1
|
Yang F, Wen X, Xie S, He X, Qu G, Zhang X, Sun S, Luo Z, Liu Z, Lin Q. Characterization of lipid composition and nutritional quality of yak ghee at different altitudes: A quantitative lipidomic analysis. Food Chem X 2024; 21:101166. [PMID: 38322764 PMCID: PMC10844969 DOI: 10.1016/j.fochx.2024.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024] Open
Abstract
Efficient and comprehensive analysis of lipid profiles in yak ghee samples collected from different elevations is crucial for optimal utilization of these resources. Unfortunately, such research is relatively rare. Yak ghee collected from three locations at different altitudes (S2: 2986 m; S5: 3671 m; S6: 4508 m) were analyzed by quantitative lipidomic. Our analysis identified a total of 176 lipids, and 147 s lipid of them were upregulated and 29 lipids were downregulated. These lipids have the potential to serve as biomarkers for distinguishing yak ghee from different altitudes. Notably, S2 exhibited higher levels of fatty acids (21:1) and branched fatty acid esters of hydroxy fatty acids (14:0/18:0), while S5 showed increased levels of phosphatidylserine (O-20:0/19:1) and glycerophosphoric acid (19:0/22:1). S6 displayed higher levels of triacylglycerol (17:0/20:5/22:3), ceramide alpha-hydroxy fatty acid-sphingosine (d17:3/34:2), and acyl glucosylceramides (16:0-18:0-18:1). Yak ghee exhibited a high content of neutralizing glycerophospholipids and various functional lipids, including sphingolipids and 21 newly discovered functional lipids. Our findings provide insights into quantitative changes in yak ghee lipids during different altitudes, development of yak ghee products, and screening of potential biomarkers.
Collapse
Affiliation(s)
- Feiyan Yang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xin Wen
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Siwei Xie
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xudong He
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Guangfan Qu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xueying Zhang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Shuguo Sun
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, Tibet, China
| | - Zhendong Liu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, Tibet, China
| | - Qinlu Lin
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
2
|
Liu X, Ye Z, Rao D, Chen Q, Zhang Z. DUSP4 maintains the survival and LSD1 protein stability in esophageal squamous cell carcinoma cells by inhibiting JNK signaling-dependent autophagy. In Vitro Cell Dev Biol Anim 2024; 60:115-122. [PMID: 38286920 DOI: 10.1007/s11626-023-00845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/13/2023] [Indexed: 01/31/2024]
Abstract
DUSP4 is a biomarker of esophageal squamous cell carcinoma (ESCC), which is responsible for the prognosis in ESCC. However, the underlying mechanism of DUSP4-regulated ESCC carcinogenesis is unknown. As a negative regulator of JNK, DUSP4 can inhibit autophagy, which contributes to tumorigenesis. This study aimed to explore the role of autophagy in DUSP4-regulated ESCC carcinogenesis. Our results showed that DUSP4 overexpression inhibited autophagy and promoted LSD1 protein expression in ESCC cells, while DUSP4 silencing showed the opposite effects. However, DUSP4 overexpression and silencing did not affect LSD1 mRNA expression. But the regulatory ability of DUSP4 overexpression on autophagy, death level, and LSD1 protein was reversed by rapamycin. In addition, DUSP4 overexpression inhibited JNK and Bcl2 phosphorylation and the dissociation of Bcl2-Beclin1 complex, while DUSP4 silencing promoted JNK and Bcl2 phosphorylation. Moreover, the regulatory ability of DUSP4 overexpression on autophagy, death, and LSD1 protein was reversed by JNK activator anisomycin. The xenograft assays also showed that DUSP4 overexpression-promoted ESCC tumor growth in vivo and LC3II and LSD1 protein expression in tumor tissues were reversed by rapamycin or anisomycin. Overall, DUSP4 inhibits Bcl2-Beclin1-autophagy signal transduction through the negative regulation of JNK, thus suppressing autophagic death and the autophagic degradation of LSD1 in ESCC, by which DUSP4 promotes ESCC carcinogenesis.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Gannan Branch of National Clinical Research Center for Geriatrics Ganzhou 341000, Jiangxi, China
| | - Zhou Ye
- Department of Digestive, The 900Th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350001, Fujian, China
| | - Dingyu Rao
- Department of Thoracic Surgery, First Affiliated Hospital of Gannan Medical University, No. 3, Outangli, Xingannan Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Qianshun Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| | - Zuxiong Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Gannan Medical University, No. 3, Outangli, Xingannan Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China.
