deleterious effects in experimental colitis induced by DSS, probably related to inhibition of epithelial proliferative responses leading to impaired wound healing and reduced endogenous corticosterone production.
Collapse
Affiliation(s)
- María Arredondo-Amador
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs. GRANADA, University of Granada, Granada, Spain
| | - Carlos J Aranda
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs. GRANADA, University of Granada, Granada, Spain
| | - Borja Ocón
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs. GRANADA, University of Granada, Granada, Spain
| | - Raquel González
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs. GRANADA, University of Granada, Granada, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs. GRANADA, University of Granada, Granada, Spain
| | - Fermín Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs. GRANADA, University of Granada, Granada, Spain
| |
Collapse
|
9
|
Intestinal Alkaline Phosphatase Combined with Voluntary Physical Activity Alleviates Experimental Colitis in Obese Mice. Involvement of Oxidative Stress, Myokines, Adipokines and Proinflammatory Biomarkers. Antioxidants (Basel) 2021; 10:antiox10020240. [PMID: 33557311 PMCID: PMC7914798 DOI: 10.3390/antiox10020240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
Intestinal alkaline phosphatase (IAP) is an essential mucosal defense factor involved in the process of maintenance of gut homeostasis. We determined the effect of moderate exercise (voluntary wheel running) with or without treatment with IAP on the course of experimental murine 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis by assessing disease activity index (DAI), colonic blood flow (CBF), plasma myokine irisin levels and the colonic and adipose tissue expression of proinflammatory cytokines, markers of oxidative stress (SOD2, GPx) and adipokines in mice fed a standard diet (SD) or high-fat diet (HFD). Macroscopic and microscopic colitis in sedentary SD mice was accompanied by a significant decrease in CBF, and a significant increase in the colonic expression of tumor necrosis factor-alpha (TNF-α), IL-6, IL-1β and leptin mRNAs and decrease in the mRNA expression of adiponectin. These effects were aggravated in sedentary HFD mice but reduced in exercising animals, potentiated by concomitant treatment with IAP, especially in obese mice. Exercising HFD mice demonstrated a substantial increase in the mRNA for adiponectin and a decrease in mRNA leptin expression in intestinal mucosa and mesenteric fat as compared to sedentary animals. The expression of SOD2 and GPx mRNAs was significantly decreased in adipose tissue in HFD mice, but these effects were reversed in exercising mice with IAP administration. Our study shows for the first time that the combination of voluntary exercise and oral IAP treatment synergistically favored healing of intestinal inflammation, strengthened the antioxidant defense and ameliorated the course of experimental colitis; thus, IAP may represent a novel adjuvant therapy to alleviate inflammatory bowel disease (IBD) in humans.
Collapse
|
10
|
Alvarenga L, Cardozo LFMF, Lindholm B, Stenvinkel P, Mafra D. Intestinal alkaline phosphatase modulation by food components: predictive, preventive, and personalized strategies for novel treatment options in chronic kidney disease. EPMA J 2020; 11:565-579. [PMID: 33240450 PMCID: PMC7680467 DOI: 10.1007/s13167-020-00228-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
Alkaline phosphatase (AP) is a ubiquitous membrane-bound glycoprotein that catalyzes phosphate monoesters' hydrolysis from organic compounds, an essential process in cell signaling. Four AP isozymes have been described in humans, placental AP, germ cell AP, tissue nonspecific AP, and intestinal AP (IAP). IAP plays a crucial role in gut microbial homeostasis, nutrient uptake, and local and systemic inflammation, and its dysfunction is associated with persistent inflammatory disorders. AP is a strong predictor of mortality in the general population and patients with cardiovascular and chronic kidney disease (CKD). However, little is known about IAP modulation and its possible consequences in CKD, a disease characterized by gut microbiota imbalance and persistent low-grade inflammation. Mitigating inflammation and dysbiosis can prevent cardiovascular complications in patients with CKD, and monitoring factors such as IAP can be useful for predicting those complications. Here, we review IAP's role and the results of nutritional interventions targeting IAP in experimental models to prevent alterations in the gut microbiota, which could be a possible target of predictive, preventive, personalized medicine (PPPM) to avoid CKD complications. Microbiota and some nutrients may activate IAP, which seems to have a beneficial impact on health; however, data on CKD remains scarce.
Collapse
Affiliation(s)
- L. Alvarenga
- Post Graduation Program in Medical Sciences, (UFF) Federal Fluminense University Niterói-Rio de Janeiro (RJ), Niterói, Brazil
| | - L. F. M. F. Cardozo
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ) Brazil
| | - B. Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - P. Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - D. Mafra
- Post Graduation Program in Medical Sciences, (UFF) Federal Fluminense University Niterói-Rio de Janeiro (RJ), Niterói, Brazil
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ) Brazil
| |
Collapse
|
11
|
Bilski J, Wojcik D, Danielak A, Mazur-Bialy A, Magierowski M, Tønnesen K, Brzozowski B, Surmiak M, Magierowska K, Pajdo R, Ptak-Belowska A, Brzozowski T. Alternative Therapy in the Prevention of Experimental and Clinical Inflammatory Bowel Disease. Impact of Regular Physical Activity, Intestinal Alkaline Phosphatase and Herbal Products. Curr Pharm Des 2020; 26:2936-2950. [DOI: 10.2174/1381612826666200427090127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are multifactorial, chronic, disabling, and progressive diseases characterised by cyclical nature, alternating between active and quiescent states. While the aetiology of IBD is not fully understood, this complex of diseases involve a combination of factors including the genetic predisposition and changes in microbiome as well as environmental risk factors such as high-fat and low-fibre diets, reduced physical activity, air pollution and exposure to various toxins and drugs such as antibiotics. The prevalence of both IBD and obesity is increasing in parallel, undoubtedly proving the existing interactions between these risk factors common to both disorders to unravel poorly recognized cell signaling and molecular alterations leading to human IBD. Therefore, there is still a significant and unmet need for supportive and adjunctive therapy for IBD patients directed against the negative consequences of visceral obesity and bacterial dysbiosis. Among the alternative therapies, a moderate-intensity exercise can benefit the health and well-being of IBD patients and improve both the healing of human IBD and experimental animal colitis. Intestinal alkaline phosphatase (IAP) plays an essential role in the maintenance of intestinal homeostasis intestinal and the mechanism of mucosal defence. The administration of exogenous IAP could be recommended as a therapeutic strategy for the cure of diseases resulting from the intestinal barrier dysfunction such as IBD. Curcumin, a natural anti-inflammatory agent, which is capable of stimulating the synthesis of endogenous IAP, represents another alternative approach in the treatment of IBD. This review was designed to discuss potential “nonpharmacological” alternative and supplementary therapeutic approaches taking into account epidemiological and pathophysiological links between obesity and IBD, including changes in the functional parameters of the intestinal mucosa and alterations in the intestinal microbiome.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Dagmara Wojcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Aleksandra Danielak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agnieszka Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katherine Tønnesen
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Bartosz Brzozowski
- Gastroenterology and Hepatology Clinic, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Surmiak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Robert Pajdo
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agata Ptak-Belowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
12
|
Ok M, Yildiz R, Hatipoglu F, Baspinar N, Ider M, Üney K, Ertürk A, Durgut MK, Terzi F. Use of intestine-related biomarkers for detecting intestinal epithelial damage in neonatal calves with diarrhea. Am J Vet Res 2020; 81:139-146. [PMID: 31985285 DOI: 10.2460/ajvr.81.2.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the usefulness of intestinal biomarkers in determining the presence of intestinal epithelial damage in neonatal calves with diarrhea caused by 4 etiologic agents. ANIMALS 40 neonatal calves that were healthy (n = 10) or had diarrhea (30). PROCEDURES The study was a cross-sectional study. Results of hematologic analyses and serum concentrations of intestinal fatty acid-binding protein (I-FABP), liver fatty acid-binding protein (L-FABP), trefoil factor 3 (TFF-3), Claudin-3 (CLDN-3), γ-enteric smooth muscle actin (ACTG2), intestinal alkaline phosphatase (IAP), interleukin-8 (IL-8), platelet-activating factor (PAF), and leptin (LP) were compared among calves grouped according to whether they were healthy (control group; G-1) or had diarrhea caused by K99 Escherichia coli (G-2; n = 10), bovine rota- or coronavirus (G-3; 5 each), or Cryptosporidium spp (G-4; 10). RESULTS Across the 3 time points at which blood samples were obtained and evaluated, the groups of calves with diarrhea generally had markedly higher mean serum concentrations of L-FABP, TFF-3, IAP, IL-8, and LP, compared with the control group. In addition, G-2 also consistently had markedly higher mean serum concentrations of I-FAB and ACTG2 and lower mean serum concentrations of CLDN-3, compared with the control group. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that degree of intestinal epithelial damage differed among calves grouped by the etiologic agent of diarrhea and that such damage might have been more severe in calves with diarrhea caused by K99 E coli. Additionally, our results indicated that serum concentrations of I-FABP, L-FABP, TFF-3, IAP, IL-8, ACTG2, LP, and CLDN-3 were useful biomarkers of intestinal epithelial damage in calves of the present study.
