1
|
Zheng J, Li Y, Wu C, Wang H, Jiang F, Tang X. Interactions Between Eleven Sleep-Related Characteristics and Diabetic Nephropathy: A Bidirectional Mendelian Randomization Study in European Population. Psychiatry Investig 2024; 21:1083-1093. [PMID: 39465235 PMCID: PMC11513868 DOI: 10.30773/pi.2024.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVE Observational studies often report disturbed sleep patterns in individuals with diabetic nephropathy (DN). The possible causal relationship behind these connections remains unknown. This research assessed the possible cause-and-effect relationship between eleven sleep-related characteristics and the risk of developing DN using a two-sample Mendelian randomization (MR) study. METHODS This study employed a two-sample bidirectional MR analytical approach. Genetic data for eleven sleep-related characteristics were acquired from the genome-wide association studies (GWAS) database of individuals of European ancestry which involve scanning complete sets of DNA, or genomes. GWAS summary data for DN included 4,111 DN cases and 308,539 controls. Instrumental variables were single nucleotide polymorphisms strongly linked to sleep-related characteristics. The main analysis used the random-effects inverse variance weighted (IVW) approach, with validation through sensitivity testing. RESULTS MR analysis revealed that a higher genetic predisposition for sleep efficiency reduced the chance of developing DN (odds ratio [OR]: 0.384; 95% confidence interval [CI] 0.205-0.717; p=0.003). Genetic susceptibility to DN was associated with a higher likelihood of experiencing more sleep episodes (OR: 1.015; 95% CI 1.003-1.028; p=0.016). Sensitivity analysis confirmed the robustness of these correlations. No significant connections were found between other genetically predicted sleep characteristics and the likelihood of developing DN. CONCLUSION Our research indicates that a genetic predisposition for better sleep efficiency is linked to a lower risk of developing DN. There is also evidence suggesting that genetic predisposition to DN may directly impact sleep episodes. Further research is needed to explore the molecular mechanisms underlying these findings.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Nephrology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuan Li
- Department of Dermatology, The Fifth People’s Hospital of Hainan Province, Haikou, China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Wang
- Department of Nephrology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xinfang Tang
- Department of Nephrology, The Affiliated Lianyungang Municipal Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang Municipal Oriental Hospital, Lianyungang, China
| |
Collapse
|
2
|
Liu F, Liao B, Ling YL, Meng XZ, Wang JL, Hu LL, Luo XQ, Yang FL. Icariin protects testicular damage in streptozotocin-induced diabetic rats through regulation of glycolysis pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241279525. [PMID: 39180223 PMCID: PMC11344256 DOI: 10.1177/03946320241279525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
OBJECTIVE This study aims to investigate potential beneficial actions of icariin (ICA) on testicular spermatogenic function in male rats with streptozotocin (STZ)-induced diabetes and to explore the underlying mechanisms. Background: ICA was found to reduce blood glucose, regulate the endocrine function of the reproductive system, and improve testicular spermatogenic function. METHODS Adult rats were intraperitoneally injected with STZ (65 mg/kg) to induce type 1 diabetes mellitus (T1DM). Diabetic rats were randomly classified intoT1DM (n = 6) and T1DM + ICA (n = 6) groups. Rats without STZ and ICA treatment were assigned as control group (n = 6). The morphology of testicular tissues was examined by histological staining. The mRNA and protein expression levels were determined by quantitative real-time PCR, Western blot and immunostaining, respectively. RESULTS Rats from T1DM group showed a reduction in epididymis and testis weight, and a decrease in sperm count when compared to control group (p < 0.01), which was attenuated by ICA treatment (p < 0.05) Diabetic rats from T1DM group also exhibited reduced diameter and area of seminiferous tubules, along with decreased spermatogonia and primary spermatocytes number when compared to control group (p < 0.01), which was partially reversed by ICA treatment (p < 0.05) Rats from T1DM group exhibited down-regulation of PCNA mRNA and protein in the testis when compared to control group (p < 0.01); while ICA treatment up-regulated PCNA expression in the testis of diabetic rats compared to T1DM group (p < 0.05). Rats from T1DM group showed up-regulation of Bax and capase-3 and down-regulation of Bcl-2, PKM2, HK2 and lactate dehydrogenase A in the testes when compared to control group (p < 0.05), which was reversed by ICA treatment (p < 0.05). CONCLUSION These findings suggest that ICA may exert its protective effects on testicular damage in diabetic rats through modulation of glycolysis pathway and suppression of apoptosis.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Biyun Liao
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Environment and Population Health of Ecological Aluminum Industry base of Education, Departmen tof Guangxi Zhuang Autonomous Region, Youjiang Medical University for Nationalities, Baise, China
| | - Yan-Lan Ling
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xian-Zong Meng
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jun-Li Wang
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Key Laboratory of Environmental Pollution and Health Risk Assessment, Youjiang Medical University for Nationalities, Baise, China
| | - Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Environment and Population Health of Ecological Aluminum Industry base of Education, Departmen tof Guangxi Zhuang Autonomous Region, Youjiang Medical University for Nationalities, Baise, China
| | - Xiao-Qiong Luo
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Feng-Lian Yang
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Environment and Population Health of Ecological Aluminum Industry base of Education, Departmen tof Guangxi Zhuang Autonomous Region, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
3
|
Oezer K, Kolibabka M, Gassenhuber J, Dietrich N, Fleming T, Schlotterer A, Morcos M, Wohlfart P, Hammes HP. The effect of GLP-1 receptor agonist lixisenatide on experimental diabetic retinopathy. Acta Diabetol 2023; 60:1551-1565. [PMID: 37423944 PMCID: PMC10520173 DOI: 10.1007/s00592-023-02135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
AIMS Glucagon-like peptide-1 receptor agonists are effective treatments for type 2 diabetes, effectively lowering glucose without weight gain and with low risk for hypoglycemia. However, their influence on the retinal neurovascular unit remains unclear. In this study, we analyzed the effects of the GLP-1 RA lixisenatide on diabetic retinopathy. METHODS Vasculo- and neuroprotective effects were assessed in experimental diabetic retinopathy and high glucose-cultivated C. elegans, respectively. In STZ-diabetic Wistar rats, acellular capillaries and pericytes (quantitative retinal morphometry), neuroretinal function (mfERG), macroglia (GFAP western blot) and microglia (immunohistochemistry) quantification, methylglyoxal (LC-MS/MS) and retinal gene expressions (RNA-sequencing) were determined. The antioxidant properties of lixisenatide were tested in C. elegans. RESULTS Lixisenatide had no effect on glucose metabolism. Lixisenatide preserved the retinal vasculature and neuroretinal function. The macro- and microglial activation was mitigated. Lixisenatide normalized some gene expression changes in diabetic animals to control levels. Ets2 was identified as a regulator of inflammatory genes. In C. elegans, lixisenatide showed the antioxidative property. CONCLUSIONS Our data suggest that lixisenatide has a protective effect on the diabetic retina, most likely due to a combination of neuroprotective, anti-inflammatory and antioxidative effects of lixisenatide on the neurovascular unit.
