1
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Baldwin LA, Calabrese V. The chemoprotective hormetic effects of rosmarinic acid. Open Med (Wars) 2024; 19:20241065. [PMID: 39444791 PMCID: PMC11497216 DOI: 10.1515/med-2024-1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Rosmarinic acid is a polyphenol found in numerous fruits and vegetables, consumed in supplement form, and tested in numerous clinical trials for therapeutic applications due to its putative chemopreventive properties. Rosmarinic acid has been extensively studied at the cellular, whole animal, and molecular mechanism levels, presenting a complex array of multi-system biological effects. Rosmarinic acid-induced hormetic dose responses are widespread, occurring in numerous biological models and cell types for a broad range of endpoints. Consequently, this article provides the first assessment of rosmarinic acid-induced hormetic concentration/dose responses, their quantitative features, mechanistic foundations, extrapolative strengths/limitations, and their biomedical, clinical, and public health implications.
Collapse
Affiliation(s)
- Edward J. Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health Sciences, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, United States of America
| | - Peter Pressman
- University of Maine, Orono, ME, 04469, United States of America
| | - A. Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, United States of America
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, United States of America
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Linda A. Baldwin
- 5 Sapphire Lane, Greenfield, MA, 01301, United States of America
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Catania, 95123, Italy
| |
Collapse
|
2
|
Calabrese EJ, Pressman P, Hayes AW, Baldwin L, Agathokleous E, Dhawan G, Kapoor R, Calabrese V. Caffeic Acid: Numerous Chemoprotective Effects are Mediated via Hormesis. J Diet Suppl 2024; 21:842-867. [PMID: 39363555 DOI: 10.1080/19390211.2024.2410776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Caffeic acid is a common phenolic acid found in coffee and numerous fruits and vegetables. Known for its antioxidant properties, it is widely used as a dietary supplement as part of a polyphenol mixture or as an extract in the form of a capsule or powder. It is also available in liquid form as a homeopathic supplement. Caffeic acid phenethyl ester (CAPE) is an active component of propolis produced by honey bees. Propolis extract is used as a supplement and is available in various forms. The present paper is a comprehensive review of the biomedical literature, showing that caffeic acid effects are hormetic and occur in numerous biological models and cell types for a broad range of endpoints including many aging-related processes. Hormesis is a biphasic dose/concentration response displaying a low concentration/dose stimulation and a high concentration/dose inhibition. Complex alternative search strategies for caffeic acid were used since publications rarely used the terms hormesis or hormetic. Evaluation of the data provides the first assessment of caffeic acid-induced hormetic concentration/dose responses and their quantitative features. Their mechanistic foundations, extrapolative strengths/limitations, and their biomedical, clinical, and public health implications are discussed. Suggestions for future research are presented.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences; Department of Environmental Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management; College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Catania, Italy
| |
Collapse
|
3
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Oocyte maturation, blastocyst and embryonic development are mediated and enhanced via hormesis. Food Chem Toxicol 2024; 192:114941. [PMID: 39153727 DOI: 10.1016/j.fct.2024.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The present paper provides the first integrative assessment of the capacity of dietary, endogenous and other agents to induce hormetic dose responses in oocytes, their supportive cells such as granulosa cells, blastocyst formation and early stage embryo development with the goal of improving fertility and reproductive success. The analysis showed that numerous agents enhance oocyte maturation and blastocyst/embryonic development in an hormetic fashion. These findings indicate that numerous agents improve oocyte-related biological functioning under normal conditions as well as enhancing its capacity to prevent damage from numerous chemical toxins and related stressor agents, including heat and age-related processes in pre-post conditioning and concurrent exposures. The present assessment suggests that hormetic-based lifestyles and dietary interventions may offer the potential to enhance healthy reproductive performance with applications to animal husbandry and human biology. The present findings also significantly extend the generality of the hormesis dose response concept to multiple fundamental biological processes (i.e., oocyte maturation, fertilization and blastocyst/embryo development).
Collapse
Affiliation(s)
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
4
|
Calvo-Rubio M, Garcia-Domiguez E, Tamayo-Torres E, Soto-Rodríguez S, Olaso-Gonzalez G, Ferrucci L, de Cabo R, Gómez-Cabrera MC. The repeated bout effect evokes the training-induced skeletal muscle cellular memory. Free Radic Biol Med 2024; 225:247-254. [PMID: 39343184 DOI: 10.1016/j.freeradbiomed.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Physical exercise is well-established as beneficial for health. With the 20th-century epidemiological transition, promoting healthy habits like exercise has become crucial for preventing chronic diseases. Stress can yield adaptive long-term benefits, potentially transmitted trans-generationally. Physical training exposes individuals to metabolic, thermal, mechanical, and oxidative stressors, activating cell signaling pathways that regulate gene expression and adaptive responses, thereby enhancing stress tolerance - a phenomenon known as hormesis. Muscle memory is the capacity of skeletal muscle to respond differently to environmental stimuli in an adaptive (positive) or maladaptive (negative) manner if the stimuli have been encountered previously. The Repeated Bout Effect encompasses our skeletal muscle capacity to activate an intrinsic protective mechanism that reacts to eccentric exercise-induced damage by activating an adaptive response that resists subsequent damage stimuli. Deciphering the molecular mechanism of this phenomenon would allow the incorporation of muscle memory in training programs for professional athletes, active individuals looking for the health benefits of exercise training, and patients with "exercise intolerance." Moreover, enhancing the adaptive response of muscle memory could promote healing in individuals who traditionally do not recover after immobilization. The improvement could be part of an exercise program but could also be targeted pharmacologically. This review explores Repeated Bout Effect mechanisms: neural adaptations, tendon and muscle fiber property changes, extracellular matrix remodeling, and improved inflammatory responses.
Collapse
Affiliation(s)
- Miguel Calvo-Rubio
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Esther Garcia-Domiguez
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia; Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Eva Tamayo-Torres
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Silvana Soto-Rodríguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.
| | - Luigi Ferrucci
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Maria Carmen Gómez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
5
|
Wan Y, Liu J, Mai Y, Hong Y, Jia Z, Tian G, Liu Y, Liang H, Liu J. Current advances and future trends of hormesis in disease. NPJ AGING 2024; 10:26. [PMID: 38750132 PMCID: PMC11096327 DOI: 10.1038/s41514-024-00155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
Hormesis, an adaptive response, occurs when exposure to low doses of a stressor potentially induces a stimulatory effect, while higher doses may inhibit it. This phenomenon is widely observed across various organisms and stressors, significantly advancing our understanding and inspiring further exploration of the beneficial effects of toxins at doses both below and beyond traditional thresholds. This has profound implications for promoting biological regulation at the cellular level and enhancing adaptability throughout the biosphere. Therefore, conducting bibliometric analysis in this field is crucial for accurately analyzing and summarizing its current research status. The results of the bibliometric analysis reveal a steady increase in the number of publications in this field over the years. The United States emerges as the leading country in both publication and citation numbers, with the journal Dose-Response publishing the highest number of papers in this area. Calabrese E.J. is a prominent person with significant contributions and influence among authors. Through keyword co-occurrence and trend analysis, current hotspots in this field are identified, primarily focusing on the relationship between hormesis, oxidative stress, and aging. Analysis of highly cited references predicts that future research trends may center around the relationship between hormesis and stress at different doses, as well as exploring the mechanisms and applications of hormesis. In conclusion, this review aims to visually represent hormesis-related research through bibliometric methods, uncovering emerging patterns and areas of focus within the field. It provides a summary of the current research status and forecasts trends in hormesis-related research.
Collapse
Affiliation(s)
- Yantong Wan
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinxi Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyin Mai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zixuan Jia
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Guijie Tian
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunzhuo Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Huaping Liang
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China.