Collapse
|
13
|
Lallès JP. Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutr Rev 2020; 77:710-724. [PMID: 31086953 DOI: 10.1093/nutrit/nuz015] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, much new data on intestinal alkaline phosphatase (IAP) have been published, and major breakthroughs have been disclosed. The aim of the present review is to critically analyze the publications released over the last 5 years. These breakthroughs include, for example, the direct implication of IAP in intestinal tight junction integrity and barrier function maintenance; chronic intestinal challenge with low concentrations of Salmonella generating long-lasting depletion of IAP and increased susceptibility to inflammation; the suggestion that genetic mutations in the IAP gene in humans contribute to some forms of chronic inflammatory diseases and loss of functional IAP along the gut and in stools; stool IAP as an early biomarker of incipient diabetes in humans; and omega-3 fatty acids as direct inducers of IAP in intestinal tissue. Many recent papers have also explored the prophylactic and therapeutic potential of IAP and other alkaline phosphatase (AP) isoforms in various experimental settings and diseases. Remarkably, nearly all data confirm the potent anti-inflammatory properties of (I)AP and the negative consequences of its inhibition on health. A simplified model of the body AP system integrating the IAP compartment is provided. Finally, the list of nutrients and food components stimulating IAP has continued to grow, thus emphasizing nutrition as a potent lever for limiting inflammation.
Collapse
Affiliation(s)
- Jean-Paul Lallès
- Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France, and the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France
| |
Collapse
|
14
|
Aranda CJ, Arredondo-Amador M, Ocón B, Lavín JL, Aransay AM, Martínez-Augustin O, Sánchez de Medina F. Intestinal epithelial deletion of the glucocorticoid receptor NR3C1 alters expression of inflammatory mediators and barrier function. FASEB J 2019; 33:14067-14082. [PMID: 31657630 DOI: 10.1096/fj.201900404rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glucocorticoids (GCs) are important hormones involved in the regulation of multiple physiologic functions. GCs are also widely used in anti-inflammatory/immunosuppressant drugs. GCs are synthesized by the adrenal cortex as part of the hypothalamus-pituitary-adrenal axis and also by intestinal epithelial cells, among other peripheral sites. GCs are one of the main therapy choices for the exacerbations of inflammatory bowel disease, but they are not useful to prolong remission, and development of tolerance with secondary treatment failure is frequent. Thus, GC actions at the intestinal epithelial level are of great importance, both physiologically and pharmacologically. We generated a tamoxifen-inducible nuclear receptor subfamily 3 group C member 1 (NR3C1)ΔIEC mouse model to study the effects of GCs on epithelial cells in vivo. Nr3c1 deletion in epithelial cells of the small intestine and colon was associated with limited colonic inflammation at 1 wk postdeletion, involving augmented epithelial proliferation and mucus production, plus local and systemic immune/inflammatory changes. This phenotype regressed substantially, but not completely, after 2 wk. The mechanism may involve augmented inflammatory signaling by epithelial cells or defective barrier function. We conclude that the epithelial GC receptor plays a significant role in colonic homeostasis in basal conditions, but its deficiency can be compensated in the short term. Future studies are required to assess the impact of Nr3c1 deletion in other conditions such as experimental colitis.-Aranda, C. J., Arredondo-Amador, M., Ocón, B., Lavín, J. L., Aransay, A. M., Martínez-Augustin, O., Sánchez de Medina, F. Intestinal epithelial deletion of the glucocorticoid receptor NR3C1 alters expression of inflammatory mediators and barrier function.
Collapse
Affiliation(s)
- Carlos J Aranda
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria, University of Granada, Granada, Spain
| | - María Arredondo-Amador
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria, University of Granada, Granada, Spain
| | - Borja Ocón
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria, University of Granada, Granada, Spain
| | - José Luis Lavín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Spain
| | - Ana María Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria, University of Granada, Granada, Spain
| | - Fermín Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria, University of Granada, Granada, Spain
| |
Collapse
|
15
|
Alrafas HR, Busbee PB, Nagarkatti M, Nagarkatti PS. Resveratrol modulates the gut microbiota to prevent murine colitis development through induction of Tregs and suppression of Th17 cells. J Leukoc Biol 2019; 106:467-480. [PMID: 30897248 DOI: 10.1002/jlb.3a1218-476rr] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammatory diseases of the gastrointestinal tract are often associated with microbial dysbiosis. Thus, dietary interactions with intestinal microbiota, to maintain homeostasis, play a crucial role in regulation of clinical disorders such as colitis. In the current study, we investigated if resveratrol, a polyphenol found in a variety of foods and beverages, would reverse microbial dysbiosis induced during colitis. Administration of resveratrol attenuated colonic inflammation and clinical symptoms in the murine model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. Resveratrol treatment in mice with colitis led to an increase in CD4+ FOXP3+ and CD4+ IL-10+ T cells, and a decrease in CD4+ IFN-γ+ and CD4+ IL-17+ T cells. 16S rRNA gene sequencing to investigate alterations in the gut microbiota revealed that TNBS caused significant dysbiosis, which was reversed following resveratrol treatment. Analysis of cecal flush revealed that TNBS administration led to an increase in species such as Bacteroides acidifaciens, but decrease in species such as Ruminococcus gnavus and Akkermansia mucinphilia, as well as a decrease in SCFA i-butyric acid. However, resveratrol treatment restored the gut bacteria back to homeostatic levels, and increased production of i-butyric acid. Fecal transfer experiments confirmed the protective role of resveratrol-induced microbiota against colitis inasmuch as such recipient mice were more resistant to TNBS-colitis and exhibited polarization toward CD4+ FOXP3+ T cells and decreases in CD4+ IFN-γ+ and CD4+ IL-17+ T cells. Collectively, these data demonstrate that resveratrol-mediated attenuation of colitis results from reversal of microbial dysbiosis induced during colitis and such microbiota protect the host from colonic inflammation by inducing Tregs while suppressing inflammatory Th1/Th17 cells.
Collapse
Affiliation(s)
- Haider Rasheed Alrafas
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Philip B Busbee
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
16
|
Brichacek AL, Brown CM. Alkaline phosphatase: a potential biomarker for stroke and implications for treatment. Metab Brain Dis 2019; 34:3-19. [PMID: 30284677 PMCID: PMC6351214 DOI: 10.1007/s11011-018-0322-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022]
Abstract
Stroke is the fifth leading cause of death in the U.S., with more than 100,000 deaths annually. There are a multitude of risks associated with stroke, including aging, cardiovascular disease, hypertension, Alzheimer's disease (AD), and immune suppression. One of the many challenges, which has so far proven to be unsuccessful, is the identification of a cost-effective diagnostic or prognostic biomarker for stroke. Alkaline phosphatase (AP), an enzyme first discovered in the 1920s, has been evaluated as a potential biomarker in many disorders, including many of the co-morbidities associated with stroke. This review will examine the basic biology of AP, and its most common isoenzyme, tissue nonspecific alkaline phosphatase (TNAP), with a specific focus on the central nervous system. It examines the preclinical and clinical evidence which supports a potential role for AP in stroke and suggests potential mechanism(s) of action for AP isoenzymes in stroke. Lastly, the review speculates on the clinical utility of AP isoenzymes as potential blood biomarkers for stroke or as AP-targeted treatments for stroke patients.
Collapse
Affiliation(s)
- Allison L Brichacek
- Department of Microbiology, Immunology, and Cell Biology, Center for Basic and Translational Stroke Research, WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Box 9177, Morgantown, WV, 26506, USA
- Department of Neuroscience, Emergency Medicine, and Microbiology, Immunology and Cell Biology, Center for Basic and Translational Stroke Research, WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Box 9303, Morgantown, WV, 26506, USA
| | - Candice M Brown
- Department of Microbiology, Immunology, and Cell Biology, Center for Basic and Translational Stroke Research, WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Box 9177, Morgantown, WV, 26506, USA.