Collapse
Affiliation(s)
- Kuebra Oezer
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Matthias Kolibabka
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Nadine Dietrich
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andrea Schlotterer
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Morcos
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Stoffwechselzentrum Rhein-Pfalz, Belchenstraße 1-5, 68163, Mannheim, Germany
| | - Paulus Wohlfart
- Sanofi, MSAT M&I Bioassays and Compliance, Frankfurt, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Alsarhani DK, Altammami GS, Alzahrani HT, Alhazmi RM, Alanazi SA, Gangadhanan S, Alhowass A. Outcomes of Cataract Surgery in Diabetic Patients in King Abdulaziz Medical City in 2019. Cureus 2022; 14:e30216. [DOI: 10.7759/cureus.30216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
|
5
|
Wang H, Huang S, Hu T, Fei S, Zhang H. Circ_0000064 promotes high glucose-induced renal tubular epithelial cells injury to facilitate diabetic nephropathy progression through miR-532-3p/ROCK1 axis. BMC Endocr Disord 2022; 22:67. [PMID: 35291991 PMCID: PMC8922934 DOI: 10.1186/s12902-022-00968-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/22/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Circular RNA (circRNA) has been shown to mediate diabetic nephropathy (DN) development by regulating renal tubular epithelial cells (RTECs) injury. However, the role and mechanism of circ_0000064 in high glucose (HG)-induced RTECs injury have not been fully elucidated. METHODS Human RTECs (HK-2) were exposed to HG to induce cell injury. Cell oxidative stress was assessed by detecting the levels of oxidative stress-markers. Moreover, cell proliferation and apoptosis were determined by CCK8 assay, EDU assay and flow cytometry. The protein levels of proliferation markers, apoptosis markers and Rho-associated coiled-coil-containing kinase 1 (ROCK1) were measured using western blot analysis. Furthermore, quantitative real-time PCR was performed to assess the expression of circ_0000064, microRNA (miR)-532-3p and ROCK1. The interaction between miR-532-3p and circ_0000064 or ROCK1 was confirmed by dual-luciferase reporter assay and RNA pull-down assay. RESULTS Our results revealed that HG treatment could promote HK-2 cells oxidative stress, apoptosis, fibrosis, and inhibit proliferation. Circ_0000064 expression was increased in the serum of DN patients and HG-induced HK-2 cells, and silenced circ_0000064 could relieve HG-induced HK-2 cells injury. MiR-532-3p could be sponged by circ_0000064, and its overexpression also alleviated HG-induced HK-2 cells injury. Besides, the regulation of circ_0000064 knockdown on HG-induced HK-2 cells injury could be reversed by miR-532-3p inhibitor. Additionally, ROCK1 was a target of miR-532-3p, and its expression was inhibited by circ_0000064 knockdown. The inhibition effect of circ_0000064 knockdown on HG-induced HK-2 cells injury also could be reversed by overexpressing ROCK1. CONCLUSION In summary, circ_0000064 knockdown might alleviate HG-induced HK-2 cells injury via regulating the miR-532-3p/ROCK1 axis, which provided a new perspective for DN treatment.
Collapse
Affiliation(s)
- Huanlan Wang
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China
| | - Shenghua Huang
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China
| | - Taotao Hu
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China
| | - Shizhi Fei
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China
| | - Huanqiao Zhang
- Department of Nephrology, Baoji Central Hospital, No.8 Jiangtan Road, Weibin District, Baoji, 721008, Shaanxi, China.
| |
Collapse
|
6
|
Shi WQ, Zhang MX, Tang LY, Ye L, Zhang YQ, Lin Q, Li B, Shao Y, Yu Y. Altered spontaneous brain activity patterns in patients with diabetic retinopathy using amplitude of low-frequency fluctuation. World J Diabetes 2022; 13:97-109. [PMID: 35211247 PMCID: PMC8855138 DOI: 10.4239/wjd.v13.i2.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/10/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetes mellitus is a metabolic disorder characterized by prolonged elevation of blood glucose due to various causes. Currently, the relationship between diabetic retinopathy (DR) and altered connectivity of brain function is unclear.
AIM To investigate the relationship between this brain activity and clinical manifestations and behaviors of DR patients by using the amplitude of low-frequency fluctuation (ALFF) technique.
METHODS Twenty-four DR patients and 24 healthy controls (HCs) matched for age and gender were enrolled. We measured and recorded average ALFF values of DR patients and HCs and then classified them using receiver operating characteristic (ROC) curves.
RESULTS ALFF values of both left and right posterior cerebellar lobe and right anterior cingulate gyrus were remarkably higher in the DR patients than in the HCs; however, DR patients had lower values in the bilateral calcarine area. ROC curve analysis of different brain regions demonstrated high accuracy in the area under the curve analysis. There was no significant relationship between mean ALFF values for different regions and clinical presentations in DR patients. Neuronal synchronization abnormalities in some brain regions of DR patients were associated with cognitive and visual disorders.
CONCLUSION Abnormal spontaneous brain activity was observed in many areas of DR patients’ brains, which may suggest a possible link between clinical manifestations and behaviors in DR patients.