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. RUTIN, a widely consumed flavonoid, that commonly induces hormetic effects. Food Chem Toxicol 2024; 187:114626. [PMID: 38556157 DOI: 10.1016/j.fct.2024.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Rutin is a flavonoid present in numerous fruits and vegetables and therefore widely consumed by humans. It is also a popular dietary supplement of 250-500 mg/day. There is considerable consumer interest in rutin due to numerous reports in the biomedical literature of its multi-system chemo-preventive properties. The present paper provides the first assessment of rutin-induced hormetic concentration/dose responses, their quantitative features and mechanistic basis, along with their biological, biomedical, clinical, and public health implications. The findings indicate that rutin-induced hormetic dose responses are widespread, being reported in numerous biological models and cell types for a wide range of endpoints. Of critical importance is that the optimal hormetic findings shown in in vitro systems are currently not achievable for human populations due to low gastrointestinal tract bioavailability. These findings have the potential to strengthen future experimental studies with rutin, particularly concerning study design parameters.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
7
|
Calabrese EJ, Pressman P, Hayes AW, Kapoor R, Dhawan G, Agathokleous E, Calabrese V. Taurine induces hormesis in multiple biological models: May have transformative implications for overall societal health. Chem Biol Interact 2024; 392:110930. [PMID: 38432405 DOI: 10.1016/j.cbi.2024.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
This paper represents the first integrative assessment and documentation of taurine-induced hormetic effects in the biological and biomedical areas, their dose response features, mechanistic frameworks, and possible public health, therapeutic and commercial applications. Taurine-induced hormetic effects are documented in a wide range of experimental models, cell types and for numerous biological endpoints, with most of these experimental findings being reported within the past five years. It is suggested that the concept of hormesis may have a transformative effect on taurine research and its public health and therapeutic applications.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
8
|
Cosentino A, Agafonova A, Modafferi S, Trovato Salinaro A, Scuto M, Maiolino L, Fritsch T, Calabrese EJ, Lupo G, Anfuso CD, Calabrese V. Blood-Labyrinth Barrier in Health and Diseases: Effect of Hormetic Nutrients. Antioxid Redox Signal 2024; 40:542-563. [PMID: 37565276 DOI: 10.1089/ars.2023.0251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Significance: The stria vascularis, located in the inner ear, consists of three layers, one of which is the blood-labyrinth barrier (BLB). It is formed by endothelial cells, sealed together to prevent the passage of toxic substances from the blood to the inner ear, by pericytes and perivascular-resident macrophage-like melanocyte. Recent Advances: There are various causes that lead to hearing loss, and among these are noise-induced and autoimmune hearing loss, ear disorders related to ototoxic medication, Ménière's disease, and age-related hearing loss. For all of these, major therapeutic interventions include drug-loaded nanoparticles, via intratympanic or intracochlear delivery. Critical Issues: Since many pathologies associated with hearing loss are characterized by a weakening of the BLB, in this review, the molecular mechanisms underlying the response to damage of BLB cellular components have been discussed. In addition, insight into the role of hormetic nutrients against hearing loss pathology is proposed. Future Directions: BLB cellular components of neurovascular cochlear unit play important physiological roles, owing to their impermeable function against all ototoxic substances that can induce damage. Studies are needed to investigate the cross talk occurring between these cellular components to exploit their possible role as novel targets for therapeutic interventions that may unravel future path based on the use of hormetic nutrients. Antioxid. Redox Signal. 40, 542-563.
Collapse
Affiliation(s)
- Alessia Cosentino
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Aleksandra Agafonova
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Sergio Modafferi
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Angela Trovato Salinaro
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Maria Scuto
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Luigi Maiolino
- Department of Medical, Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | | | - Edward J Calabrese
- Department of Environmental Health, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Gabriella Lupo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Carmelina Daniela Anfuso
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Vittorio Calabrese
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| |
Collapse
|
9
|
Mattson MP, Leak RK. The hormesis principle of neuroplasticity and neuroprotection. Cell Metab 2024; 36:315-337. [PMID: 38211591 DOI: 10.1016/j.cmet.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Animals live in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems have evolved stress-responsive signaling pathways that enable them to not only withstand environmental challenges but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle, in which single or repeated exposures to low levels of environmental challenges improve cellular and organismal fitness and raise the probability of survival. Hormetic principles have been most intensively studied in physical exercise but apply to numerous other challenges known to improve human health (e.g., intermittent fasting, cognitive stimulation, and dietary phytochemicals). Here we review the physiological mechanisms underlying hormesis-based neuroplasticity and neuroprotection. Approaching natural resilience from the lens of hormesis may reveal novel methods for optimizing brain function and lowering the burden of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Calabrese EJ, Nascarella M, Pressman P, Hayes AW, Dhawan G, Kapoor R, Calabrese V, Agathokleous E. Hormesis determines lifespan. Ageing Res Rev 2024; 94:102181. [PMID: 38182079 DOI: 10.1016/j.arr.2023.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
This paper addresses how long lifespan can be extended via multiple interventions, such as dietary supplements [e.g., curcumin, resveratrol, sulforaphane, complex phytochemical mixtures (e.g., Moringa, Rhodiola)], pharmaceutical agents (e.g., metformin), caloric restriction, intermittent fasting, exercise and other activities. This evaluation was framed within the context of hormesis, a biphasic dose response with specific quantitative features describing the limits of biological/phenotypic plasticity for integrative biological endpoints (e.g., cell proliferation, memory, fecundity, growth, tissue repair, stem cell population expansion/differentiation, longevity). Evaluation of several hundred lifespan extending agents using yeast, nematode (Caenorhabditis elegans), multiple insect and other invertebrate and vertebrate models (e.g., fish, rodents), revealed they responded in a manner [average (mean/median) and maximum lifespans] consistent with the quantitative features [i.e., 30-60% greater at maximum (Hormesis Rule)] of the hormetic dose response. These lifespan extension features were independent of biological model, inducing agent, endpoints measured and mechanism. These findings indicate that hormesis describes the capacity to extend life via numerous agents and activities and that the magnitude of lifespan extension is modest, in the percentage, not fold, range. These findings have important implications for human aging, genetic diseases/environmental stresses and lifespan extension, as well as public health practices and long-term societal resource planning.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences; University of Massachusetts, Morrill I - Room N344, Amherst, MA 01003, USA.
| | - Marc Nascarella
- Mass College of Pharmacy and Health Sciences University; School of Arts and Sciences, 179 Longwood Avenue, Boston, MA 02115, USA
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management; College of Public Health; University of South Florida, Tampa, FL, USA
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD) University of Health Sciences, Amritsar, India
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology; Nanjing University of Information Science & Technology; Nanjing 210044, China
| |
Collapse
|
11
|
Calabrese EJ, Hayes AW, Pressman P, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Quercetin induces its chemoprotective effects via hormesis. Food Chem Toxicol 2024; 184:114419. [PMID: 38142767 DOI: 10.1016/j.fct.2023.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Quercetin is a polyphenol present in numerous fruits and vegetables and therefore widely consumed by humans with average daily dietary intakes of 10-20 mg/day. It is also a popular dietary supplement of 250-1000 mg/day. However, despite the widespread consumer interest in quercetin, due to its possible chemopreventive properties, the extensively studied quercetin presents a highly diverse and complex array of biological effects. Consequently, the present paper provides the first assessment of quercetin-induced hormetic concentration/dose responses, their quantitative features and mechanistic foundations, and their biological, biomedical, clinical, and public health implications. The findings indicate that quercetin-induced hormetic dose responses are widespread, being independent of biological model, cell type, and endpoint. These findings have the potential to enlighten future experimental studies with quercetin especially with respect to study design parameters and may also affect the appraisal of possible public health benefits and risks associated with highly diverse consumer consumption practices.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
12
|
Calabrese EJ, Selby PB. Comet assay and hormesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122929. [PMID: 37979647 DOI: 10.1016/j.envpol.2023.122929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The paper provides the first assessment of the occurrence of hormetic dose responses using the Comet assay, a genotoxic assay. Using a priori evaluative criteria based on the Hormetic Database on peer-reviewed comet assay experimental findings, numerous examples of hormetic dose responses were obtained. These responses occurred in a large and diverse range of cell types and for agents from a broad range of chemical classes. Limited attempts were made to estimate the frequency of hormesis within comet assay experimental studies using a priori entry and evaluative criteria, with results suggesting a frequency in the 40% range. These findings are important as they show that a wide range of genotoxic chemicals display evidence that is strongly suggestive of hormetic dose responses. These findings have significant implications for study design issues, including the number of doses selected, dose range and spacing. Likewise, the widespread occurrence of hormetic dose responses in this genotoxic assay has important risk assessment implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Paul B Selby
- Retired from Oak Ridge National Laboratory at Oak Ridge, TN. Home Address: 4088 Nottinghill Gate Road, Upper Arlington, OH, 43220, USA.