- Department of Neuroscience, Emergency Medicine, and Microbiology, Immunology and Cell Biology, Center for Basic and Translational Stroke Research, WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Box 9303, Morgantown, WV, 26506, USA.
| |
Collapse
|
17
|
Secombe KR, Ball IA, Shirren J, Wignall AD, Finnie J, Keefe D, Avogadri-Connors F, Olek E, Martin D, Moran S, Bowen JM. Targeting neratinib-induced diarrhea with budesonide and colesevelam in a rat model. Cancer Chemother Pharmacol 2018; 83:531-543. [PMID: 30535958 DOI: 10.1007/s00280-018-3756-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Neratinib is an irreversible pan-ErbB tyrosine kinase inhibitor used for the extended adjuvant treatment of early-stage HER2-positive breast cancer. Its use is associated with the development of severe diarrhea in up to 40% of patients in the absence of proactive management. We previously developed a rat model of neratinib-induced diarrhea and found inflammation and anatomical disruption in the ileum and colon. Here we tested whether anti-diarrheal interventions, budesonide and colesevelam, can reduce neratinib-induced diarrhea and intestinal pathology. METHODS Rats were treated with 50 mg/kg neratinib via oral gavage for 14 or 28 days (total n = 64). Body weight and diarrhea severity were recorded daily. Apoptosis was measured using immunohistochemistry for caspase-3. Inflammation was measured via a multiplex cytokine/chemokine assay. ErbB levels were measured using PCR and Western Blot. RESULTS Budesonide co-treatment caused rats to gain significantly less weight than neratinib alone from day 4 of treatment (P = 0.0418). Budesonide (P = 0.027) and colesevelam (P = 0.033) each reduced the amount of days with moderate diarrhea compared to neratinib alone. In the proximal colon, rats treated with neratinib had higher levels of apoptosis compared to controls (P = 0.0035). Budesonide reduced histopathological injury in the proximal (P = 0.0401) and distal colon (P = 0.027) and increased anti-inflammatory IL-4 tissue concentration (ileum; P = 0.0026, colon; P = 0.031) compared to rats treated with neratinib alone. In the distal ileum, while budesonide decreased ErbB1 mRNA expression compared to controls (P = 0.018) (PCR), an increase in total ErbB1 protein was detected (P = 0.0021) (Western Blot). CONCLUSION Both budesonide and colesevelam show potential as effective interventions against neratinib-induced diarrhea.
Collapse
Affiliation(s)
- Kate R Secombe
- Adelaide Medical School, University of Adelaide, Level 2 Helen Mayo Building South, Frome Rd, Adelaide, South Australia, 5005, Australia.
| | - Imogen A Ball
- Adelaide Medical School, University of Adelaide, Level 2 Helen Mayo Building South, Frome Rd, Adelaide, South Australia, 5005, Australia
| | - Joseph Shirren
- Adelaide Medical School, University of Adelaide, Level 2 Helen Mayo Building South, Frome Rd, Adelaide, South Australia, 5005, Australia
| | - Anthony D Wignall
- Adelaide Medical School, University of Adelaide, Level 2 Helen Mayo Building South, Frome Rd, Adelaide, South Australia, 5005, Australia
| | - John Finnie
- SA Pathology, Adelaide, South Australia, Australia
| | - Dorothy Keefe
- Adelaide Medical School, University of Adelaide, Level 2 Helen Mayo Building South, Frome Rd, Adelaide, South Australia, 5005, Australia
| | | | | | | | - Susan Moran
- Puma Biotechnology Inc, Los Angeles, CA, USA
| | - Joanne M Bowen
- Adelaide Medical School, University of Adelaide, Level 2 Helen Mayo Building South, Frome Rd, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
18
|
Abbring S, Hols G, Garssen J, van Esch BCAM. Raw cow's milk consumption and allergic diseases - The potential role of bioactive whey proteins. Eur J Pharmacol 2018; 843:55-65. [PMID: 30439365 DOI: 10.1016/j.ejphar.2018.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
The prevalence of allergic diseases has increased significantly in Western countries in the last decades. This increase is often explained by the loss of rural living conditions and associated changes in diet and lifestyle. In line with this 'hygiene hypothesis', several epidemiological studies have shown that growing up on a farm lowers the risk of developing allergic diseases. The consumption of raw, unprocessed, cow's milk seems to be one of the factors contributing to this protective effect. Recent evidence indeed shows an inverse relation between raw cow's milk consumption and the development of asthma and allergies. However, the consumption of raw milk is not recommended due to the possible contamination with pathogens. Cow's milk used for commercial purposes is therefore processed, but this milk processing is shown to abolish the allergy-protective effects of raw milk. This emphasizes the importance of understanding the components and mechanisms underlying the allergy-protective capacity of raw cow's milk. Only then, ways to produce a safe and protective milk can be developed. Since mainly heat treatment is shown to abolish the allergy-protective effects of raw cow's milk, the heat-sensitive whey protein fraction of raw milk is an often-mentioned source of the protective components. In this review, several of these whey proteins, their potential contribution to the allergy-protective effects of raw cow's milk and the consequences of heat treatment will be discussed. A better understanding of these bioactive whey proteins might eventually contribute to the development of new nutritional approaches for allergy management.
Collapse
Affiliation(s)
- Suzanne Abbring
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Gert Hols
- Danone Nutricia Research, Utrecht, the Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Danone Nutricia Research, Utrecht, the Netherlands
| | - Betty C A M van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Danone Nutricia Research, Utrecht, the Netherlands.
| |
Collapse
|
19
|
Gámez-Belmonte R, Hernández-Chirlaque C, Sánchez de Medina F, Martínez-Augustin O. Experimental acute pancreatitis is enhanced in mice with tissue nonspecific alkaline phoshatase haplodeficiency due to modulation of neutrophils and acinar cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3769-3779. [DOI: 10.1016/j.bbadis.2018.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/31/2018] [Accepted: 09/09/2018] [Indexed: 01/13/2023]
|
20
|
Romero-Calvo I, Ocón B, Gámez-Belmonte R, Hernández-Chirlaque C, de Jonge HR, Bijvelds MJ, Martínez-Augustin O, Sánchez de Medina F. Adenylyl cyclase 6 is involved in the hyposecretory status of experimental colitis. Pflugers Arch 2018; 470:1705-1717. [PMID: 30094477 DOI: 10.1007/s00424-018-2187-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022]
Abstract
One of the cardinal symptoms of intestinal inflammation is diarrhea. Acute intestinal inflammation is associated with inhibition of ion absorption and increased secretion, along with fluid leakage due to epithelial injury and changes in permeability. However, in the chronic situation, a downregulation of both absorptive and secretory transport has been reported. We investigated how experimental colitis reduces cAMP levels in intestinal epithelial cells through modulation of adenylyl cyclases (AC). Primary colonic epithelial cells obtained from rats with trinitrobenzenesulfonic acid colitis and non-colitic controls were analyzed for AC expression by RT-qPCR and Western blot, following a preliminary microarray analysis. AC6 and AC5 were found to be expressed in colonocytes, and downregulated by inflammation, with the former exhibiting considerably higher mRNA levels in both cases. To test the hypothesis that inflammatory cytokines may account for this effect, Caco 2 cells were treated with IL-1β, TNF-α, or IFN-γ. All three cytokines inhibited forskolin evoked short-circuit currents in Ussing chambers and lowered intracellular cAMP, but failed to alter AC6 mRNA levels. AC5/AC6 expression was however inhibited in mouse jejunal organoids treated with IFN-γ and TNF-α, but not IL-1β. Gene knockdown of AC6 resulted in a significant decrease of ion secretion in T84 cells. We conclude that the disturbances in ion secretion observed in rat TNBS colitis are associated with low intracellular levels of cAMP in the epithelium, which may be explained in part by the downregulation of AC5/AC6 expression by proinflammatory cytokines.
Collapse
Affiliation(s)
- Isabel Romero-Calvo
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Borja Ocón
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Reyes Gámez-Belmonte
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Cristina Hernández-Chirlaque
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marcel J Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071, Granada, Spain.