Collapse
Affiliation(s)
- Wen-Qing Shi
- Department of Endocrinology and Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi clinical research center for endocrine and metabolic disease, Nanchang 330006, Jiangxi Province, China
| | - Mou-Xin Zhang
- Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, Fujian Province, China
| | - Li-Ying Tang
- Department of Ophthalmology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, Fujian Province, China
| | - Lei Ye
- Department of Endocrinology and Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi clinical research center for endocrine and metabolic disease, Nanchang 330006, Jiangxi Province, China
| | - Yu-Qing Zhang
- Department of Endocrinology and Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi clinical research center for endocrine and metabolic disease, Nanchang 330006, Jiangxi Province, China
| | - Qi Lin
- Department of Endocrinology and Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi clinical research center for endocrine and metabolic disease, Nanchang 330006, Jiangxi Province, China
| | - Biao Li
- Department of Endocrinology and Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi clinical research center for endocrine and metabolic disease, Nanchang 330006, Jiangxi Province, China
| | - Yi Shao
- Department of Endocrinology and Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi clinical research center for endocrine and metabolic disease, Nanchang 330006, Jiangxi Province, China
| | - Yao Yu
- Department of Endocrinology and Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi clinical research center for endocrine and metabolic disease, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
7
|
Fan X, Xu M, Chen X, Ren Q, Fan Y, Wang R, Chen J, Cui L, Wang Z, Sun X, Guo N. Proteomic profiling and correlations with clinical features reveal biomarkers indicative of diabetic retinopathy with diabetic kidney disease. Front Endocrinol (Lausanne) 2022; 13:1001391. [PMID: 36277688 PMCID: PMC9581084 DOI: 10.3389/fendo.2022.1001391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Diabetic retinopathy (DR) and diabetic kidney disease (DKD) are complications of diabetes and place serious health and economic burdens on society. However, the identification and characterization of early biomarkers for DKD, especially for nonproliferative DR (NPDR) patients with DKD, are still needed. This study aimed to demonstrate the plasma proteomic profiles of NPDR+DKD and NPDR patients and identify potential biomarkers for early diagnosis of DKD. Fifteen plasma samples from the NPDR group and nine from the NPDR+DKD group were analyzed by LC-MS/MS to identify the differentially expressed proteins between the two groups. Functional enrichment, protein-protein interaction and clinical feature correlation analyses revealed the target protein candidates, which were verified using ELISA and receiver operating characteristic (ROC) analysis. In total, 410 proteins were detected in plasma; 15 were significantly upregulated and 7 were downregulated in the NPDR+DKD group. Bioinformatics analysis suggested that DKD is closely related to cell adhesion and immunity pathways. β-2-Microglobulin (B2M) and vimentin (VIM) were upregulated in NPDR+DKD, enriched as hub proteins and strongly correlated with clinical features. ELISA showed that B2M (p<0.001) and VIM (p<0.0001) were significantly upregulated in NPDR+DKD compared with NPDR. In ROC analysis, B2M and VIM could distinguish DKD from NPDR with area under the curve values of 0.9000 (p < 0.0001) and 0.9950. Our proteomic study revealed alterations in the proteomic profile and identified VIM and B2M as early biomarkers of DKD, laying the foundation for the prevention, diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Xiao’e Fan
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
- *Correspondence: Xiao’e Fan,
| | - Manhong Xu
- Department of Vitreoretinal and Ocular Trauma, Tianjin Medical University Eye Hospital, Eye Institute and School of Optometry, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research Center of Ophthalmology and Visual Science, Tianjin, China
| | - Xin Chen
- Department of Vitreoretinal and Ocular Trauma, Tianjin Medical University Eye Hospital, Eye Institute and School of Optometry, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research Center of Ophthalmology and Visual Science, Tianjin, China
| | - Qianfeng Ren
- Department of Pathology, Jincheng People’s Hospital, Jincheng, China
| | - Yan Fan
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
| | - Ranran Wang
- Department of Laboratory, Jincheng People’s Hospital, Jincheng, China
| | - Jiaqi Chen
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
| | - Li Cui
- Department of Nephrology, Jincheng People’s Hospital, Jincheng, China
| | - Zhengmin Wang
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
| | - Xiaoyan Sun
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
| | - Nannan Guo
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
| |
Collapse
|
8
|
Xu Y, Huang J, Wang N, Tan HY, Zhang C, Li S, Tang G, Feng Y. Network Pharmacology-Based Analysis and Experimental Exploration of Antidiabetic Mechanisms of Gegen Qinlian Decoction. Front Pharmacol 2021; 12:649606. [PMID: 34381354 PMCID: PMC8350346 DOI: 10.3389/fphar.2021.649606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) and therapy options have been studied increasingly due to their rising incidence and prevalence. The trend of applying traditional Chinese medicine (TCM) to treat T2DM is increasing as a crucial medical care for metabolic dysfunctions. Gegen Qinlian decoction (GQL), a well-known classical TCM formula used in China, has been clinically applied to treat various types of chronic metabolic diseases. However, antidiabetic effects of GQL administration during T2DM have never been studied systematically. We assessed physiological and molecular targets associated with therapeutic effects of GQL by evaluating network topological characteristics. The GQL-related biological pathways are closely associated with antidiabetic effects, including the TNF and PI3K–AKT signaling pathways. Associated primary biological processes such as RNA polymerase II promoter transcription participate in the inflammatory response, oxidative stress reduction, and glucose metabolic process, thereby exerting multiple biological effects on the antidiabetic mechanism. Furthermore, our results showed that GQL can affect blood glycemic levels and ameliorate inflammatory symptoms, and liver and pancreas tissue injury in high-fat diet plus streptozotocin-induced diabetic mice. In vivo and in vitro experiments confirmed that antidiabetic effects of GQL were associated with a modulation of the TNF and PI3K–AKT–MTOR pathways.
Collapse
Affiliation(s)
- Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jihan Huang
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Effects of physical activity on the progression of diabetic nephropathy: a meta-analysis. Biosci Rep 2021; 41:227185. [PMID: 33289502 PMCID: PMC7786348 DOI: 10.1042/bsr20203624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023] Open
Abstract
Background: Diabetic nephropathy (DN) is an important microvascular complication of diabetes. Physical activity (PA) is part of a healthy lifestyle for diabetic patients; however, the role of PA in DN has not been clarified. Our aim was to conduct a meta-analysis to explore the association between PA and DN risk. Methods: PubMed, Embase, Cochrane Library and Web of Science were systematically searched for articles examining PA in diabetic patients and its effect on renal function. Standardized mean differences (SMDs) and odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. The study protocol is registered with PROSPERO (CRD42020191379). Results: A total of 38991 participants were identified from 18 studies. The results indicated that PA was associated with increases in the glomerular filtration rate (SMD = 0.01, 95% CI = [0.02–0.17]) and decreases in the urinary albumin creatinine ratio (SMD = −0.53, 95% CI: −0.72 to −0.34), rate of microalbuminuria (OR = 0.61, 95% CI = [0.46–0.81]), rate of acute kidney injury (OR = 0.02, 95% CI = [0.01–0.04]), rate of renal failure (OR = 0.71, 95% CI = [0.52–0.97]) and risk of DN in patients with Type 1 diabetes (OR = 0.67, 95% CI = [0.51–0.89]). Conclusions: This meta-analysis indicated that PA is effective for improving DN and slowing its progression; however, more high-quality randomized controlled trials are required on this topic.