| |
Collapse
|
13
|
Iavicoli I, Fontana L, Santocono C, Guarino D, Laudiero M, Calabrese EJ. The challenges of defining hormesis in epidemiological studies: The case of radiation hormesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166030. [PMID: 37544458 DOI: 10.1016/j.scitotenv.2023.166030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
In the current radiation protection system, preventive measures and occupational exposure limits for controlling occupational exposure to ionizing radiation are based on the linear no-threshold extrapolation model. However, currently an increasing body of evidence indicates that this paradigm predicts very poorly biological responses in the low-dose exposure region. In addition, several in vitro and in vivo studies demonstrated the presence of hormetic dose response curves correlated to ionizing radiation low exposure. In this regard, it is noteworthy that also the findings of different epidemiological studies, conducted in different categories of occupationally exposed workers (e.g., healthcare, nuclear industrial and aircrew workers), observed lower rates of mortality and/or morbidity from cancer and/or other diseases in exposed workers than in unexposed ones or in the general population, then suggesting the possible occurrence of hormesis. Nevertheless, these results should be considered with caution since the identification of hormetic response in epidemiological studies is rather challenging because of a number of major limitations. In this regard, some of the most remarkable shortcomings found in epidemiological studies performed in workers exposed to ionizing radiation are represented by lack or inadequate definition of exposure doses, use of surrogates of exposure, narrow dose ranges, lack of proper control groups and poor evaluation of confounding factors. Therefore, considering the valuable role and contribution that epidemiological studies might provide to the complex risk assessment and management process, there is a clear and urgent need to overcome the aforementioned limits in order to achieve an adequate, useful and more real-life risk assessment that should also include the key concept of hormesis. Thus, in the present conceptual article we also discuss and provide possible approaches to improve the capacity of epidemiological studies to identify/define the hormetic response and consequently improve the complex process of risk assessment of ionizing radiation at low exposure doses.
Collapse
Affiliation(s)
- Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Luca Fontana
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Carolina Santocono
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Davide Guarino
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Martina Laudiero
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
14
|
Calabrese E, Hayes AW, Pressman P, Kapoor R, Dhawan G, Calabrese V, Agathokleous E. Polyamines and hormesis: Making sense of a dose response dichotomy. Chem Biol Interact 2023; 386:110748. [PMID: 37816449 DOI: 10.1016/j.cbi.2023.110748] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023]
Abstract
The diverse biological effects of polyamines (putrescine, spermidine and spermine) were reviewed in the context of hormesis in an integrative manner for the first time. The findings illustrate that each of these polyamines commonly induces hormetic dose responses in a wide range of biological models and types of cells for multiple endpoints in numerous plant species and animal models. Plant research emphasized preconditioning experimental studies in which the respective polyamines conferred some protection against the damaging effects of a broad range of environmental stressors such as drought, salinity, cold/heat, heavy metals and UV-damage in an hormetic manner. Polyamine-based animal hormesis studies emphasized biomedical endpoints such as longevity and neuroprotection. These findings have important biological and biomedical implications and should guide experimental designs of low dose investigations.
Collapse
Affiliation(s)
- Edward Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
15
|
Agathokleous E, Blande JD, Masui N, Calabrese EJ, Zhang J, Sicard P, Guedes RNC, Benelli G. Sublethal chemical stimulation of arthropod parasitoids and parasites of agricultural and environmental importance. ENVIRONMENTAL RESEARCH 2023; 237:116876. [PMID: 37573021 DOI: 10.1016/j.envres.2023.116876] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
An increasing number of studies have reported stimulation of various organisms in the presence of environmental contaminants. This has created a need to critically evaluate sublethal stimulation and hormetic responses of arthropod parasitoids and parasites following exposure to pesticides and other contaminants. Examining this phenomenon with a focus on arthropods of agricultural and environmental importance serves as the framework for this literature review. This review shows that several pesticides, with diverse chemical structures and different modes of action, applied individually or in combination at sublethal doses, commonly stimulate an array of arthropod parasitoids and parasites. Exposure at sublethal doses can enhance responses related to physiology (e.g., respiration, total lipid content, and total protein content), behavior (e.g., locomotor activity, antennal drumming frequency, host location, and parasitization), and fitness (longevity, growth, fecundity, population net and gross reproduction). Concordantly, the parasitic potential (e.g., infestation efficacy, parasitization rate, and parasitoid/parasite emergence) can be increased, and as a result host activities inhibited. There is some evidence illustrating hormetic dose-responses, but the relevant literature commonly included a limited number and range of doses, precluding a robust differentiation between sub- and superNOAEL (no-observed-adverse-effect level) stimulation. These results reveal a potentially significant threat to ecological health, through stimulation of harmful parasitic organisms by environmental contaminants, and highlight the need to include sublethal stimulation and hormetic responses in relevant ecological pesticide risk assessments. Curiously, considering a more utilitarian view, hormesis may also assist in optimizing mass rearing of biological control agents for field use, a possibility that also remains neglected.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, 210044, Jiangsu, China; Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China.
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| | - Noboru Masui
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 4228526, Japan
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | | | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
16
|
Calabrese EJ, Osakabe N, Di Paola R, Siracusa R, Fusco R, D'Amico R, Impellizzeri D, Cuzzocrea S, Fritsch T, Abdelhameed AS, Wenzel U, Franceschi C, Calabrese V. Hormesis defines the limits of lifespan. Ageing Res Rev 2023; 91:102074. [PMID: 37709054 DOI: 10.1016/j.arr.2023.102074] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
This commentary provides a novel synthesis of how biological systems adapt to a broad spectrum of environmental and age-related stresses that are underlying causes of numerous degenerative diseases and debilitating effects of aging. It proposes that the most fundamental, evolutionary-based integrative strategy to sustain and protect health is based on the concept of hormesis. This concept integrates anti-oxidant, anti-inflammatory and cellular repair responses at all levels of biological organization (i.e., cell, organ and organism) within the framework of biphasic dose responses that describe the quantitative limits of biological plasticity in all cells and organisms from bacteria and plants to humans. A major feature of the hormetic concept is that low levels of biological, chemical, physical and psychological stress upregulate adaptive responses that not only precondition, repair and restore normal functions to damaged tissues/organs but modestly overcompensate, reducing ongoing background damage, thereby enhancing health beyond that in control groups, lacking the low level "beneficial" stress. Higher doses of such stress often become counterproductive and eventually harmful. Hormesis is active throughout the life-cycle and can be diminished by aging processes affecting the onset and severity of debilitating conditions/diseases, especially in elderly subjects. The most significant feature of the hormetic dose response is that the limits of biological plasticity for adaptive processes are less than twice that of control group responses, with most, at maximum, being 30-60 % greater than control group values. Yet, these modest increases can make the difference between health or disease and living or dying. The quantitative features of these adaptive hormetic dose responses are also independent of mechanism. These features of the hormetic dose response determine the capacity to which systems can adapt/be protected, the extent to which biological performance (e.g., memory, resistance to injury/disease, wound healing, hair growth or lifespan) can be enhanced/extended and the extent to which synergistic interactions may occur. Hormesis defines the quantitative rules within which adaptive processes operate and is central to evolution and biology and should become transformational for experimental concepts and study design strategies, public health practices and a vast range of therapeutic strategies and interventions.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Tokyo, Japan.