| | - Fermín Sánchez de Medina
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| |
Collapse
|
21
|
Parlato M, Charbit-Henrion F, Pan J, Romano C, Duclaux-Loras R, Le Du MH, Warner N, Francalanci P, Bruneau J, Bras M, Zarhrate M, Bègue B, Guegan N, Rakotobe S, Kapel N, De Angelis P, Griffiths AM, Fiedler K, Crowley E, Ruemmele F, Muise AM, Cerf-Bensussan N. Human ALPI deficiency causes inflammatory bowel disease and highlights a key mechanism of gut homeostasis. EMBO Mol Med 2018; 10:emmm.201708483. [PMID: 29567797 PMCID: PMC5887907 DOI: 10.15252/emmm.201708483] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Herein, we report the first identification of biallelic-inherited mutations in ALPI as a Mendelian cause of inflammatory bowel disease in two unrelated patients. ALPI encodes for intestinal phosphatase alkaline, a brush border metalloenzyme that hydrolyses phosphate from the lipid A moiety of lipopolysaccharides and thereby drastically reduces Toll-like receptor 4 agonist activity. Prediction tools and structural modelling indicate that all mutations affect critical residues or inter-subunit interactions, and heterologous expression in HEK293T cells demonstrated that all ALPI mutations were loss of function. ALPI mutations impaired either stability or catalytic activity of ALPI and rendered it unable to detoxify lipopolysaccharide-dependent signalling. Furthermore, ALPI expression was reduced in patients' biopsies, and ALPI activity was undetectable in ALPI-deficient patient's stool. Our findings highlight the crucial role of ALPI in regulating host-microbiota interactions and restraining host inflammatory responses. These results indicate that ALPI mutations should be included in screening for monogenic causes of inflammatory bowel diseases and lay the groundwork for ALPI-based treatments in intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Marianna Parlato
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, Paris, France.,GENIUS group from ESPGHAN
| | - Fabienne Charbit-Henrion
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, Paris, France.,GENIUS group from ESPGHAN.,Université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Department of Pediatric Gastroenterology, Assistance Publique-Hôpitaux de Paris Hôpital Necker-Enfants Malades, Paris, France
| | - Jie Pan
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Claudio Romano
- GENIUS group from ESPGHAN.,Unit of Pediatrics, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Rémi Duclaux-Loras
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, Paris, France.,GENIUS group from ESPGHAN.,Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Marie-Helene Le Du
- Department of Biochemistry, Biophysics and Structural Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, UMR 9198 CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Paola Francalanci
- Digestive Endoscopy and Surgery Unit and Pathology Unit Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Julie Bruneau
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Department of Pathology, Necker-Enfants Malades Hospital Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marc Bras
- Bioinformatics Platform, Université Paris-Descartes-Paris Sorbonne Centre and Institut Imagine, Paris, France
| | - Mohammed Zarhrate
- Genomic Platform, INSERM, UMR1163, Imagine Institute, Paris Descartes-Sorbonne Paris Cite University, Paris, France
| | - Bernadette Bègue
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, Paris, France.,GENIUS group from ESPGHAN
| | - Nicolas Guegan
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Sabine Rakotobe
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, Paris, France.,GENIUS group from ESPGHAN
| | - Nathalie Kapel
- Department of Functional Coprology, Pitié Salpêtrière Hospital Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Paola De Angelis
- Digestive Endoscopy and Surgery Unit and Pathology Unit Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Anne M Griffiths
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Karoline Fiedler
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Eileen Crowley
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Frank Ruemmele
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, Paris, France.,GENIUS group from ESPGHAN.,Université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Department of Pediatric Gastroenterology, Assistance Publique-Hôpitaux de Paris Hôpital Necker-Enfants Malades, Paris, France
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada .,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Nadine Cerf-Bensussan
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, Paris, France .,GENIUS group from ESPGHAN.,Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| |
Collapse
|
22
|
Hammon HM, Frieten D, Gerbert C, Koch C, Dusel G, Weikard R, Kühn C. Different milk diets have substantial effects on the jejunal mucosal immune system of pre-weaning calves, as demonstrated by whole transcriptome sequencing. Sci Rep 2018; 8:1693. [PMID: 29374218 PMCID: PMC5785999 DOI: 10.1038/s41598-018-19954-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence that nutrition during early mammalian life has a strong influence on health and performance in later life. However, there are conflicting data concerning the appropriate milk diet. This discrepancy particularly applies to ruminants, a group of mammals that switch from monogastric status to rumination during weaning. Little is known regarding how the whole genome expression pattern in the juvenile ruminant gut is affected by alternative milk diets. Thus, we performed a next-generation-sequencing-based holistic whole transcriptome analysis of the jejunum in male pre-weaned German Holstein calves fed diets with restricted or unlimited access to milk during the first 8 weeks of life. Both groups were provided hay and concentrate ad libitum. The analysis of jejunal mucosa samples collected 80 days after birth and four weeks after the end of the feeding regimes revealed 275 differentially expressed loci. While the differentially expressed loci comprised 67 genes encoding proteins relevant to metabolism or metabolic adaptation, the most distinct difference between the two groups was the consistently lower activation of the immune system in calves that experienced restricted milk access compared to calves fed milk ad libitum. In conclusion, different early life milk diets had significant prolonged effects on the intestinal immune system.
Collapse
Affiliation(s)
- H M Hammon
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - D Frieten
- University of Applied Sciences, Bingen, Germany
| | - C Gerbert
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, Münchweiler, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, Münchweiler, Germany
| | - G Dusel
- University of Applied Sciences, Bingen, Germany
| | - R Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - C Kühn
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany. .,University Rostock, Faculty of Agricultural and Environmental Sciences, Rostock, Germany.
| |
Collapse
|
23
|
Intestinal alkaline phosphatase ameliorates experimental colitis via toll-like receptor 4-dependent pathway. Eur J Pharmacol 2017; 820:156-166. [PMID: 29247612 DOI: 10.1016/j.ejphar.2017.12.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/31/2022]
Abstract
Intestinal alkaline phosphatase (IAP) is an intestinal brush border enzyme which plays an important role in gut homeostasis and mucosal inflammation. However, the mechanism of the protective effect of IAP is not fully elucidated. The aim of the present study was to evaluate whether the protective effect of IAP on colitis is mediated via the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) pathway. For in vitro analysis, peritoneal macrophages from the wild-type (WT) and TLR4-deficient (TLR4-/-) C57BL/6 mice were used. IAP strongly inhibited the lipopolysaccharide (LPS)-induced production of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) by suppressing the LPS-induced phosphorylation of IκBα and the DNA-binding activity of NF-κB in WT macrophages; however, the inhibitory effects mediated by IAP were reduced in the TLR4-/- macrophages. For in vivo analysis, the protective mechanisms of IAP on dextran sulfate sodium (DSS)-induced colitis were evaluated using WT and TLR4-/- mice. Although oral administration of IAP significantly attenuated the severity of colitis in both preventive and therapeutic models of WT mice, these protective effects were not significant in TLR4-/- mice. When immunohistochemical analysis of IκBα was performed in the colitic tissues, the inhibitory effects of IAP on IκBα phosphorylation were also observed in the colon of WT mice, but these effects decreased in the colon of TLR4-/- mice. In conclusion, the protective effects of IAP on colitis were mediated via the TLR4/NF-κB pathway. These results of this study shall be helpful in tailoring treatment against colitis using IAP.
Collapse
|
24
|
Wu M, Wang J, Wang Z, Zhao J, Hu Y, Chen X. Sequence and functional analysis of intestinal alkaline phosphatase from Lateolabrax maculatus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1463-1476. [PMID: 28551866 DOI: 10.1007/s10695-017-0385-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Alkaline phosphatases (Alps) belong to a class of phosphate transferases that dephosphorylate lipopolysaccharide (LPS), adenosine triphosphate, and nucleotides. In this study, a 1874-base pair (bp) intestinal alp cDNA sequence was cloned from Lateolabrax maculatus and designated as Lm-alpi. It contained a 1611 bp open reading frame which encoded a protein with 537 amino acids. Protein sequence alignment showed that Lm-AlpI shared 29.8-79.8% identity with its homologs. Lm-AlpI catalytic sites contained three metal ion sites (two Zn2+ and one Mg2+), referring to D73, H184, D348, H349, H352, H464, D389, and H390 residues, which are essential for enzymatic activity and conservation in different organisms. Two predicted disulfide bonds in Lm-AlpI were composed of four cysteines (C152-C214 and C499-C506), which were homologous to those of mammals. Immunohistochemical staining revealed that Lm-AlpI was mainly expressed on the mucosal surface of the gastrointestinal tract, including stomach, intestine, and gastric cecum. Lm-AlpI was mainly located on the plasma membrane of transiently transfected HeLa cells. The mRNA of Lm-alpi was mainly expressed in the intestine, and its expression levels gradually increased after LPS treatment and further increased by 1.81-fold after 48 h. After desalting culture, the relative mRNA expression level of Lm-alpi decreased at 30 and 50 days after hatching (DAH) and then returned to normal levels at 70 DAH. Further experiments demonstrated that the enzyme activity of Lm-AlpI exhibited an expression pattern similar to that of the mRNA expression of Lm-alpi after LPS treatment and desalting culture. This study provided valuable information on the Lm-AlpI functions associated with the mucosal immunity and salinity adaptation of L. maculatus.
Collapse
Affiliation(s)
- Minglin Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, NO.40 South Nongke Road, Luyang District, Hefei, Anhui, 230000, China
| | - Jiaqi Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhipeng Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuting Hu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, NO.40 South Nongke Road, Luyang District, Hefei, Anhui, 230000, China
| | - Xiaowu Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
25
|
Leccioli V, Oliveri M, Romeo M, Berretta M, Rossi P. A New Proposal for the Pathogenic Mechanism of Non-Coeliac/Non-Allergic Gluten/Wheat Sensitivity: Piecing Together the Puzzle of Recent Scientific Evidence. Nutrients 2017; 9:nu9111203. [PMID: 29099090 PMCID: PMC5707675 DOI: 10.3390/nu9111203] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Non-coeliac/non-allergic gluten/wheat sensitivity (NCG/WS) is a gluten-related disorder, the pathogenesis of which remains unclear. Recently, the involvement of an increased intestinal permeability has been recognized in the onset of this clinical condition. However, mechanisms through which it takes place are still unclear. In this review, we attempt to uncover these mechanisms by providing, for the first time, an integrated vision of recent scientific literature, resulting in a new hypothesis about the pathogenic mechanisms involved in NCG/WS. According to this, the root cause of NCG/WS is a particular dysbiotic profile characterized by decreased butyrate-producing-Firmicutes and/or Bifidobacteria, leading to low levels of intestinal butyrate. Beyond a critical threshold of the latter, a chain reaction of events and vicious circles occurs, involving other protagonists such as microbial lipopolysaccharide (LPS), intestinal alkaline phosphatase (IAP) and wheat α-amylase trypsin inhibitors (ATIs). NCG/WS is likely to be a multi-factor-onset disorder, probably transient and preventable, related to quality and balance of the diet, and not to the presence of gluten in itself. If future studies confirm our proposal, this would have important implications both for the definition of the disease, as well as for the prevention and therapeutic-nutritional management of individuals with NCG/WS.