Collapse
|
10
|
Xu QH, Li QY, Yu K, Ge QM, Shi WQ, Li B, Liang RB, Lin Q, Zhang YQ, Shao Y. Altered Brain Network Centrality in Patients with Diabetic Optic Neuropathy: A Resting-State FMRI Study. Endocr Pract 2020; 26:1399-1405. [PMID: 33471731 DOI: 10.4158/ep-2020-0045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/15/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Recent studies have suggested that diabetic optic neuropathy (DON) independently increases the incidence of brain diseases like cerebral infarction and hemorrhage. In this study, voxel-level degree centrality (DC) was used to study potential changes in functional network brain activity in DON patients. METHODS The study included 14 DON patients and 14 healthy controls (HCs) matched by age, sex, and weight. All subjects underwent resting functional magnetic resonance imaging. Receiver operating characteristic curves and Pearson correlation analysis were performed. RESULTS The DC values of the left frontal mid-orb and right middle frontal gyrus/right frontal sup were significantly lower in DON patients compared to HCs. The DC value of the left temporal lobe was also significantly higher than in HCs. CONCLUSION Three different brain regions show DC changes in DON patients, suggesting common optic neuropathy in the context of diabetes and providing new ideas for treating optic nerve disease in patients with long-term diabetes. ABBREVIATIONS AUC = area under the curve; BCVA = best corrected visual acuity; DC = degree centrality; DON = diabetic optic neuropathy; fMRI = functional magnetic resonance imaging; HC = healthy control; LFMO = left frontal mid orb; LTL = left temporal lobe; RFS = right frontal sup; RMFG = right middle frontal gyrus; ROC = receiver operating characteristic.
Collapse
Affiliation(s)
- Qian-Hui Xu
- From the (1)Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China, and; The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qiu-Yu Li
- From the (1)Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China, and
| | - Kang Yu
- From the (1)Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China, and; The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qian-Ming Ge
- From the (1)Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China, and
| | - Wen-Qing Shi
- From the (1)Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China, and
| | - Biao Li
- From the (1)Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China, and
| | - Rong-Bin Liang
- From the (1)Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China, and
| | - Qi Lin
- From the (1)Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China, and
| | - Yu-Qing Zhang
- From the (1)Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China, and
| | - Yi Shao
- From the (1)Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China, and.
| |
Collapse
|
11
|
Zhang H, Lu S, Chen L, Huang X, Jiang L, Li Y, Liao P, Wu X, Zhou X, Qin L, Wei J, Huang R. 2-Dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione, isolated from the root of Averrhoa carambola L., protects against diabetic kidney disease by inhibiting TLR4/TGFβ signaling pathway. Int Immunopharmacol 2020; 80:106120. [PMID: 31972423 DOI: 10.1016/j.intimp.2019.106120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Diabetic kidney disease (DKD) is the leading cause of death and disability of diabetes mellitus. However, there is still a lack of specific drugs for the treatment of DKD. The chief aim of this research is to investigate the role and mechanism of 2-Dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) for DKD. METHODS Wild type and TLR4 knockout mice were induced to diabetes. After 4-week treatment with DMDD, blood sugar, renal function, blood lipid and pathological changes were assessed. Real-time PCR, western blotting, and immunohistochemistry were employed to detect the expressions of TLR4, TGFβ1 and Smad2/3 in the renal tissue. RESULTS DMDD improved the serum lipid and decreased fasting blood glucose levels in diabetic mice. CysC and urinary albumin levels increased markedly in the diabetic group, and they were obviously decreased after 4 weeks of DMDD treatment. Compared with the WT diabetic mice, the urinary albumin and CysC in the TLR4-/- mice were expressed at lower levels. HE and Masson's staining revealed that DMDD clearly ameliorated pathological changes and renal fibrosis. When TLR4 gene was knock out, the pathological was improved. Mechanistically, TLR4, TGF-β1 and Smad2/3 were obvious up-regulation in the renal tissues of diabetic mice. The expressions of these proteins were significantly down-regulated after DMDD treatment (p < 0.05). In the TLR4-/- mice, mRNA and protein levels of TGF-β1 and Smad2/3 were obviously lower than those in the WT mice. In addition, IHC revealed that a strong in situ expressions of TLR4, TGF-β1 and Smad2/3 were seen in the kidney tissues of diabetic mice, which were distinctly weakened in the DMDD-treated mice. In the TLR4-/- mice, however, expressions of TGF-β1 and Smad2/3 were not remarkable increase in the diabetic mice compared with normal mice. CONCLUSIONS These results strongly indicate that TLR4 is essential for DMDD protection against renal dysfunction in diabetic mice. Its hypoglycemic and anti-fibrosis effects were likely mediated by the TLR4/TGFβ signaling pathway.
Collapse
Affiliation(s)
- Hongliang Zhang
- Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China; Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shunyu Lu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Lixiu Chen
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiang Huang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Luhui Jiang
- Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yuchun Li
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Peiyu Liao
- Shenzhen High School of Science (Sendelta International Academy), Shenzhen, China
| | - Xingchun Wu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xin Zhou
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Luhui Qin
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Renbin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
12
|
He Y, Jin Y, Li X, Wu L, Jin C. Quantification of pancreatic elasticity in type 2 diabetes: A new potential imaging marker for evaluation of microangiopathy. Eur J Radiol 2020; 124:108827. [PMID: 31951892 DOI: 10.1016/j.ejrad.2020.108827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of this study was to noninvasively explore pancreatic morphological and mechanical changes in diabetic patients with or without microangiopathy and to investigate the clinical correlations of pancreatic stiffness or size with diabetic microangiopathy. METHODS A total of 213 type 2 diabetic patients with / without microangiopathy (91/122) were prospectively enrolled. Microangiopathy included diabetic retinopathy, diabetic nephropathy and diabetic peripheral neuropathy. Each subject underwent pancreatic ultrasonography and elastography. The shear wave velocity (SWV) and thickness of the head, body and tail were measured and compared. Receiver operating characteristic (ROC) curves was performed in the diagnosis of microangiopathy. Risk factors of the occurrence of more microvascular complications were explored. RESULTS The SWV in pancreas increased significantly in patients with microangiopathy (P < 0.01) while the thickness was similar in all patients. The area under ROC curve for the SWV in pancreatic body was greatest (0.747) and the sensitivity, specificity were 73.0, 70.9 %. There was a significant shift towards the occurrence of more microvascular complications for patients with increasing of the SWV in pancreatic body (OR 39.25), long duration of diabetes (OR 1.077), aging (OR 1.039) and elevation of microalbuminuria (OR 1.004). CONCLUSIONS The SWV in pancreatic body was significantly high in diabetic patients with microangiopathy and was prominently correlated with the number of microvascular complications. The SWV in pancreatic body may be considered as a potential marker for diabetic microangiopathy and its occurrence.