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | | | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
17
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Manes P, Calabrese V. Naringin commonly acts via hormesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:164728. [PMID: 37295528 DOI: 10.1016/j.scitotenv.2023.164728] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The present paper provides the first integrative assessment of the capacity of naringin and its metabolite, naringenin, to induce hormetic dose responses within a broad range of experimental biomedical models. The findings indicate that these agents commonly induced protective effects that are typically mediated via hormetic mechanisms leading to biphasic dose-response relationships. The maximum protective effects are generally modest, 30-60 % greater than control group values. The range of experimental findings with these agents has been reported for models with various neurodegenerative diseases, nucleus pulpous cells (NPCs) located within intravertebral discs, several types of stem cells (i.e., bone marrow, amniotic fluid, periodontal, endothelial) as well as cardiac cells. These agents also were effective within preconditioning protocols protecting against environmental toxins such as ultraviolet radiation (UV), cadmium, and paraquat. The mechanism(s) by which the hormetic responses mediates these biphasic dose responses is complex but commonly involves the activation of nuclear factor erythroid 2-related factor (Nrf2), an increasingly recognized regulator of cellular resistance to oxidants. Nrf2 appears to play a role in controlling the basal and induced expression of an array of antioxidant response element-dependent genes to regulate oxidant exposure's physiological and pathophysiological outcomes. Hence its importance in the assessment of toxicologic and adaptive potential is likely to be significant.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy.
| |
Collapse
|
18
|
Calabrese EJ, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Moringa induces its beneficial effect via hormesis. Nutr Res Rev 2023:1-10. [PMID: 37665130 DOI: 10.1017/s0954422423000161] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Moringa oleifera, a traditional Indian herb, is widely known for its capacity to induce antioxidant, anti-inflammatory and other chemoprotective effects in a broad range of biomedical models. These perspectives have led to an extensive number of studies using various moringa extracts to evaluate its capacity to protect biological systems from oxidative stress and to explore whether it could be used to slow the onset of numerous age-related conditions and diseases. Moringa extracts have also been applied to prevent damage to plants from oxidative and saline stresses, following hormetic dose–response patterns. The present paper provides the first integrated and mechanistically based assessment showing that moringa extracts commonly induce hormetic dose responses and that many, perhaps most, of the beneficial effects of moringa are due to its capacity to act as an hormetic agent.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA01003USA
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing210044, China
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania; Via Santa Sofia 97, Catania95123, Italy
| |
Collapse
|
19
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Calabrese V, Agathokleous E, Iavicoli I, Giordano J. Hormesis, biological plasticity, and implications for clinical trial research. Ageing Res Rev 2023; 90:102028. [PMID: 37549872 DOI: 10.1016/j.arr.2023.102028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The present paper identifies a critical factor that leads to false negative results (i.e., failing to indicate efficacy when beneficial results did occur) in randomized human drug trials. The paper demonstrates that human performance can only be enhanced by a maximum of 30-60% as described by the hormetic dose response which defines the limits of biological plasticity. However, human epidemiological/clinical trials typically contain such extensive variability that often requires responses greater than 2-3 times control group responses to show statistical significance. Thus, many potentially beneficial agents may be missed because the clinical trial fails to recognize and take into consideration the limits of biological plasticity. The paper proposes that this hormesis-biological plasticity-clinical trial conundrum can be addressed successfully via the use of a weight-of-evidence methodology similar to that used by regulatory agencies such as EPA in environmental assessment of chemical toxicity.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ivo Iavicoli
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - James Giordano
- Departments of Neurology and Biochemistry, and Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
20
|
Calabrese EJ, Agathokleous E, Dhawan G, Kapoor R, Calabrese V. Protective effects of alpha lipoic acid (ALA) are mediated by hormetic mechanisms. Food Chem Toxicol 2023; 177:113805. [PMID: 37169059 DOI: 10.1016/j.fct.2023.113805] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
The endogenous and dietary agent, alpha lipoic acid (ALA) is evaluated for its capacity to induce a broad spectrum of adaptive responses via hormetic dose responses and their underlying mechanisms. ALA was shown to induce hormetic effects in a wide range of experimental models within in vitro and in vivo experimental settings which included direct exposure and pre- and post-conditioning experimental protocols. The hormetic effects occur in a broad range of organ systems, including the brain, heart, kidney and other tissues, with possible public health and clinical/therapeutic applications linked to reducing the onset and progression of neurogenerative diseases and also in the preservation of sperm health and functionality during cryopreservation. This paper provides the first integrated assessment of ALA-induced hormetic dose responses. Underlying mechanisms that mediated the occurrence of ALA-induced hormetic effects involved the induction of low levels of ROS that activate key cell signaling antioxidant (e.g. Nrf2) pathways.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
21
|
Calabrese EJ, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Rhodiola rosea and Salidroside commonly induce hormesis, with particular focus on longevity and neuroprotection. Chem Biol Interact 2023; 380:110540. [PMID: 37169278 DOI: 10.1016/j.cbi.2023.110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
The biological effects of Rhodiola rosea extracts and one of its major constituents, Salidroside, were evaluated for their capacity to induce hormesis/hormetic effects. The findings indicate that the Rhodiola rosea extracts and Salidroside commonly induce hormetic dose responses within a broad range of biological models, cell types and across a broad range of endpoints, with particular emphasis on longevity and neuroprotective endpoints. This paper represents the first integrative documentation and assessment of Rhodiola rosea extracts and Salidroside induction of hormetic effects. These findings have important biomedical applications and should have an important impact with respect to critical study design, dose selection and other experimental features.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
22
|
Calabrese EJ, Agathokleous E, Dhawan G, Kapoor R, Dhawan V, Manes PK, Calabrese V. Nitric oxide and hormesis. Nitric Oxide 2023; 133:1-17. [PMID: 36764605 DOI: 10.1016/j.niox.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
This present paper provides an assessment of the occurrence of nitric oxide (NO)-induced hormetic-biphasic dose/concentration relationships in biomedical research. A substantial reporting of such NO-induced hormetic effects was identified with particular focus on wound healing, tumor promotion, and sperm biology, including mechanistic assessment and potential for translational applications. Numerous other NO-induced hormetic effects have been reported, but require more development prior to translational applications. The extensive documentation of NO-induced biphasic responses, across numerous organs (e.g., bone, cardiovascular, immune, intestine, and neuronal) and cell types, suggests that NO-induced biological activities are substantially mediated via hormetic processes. These observations are particularly important because broad areas of NO biology are constrained by the quantitative features of the hormetic response. This determines the amplitude and width of the low dose stimulation, affecting numerous biomedical implications, study design features (e.g., number of doses, dose spacing, sample sizes, statistical power), and the potential success of clinical trials.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Vikas Dhawan
- Department of Surgery, Indian Naval Ship Hospital, Mumbai, India.
| | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
23
|
Calabrese EJ, Agathokleous E. Nitric oxide, hormesis and plant biology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161299. [PMID: 36596420 DOI: 10.1016/j.scitotenv.2022.161299] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The present paper provides the first integrative assessment of the occurrence of nitric oxide (NO) induced hormetic effects in plant biology. Hormetic dose responses were commonly reported for NO donors on numerous plant species of agricultural and other commercial value. The NO donors were also shown to protect plants from a wide range of chemical (i.e., multiple toxic metals) and physical stressors (i.e., heat, drought) in preconditioning (aka priming) experimental protocols showing hormetic dose responses. Practical approaches for the use of NO donors to enhance plant growth using optimized dose response frameworks were also assessed. Considerable mechanistic findings indicate that NO donors have the capacity to enhance a broad range of adaptive responses, including highly integrated antioxidant activities. The integration of the hormesis concept with NO donors is likely to become a valuable practical general strategy to enhance plant productivity across a wide range of valuable plant species facing environmental pollution and climate changes.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, United States of America.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
24
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Lithium and hormesis: Enhancement of adaptive responses and biological performance via hormetic mechanisms. J Trace Elem Med Biol 2023; 78:127156. [PMID: 36958112 DOI: 10.1016/j.jtemb.2023.127156] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Biomedical and consumer interest in the health-promoting properties of pure single entities of known or unknown chemical constituents and mixtures has never been greater. Since its "rediscovery" in the 1950s, lithium is an example of such a constituent that represents an array of scientific and public health challenges and medical potentials that may now be understood best when seen through the lens of the dose-response paradigm known as hormesis. The present paper represents the first review of the capacity of lithium to induce hormetic dose responses in a broad range of biological models, organ systems, and endpoints. Of significance is that the numerous hormetic findings occur with extensive concentration/dose response evaluations with the optimal dosing being similar across multiple organ systems. The particular focus of these hormetic dose-response findings was targeted to research with a broad spectrum of stem cell types and neuroprotective effects. These findings suggest that lithium may have critically valuable systemic effects with respect to those therapeutically treated with lithium as well as for exposures that may be achieved via dietary intervention.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Peter Pressman
- Saba University School of Medicine, Caribbean, the Netherlands
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center; Hartford, CT, USA
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences; School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy
| |
Collapse
|
25
|
Georgieva M, Vassileva V. Stress Management in Plants: Examining Provisional and Unique Dose-Dependent Responses. Int J Mol Sci 2023; 24:ijms24065105. [PMID: 36982199 PMCID: PMC10049000 DOI: 10.3390/ijms24065105] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The purpose of this review is to critically evaluate the effects of different stress factors on higher plants, with particular attention given to the typical and unique dose-dependent responses that are essential for plant growth and development. Specifically, this review highlights the impact of stress on genome instability, including DNA damage and the molecular, physiological, and biochemical mechanisms that generate these effects. We provide an overview of the current understanding of predictable and unique dose-dependent trends in plant survival when exposed to low or high doses of stress. Understanding both the negative and positive impacts of stress responses, including genome instability, can provide insights into how plants react to different levels of stress, yielding more accurate predictions of their behavior in the natural environment. Applying the acquired knowledge can lead to improved crop productivity and potential development of more resilient plant varieties, ensuring a sustainable food source for the rapidly growing global population.