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
3
|
Ahuja P, Yadav R, Goyal S, Yadav C, Ranga S, Kadian L. Targeting epigenetic deregulations for the management of esophageal carcinoma: recent advances and emerging approaches. Cell Biol Toxicol 2023; 39:2437-2465. [PMID: 37338772 DOI: 10.1007/s10565-023-09818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Ranking from seventh in incidence to sixth in mortality, esophageal carcinoma is considered a severe malignancy of food pipe. Later-stage diagnosis, drug resistance, and a high mortality rate contribute to its lethality. Esophageal squamous cell carcinoma and esophageal adenocarcinoma are the two main histological subtypes of esophageal carcinoma, with squamous cell carcinoma alone accounting for more than eighty percent of its cases. While genetic anomalies are well known in esophageal cancer, accountability of epigenetic deregulations is also being explored for the recent two decades. DNA methylation, histone modifications, and functional non-coding RNAs are the crucial epigenetic players involved in the modulation of different malignancies, including esophageal carcinoma. Targeting these epigenetic aberrations will provide new insights into the development of biomarker tools for risk stratification, early diagnosis, and effective therapeutic intervention. This review discusses different epigenetic alterations, emphasizing the most significant developments in esophageal cancer epigenetics and their potential implication for the detection, prognosis, and treatment of esophageal carcinoma. Further, the preclinical and clinical status of various epigenetic drugs has also been reviewed.
Collapse
Affiliation(s)
- Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India.
| | - Sandeep Goyal
- Department of Internal Medicine, Pt. B.D, Sharma University of Health Sciences, (Haryana), Rohtak, 124001, India
| | - Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Lokesh Kadian
- Department of Dermatology, School of Medicine, Indiana University, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
4
|
Deng Z, Richardson DR. The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics. Pharmacol Rev 2023; 75:1007-1035. [PMID: 37280098 DOI: 10.1124/pharmrev.122.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3β and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.
Collapse
Affiliation(s)
- Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| |
Collapse
|
5
|
Karati D, Kumar D. A Comprehensive Review on Targeted Cancer Therapy: New Face of Treatment Approach. Curr Pharm Des 2023; 29:3282-3294. [PMID: 38038008 DOI: 10.2174/0113816128272203231121034814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Cancer is one of life's most difficult difficulties and a severe health risk everywhere. Except for haematological malignancies, it is characterized by unchecked cell growth and a lack of cell death, which results in an aberrant tissue mass or tumour. Vascularization promotes tumor growth, which eventually aids metastasis and migration to other parts of the body, ultimately resulting in death. The genetic material of the cells is harmed or mutated by environmental or inherited influences, which results in cancer. Presently, anti-neoplastic medications (chemotherapy, hormone, and biological therapies) are the treatment of choice for metastatic cancers, whilst surgery and radiotherapy are the mainstays for local and non-metastatic tumors. Regrettably, chemotherapy disturbs healthy cells with rapid proliferation, such as those in the gastrointestinal tract and hair follicles, leading to the typical side effects of chemotherapy. Finding new, efficient, targeted therapies based on modifications in the molecular biology of tumor cells is essential because current chemotherapeutic medications are harmful and can cause the development of multidrug resistance. These new targeted therapies, which are gaining popularity as demonstrated by the FDA-approved targeted cancer drugs in recent years, enter molecules directly into tumor cells, diminishing the adverse reactions. A form of cancer treatment known as targeted therapy goes after the proteins that regulate how cancer cells proliferate, divide, and disseminate. Most patients with specific cancers, such as chronic myelogenous leukemia (commonly known as CML), will have a target for a particular medicine, allowing them to be treated with that drug. Nonetheless, the tumor must typically be examined to determine whether it includes drug targets.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Chemistry, School of Pharmacy, Techno India University, Kolkata 700091, West Bengal 900017, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharti Vidyapeeth, Pune, Maharashtra 411038, India