Collapse
Affiliation(s)
- Yu He
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Ying Jin
- Department of Surgery, the First Hospital of Jilin University, Changchun, China.
| | - Xiaoping Li
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Lingyu Wu
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Chunxiang Jin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
13
|
Jiang W, Zhang Z, Sun Y, Zhang Y, Zhang L, Liu H, Peng R. Construction and analysis of a diabetic nephropathy related protein-protein interaction network reveals nine critical and functionally associated genes. Comput Biol Chem 2019; 83:107115. [PMID: 31561072 DOI: 10.1016/j.compbiolchem.2019.107115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 02/09/2023]
Abstract
Diabetic nephropathy (DN) is one of the common diabetic complications, but the mechanisms are still largely unknown. In this study, we constructed a DN related protein-protein interaction network (DNPPIN) on the basis of RNA-seq analysis of renal cortices of DN and normal mice, and the STRING database. We analyzed DNPPIN in detail revealing nine critical proteins which are central in DNPPIN, and contained in one network module which is functionally enriched in ribosome, nucleic acid binding and metabolic process. Overall, this study identified nine critical and functionally associated protein-coding genes concerning DN. These genes could be a starting point of future research towards the goal of elucidating the mechanisms of DN pathogenesis and progression.
Collapse
Affiliation(s)
- Wenhao Jiang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zheng Zhang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yan Sun
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yajuan Zhang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Luyu Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Handeng Liu
- Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
14
|
Kopel J, Pena-Hernandez C, Nugent K. Evolving spectrum of diabetic nephropathy. World J Diabetes 2019; 10:269-279. [PMID: 31139314 PMCID: PMC6522757 DOI: 10.4239/wjd.v10.i5.269] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 02/05/2023] Open
Abstract
Diabetes remains an important health issue as more patients with chronic and uncontrolled diabetes develop diabetic nephropathy (DN), which classically presents with proteinuria followed by a progressive decrease in renal function. However, an increasing proportion of DN patients have a decline in kidney function and vascular complications without proteinuria, known as non-proteinuric DN (NP-DN). Despite the increased incidence of NP-DN, few clinical or experimental studies have thoroughly investigated the pathophysiological mechanisms and targeted treatment for this form of DN. In this review, we will examine the differences between conventional DN and NP-DN and consider potential pathophysiological mechanisms, diagnostic markers, and treatment for both DN and NP-DN. The investigation of the pathophysiology of NP-DN should provide additional insight into the cardiovascular factors influencing renal function and disease and provide novel treatments for the vascular complications seen in diabetic patients.
Collapse
Affiliation(s)
- Jonathan Kopel
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79416, United States
| | - Camilo Pena-Hernandez
- Department of Internal Medicine, Division of Nephrology, Lubbock, TX 79430, United States
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| |
Collapse
|
15
|
Laddha AP, Kulkarni YA. Tannins and vascular complications of Diabetes: An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:229-245. [PMID: 30668344 DOI: 10.1016/j.phymed.2018.10.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disorder associated with persistent increased level of glucose in the blood. According to a report by World Health Organisation (WHO), prevalence of diabetes among adults over 18 years of age had reached to 8.5% in year 2014 which was 4.7% in 1980s. The Prolong increased level of glucose in blood leads to development of microvascular (blindness, nephropathy and neuropathy) and macrovascular (cardiovascular and stroke) degenerative complications because of uncontrolled level of glucose in blood. This also leads to the progression of oxidative stress and affecting metabolic, genetic and haemodynamic system by activation of polyol pathway, protein kinase C pathway, hexosamine pathway and increases advanced glycation end products (AGEs) formation. Diabetes mellitus and its associated complications are one of the major leading causes of mortality worldwide. Various natural products like alkaloids, glycosides, flavonoids, terpenoids and polyphenols are reported for their activity in management of diabetes and its associated diabetic complications. Tannins are systematically studied by many researchers in past few decades for their effect in diabetes and its complications. AIM The present review was designed to compile the data of tannins and their beneficial effects in the management of diabetic complications. METHOD Literature search was performed using various dataset like pubmed, EBSCO, proQuest Scopus and selected websites including the National Institutes of Health (NIH) and the World Health Organization (WHO). RESULTS Globally, more than 400 natural products have been investigated in diabetes and its complications. Tannins are the polyphenolic compounds present in many medicinal plants and various dietary sources like fruits, nuts, grains, spices and beverages. Various reports have shown that compounds like gallic acid, ellagic acid, catechin, epicatechin and procynidins from medicinal plants play major role in controlling progression of diabetes and its related complications by acting on molecular pathways and key targets involved in progression. Many chemists used above mentioned phyto-constituents as a pharmacophore for the developing new chemical entities having higher therapeutic benefits in management of diabetic complications. CONCLUSION This review focuses on the role of various tannins in prevention and management of diabetic complications like diabetic nephropathy, diabetic neuropathy, diabetic retinopathy and diabetic cardiomyopathy. It will help researchers to find some leads for the development of new cost effective therapy using dietary source for the management of diabetic complications.
Collapse
Affiliation(s)
- Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India.
| |
Collapse
|
16
|
Wang Y, Jiang L, Wang XY, Chen W, Shao Y, Chen QK, Lv JL. Evidence of altered brain network centrality in patients with diabetic nephropathy and retinopathy: an fMRI study using a voxel-wise degree centrality approach. Ther Adv Endocrinol Metab 2019; 10:2042018819865723. [PMID: 31384421 PMCID: PMC6661786 DOI: 10.1177/2042018819865723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/03/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Over recent years, some researchers believe that diabetic nephropathy (DN) and diabetic retinopathy (DR) both independently increase the incidence of brain diseases, such as stroke, cerebral infarction, and cerebral hemorrhage. In the present study, we used the voxel-wise degree centrality (DC) method to investigate potential changes of functional network brain activity in patients with DN and retinopathy (DNR). METHODS Twenty DNR patients (9 men, 11 women) and 20 healthy controls (HCs; 9 men, 11 women) were recruited; the controls were matched for age, sex, and educational background. All subjects underwent resting-state functional magnetic resonance imaging. Ophthalmoscopy, renal biopsy and single-photon emission computed tomography were used to evaluate microvascular lesions in the eye and kidney. Data were categorized using receiver operating characteristic curves, and correlation analysis was performed using Pearson's correlation analysis. RESULTS Compared with HCs, DNR patients showed reduced mean DC values in the right inferior temporal gyrus (RITG) and left subcallosal gyrus regions (LSG) and increased mean DC values in the bilateral precuneus (BP). Moreover, mean DC in the BP was correlated with renal estimated glomerular filtration rate (eGFR; r = 0.762). The area under the curve (AUC) value was 0.829 for BP and 0.839 for RITG and LSG. CONCLUSION DNR patients showed dysfunction in three different brain regions. The linear correlation between eGFR and mean brain DC values indicates the presence of common diabetic microangiopathy in the brain and kidney, which may provide new ideas for multiorgan microvascular lesions of diabetics.