Collapse
|
26
|
Calabrese E, Pressman P, Agathokleous E, Dhawan G, Kapoor R, Calabrese V. Boron enhances adaptive responses and biological performance via hormetic mechanisms. Chem Biol Interact 2023; 376:110432. [PMID: 36878460 DOI: 10.1016/j.cbi.2023.110432] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Boron is shown in the present review to induce hormetic dose responses in a broad range of biological models, organ systems and endpoints. Of particular importance is that numerous hormetic findings have been reported with whole animal studies, with extensive dose response evaluations with the optimal dosing being similar across multiple organ systems. These findings appear to be underappreciated and suggest that boron may have clinically significant systemic effects beyond that of its putative and more subtle essentiality functions. The re-exploration of boron's bioactivity as seen through hormetic mechanisms may also underscore the value of this approach to the assessment of micronutrient effects in human health and disease.
Collapse
Affiliation(s)
- Edward Calabrese
- Department of Environmental Health Sciences, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall-Room 201, Orono, ME, 04469, USA.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
27
|
Calabrese EJ, Agathokleous E, Giordano J, Selby PB. Manhattan Project genetic studies: Flawed research discredits LNT recommendations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120902. [PMID: 36566922 DOI: 10.1016/j.envpol.2022.120902] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
This paper reexamines the technical report (∼ one page) of Uphoff and Stern (1949) in Science that was highly relied upon by the US National Academy of Sciences (NAS) Biological Effects of Atomic Radiation (BEAR) I Genetics Panel to support a linearity dose response for radiation risk assessment. The present paper demonstrates that research of Uphoff and Stern (1949) to evaluate whether total dose or dose rate best estimated radiation risks included two variables, thereby precluding the ability to accurately derive a reliable conclusion about this topic. Furthermore, the acute dose selected by Uphoff and Stern was given at a strikingly low dose rate that may have precluded the capacity to adequately test the total dose/dose rate hypothesis, even with a proper study design which also this research did not possess. The issue of total dose and dose rate was much later successfully addressed by Russell et al. (1958) using a murine model, yielding a dose-rate rather than a total dose conclusion. The failure to subject the experimental details of the Uphoff and Stern (1949) study to peer-review and publication in the open literature precluded a rigorous and necessary evaluation, profoundly and improperly impacting the adoption of the linear dose response model.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences; Morrill I, N344; University of Massachusetts, Amherst, MA, 01003, USA.
| | - Evgenios Agathokleous
- School of Applied Meteorology; Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - James Giordano
- Departments of Neurology and Biochemistry, and Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, 20007, USA.
| | - Paul B Selby
- Retired from Oak Ridge National Laboratory at Oak Ridge, TN, USA; 4088 Nottinghill Gate Road; Upper Arlington, OH, 43220, USA.
| |
Collapse
|
28
|
De La Torre AM, López-Martínez G. Anoxia hormesis improves performance and longevity at the expense of fitness in a classic life history trade-off. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159629. [PMID: 36280058 DOI: 10.1016/j.scitotenv.2022.159629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Hormesis occurs as a result of biphasic dose relationship resulting in stimulatory responses at low doses and inhibitory ones at high doses. In this framework, environmental factors are often studied to understand how this exposure benefits the animal. In the current study we used anoxia, the total absence of oxygen, as the most extreme version of low oxygen hormesis. Our goal was to determine the dose, the extent of the effect, and the cost of that response in Tenebrio molitor. We identified that the hormetic range (1 to 3 h of anoxia) was similar to that of other insects. Individuals that were exposed to 3 h had high emergence, increased activity throughout life, and lived longer. Beetles that experienced 1 h of anoxia performed better than the controls while the 6-h group had compromised performance. These boosts in performance at 3 h were accompanied by significant costs. Treated individuals had a delay in development and once matured they had decreased fitness. There were also transgenerational effects of hormesis and F1 beetles also experienced a delay in development. Additionally, the F1 generation had decreased developmental completion (i.e., stress-induced developmental halt). Our data suggests that anoxia hormesis triggers a trade-off where individuals benefiting from improved performance and living longer experience a decrease in reproduction.
Collapse
Affiliation(s)
- Alyssa M De La Torre
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States of America; College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Giancarlo López-Martínez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States of America; Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, United States of America.
| |
Collapse
|
29
|
Sun Y, Yang X, Xu L, Jia M, Zhang L, Li P, Yang P. The Role of Nrf2 in Relieving Cerebral Ischemia-Reperfusion Injury. Curr Neuropharmacol 2023; 21:1405-1420. [PMID: 36453490 PMCID: PMC10324331 DOI: 10.2174/1570159x21666221129100308] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 12/05/2022] Open
Abstract
Ischemic stroke includes two related pathological damage processes: brain injury caused by primary ischemia and secondary ischemia reperfusion (I/R) injury. I/R injury has become a worldwide health problem. Unfortunately, there is still a lack of satisfactory drugs for ameliorating cerebral I/R damage. Nrf2 is a vital endogenous antioxidant protein, which combines with Keap1 to maintain a dormant state under physiological conditions. When pathological changes such as I/R occurs, Nrf2 dissociates from Keap1 and activates the expression of downstream antioxidant proteins to exert a protective effect. Recent research have shown that the activated Nrf2 not only effectively inhibits oxidative stress, but also performs the ability to repair the function of compromised mitochondria, alleviate endoplasmic reticulum stress, eliminate inflammatory response, reduce blood-brain barrier permeability, inhibit neuronal apoptosis, enhance the neural network remolding, thereby exerting significant protective effects in alleviating the injuries caused by cell oxygen-glucose deprivation, or animal cerebral I/R. However, no definite clinical application report demonstrated the efficacy of Nrf2 activators in the treatment of cerebral I/R. Therefore, further efforts are needed to elaborate the role of Nrf2 activators in the treatment of cerebral I/R. Here, we reviewed the possible mechanisms underlying its potential pharmacological benefits in alleviating cerebral I/R injury, so as to provide a theoretical basis for studying its mechanism and developing Nrf2 activators.