Collapse
Affiliation(s)
- Valentina Leccioli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 1, 27100 Pavia, Italy.
| | - Mara Oliveri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 1, 27100 Pavia, Italy.
| | - Marcello Romeo
- C.E.R.H.M. Center for Experimental Research for Human Microbiome Ludes H.E.I., Pietro Stiges Palace, Strait Street, 1436 Valletta, Malta.
| | - Massimiliano Berretta
- Department of Medical Oncology, CRO-Aviano, National Cancer Institute, Via Franco Gallini 2, 33081 Aviano, Italy.
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 1, 27100 Pavia, Italy.
| |
Collapse
|
26
|
Rader BA. Alkaline Phosphatase, an Unconventional Immune Protein. Front Immunol 2017; 8:897. [PMID: 28824625 PMCID: PMC5540973 DOI: 10.3389/fimmu.2017.00897] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Recent years have seen an increase in the number of studies focusing on alkaline phosphatases (APs), revealing an expanding complexity of function of these enzymes. Of the four human AP (hAP) proteins, most is known about tissue non-specific AP (TNAP) and intestinal AP (IAP). This review highlights current understanding of TNAP and IAP in relation to human health and disease. TNAP plays a role in multiple processes, including bone mineralization, vitamin B6 metabolism, and neurogenesis, is the genetic cause of hypophosphatasia, influences inflammation through regulation of purinergic signaling, and has been implicated in Alzheimer's disease. IAP regulates fatty acid absorption and has been implicated in the regulation of diet-induced obesity and metabolic syndrome. IAP and TNAP can dephosphorylate bacterial-derived lipopolysaccharide, and IAP has been identified as a potential regulator of the composition of the intestinal microbiome, an evolutionarily conserved function. Endogenous and recombinant bovine APs and recombinant hAPs are currently being explored for their potential as pharmacological agents to treat AP-associated diseases and mitigate multiple sources of inflammation. Continued research on these versatile proteins will undoubtedly provide insight into human pathophysiology, biochemistry, and the human holobiont.
Collapse
Affiliation(s)
- Bethany A Rader
- Department of Microbiology, Southern Illinois University, Carbondale, IL, United States
| |
Collapse
|
27
|
The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract. Mediators Inflamm 2017; 2017:9074601. [PMID: 28316376 PMCID: PMC5339520 DOI: 10.1155/2017/9074601] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/26/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past few years, the role of intestinal alkaline phosphatase (IAP) as a crucial mucosal defence factor essential for maintaining gut homeostasis has been established. IAP is an important apical brush border enzyme expressed throughout the gastrointestinal tract and secreted both into the intestinal lumen and into the bloodstream. IAP exerts its effects through dephosphorylation of proinflammatory molecules including lipopolysaccharide (LPS), flagellin, and adenosine triphosphate (ATP) released from cells during stressful events. Diminished activity of IAP could increase the risk of disease through changes in the microbiome, intestinal inflammation, and intestinal permeability. Exogenous IAP exerts a protective effect against intestinal and systemic inflammation in a variety of diseases and represents a potential therapeutic agent in diseases driven by gut barrier dysfunction such as IBD. The intestinal protective mechanisms are impaired in IBD patients due to lower synthesis and activity of endogenous IAP, but the pathomechanism of this enzyme deficiency remains unclear. IAP has been safely administered to humans and the human recombinant form of IAP has been developed. This review was designed to provide an update in recent research on the involvement of IAP in intestinal inflammatory processes with focus on IBD in experimental animal models and human patients.
Collapse
|
28
|
Iraporda C, Romanin DE, Bengoa AA, Errea AJ, Cayet D, Foligné B, Sirard JC, Garrote GL, Abraham AG, Rumbo M. Local Treatment with Lactate Prevents Intestinal Inflammation in the TNBS-Induced Colitis Model. Front Immunol 2016; 7:651. [PMID: 28082985 PMCID: PMC5187354 DOI: 10.3389/fimmu.2016.00651] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/14/2016] [Indexed: 12/29/2022] Open
Abstract
Lactate has long been considered as a metabolic by-product of cells. Recently, this view has been changed by the observation that lactate can act as a signaling molecule and regulates critical functions of the immune system. We previously identified lactate as the component responsible for the modulation of innate immune epithelial response of fermented milk supernatants in vitro. We have also shown that lactate downregulates proinflammatory responses of macrophages and dendritic cells. So far, in vivo effects of lactate on intestinal inflammation have not been reported. We evaluated the effect of intrarectal administration of lactate in a murine model of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). The increase in lactate concentration in colon promoted protective effects against TNBS-induced colitis preventing histopathological damage, as well as bacterial translocation and rise of IL-6 levels in serum. Using intestinal epithelial reporter cells, we found that flagellin treatment induced reporter gene expression, which was abrogated by lactate treatment as well as by glycolysis inhibitors. Furthermore, lactate treatment modulated glucose uptake, indicating that high levels of extracellular lactate can impair metabolic reprograming induced by proinflammatory activation. These results suggest that lactate could be a potential beneficial microbiota metabolite and may constitute an overlooked effector with modulatory properties.
Collapse
Affiliation(s)
- Carolina Iraporda
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CIC.PBA) , La Plata , Argentina
| | - David E Romanin
- Instituto de Estudios Inmunológicos y Fisopatológicos (IIFP, UNLP-CONICET) , La Plata , Argentina
| | - Ana A Bengoa
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CIC.PBA) , La Plata , Argentina
| | - Agustina J Errea
- Instituto de Estudios Inmunológicos y Fisopatológicos (IIFP, UNLP-CONICET) , La Plata , Argentina
| | - Delphine Cayet
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, University of Lille , Lille , France
| | - Benoit Foligné
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, University of Lille , Lille , France
| | - Jean-Claude Sirard
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, University of Lille , Lille , France
| | - Graciela L Garrote
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CIC.PBA) , La Plata , Argentina
| | - Analía G Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CIC.PBA), La Plata, Argentina; Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Martín Rumbo
- Instituto de Estudios Inmunológicos y Fisopatológicos (IIFP, UNLP-CONICET) , La Plata , Argentina
| |
Collapse
|
29
|
Lallès JP. Microbiota-host interplay at the gut epithelial level, health and nutrition. J Anim Sci Biotechnol 2016; 7:66. [PMID: 27833747 PMCID: PMC5101664 DOI: 10.1186/s40104-016-0123-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022] Open
Abstract
Growing evidence suggests the implication of the gut microbiota in various facets of health and disease. In this review, the focus is put on microbiota-host molecular cross-talk at the gut epithelial level with special emphasis on two defense systems: intestinal alkaline phosphatase (IAP) and inducible heat shock proteins (iHSPs). Both IAP and iHSPs are induced by various microbial structural components (e.g. lipopolysaccharide, flagellin, CpG DNA motifs), metabolites (e.g. n-butyrate) or secreted signal molecules (e.g., toxins, various peptides, polyphosphate). IAP is produced in the small intestine and secreted into the lumen and in the interior milieu. It detoxifies microbial components by dephosphorylation and, therefore, down-regulates microbe-induced inflammation mainly by inhibiting NF-κB pro-inflammatory pathway in enterocytes. IAP gene expression and enzyme activity are influenced by the gut microbiota. Conversely, IAP controls gut microbiota composition both directly, and indirectly though the detoxification of pro-inflammatory free luminal adenosine triphosphate and inflammation inhibition. Inducible HSPs are expressed by gut epithelial cells in proportion to the microbial load along the gastro-intestinal tract. They are also induced by various microbial components, metabolites and secreted molecules. Whether iHSPs contribute to shape the gut microbiota is presently unknown. Both systems display strong anti-inflammatory and anti-oxidant properties that are protective to the gut and the host. Importantly, epithelial gene expressions and protein concentrations of IAP and iHSPs can be stimulated by probiotics, prebiotics and a large variety of dietary components, including macronutrients (protein and amino acids, especially L-glutamine, fat, fiber), and specific minerals (e.g. calcium) and vitamins (e.g. vitamins K1 and K2). Some food components (e.g. lectins, soybean proteins, various polyphenols) may inhibit or disturb these systems. The general cellular and molecular mechanisms involved in the microbiota-host epithelial crosstalk and subsequent gut protection through IAP and iHSPs are reviewed along with their nutritional modulation. Special emphasis is also given to the pig, an economically important species and valuable biomedical model.