Collapse
Affiliation(s)
- Yu Wang
- Department of Nephrology, The First Affiliated
Hospital of Nanchang University, Jiangxi, China
| | - Lei Jiang
- Department of Nephrology, The First Affiliated
Hospital of Nanchang University, Jiangxi, China
| | - Xiao-yu Wang
- Department of Nephrology, The First Affiliated
Hospital of Nanchang University, Jiangxi, China
| | - Weizhe Chen
- Department of Nephrology, The First Affiliated
Hospital of Nanchang University, Jiangxi, China
| | - Yi Shao
- Department of Ophthalmology, The First
Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Qin-kai Chen
- Department of Nephrology, The First Affiliated
Hospital of Nanchang University, Jiangxi, China
| | | |
Collapse
|
17
|
Wu Z, Wang H, Ni F, Jiang X, Xu Z, Liu C, Cai Y, Fu H, Luo J, Chen W, Chen B, Yu Z. Islet transplantation improved penile tissue fibrosis in a rat model of type 1 diabetes. BMC Endocr Disord 2018; 18:49. [PMID: 30053902 PMCID: PMC6064149 DOI: 10.1186/s12902-018-0276-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/06/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Glycaemic control is one of the most effective strategies for the treatment of diabetes-related erectile dysfunction (DMED). Compared to conventional anti-diabetic drugs and insulin, islet transplantation is more effective in the treatment of diabetic complications. The aim of this study was to investigate the efficacy of islet transplantation for reversing advanced-stage DMED in rats and to observe its influence on corpus cavernosum fibrosis. METHODS Wistar rats were intraperitoneally injected with streptozotocin to establish a diabetes model. After 12 weeks, the rats were divided into 4 groups: diabetic, insulin, islet transplantation, and normal control. Following supplementation, the changes in blood glucose and weight were determined sequentially. Penile erectile function was evaluated by apomorphine experiments in the fourth week, and the penile corpus cavernosum was also collected for assessment by Masson staining, immunohistochemistry and Western blot to observe the spongy tissue and the related cellular changes at the molecular level. RESULTS Islet transplantation significantly ameliorated penile erectile function in advanced-stage diabetic rats. The ratio of corpus cavernosum smooth muscle cells to fibroblasts and the expression level of α-SMA in the islet transplantation group were significantly higher than those in the diabetic and insulin groups. In addition, the expression levels of TGF-β1, p-Samd2, and connective tissue growth factor (CTGF) in the islet transplantation and insulin groups were much lower than those in the diabetic group, while those in the islet transplantation group were significantly lower than those in the insulin group. CONCLUSIONS Our findings strongly suggest that islet transplantation can promote the regeneration of smooth muscle cells and ameliorate corpus cavernosum fibrosis to restore its normal structure in advanced-stage diabetic rats. The possible mechanism of ameliorating corpus cavernosum fibrosis by islet transplantation may be associated with improvement of the hyperglycaemic status in diabetic rats, thereby inhibiting the TGF-β1/Samd2/CTGF pathway.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Andrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Hongwei Wang
- Hepatobiliary and pancreatic surgery laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Fubiao Ni
- Hepatobiliary and pancreatic surgery laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Xuan Jiang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Ziqiang Xu
- Department of Transplantation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Chengyang Liu
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-5160 USA
| | - Yong Cai
- Department of Transplantation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Hongxing Fu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Jiao Luo
- Hepatobiliary and pancreatic surgery laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Wenwei Chen
- Department of Urology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Bicheng Chen
- Hepatobiliary and pancreatic surgery laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Zhixian Yu
- Department of Urology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| |
Collapse
|
18
|
Coppolino G, Leporini C, Rivoli L, Ursini F, di Paola ED, Cernaro V, Arturi F, Bolignano D, Russo E, De Sarro G, Andreucci M. Exploring the effects of DPP-4 inhibitors on the kidney from the bench to clinical trials. Pharmacol Res 2018; 129:274-294. [PMID: 29223646 DOI: 10.1016/j.phrs.2017.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/15/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
|
19
|
Chen ZR, Ma Y, Guo HH, Lu ZD, Jin QH. Therapeutic efficacy of cyclosporin A against spinal cord injury in rats with hyperglycemia. Mol Med Rep 2018; 17:4369-4375. [PMID: 29328412 PMCID: PMC5802210 DOI: 10.3892/mmr.2018.8422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/24/2017] [Indexed: 01/20/2023] Open
Abstract
The present study aimed to explore the therapeutic effects of cyclosporin A (CsA) on spinal cord injury (SCI) in rats with hyperglycemia and to identify a novel potential method to treat SCI in the presence of hyperglycemia. Female Sprague‑Dawley (SD) rats were randomly allocated into four groups: Sham, SCI, SCI+hyperglycemia and SCI+hyperglycemia+CsA groups. Streptozotocin‑induced hyperglycemic SD rats and a weight‑drop contusion SCI model were established. The Basso, Beattie, Bresnahan scale and inclined plane test were used to evaluate the neurological function of the rats. Flow cytometric assay was performed to detect the apoptotic rates of cells in the spinal cord. ELISA and western blot analysis were performed to determine the levels of interleukin (IL)‑10, tumor necrosis factor (TNF)‑α, cyclophilin‑D (Cyp‑D) and apoptosis‑inducing factor (AIF). The results demonstrated that CsA significantly improved the neurological function of the SCI rats with hyperglycemia. CsA markedly reduced the number of apoptotic cells exaggerated by hyperglycemia in the spinal cord of the SCI rats. CsA significantly decreased the expression levels of IL‑10, TNF‑α, Cyp‑D and AIF in the spinal cord of the SCI rats. Overall, the present study revealed a significant role of CsA in the treatment of SCI in the presence of hyperglycemia by inhibiting the apoptosis of spinal cord cells.