Collapse
Affiliation(s)
- Yu Sun
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Xu Yang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Lijun Xu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Mengxiao Jia
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Limeng Zhang
- School of Nursing, Pingdingshan Polytenchnic College, Pingdingshan, 467001, China
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| | - Pengfei Yang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, 453003, China
| |
Collapse
|
30
|
Ferdinandy P, Andreadou I, Baxter GF, Bøtker HE, Davidson SM, Dobrev D, Gersh BJ, Heusch G, Lecour S, Ruiz-Meana M, Zuurbier CJ, Hausenloy DJ, Schulz R. Interaction of Cardiovascular Nonmodifiable Risk Factors, Comorbidities and Comedications With Ischemia/Reperfusion Injury and Cardioprotection by Pharmacological Treatments and Ischemic Conditioning. Pharmacol Rev 2023; 75:159-216. [PMID: 36753049 PMCID: PMC9832381 DOI: 10.1124/pharmrev.121.000348] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Preconditioning, postconditioning, and remote conditioning of the myocardium enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and the potential to provide novel therapeutic paradigms for cardioprotection. While many signaling pathways leading to endogenous cardioprotection have been elucidated in experimental studies over the past 30 years, no cardioprotective drug is on the market yet for that indication. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic preclinical evaluation of promising cardioprotective therapies prior to their clinical evaluation, since ischemic heart disease in humans is a complex disorder caused by or associated with cardiovascular risk factors and comorbidities. These risk factors and comorbidities induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury and responses to cardioprotective interventions. Moreover, some of the medications used to treat these comorbidities may impact on cardioprotection by again modifying cellular signaling pathways. The aim of this article is to review the recent evidence that cardiovascular risk factors as well as comorbidities and their medications may modify the response to cardioprotective interventions. We emphasize the critical need for taking into account the presence of cardiovascular risk factors as well as comorbidities and their concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple comorbidities. SIGNIFICANCE STATEMENT: Ischemic heart disease is a major cause of mortality; however, there are still no cardioprotective drugs on the market. Most studies on cardioprotection have been undertaken in animal models of ischemia/reperfusion in the absence of comorbidities; however, ischemic heart disease develops with other systemic disorders (e.g., hypertension, hyperlipidemia, diabetes, atherosclerosis). Here we focus on the preclinical and clinical evidence showing how these comorbidities and their routine medications affect ischemia/reperfusion injury and interfere with cardioprotective strategies.
Collapse
Affiliation(s)
- Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Ioanna Andreadou
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gary F Baxter
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Hans Erik Bøtker
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sean M Davidson
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Dobromir Dobrev
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Bernard J Gersh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gerd Heusch
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sandrine Lecour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Marisol Ruiz-Meana
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Coert J Zuurbier
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Derek J Hausenloy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| |
Collapse
|
31
|
Calabrese EJ, Kapoor R, Dhawan G, Calabrese V. Hormesis mediates platelet-rich plasma and wound healing. Wound Repair Regen 2023; 31:56-68. [PMID: 36458897 DOI: 10.1111/wrr.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/06/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
Platelet-rich plasma (PRP) has become an accepted and general wound healing approach with an extremely wide range of applications. Despite considerable diversity in the composition of platelet-rich plasma products that are applied in specific wound healing usage, it is widely recognised that such diverse platelet-rich plasma complex mixtures routinely display hormetic-like biphasic concentrations that are independent of the tissue treated and endpoints measured. The present paper is the first to place the area of platelet-rich plasma-biomedical research and applications within an hormetic framework. The platelet-rich plasma area is also unique as it represents the application of the hormetic concept to the issue of complex biological mixtures.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, Massachusetts, USA
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, Connecticut, USA
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD) University of Health Sciences, Amritsar, India
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
32
|
Khan HA, Al‐Hoshani A, Isab AA, Alhomida AS. A Gold(III) Complex with Potential Anticancer Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202202956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Haseeb A. Khan
- FRCPath, FRSC Department of Biochemistry College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Ali Al‐Hoshani
- Department of Pharmaceutical Chemistry College of Pharmacy King Saud University Riyadh 11451 Saudi Arabia
| | - Anvarhusein A. Isab
- Department of Chemistry College of Science King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| | - Abdullah S. Alhomida
- FRCPath, FRSC Department of Biochemistry College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
33
|
Franzini M, Valdenassi L, Pandolfi S, Ricevuti G, Tirelli U, Vaiano F, Chirumbolo S. Comments on the optimal use of medical ozone in clinics versus the Ozone High Dose Therapy (OHT) approach. TRANSLATIONAL MEDICINE COMMUNICATIONS 2022; 7:26. [PMID: 36533116 PMCID: PMC9734312 DOI: 10.1186/s41231-022-00132-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Affiliation(s)
- Marianno Franzini
- International Scientific Society of Oxygen Ozone Therapy (SIOOT), Gorle, BG Italy
| | - Luigi Valdenassi
- International Scientific Society of Oxygen Ozone Therapy (SIOOT), Gorle, BG Italy
| | - Sergio Pandolfi
- International Scientific Society of Oxygen Ozone Therapy (SIOOT), Gorle, BG Italy
| | | | - Umberto Tirelli
- Department of Drug Science, University of Pavia, Pavia, Italy
- Tirelli Clinical Group, Pordenone, Italy
| | - Francesco Vaiano
- International Scientific Society of Oxygen Ozone Therapy (SIOOT), Gorle, BG Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, Unit of Human Anatomy, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
34
|
Oshri A. The Hormesis Model for Building Resilience Through Adversity: Attention to Mechanism in Developmental Context. REVIEW OF GENERAL PSYCHOLOGY 2022. [DOI: 10.1177/10892680221142020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In developmental science, resilience refers to children and youths’ ability to recover and pursue positive development in the face of stress related to adversity. Extant research has documented protective factors and ecological contexts that mitigate the impact of adversity and thereby promote resilience. One intriguing aspect of resilience is that individuals also develop strength in response to early adversity. However, very little theoretical guidance exists on the developmental mechanisms and contexts through which early adversity may lead to strengthening effects that confer the process of resilience. The strengthening mechanism in the context of specific circumscribed environmental stress is a process known in the field of toxicology as hormesis. It is proposed here that the study of resilience in developmental and psychological sciences can benefit from shifting more attention to the hormesis model. The hormesis model is reviewed and discussed as a promising perspective on mechanisms, developmental timing, and context through which adversity strengthens or impedes resilience.
Collapse
Affiliation(s)
- Assaf Oshri
- Human Development and Family Science, Neuroscience Program, The Youth Development Institute, The University of Georgia, Athens, GA, USA
| |
Collapse
|
35
|
Song J, Han C, Zhang S, Wang Y, Liang Y, Dai Q, Huo Z, Xu K. Hormetic Effects of Carbendazim on Mycelial Growth and Aggressiveness of Magnaporthe oryzae. J Fungi (Basel) 2022; 8:jof8101008. [PMID: 36294573 PMCID: PMC9604696 DOI: 10.3390/jof8101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most destructive fungal diseases of rice worldwide. Stimulatory effects of low doses of fungicides on pathogens are closely relevant to disease management. In the present study, in potato dextrose agar (PDA) amended with carbendazim at a dose range from 0.003 to 0.3 μg/mL, stimulatory effects on the mycelial growth of three isolates sensitive to carbendazim were tested. Carbendazim at concentrations from 0.003 to 0.1 µg/mL showed stimulatory effects on mycelial growth of isolates Guy11 and H08-1a, while carbendazim at concentrations from 0.003 to 0.03 µg/mL stimulated the growth of isolate P131. The maximum stimulation magnitudes were 11.84% for the three isolates tested. Mycelial colonies grown on PDA amended with different concentrations of carbendazim were incubated at 28 °C in darkness for 7 days as the pretreatment. Pretreatment mycelia were inoculated on fresh fungicide-free PDA and subsequent mycelia growth stimulations were still observed, and the maximum stimulation magnitudes were 9.15% for the three isolates tested. Pretreatment mycelia did not significantly change the tolerance to H2O2 and NaCl, except that the tolerance to H2O2 was increased significantly (p < 0.05) when the carbendazim was at 0.3 µg/mL. After five generations of mycelial transference on fungicide-free PDA, the transgenerational hormesis of mycelial were exhibited when transferred onto PDA supplemented with carbendazim at 0.3 µg/mL, and the maximum percent stimulation was 51.28%. The time course of infection indicated that the visible initial necrotic symptoms could be detected at 2 DPI on leaves treated with carbendazim at 0.03 µg/mL, whereas no necrotic symptom could be discerned for the control. Statistical results of lesion area and lesion type at 7 DPI showed that there was a significant stimulation (p < 0.05) on aggressiveness of M. oryzae isolate Guy11 on detached rice leaves at 0.03 µg/mL carbendazim. These results will advance our understanding of hormetic effects of fungicides and provide valuable information for judicious application of fungicides.