Collapse
Affiliation(s)
- Jean-Paul Lallès
- Division of Human Nutrition Division, INRA Clermont-Ferrand, France ; Human Nutrition Research Center - West, Nantes, France ; Present Address: INRA - SDAR, Domaine de la Motte, B.P. 35327, F-35653 Le Rheu Cedex, France
| |
Collapse
|
30
|
López-Posadas R, Mascaraque C, González R, Suárez MD, Zarzuelo A, Martínez-Augustin O, Sánchez de Medina F. The Bisphosphonate Pamidronate is an Intestinal Antiinflammatory Agent in Rat and Mouse Experimental Colitis. Inflamm Bowel Dis 2016; 22:2549-2561. [PMID: 27760076 DOI: 10.1097/mib.0000000000000920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Statins have antiinflammatory effects at the cardiovascular level because of inhibition of prenylation, which also probably underlies their therapeutic effects in preclinical models of inflammatory bowel disease. Another inhibitor of prenylation, namely alendronate, reduces colitis in rodents. In this study, we aim to explore the therapeutic potential of second-generation, nitrogen-containing bisphosphonates in 3 preclinical models of colitis. METHODS The trinitrobenzenesulfonic acid and dextran sulfate sodium models of rat colitis and the adoptive lymphocyte transfer model of colitis in mice were used. Pamidronate, alendronate, and ibandronate were tested. Treatments were administered in equimolar doses through the oral or intraperitoneal route. The effect of pamidronate on prenylation and cytokine release was assessed in vivo and in vitro. RESULTS Pretreatment with pamidronate, but not with ibandronate or alendronate, improves chemically induced trinitrobenzenesulfonic acid and dextran sulfate sodium colitis in rats. Moreover, this beneficial effect is extended to lymphocyte transfer colitis. Pamidronate has no effect on intestinal epithelial cells in vitro in terms of cytokine/chemokine release, but enhances IFN-γ, IL-6, and IL-10 production by T cells in coculture. Pamidronate also exerts a direct immunomodulatory effect on T cells, favoring Th1 differentiation and impairing Th17 polarization. CONCLUSIONS Pamidronate presents antiinflammatory and immunomodulatory properties in 3 different models of experimental colitis in rodents. This effect requires oral administration and may involve T cells in the gut mucosa, although the exact mechanism is unclear.
Collapse
Affiliation(s)
- Rocío López-Posadas
- *Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada; Dr. Rocío López-Posadas is now with the Medical Clinic 1, Translational Research Center, University Hospital, University of Erlangen-Nuremberg, Erlangen, Germany; Dr. Cristina Mascaraque is now with the IBD Center, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; and†Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Rentea RM, Lam V, Biesterveld B, Fredrich KM, Callison J, Fish BL, Baker JE, Komorowski R, Gourlay DM, Otterson MF. Radiation-induced changes in intestinal and tissue-nonspecific alkaline phosphatase: implications for recovery after radiation therapy. Am J Surg 2016; 212:602-608. [PMID: 27501776 DOI: 10.1016/j.amjsurg.2016.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/03/2016] [Accepted: 06/27/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Exogenous replacement of depleted enterocyte intestinal alkaline phosphatase (IAP) decreases intestinal injury in models of colitis. We determined whether radiation-induced intestinal injury could be mitigated by oral IAP supplementation and the impact on tissue-nonspecific AP. METHODS WAG/RjjCmcr rats (n = 5 per group) received lower hemibody irradiation (13 Gy) followed by daily gavage with phosphate-buffered saline or IAP (40 U/kg/d) for 4 days. Real-time polymerase chain reaction, AP activity, and microbiota analysis were performed on intestine. Lipopolysaccharide and cytokine analysis was performed on serum. Data were expressed as a mean ± SEM with P greater than .05 considered significant. RESULTS Intestine of irradiated animals demonstrates lower hemibody irradiation and is associated with upregulation of tissue-nonspecific AP, downregulation of IAP, decreased AP activity, and altered composition of the intestinal microbiome. CONCLUSIONS Supplemental IAP after radiation may be beneficial in mitigating intestinal radiation syndrome as evidenced by improved histologic injury, decreased acute intestinal inflammation, and normalization of intestinal microbiome.
Collapse
Affiliation(s)
- Rebecca M Rentea
- Department of Surgery, Children's Mercy Hospital, 2401 Gillham Road, Kansas City, MO 64108, USA.
| | - Vy Lam
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ben Biesterveld
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Jennifer Callison
- Department of Surgery, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Brian L Fish
- Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John E Baker
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard Komorowski
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David M Gourlay
- Division of Pediatric Surgery, Medical College of Wisconsin, Children's Hospital of Wisconsin, Children's Research Institute, Milwaukee, WI, USA
| | - Mary F Otterson
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
32
|
The glucocorticoid budesonide has protective and deleterious effects in experimental colitis in mice. Biochem Pharmacol 2016; 116:73-88. [PMID: 27431777 DOI: 10.1016/j.bcp.2016.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/14/2016] [Indexed: 12/16/2022]
Abstract
Glucocorticoids are widely used for the management of inflammatory bowel disease, albeit with known limitations for long-term use and relevant adverse effects. In turn, they have harmful effects in experimental colitis. We aimed to explore the mechanism and possible implications of this phenomenon. Regular and microbiota depleted C57BL/6 mice were exposed to dextran sulfate sodium (DSS) to induce colitis and treated with budesonide. Colonic inflammation and animal status were compared. In vitro epithelial models of wound healing were used to confirm the effects of glucocorticoids. Budesonide was also tested in lymphocyte transfer colitis. Budesonide (1-60μg/day) exerted substantial colonic antiinflammatory effects in DSS colitis. At the same time, it aggravated body weight loss, increased rectal bleeding, and induced general deterioration of animal status, bacterial translocation and endotoxemia. As a result, there was an associated increase in parameters of sepsis, such as plasma NOx, IL-1β, IL-6, lung myeloperoxidase and iNOS, as well as significant hypothermia. Budesonide also enhanced DSS induced colonic damage in microbiota depleted mice. These effects were correlated with antiproliferative effects at the epithelial level, which are expected to impair wound healing. In contrast, budesonide had significant but greatly diminished deleterious effects in noncolitic mice or in mice with lymphocyte transfer colitis. We conclude that budesonide weakens mucosal barrier function by interfering with epithelial dynamics and dampening the immune response in the context of significant mucosal injury, causing sepsis. This may be a contributing factor, at least in part, limiting clinical usefulness of corticoids in inflammatory bowel disease.
Collapse
|
33
|
DeCoffe D, Quin C, Gill SK, Tasnim N, Brown K, Godovannyi A, Dai C, Abulizi N, Chan YK, Ghosh S, Gibson DL. Dietary Lipid Type, Rather Than Total Number of Calories, Alters Outcomes of Enteric Infection in Mice. J Infect Dis 2016; 213:1846-56. [PMID: 27067195 DOI: 10.1093/infdis/jiw084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/18/2016] [Indexed: 12/19/2022] Open
Abstract
Dietary lipids modulate immunity, yet the means by which specific fatty acids affect infectious disease susceptibility remains unclear. Deciphering lipid-induced immunity is critical to understanding the balance required for protecting against pathogens while avoiding chronic inflammatory diseases. To understand how specific lipids alter susceptibility to enteric infection, we fed mice isocaloric, high-fat diets composed of corn oil (rich in n-6 polyunsaturated fatty acids [n-6 PUFAs]), olive oil (rich in monounsaturated fatty acids), or milk fat (rich in saturated fatty acids) with or without fish oil (rich in n-3 PUFAs). After 5 weeks of dietary intervention, mice were challenged with Citrobacter rodentium, and pathological responses were assessed. Olive oil diets resulted in little colonic pathology associated with intestinal alkaline phosphatase, a mucosal defense factor that detoxifies lipopolysaccharide. In contrast, while both corn oil and milk fat diets resulted in inflammation-induced colonic damage, only milk fat induced compensatory protective responses, including short chain fatty acid production. Fish oil combined with milk fat, unlike unsaturated lipid diets, had a protective effect associated with intestinal alkaline phosphatase activity. Overall, these results reveal that dietary lipid type, independent of the total number of calories associated with the dietary lipid, influences the susceptibility to enteric damage and the benefits of fish oil during infection.
Collapse
Affiliation(s)
- Daniella DeCoffe
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Candice Quin
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Sandeep K Gill
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Nishat Tasnim
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Kirsty Brown
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Artem Godovannyi
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Chuanbin Dai
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Nijiati Abulizi
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Yee Kwan Chan
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Sanjoy Ghosh
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Deanna L Gibson
- Department of Biology, University of British Columbia, Kelowna, Canada
| |
Collapse
|
34
|
Melo ADB, Silveira H, Luciano FB, Andrade C, Costa LB, Rostagno MH. Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:16-22. [PMID: 26732323 PMCID: PMC4698684 DOI: 10.5713/ajas.15.0120] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 01/09/2023]
Abstract
The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP’s role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets.