Collapse
Affiliation(s)
- Zhi-Rong Chen
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yi Ma
- Department of Pathology and Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hao-Hui Guo
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhi-Dong Lu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Qun-Hua Jin
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
20
|
Chen X, Luo J, Wu M, Pan Z, Xie Y, Wang H, Chen B, Zhu H. Study on Association of Pentraxin 3 and Diabetic Nephropathy in a Rat Model. J Diabetes Res 2018; 2018:8968573. [PMID: 29725602 PMCID: PMC5872604 DOI: 10.1155/2018/8968573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/08/2017] [Accepted: 12/24/2017] [Indexed: 01/04/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication of diabetes. Compared with other therapies for diabetic patients, islet transplantation can effectively prevent and reverse diabetes-induced microvascular disease, such as diabetic retinopathy and nephropathy. PTX3 is the only long pentraxin that can be detected in renal tissue. In this study, we investigated the expression of PTX3 when early DN was reversed after islet transplantation. Methods. Diabetes was induced in rats by injecting streptozotocin (STZ). Twelve weeks later, the diabetic rats were divided into 2 groups: the islet transplantation group (IT) and the diabetic nephropathy group (DN). Renal injury, renal function, and the expression of PTX3 in the plasma and the kidneys were assessed with urinalysis, immunohistochemical staining, and Western blot, respectively. Results. The expression of PTX3 in the kidney was significantly decreased in the DN group but increased in the IT group because of the reversal of DN. Conclusions. Our data showed that the level of PTX3 in renal tissue is closely related to renal injury in DN. This may be used to quantify the extent of renal injury in DN, provide a potential early indicator of renal tubular injury in early DN patients, and assess DN clinical progression.
Collapse
Affiliation(s)
- Xuehai Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jiao Luo
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Minmin Wu
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhuo Pan
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yue Xie
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hongwei Wang
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bicheng Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hong Zhu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
21
|
Chen YM, Chiang WC, Lin SL, Tsai TJ. Therapeutic efficacy of pentoxifylline on proteinuria and renal progression: an update. J Biomed Sci 2017; 24:84. [PMID: 29132351 PMCID: PMC5683556 DOI: 10.1186/s12929-017-0390-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/30/2017] [Indexed: 01/17/2023] Open
Abstract
Blood pressure control with renin-angiotensin system (RAS) blockade has remained the gold standard for treating patients with proteinuric chronic kidney disease (CKD) up to date. Nevertheless, RAS blockade slows but does not halt the progression of kidney disease, thus highlighting the need to search for additional therapeutic approaches. The nonselective phosphodiesterase (PDE) inhibitor pentoxifylline (PTX) is an old drug that exhibits prominent anti-inflammatory, anti-proliferative and anti-fibrotic activities both in vitro and in vivo. Studies in human subjects have shown that PTX monotherapy decreases urinary protein excretion, and add-on therapy of PTX to background RAS blockade additively reduces proteinuria in patients with CKD of various etiology. More recent studies find that PTX combined with RAS blockade delays the decline of glomerular filtration rate in diabetic patients with mild to moderate CKD, and reduces the risk of end-stage renal disease in diabetic and non-diabetic patients in late stage of CKD with high proteinuria levels. In this review, we update the clinical trial results of PTX as monotherapy, or in conjunction or in comparison with RAS blockade on patients with proteinuria and CKD, and propose a mechanistic scheme explaining the renoprotective activities of this drug.
Collapse
Affiliation(s)
- Yung-Ming Chen
- Renal Division, Department of Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, Taiwan
| | - Wen-Chih Chiang
- Renal Division, Department of Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, Taiwan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Section 1, Taipei, Taiwan
| | - Tun-Jun Tsai
- Renal Division, Department of Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, Taiwan
| |
Collapse
|
22
|
|
23
|
Gupta P, Bala M, Gupta S, Dua A, Dabur R, Injeti E, Mittal A. Efficacy and risk profile of anti-diabetic therapies: Conventional vs traditional drugs—A mechanistic revisit to understand their mode of action. Pharmacol Res 2016; 113:636-674. [DOI: 10.1016/j.phrs.2016.09.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022]
|
24
|
Harvey S, Martinez-Moreno CG. Growth hormone and ocular dysfunction: Endocrine, paracrine or autocrine etiologies? Growth Horm IGF Res 2016; 29:28-32. [PMID: 27082451 DOI: 10.1016/j.ghir.2016.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 02/01/2023]
Abstract
The eye is a target site for GH action and growth hormone has been implicated in diabetic retinopathy and other ocular dysfunctions. However, while this could reflect the hypersecretion of pituitary GH, the expression of the GH gene is now known to occur in ocular tissues and it could thus also reflect excess GH production within the eye itself. The possibility that ocular dysfunctions might arise from endocrine, autocrine or paracrine etiologies of GH overexpression is therefore the focus of this brief review.
Collapse
Affiliation(s)
- Steve Harvey
- Department of Physiology, University of Alberta, Edmonton T6H 2H7, Canada.
| | | |
Collapse
|
25
|
Xie X, Xia W, Fei X, Xu Q, Yang X, Qiu D, Wang M. Relaxin Inhibits High Glucose-Induced Matrix Accumulation in Human Mesangial Cells by Interfering with TGF-β1 Production and Mesangial Cells Phenotypic Transition. Biol Pharm Bull 2016; 38:1464-9. [PMID: 26424011 DOI: 10.1248/bpb.b15-00127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). DN is characterized by glomerular extracellular matrix accumulation, mesangial expansion, basement membrane thickening, and renal interstitial fibrosis. To date, mounting evidence has shown that H2 relaxin possesses powerful antifibrosis properties; however, the mechanisms of H2 relaxin on diabetic nephropathy remain unknown. Here, we aimed to explore whether H2 relaxin can reduce production of extracellular matrix (ECM) secreted by human mesangial cells (HMC). HMC were exposed to 5.5 mM glucose (NG) or 30 mM glucose (HG) with or without H2 relaxin. Fibronectin (FN) and collagen type IV levels in the culture supernatants were examined by solid-phase enzyme-linked immunoadsorbent assay (ELISA). Western blot was used to detect the expression of α-smooth muscle actin (α-SMA) protein. Quantitative polymerase chain reaction (qPCR) method was employed to analyze transforming growth factor (TGF)-β1 mRNA expression. Compared with the normal glucose group, the levels of fibronectin and collagen type were markedly increased after being cultured in high glucose medium. Compared with the high glucose group, remarkable decreases of fibronectin, collagen type IV, α-smooth muscle actin, and TGF-β1 mRNA expression were observed in the H2 relaxin-treated group. The mechanism by which H2 relaxin reduced high glucose-induced overproduction of ECM may be associated with inhibition of TGF-β1 mRNA expression and mesangial cells' phenotypic transition. H2 relaxin is a potentially effective modality for the treatment of DN.