Collapse
|
36
|
Periplanetaamericana Extract Pretreatment Alleviates Oxidative Stress and Inflammation and Increases the Abundance of Gut Akkermansia muciniphila in Diquat-Induced Mice. Antioxidants (Basel) 2022; 11:antiox11091806. [PMID: 36139880 PMCID: PMC9495987 DOI: 10.3390/antiox11091806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Studies have shown that Periplaneta americana extract (PAE) has good therapeutic effects in inflammatory disorders such as ulcerative colitis, alcoholic hepatitis, and gastric ulcers. However, whether or not PAE has good pre-protective effects has not been widely and deeply studied. In this study, we investigated the effects of PAE pretreatment for 7 days on oxidative stress and inflammation triggered by oxidative stress by using diquat-induced C57BL/6 mice as an oxidative stress model. The results showed that PAE pretreatment could significantly reduce oxidative stress in the intestine and liver by reducing the production of MDA, and improved antioxidant systems (SOD, CAT, GSH, and T-AOC). By primarily activating the anti-inflammatory cytokine (IL-10) mediated JAK1/STAT3 signaling pathway, PAE also effectively reduced oxidative stress-induced liver inflammation while also reducing liver damage, as evidenced by the reductions in serum AST and ALT. PAE pretreatment also had a significant effect on maintaining the intestinal barrier function, which was manifested by inhibiting a decrease in the expression of tight junction proteins (ZO-1 and occludin), and reducing the increased intestinal permeability (serum DAO and D-Lac) caused by diquat. The 16S rRNA sequencing analysis revealed that diquat decreased the gut microbiota diversity index and increased the abundance of pathogenic bacteria (e.g., Allobaculum, Providencia and Escherichia-Shigella), while PAE pretreatment responded to diquat-induced damage by greatly increasing the abundance of Akkermansia muciniphila. These findings elucidate potential pre-protective mechanisms of PAE in alleviating oxidative stress and inflammation, while providing a direction for the treatment of metabolic diseases by utilizing PAE to enhance the abundance of gut A. muciniphila.
Collapse
|
37
|
Calabrese EJ, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Hormesis: Wound healing and keratinocytes. Pharmacol Res 2022; 183:106393. [PMID: 35961478 DOI: 10.1016/j.phrs.2022.106393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022]
Abstract
Hormetic dose responses (i.e., a biphasic dose/concentration response characterized by a low dose stimulation and a high dose inhibition) are shown herein to be commonly reported in the dermal wound healing process, with the particular focus on cell viability, proliferation, and migration of human keratinocytes in in vitro studies. Hormetic responses are induced by a wide range of substances, including endogenous agents, numerous drug and nanoparticle preparations and especially plant derived extracts, including many well-known dietary supplements as well as physical stressor agents, such as low-level laser treatments. Detailed mechanistic studies have identified common signaling pathways and their cross-pathway communications that mediate the hormetic dose responses. These findings suggest that the concept of hormesis plays a fundamental role in wound healing, with important potential implications for agent screening and evaluation, as well as clinical strategies.
Collapse
Affiliation(s)
- Edward J Calabrese
- Professor of Toxicology; School of Public Health and Health Sciences, Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003 USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD); University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center; Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Applied Meteorology; Nanjing University of Information Science & Technology; Nanjing 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy.
| |
Collapse
|
38
|
Linear non-threshold (LNT) fails numerous toxicological stress tests: Implications for continued policy use. Chem Biol Interact 2022; 365:110064. [DOI: 10.1016/j.cbi.2022.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
|
39
|
Zhao F, Li B, Yang W, Ge T, Cui R. Brain-immune interaction mechanisms: Implications for cognitive dysfunction in psychiatric disorders. Cell Prolif 2022; 55:e13295. [PMID: 35860850 PMCID: PMC9528770 DOI: 10.1111/cpr.13295] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives Cognitive dysfunction has been identified as a major symptom of a series of psychiatric disorders. Multidisciplinary studies have shown that cognitive dysfunction is monitored by a two‐way interaction between the neural and immune systems. However, the specific mechanisms of cognitive dysfunction in immune response and brain immune remain unclear. Materials and methods In this review, we summarized the relevant research to uncover our comprehension of the brain–immune interaction mechanisms underlying cognitive decline. Results The pathophysiological mechanisms of brain‐immune interactions in psychiatric‐based cognitive dysfunction involve several specific immune molecules and their associated signaling pathways, impairments in neural and synaptic plasticity, and the potential neuro‐immunological mechanism of stress. Conclusions Therefore, this review may provide a better theoretical basis for integrative therapeutic considerations for psychiatric disorders associated with cognitive dysfunction.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Calabrese EJ, Calabrese V. Hormesis and Epidermal Stem Cells. Dose Response 2022; 20:15593258221119911. [PMID: 36158736 PMCID: PMC9500281 DOI: 10.1177/15593258221119911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This paper provides an assessment of hormetic dose responses in epidermal stem cells (EpSCs) in animal models and humans, with emphasis on cell proliferation and differentiation and application to wound healing and aging processes. Hormetic dose responses were induced by several agents, including dietary supplements (eg, luteolin, quercetin), pharmaceuticals (eg, nitric oxide), endogenous agents (eg, growth/differentiation factor 5), and via diverse chemical means to sustain steaminess features to retard aging and disease onset. While hormetic dose responses have been extensively reported in a broad spectrum of stem cells, this area has only been explored to a limited extent in EpSCs, principally within the past 5 years. Nonetheless, these findings provide the first integrated assessment of hormesis and EpSC biology within the context of enhancing key functions such as cell proliferation and differentiation and resilience to inflammatory stresses. This paper assesses putative mechanisms of hormetic responses in EpSCs and potential therapeutic applications to prevent dermatological injury and disease.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Catania, Italy
| |
Collapse
|
41
|
Calabrese EJ, Selby PB. Cover up and cancer risk assessment: Prominent US scientists suppressed evidence to promote adoption of LNT. ENVIRONMENTAL RESEARCH 2022; 210:112973. [PMID: 35182593 DOI: 10.1016/j.envres.2022.112973] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
This paper reports that William Russell, Oak Ridge National Laboratory (ORNL), conducted a large-scale lifetime study from 1956 to 1959 showing that exposure of young adult male mice to a large dose of acute X-rays had no treatment effects on male and female offspring concerning longevity or the frequency, severity, or age distribution of neoplasms and other diseases. Despite the scientific, societal and crucial timing significance of the study, Russell did not publish the findings for almost 35 years, nor did he inform governmental advisory committees, thereby significantly biasing decisions made during this period which supported the adoption of LNT for risk assessment. Of further significance, Arthur Upton, an ORNL colleague of Russell during this study and later Director of the US National Cancer Institute (NCI), was also fully knowledgeable of this study, its findings and its negative impact on the acceptance of LNT. Upton later worked along with Russell to publish these data (i.e., Cosgrove et al., 1993) to dispute the case-specific claim that children developed cancer because of the radiation exposure of their fathers as workers at the Sellafield nuclear plant. Thus, while Russell's data were available, but were not used to challenge the key radiation and leukemia paper of Edward B. Lewis, (1957) when LNT was being adopted by regulatory agencies, they were used in a major trial in the United Kingdom (UK) for the client (i.e., British Nuclear Fuels Plc) that hired Upton. While the duplicity of Russell's and Upton's actions is striking, the key finding of the present paper is that Russell and Upton intentionally orchestrated and sustained an LNT cover up during the key period of LNT adoption by regulatory agencies, thereby showing an overwhelming bias to enhance the adoption of LNT.