Collapse
Affiliation(s)
- A D B Melo
- Department of Animal Sciences, Universidade Federal de Lavras, Lavras, MG 37200-000, Brazil
| | - H Silveira
- Department of Animal Sciences, Universidade Federal de Lavras, Lavras, MG 37200-000, Brazil
| | - F B Luciano
- Department of Animal Sciences, Universidade Federal de Lavras, Lavras, MG 37200-000, Brazil
| | - C Andrade
- Department of Animal Sciences, Universidade Federal de Lavras, Lavras, MG 37200-000, Brazil
| | - L B Costa
- Department of Animal Sciences, Universidade Federal de Lavras, Lavras, MG 37200-000, Brazil
| | - M H Rostagno
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
35
|
Capitán-Cañadas F, Ocón B, Aranda CJ, Anzola A, Suárez MD, Zarzuelo A, de Medina FS, Martínez-Augustin O. Fructooligosaccharides exert intestinal anti-inflammatory activity in the CD4+ CD62L+ T cell transfer model of colitis in C57BL/6J mice. Eur J Nutr 2015; 55:1445-54. [PMID: 26154776 DOI: 10.1007/s00394-015-0962-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/10/2015] [Indexed: 12/27/2022]
Abstract
PURPOSE Fructooligosaccharides (FOS) are used as functional foods due to their prebiotic effects. Intestinal anti-inflammatory activity has been established in most, but not all, studies in animal models of colitis, using mainly chemically induced inflammation. Our goal was to test the effect of FOS (degree of polymerization 2-8) in the chronic, lymphocyte-driven CD4+ CD62L+ T cell transfer model of colitis. METHODS Colitis was induced by transfer of CD4+ CD62L+ T cells to C57BL/6J Rag1(-/-) mice. FOS (75 mg day(-1)) was administered by gavage as a post-treatment. Three groups were established: non-colitic (NC), colitic control (C, CD4+ CD62L+ transferred mice treated with vehicle) and colitic+FOS (C+FOS, similar but treated with FOS). Mice were killed after 13 days. RESULTS Treatment of mice with FOS ameliorated colitis, as evidenced by an increase in body weight, a lesser myeloperoxidase and alkaline phosphatase activities, a lower secretion of proinflammatory cytokines by mesenteric lymph node cells ex vivo (IFN-γ, IL-17, and TNF-α), and a higher colonic expression of occludin (C+FOS vs. C, p < 0.05). Increased relative abundance of lactic acid bacteria was observed in FOS-treated mice (p < 0.05). CONCLUSIONS FOS exert intestinal anti-inflammatory activity in T lymphocyte-dependent colitis, suggesting it may be useful in the management of inflammatory bowel disease in appropriate conditions.
Collapse
Affiliation(s)
- Fermín Capitán-Cañadas
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, University of Granada, Campus de Cartuja s/n, C.P. 18071, Granada, Spain
| | - Borja Ocón
- Department of Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Campus de Cartuja s/n, C.P. 18071, Granada, Spain
| | - Carlos José Aranda
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, University of Granada, Campus de Cartuja s/n, C.P. 18071, Granada, Spain
| | - Andrea Anzola
- Department of Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Campus de Cartuja s/n, C.P. 18071, Granada, Spain
| | - María Dolores Suárez
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, University of Granada, Campus de Cartuja s/n, C.P. 18071, Granada, Spain
| | - Antonio Zarzuelo
- Department of Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Campus de Cartuja s/n, C.P. 18071, Granada, Spain
| | - Fermín Sánchez de Medina
- Department of Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Campus de Cartuja s/n, C.P. 18071, Granada, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, University of Granada, Campus de Cartuja s/n, C.P. 18071, Granada, Spain.
| |
Collapse
|
36
|
Biesterveld BE, Koehler SM, Heinzerling NP, Rentea RM, Fredrich K, Welak SR, Gourlay DM. Intestinal alkaline phosphatase to treat necrotizing enterocolitis. J Surg Res 2015; 196:235-40. [PMID: 25840489 DOI: 10.1016/j.jss.2015.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/09/2015] [Accepted: 02/13/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND Intestinal alkaline phosphatase (IAP) activity is decreased in necrotizing enterocolitis (NEC), and IAP supplementation prevents NEC development. It is not known if IAP given after NEC onset can reverse the course of the disease. We hypothesized that enteral IAP given after NEC induction would not reverse intestinal injury. MATERIALS AND METHODS NEC was induced in Sprague-Dawley pups by delivery preterm followed by formula feedings with lipopolysaccharide (LPS) and hypoxia exposure and continued up to 4 d. IAP was added to feeds on day 2 until being sacrificed on day 4. NEC severity was scored based on hematoxylin and eosin-stained terminal ileum sections, and AP activity was measured using a colorimetric assay. IAP and interleukin-6 expression were measured using real time polymerase chain reaction. RESULTS NEC pups' alkaline phosphatase (AP) activity was decreased to 0.18 U/mg compared with controls of 0.57 U/mg (P < 0.01). Discontinuation of LPS and hypoxia after 2 d increased AP activity to 0.36 U/mg (P < 0.01). IAP supplementation in matched groups did not impact total AP activity or expression. Discontinuing LPS and hypoxia after NEC onset improved intestinal injury scores to 1.14 compared with continued stressors, score 2.25 (P < 0.01). IAP supplementation decreased interleukin-6 expression two-fold (P < 0.05), though did not reverse NEC intestinal damage (P = 0.5). CONCLUSIONS This is the first work to demonstrate that removing the source of NEC improves intestinal damage and increases AP activity. When used as a rescue treatment, IAP decreased intestinal inflammation though did not impact injury making it likely that IAP is best used preventatively to those neonates at risk.
Collapse
Affiliation(s)
| | - Shannon M Koehler
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | | | - Rebecca M Rentea
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Scott R Welak
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Wisconsin, Milwaukee, Wisconsin; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David M Gourlay
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Wisconsin, Milwaukee, Wisconsin; Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
37
|
Estaki M, DeCoffe D, Gibson DL. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity. World J Gastroenterol 2014; 20:15650-15656. [PMID: 25400448 PMCID: PMC4229529 DOI: 10.3748/wjg.v20.i42.15650] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/29/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Intestinal alkaline phosphatase (IAP) plays an essential role in intestinal homeostasis and health through interactions with the resident microbiota, diet and the gut. IAP’s role in the intestine is to dephosphorylate toxic microbial ligands such as lipopolysaccharides, unmethylated cytosine-guanosine dinucleotides and flagellin as well as extracellular nucleotides such as uridine diphosphate. IAP’s ability to detoxify these ligands is essential in protecting the host from sepsis during acute inflammation and chronic inflammatory conditions such as inflammatory bowel disease. Also important in these complications is IAP’s ability to regulate the microbial ecosystem by forming a complex relationship between microbiota, diet and the intestinal mucosal surface. Evidence reveals that diet alters IAP expression and activity and this in turn can influence the gut microbiota and homeostasis. IAP’s ability to maintain a healthy gastrointestinal tract has accelerated research on its potential use as a therapeutic agent against a multitude of diseases. Exogenous IAP has been shown to have beneficial effects when administered during ulcerative colitis, coronary bypass surgery and sepsis. There are currently a handful of human clinical trials underway investigating the effects of exogenous IAP during sepsis, rheumatoid arthritis and heart surgery. In light of these findings IAP has been marked as a novel agent to help treat a variety of other inflammatory and infectious diseases. The purpose of this review is to highlight the essential characteristics of IAP in protection and maintenance of intestinal homeostasis while addressing the intricate interplay between IAP, diet, microbiota and the intestinal epithelium.
Collapse
|
38
|
Intestinal alkaline phosphatase deficiency leads to lipopolysaccharide desensitization and faster weight gain. Infect Immun 2014; 83:247-58. [PMID: 25348635 DOI: 10.1128/iai.02520-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animals develop in the presence of complex microbial communities, and early host responses to these microbes can influence key aspects of development, such as maturation of the immune system, in ways that impact adult physiology. We previously showed that the zebrafish intestinal alkaline phosphatase (ALPI) gene alpi.1 was induced by Gram-negative bacterium-derived lipopolysaccharide (LPS), a process dependent on myeloid differentiation primary response gene 88 (MYD88), and functioned to detoxify LPS and prevent excessive host inflammatory responses to commensal microbiota in the newly colonized intestine. In the present study, we examined whether the regulation and function of ALPI were conserved in mammals. We found that among the mouse ALPI genes, Akp3 was specifically upregulated by the microbiota, but through a mechanism independent of LPS or MYD88. We showed that disruption of Akp3 did not significantly affect intestinal inflammatory responses to commensal microbiota or animal susceptibility to Yersinia pseudotuberculosis infection. However, we found that Akp3(-/-) mice acquired LPS tolerance during postweaning development, suggesting that Akp3 plays an important role in immune education. Finally, we demonstrated that inhibiting LPS sensing with a mutation in CD14 abrogated the accelerated weight gain in Akp3(-/-) mice receiving a high-fat diet, suggesting that the weight gain is caused by excessive LPS in Akp3(-/-) mice.