Collapse
Affiliation(s)
- Xiangcheng Xie
- Department of Nephrology, Hangzhou First People's Hospital, Affiliated Hangzhou Hospital of Nanjing Medical University
| | | | | | | | | | | | | |
Collapse
|
26
|
Sönmez MF, Dündar M. Ameliorative effects of pentoxifylline on NOS induced by diabetes in rat kidney. Ren Fail 2016; 38:605-13. [PMID: 26905686 DOI: 10.3109/0886022x.2016.1149688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide. The NO system has been implicated in the pathogenesis of DN. In this study, we aimed to evaluate the healing effect of pentoxifylline on NOS in STZ-induced diabetic rat's kidney. MATERIAL AND METHODS In this study, 50 Wistar albino male rats were used. The rats were divided into five groups; Group C control; Group D only diabetes; Group D + PI and D + PII diabetes + pentoxifylline; Group P only pentoxifylline. Group DPI rats received just pentoxifylline from the beginning of the experiments. However, Group DPII rats received saline in the first month and 50 mg/kg/day of pentoxifylline for the following month. At the end of two months, NOS expressions in kidney tissue were assessed using qRT-PCR and immunohistochemistry analysis. RESULTS At the end of the experiments, desquamation of the epithelial cells of the tubules, clear glycogen-filled distal tubules and increased number of apoptotic cells were seen in Group D. Diabetic rats' nNOS immunoreactivity had increased and eNOS and iNOS immunoreactivity had decreased; nNOS, iNOS and eNOS mRNA levels tended to decrease compared to the control group. PTX ameliorated eNOS, iNOS and nNOS protein levels and apoptotic cells, but did not affect mRNA levels. CONCLUSION In conclusion, PTX has a healing effect on this damage by affecting NOS expression.
Collapse
Affiliation(s)
- Mehmet Fatih Sönmez
- a Department of Histology and Embryology, Faculty of Medicine , Erciyes University , Kayseri , Turkey
| | - Munis Dündar
- b Department of Medical Genetics, Faculty of Medicine , Erciyes University , Kayseri , Turkey
| |
Collapse
|
27
|
Ocular Complications of Diabetes and Therapeutic Approaches. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3801570. [PMID: 27119078 PMCID: PMC4826913 DOI: 10.1155/2016/3801570] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/02/2016] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease defined by elevated blood glucose (BG). DM is a global epidemic and the prevalence is anticipated to continue to increase. The ocular complications of DM negatively impact the quality of life and carry an extremely high economic burden. While systemic control of BG can slow the ocular complications they cannot stop them, especially if clinical symptoms are already present. With the advances in biodegradable polymers, implantable ocular devices can slowly release medication to stop, and in some cases reverse, diabetic complications in the eye. In this review we discuss the ocular complications associated with DM, the treatments available with a focus on localized treatments, and what promising treatments are on the horizon.
Collapse
|
28
|
Fogli S, Mogavero S, Egan CG, Del Re M, Danesi R. Pathophysiology and pharmacological targets of VEGF in diabetic macular edema. Pharmacol Res 2016; 103:149-57. [DOI: 10.1016/j.phrs.2015.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/08/2015] [Accepted: 11/08/2015] [Indexed: 01/27/2023]
|
29
|
Hawthorne WJ. Necessities for a Clinical Islet Program. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 938:67-88. [PMID: 27586423 DOI: 10.1007/978-3-319-39824-2_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For more than two decades we have been refining advances in islet cell transplantation as a clinical therapy for patients suffering from type 1 diabetes. A great deal of effort has gone to making this a viable therapy for a broader range of patients with type 1 diabetes. Clinical results have progressively improved, demonstrating clinical outcomes on par with other organ transplants, specifically in terms of insulin independence, graft and patient survival. We are now at the point where islet cell transplantation, in the form of allotransplantation, has become accepted as a clinical therapy in adult patients affected by type 1 diabetes, in particular those suffering from severe hypoglycaemic unawareness. This chapter provides an overview on how this has been undertaken over the years to provide outcomes on par with other organ transplantation results. In particular this chapter focuses on the processes and facilities that are required to establish a clinical islet isolation and transplantation program. It also outlines the very important underpinning processes of selection of the organ donor for islet isolation, the processes of organ donor operation and preservation of the pancreas by various means and the ideal ways to best improve outcomes for human islet cell isolation. Providing these more optimal conditions we can underpin the isolation processes to provide islets for transplantation and as such a safe, effective and feasible therapeutic option for an increasing number of patients suffering from type 1 diabetes with severe hypoglycaemic unawareness.
Collapse
Affiliation(s)
- Wayne J Hawthorne
- National Pancreas and Islet Transplant Laboratories, The Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia. .,Department of Surgery, Westmead Clinical School, Westmead Hospital, University of Sydney, Westmead, NSW, 2145, Australia.
| |
Collapse
|
30
|
Synergistic Effects of Combining Anti-Midkine and Hepatocyte Growth Factor Therapies Against Diabetic Nephropathy in Rats. Am J Med Sci 2015; 350:47-54. [PMID: 26086153 DOI: 10.1097/maj.0000000000000510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This study aimed to assess whether synergism could be achieved when combining midkine (MK) antisense oligodeoxynucleotides (anti-MK ODN) and recombinant human hepatocyte growth factor (HGF) in diabetic nephropathy (DN) rat models. METHODS Rats were randomized into 6 groups: control, DN rats without treatment, DN rats treated with scrambled ODN, DN rats treated with anti-MK ODN, DN rats treated with HGF and DN rats treated with anti-MK ODN plus HGF. DN models were created by intraperitoneal injection of streptozotocin. Two weeks later, treatments commenced. ODN (1 mg/kg) was intravenously injected weekly for 4 weeks. HGF (500 μg/kg) was subcutaneously injected daily for 4 weeks. Eight weeks later, rats were euthanized. Serum and urine parameters, kidney histopathological injury scores, immunohistochemistry and protein expressions were measured. RESULTS Blood glucose, creatinine, blood urea nitrogen and urine albumin were significantly elevated in DN rats. Any single treatment markedly reduced their levels, yet combined treatment decreased them significantly further. Any monotherapy could decrease renal injury score and immunohistochemistry positive percentage, although the most prominent change was displayed in combinational therapy. Western blot showed the expression of MK was significantly elevated in DN rats. Anti-MK ODN suppressed MK significantly. The protein expressions and serum concentrations of transforming growth factor-β1 and connective tissue growth factor between monotherapy and the combined therapy were significant. CONCLUSIONS This study demonstrated that combining MK gene suppressing ODN and HGF protein synergistically attenuates renal injury in DN rats. This study may provide a novel avenue for designing future therapeutic regimens against DN.
Collapse
|
31
|
|