Collapse
Affiliation(s)
- Edward J Calabrese
- Professor of Toxicology, School of Public Health and Health Sciences, Department of Environmental Health Sciences, University of Massachusetts, Morrill I, N344, Amherst, MA, 01003, USA.
| | - Paul B Selby
- Retired from Oak Ridge National Laboratory at Oak Ridge, TN.
| |
Collapse
|
42
|
Calabrese EJ, Agathokleous E. Hormesis is an evolutionary expectation: implications for aging. Biogerontology 2022; 23:381-384. [PMID: 35524901 DOI: 10.1007/s10522-022-09964-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
Abstract
This article argues that evolution and the concept of hormesis are biologically inseparable. It proposes that evolutionary processes led to the selection of inducible adaptive hormetic strategies that are necessary for wellbeing and survival. Hormesis has been demonstrated in essentially all organisms in which it has been studied from bacteria to humans, showing its highly conserved features. This evolution-hormesis integration should be a central feature in both understanding the biology of aging but also in ways to enhance improved health-based aging strategies.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, China
| |
Collapse
|
43
|
Albers JL, Steibel JP, Klingler RH, Ivan LN, Garcia-Reyero N, Carvan MJ, Murphy CA. Altered Larval Yellow Perch Swimming Behavior Due to Methylmercury and PCB126 Detected Using Hidden Markov Chain Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3514-3523. [PMID: 35201763 DOI: 10.1021/acs.est.1c07505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fish swimming behavior is a commonly measured response in aquatic ecotoxicology because behavior is considered a whole organism-level effect that integrates many sensory systems. Recent advancements in animal behavior models, such as hidden Markov chain models (HMM), suggest an improved analytical approach for toxicology. Using both new and traditional approaches, we examined the sublethal effects of PCB126 and methylmercury on yellow perch (YP) larvae (Perca flavescens) using three doses. Both approaches indicate larvae increase activity after exposure to either chemical. The middle methylmercury-dosed larvae showed multiple altered behavior patterns. First, larvae had a general increase in activity, typically performing more behavior states, more time swimming, and more swimming bouts per second. Second, when larvae were in a slow or medium swimming state, these larvae tended to switch between these states more often. Third, larvae swam slower during the swimming bouts. The upper PCB126-dosed larvae exhibited a higher proportion and a fast swimming state, but the total time spent swimming fast decreased. The middle PCB126-dosed larvae transitioned from fast to slow swimming states less often than the control larvae. These results indicate that developmental exposure to very low doses of these neurotoxicants alters YP larvae overall swimming behaviors, suggesting neurodevelopment alteration.
Collapse
Affiliation(s)
- Janice L Albers
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Juan P Steibel
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rebekah H Klingler
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Lori N Ivan
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi, 39180, United States
| | - Michael J Carvan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Cheryl A Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
44
|
Calabrese EJ. Hormesis and dental apical papilla stem cells. Chem Biol Interact 2022; 357:109887. [DOI: 10.1016/j.cbi.2022.109887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
|
45
|
Ontario ML, Siracusa R, Modafferi S, Scuto M, Sciuto S, Greco V, Bertuccio MP, Salinaro AT, Crea R, Calabrese EJ, Di Paola R, Calabrese V. POTENTIAL PREVENTION AND TREATMENT OF NEURODEGENERATIVE DISORDERS BY OLIVE POLYPHENOLS AND HYDROX. Mech Ageing Dev 2022; 203:111637. [DOI: 10.1016/j.mad.2022.111637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
|
46
|
XENOHORMESIS UNDERLYES THE ANTI-AGING AND HEALTHY PROPERTIES OF OLIVE POLYPHENOLS. Mech Ageing Dev 2022; 202:111620. [PMID: 35033546 DOI: 10.1016/j.mad.2022.111620] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
Abstract
The paper provides a comprehensive and foundational mechanistic framework of hormesis that establishes its centrality in medicine and public health. This hormetic framework is applied to the assessment of olive polyphenols with respect to their capacity to slow the onset and reduce the magnitude of a wide range of age-related disorders and neurodegenerative diseases, including Alzheimer's Disease and Parkinson's Disease. It is proposed that olive polyphenol-induced anti-inflammatory protective effects are mediated in large part via the activation of AMPK and the upregulation of Nrf2 pathway. Consistently, herein we also review the importance of the modulation of Nrf2-related stress responsive vitagenes by olive polyphenols, which at low concentration according to the hormesis theory activates this neuroprotective cascade to preserve brain health and its potential use in the prevention and therapy against aging and age-related cognitive disorders in humans.
Collapse
|
47
|
Abstract
This paper represents the first assessment of agent-induced hormetic dose responses in induced pluripotent stem cells and their derived cells. The hormetic dose responses were induced by a broad range of chemicals, including pharmaceuticals (eg, metformin), dietary supplements/extracts from medicinal plants (eg, curcumin), and endogenous agents (eg, melatonin). The paper assesses the mechanistic foundations of these induced hormetic dose responses, their therapeutic implications and comparison with hormetic responses in multiple adult and embryonic stem cells.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
48
|
Calabrese EJ. Hormesis and Endothelial Progenitor Cells. Dose Response 2022; 20:15593258211068625. [PMID: 35221821 PMCID: PMC8874175 DOI: 10.1177/15593258211068625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022] Open
Abstract
Hormetic-biphasic dose response relationships are reported herein for human endothelial progenitor cells involving estradiol, nicotine, the anti-diabetic agent pioglitazone, resveratrol, and progesterone. In general, these studies demonstrate the capacity of these agents to enhance EPC proliferation and angiogenesis functional applications, having a focus on repairing endothelial tissue damage due to acute injury (e.g., stroke), as well as damage from chronic conditions (e.g., atherosclerosis) and normal aging processes.
Collapse
Affiliation(s)
- Edward J. Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
49
|
Calabrese EJ, Calabrese V, Dhawan G, Kapoor R, Giordano J. Hormesis and neural stem cells. Free Radic Biol Med 2022; 178:314-329. [PMID: 34871764 DOI: 10.1016/j.freeradbiomed.2021.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023]
Abstract
This paper provides a detailed identification and assessment of hormetic dose responses in neural stem cells (NSCs) as identified in a number of animal models and human tissues, with particular emphasis on cell proliferation and differentiation. Hormetic dose responses were commonly observed following administration of a number of agents, including dietary supplements [e.g., berberine, curcumin, (-)-epigallocatechin-3-gallate (EGCG), Ginkgo Biloba, resveratrol], pharmaceuticals (e.g., lithium, lovastatin, melatonin), endogenous ligands [e.g., hydrogen sulfide (H2S), magnesium, progesterone, taurine], environmental contaminants (e.g., arsenic, rotenone) and physical agents [e.g., hypoxia, ionizing radiation, electromagnetic radiation (EMF)]. These data indicate that numerous agents can induce hormetic dose responses to upregulate key functions of such as cell proliferation and differentiation in NSCs, and enhance resilience to inflammatory stresses. The paper assesses both putative mechanisms of hormetic responses in NSCs, and the potential therapeutic implications and application(s) of hormetic frameworks in clinical approaches to neurological injury and disease.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts; Amherst, MA, 01003, USA.
| | - Vittorio Calabrese
- Department of Biomedical & Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia, 97 - 95125, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD); University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - James Giordano
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington DC, 20007, USA.
| |
Collapse
|
50
|
Calabrese EJ, Agathokleous E, Dhawan G, Kapoor R, Calabrese V. Human dental pulp stem cells and hormesis. Ageing Res Rev 2022; 73:101540. [PMID: 34890824 DOI: 10.1016/j.arr.2021.101540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023]
Abstract
This paper represents the first assessment of hormetic dose responses by human dental pulp stem cells (hDPSCs) with particular emphasis on cell renewal (proliferation) and differentiation. Hormetic dose responses were commonly reported in this model, encompassing a broad range of chemicals, including principally pharmaceuticals (e.g., metformin and artemisinin), dietary supplements/extracts from medicinal plants (e.g., berberine, N-acetyl-L-cysteine, and ginsenoside Rg1) and endogenous agents (e.g., ATP, TNF-α). The paper assesses mechanistic foundations of the hDPSCs hormetic dose responses for both cell proliferation and cell differentiation, study design considerations, and therapeutic implications.
Collapse
|