Collapse
|
39
|
Mascaraque C, Aranda C, Ocón B, Monte MJ, Suárez MD, Zarzuelo A, Marín JJG, Martínez-Augustin O, de Medina FS. Rutin has intestinal antiinflammatory effects in the CD4+ CD62L+ T cell transfer model of colitis. Pharmacol Res 2014; 90:48-57. [PMID: 25281414 DOI: 10.1016/j.phrs.2014.09.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/17/2014] [Accepted: 09/23/2014] [Indexed: 12/12/2022]
Abstract
Rutin, one of the most abundant flavonoids in nature, has been shown to exert intestinal antiinflammatory effects in experimental models of colitis. Our aim was to study the antiinflamatory effect of rutin in the CD4+ CD62L+ T cell transfer model of colitis, one of the closest to the human disease. Colitis was induced by transfer of CD4+ CD62L+ T cells to Rag1(-/-) mice. Rutin was administered by gavage as a postreatment. Treatment with rutin improved colitis at the dose of 57mg/kg/day, while no effect was noted with 28.5mg/kg/day. Therapeutic benefit was evidenced by a reduced disease activity index, weight loss and damage score, plus a 36% lower colonic myeloperoxidase and a 54% lower alkaline phosphatase activity. In addition, a decreased secretion of proinflammatory cytokines (IFNγ and TNFα) by mesenteric lymph node cells was observed ex vivo. The colonic expression of proinflammatory genes, including IFNγ, TNFα, CXCL1, S100A8 and IL-1β, was significantly reduced by more than 80% with rutin as assessed by RT-qPCR. Flavonoid treated mice exhibited decreased activation of splenic CD4+ cells (STAT4 phosphorylation and IFNγ expression) and reduced plasma cytokine levels. This effect was also apparent in mucosal lymphocytes based on reduced STAT4 phosphorylation. The protective effect was comparable to that of 3mg/kg/day budesonide. Rutin had no effect on splenocytes or murine T cells in vitro, while its aglycone, quercetin, exhibited a concentration dependent inhibition of proinflammatory cytokines, including IFNγ. Rutin but not quercetin showed vectorial basolateral to apical transport in IEC18 cells, associated with reduced biotransformation. We conclude that rutin exerts intestinal antiinflammatory activity in chronic, T lymphocyte dependent colitis via quercetin release and actions involving mucosal and lymph node T cells. Our results suggest that rutin may be useful in the management of inflammatory bowel disease in appropriate dosage conditions.
Collapse
Affiliation(s)
- Cristina Mascaraque
- Department of Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - Carlos Aranda
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - Borja Ocón
- Department of Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - María Jesús Monte
- Department of Physiology and Pharmacology, HEVEFARM, IBSAL, CIBERehd, University of Salamanca, Spain.
| | - María Dolores Suárez
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - Antonio Zarzuelo
- Department of Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - José Juan García Marín
- Department of Physiology and Pharmacology, HEVEFARM, IBSAL, CIBERehd, University of Salamanca, Spain.
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - Fermín Sánchez de Medina
- Department of Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| |
Collapse
|
40
|
Lee C, Chun J, Hwang SW, Kang SJ, Im JP, Kim JS. The effect of intestinal alkaline phosphatase on intestinal epithelial cells, macrophages and chronic colitis in mice. Life Sci 2014; 100:118-124. [PMID: 24548630 DOI: 10.1016/j.lfs.2014.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/25/2014] [Accepted: 02/03/2014] [Indexed: 01/01/2023]
Abstract
AIMS Intestinal alkaline phosphatase (IAP) is an intestinal brush border enzyme that is shown to function as a gut mucosal defense factor, but its defensive mechanism remains unclear. The aims of this study were to evaluate the effect of IAP on intestinal epithelial cells and macrophages, and on chronic colitis in interleukin-10-deficient (IL-10(-/-)) mice. MAIN METHODS Human intestinal epithelial cells COLO 205 and peritoneal macrophages from IL-10(-/-) mice were pretreated with IAP and then stimulated with lipopolysaccharide (LPS). IL-8 secretion from COLO205 cells and TNF-α, IL-6, IL-12 from peritoneal macrophages were measured by ELISA. Electrophoretic mobility shift assay was used to assess the DNA binding activity of NF-κB and IκBα phosphorylation/degradation was evaluated by immunoblot assay in COLO 205. For the in vivo study, colitis was induced in IL-10(-/-) mice with piroxicam, the mice were then treated with 100 or 300 units of IAP by oral gavage for 2 weeks. Colitis was quantified by histopathologic scoring, and the phosphorylation of IκBα in the colonic mucosa was assessed using immunohistochemistry. KEY FINDINGS IAP significantly inhibited LPS-induced inflammatory cytokine production in both IECs and peritoneal macrophages. IAP also attenuated LPS-induced NF-κB binding activity and IκBα phosphorylation/degradation in IECs. Oral administration of IAP significantly reduced the severity of colitis and down-regulated colitis-induced IκBα phosphorylation in IL-10(-/-) mice. SIGNIFICANCE IAP may inhibit the activation of intestinal epithelial cells and peritoneal macrophages, and may attenuate chronic murine colitis. This finding suggests that IAP supplementation is a potential therapeutic option for inflammatory bowel disease.
Collapse
Affiliation(s)
- Changhyun Lee
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaeyoung Chun
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Wook Hwang
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Joo Kang
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Lallès JP. Intestinal alkaline phosphatase: novel functions and protective effects. Nutr Rev 2013; 72:82-94. [DOI: 10.1111/nure.12082] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jean-Paul Lallès
- Institut National de la Recherche Agronomique; UR1341; Alimentation et Adaptations Digestives, Nerveuses et Comportementales (ADNC); Saint-Gilles France
| |
Collapse
|
42
|
FXR-dependent and -independent interaction of glucocorticoids with the regulatory pathways involved in the control of bile acid handling by the liver. Biochem Pharmacol 2013; 85:829-38. [PMID: 23313557 DOI: 10.1016/j.bcp.2013.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 11/20/2022]
Abstract
Treatment with glucocorticoids (GCs) may cause adverse effects, including cholestasis. The ability of dexamethasone, prednisolone and budesonide to affect the liver handling of bile acids (BAs) has been investigated. In rats treated with GCs for 4 days, altered serum and bile BA levels, changed conjugation pattern, and delayed and decreased ability to conjugate/secrete exogenously administered deoxycholate, were found using HPLC-MS/MS. RT-QPCR analyses revealed that GC treatment also induced a down-regulation of liver nuclear receptors (Fxr, Gr and Shp), transporters (Ntcp, Mrp4 and Bcrp) and enzymes (Cyp7a1 and Baat), whereas Bsep, Mrp2 and Cyp27a1 were up-regulated. Human HepG2 and Alexander cell lines were used as in vitro models of liver cells with and without constitutive FXR expression, respectively. In HepG2 cells, GCs induced a decreased expression of FXR and SHP, and inhibited the regulatory effect of GW4064 on FXR-target genes. In Alexander cells, only when they were transfected with FXR+RXR, GW4064 caused up-regulation of SHP and OSTβ, and a down-regulation of CYP27A1. GCs had the opposite effect on these genes, both in the absence and in the presence of FXR expression. Co-transfection of Alexander cells with IR-1-Luc and FXR+RXR revealed that GCs did not inhibit but moderately enhanced FXR activity. Moreover, GCs have a synergistic effect on GW4064-induced FXR activation, whereas chenodeoxycholate and GW4064 have an additive effect. In conclusion, GCs are able to directly or indirectly activate FXR but they also antagonize, through FXR-independent mechanisms, the expression of FXR and FXR target genes involved in the hepatic handling of BAs.
Collapse
|
43
|
Yang Y, Wandler AM, Postlethwait JH, Guillemin K. Dynamic Evolution of the LPS-Detoxifying Enzyme Intestinal Alkaline Phosphatase in Zebrafish and Other Vertebrates. Front Immunol 2012; 3:314. [PMID: 23091474 PMCID: PMC3469785 DOI: 10.3389/fimmu.2012.00314] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/21/2012] [Indexed: 01/01/2023] Open
Abstract
Alkaline phosphatases (Alps) are well-studied enzymes that remove phosphates from a variety of substrates. Alps function in diverse biological processes, including modulating host-bacterial interactions by dephosphorylating the Gram-negative bacterial cell wall component lipopolysaccharide (LPS). In animals, Alps are encoded by multiple genes characterized by either ubiquitous expression (named Alpls for their liver expression, but a key to proper bone mineralization), or their tissue-specific expression, for example in the intestine (Alpi). We previously characterized a zebrafish alpi gene (renamed here alpi.1) that is regulated by Myd88-dependent innate immune signaling and that is required to prevent a host’s excessive inflammatory reactions to its resident microbiota. Here we report the characterization of two new alp genes in zebrafish, alpi.2 and alp3. To understand their origins, we investigated the phylogenetic history of Alp genes in animals. We find that vertebrate Alp genes are organized in three clades with one of these clades missing from the mammals. We present evidence that these three clades originated during the two vertebrate genome duplications. We show that alpl is ubiquitously expressed in zebrafish, as it is in mammals, whereas the other three alps are specific to the intestine. Our phylogenetic analysis reveals that in contrast to Alpl, which has been stably maintained as a single gene throughout the vertebrates, the Alpis have been lost and duplicated multiple times independently in vertebrate lineages, likely reflecting the rapid and dynamic evolution of vertebrate gut morphologies, driven by changes in bacterial associations and diet.
Collapse
Affiliation(s)
- Ye Yang
- Institute of Molecular Biology, University of Oregon Eugene, OR, USA
| | | | | | | |
Collapse
|