| |
Collapse
|
6
|
Synthesis, bioactivity and preliminary mechanism of action of novel trifluoromethyl pyrimidine derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
The Emerging Significance of Histone Lysine Demethylases as Prognostic Markers and Therapeutic Targets in Head and Neck Cancers. Cells 2022; 11:cells11061023. [PMID: 35326475 PMCID: PMC8946939 DOI: 10.3390/cells11061023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic aberrations, associated with altered DNA methylation profiles and global changes in the level of histone modifications, are commonly detected in head and neck squamous cell carcinomas (HNSCC). Recently, histone lysine demethylases have been implicated in the pathogenesis of HNSCC and emerged as potential molecular targets. Histone lysine demethylases (KDMs) catalyze the removal of methyl groups from lysine residues in histones. By affecting the methylation of H3K4, H3K9, H3K27, or H3K36, these enzymes take part in transcriptional regulation, which may result in changes in the level of expression of tumor suppressor genes and protooncogenes. KDMs are involved in many biological processes, including cell cycle control, senescence, DNA damage response, and heterochromatin formation. They are also important regulators of pluripotency. The overexpression of most KDMs has been observed in HNSCC, and their inhibition affects cell proliferation, apoptosis, cell motility, invasiveness, and stemness. Of all KDMs, KDM1, KDM4, KDM5, and KDM6 proteins are currently regarded as the most promising prognostic and therapeutic targets in head and neck cancers. The aim of this review is to present up-to-date knowledge on the significance of histone lysine demethylases in head and neck carcinogenesis and to discuss the possibility of using them as prognostic markers and pharmacological targets in patients’ treatment.
Collapse
|
8
|
Xu X, Luo D, Xuan Q, Lu P, Yu C, Guan Q. Atlas of metabolism reveals palmitic acid results in mitochondrial dysfunction and cell apoptosis by inhibiting fatty acid β-oxidation in Sertoli cells. Front Endocrinol (Lausanne) 2022; 13:1021263. [PMID: 36237186 PMCID: PMC9552013 DOI: 10.3389/fendo.2022.1021263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, the impact of lipotoxicity on male fertility has received extensive attention, especially on Sertoli cells (SCs). In SCs, energy metabolism is important as disorders of energy metabolism result in infertility eventually. However, the underlying mechanism of lipotoxicity on energy metabolism in SCs remains unknown. Advances in high-throughput metabolomics and lipidomics measurement platforms provide powerful tools to gain insights into complex biological systems. Here, we aimed to explore the potential molecular mechanisms of palmitic acid (PA) regulating energy metabolism in SCs based on metabolomics and lipidomics. The results showed that glucose metabolism-related metabolites were not significantly changed, which suggested that PA treatment had little effect on glucose metabolism and may not influence the normal energy supply from SCs to germ cells. However, fatty acid β-oxidation was inhibited according to accumulation of medium- and long-chain acylcarnitines in cells. In addition, the pool of amino acids and the levels of most individual amino acids involved in the tricarboxylic acid (TCA) cycle were not changed after PA treatment in SCs. Moreover, PA treatment of SCs significantly altered the lipidome, including significant decreases in cardiolipin and glycolipids as well as remarkable increases in ceramide and lysophospholipids, which indicated that mitochondrial function was affected and apoptosis was triggered. The increased apoptosis rate of SCs was verified by elevated protein expression levels of Cleaved Caspase-3 and Bax as well as decreased Bcl-2 protein expression level. Together, these findings indicated that PA may result in mitochondrial dysfunction and increased apoptosis by inhibiting fatty acid β-oxidation of SCs.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
| | - Dandan Luo
- Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiuhui Xuan
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Lu
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chunxiao Yu
- Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Qingbo Guan, ; Chunxiao Yu,
| | - Qingbo Guan
- Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Qingbo Guan, ; Chunxiao Yu,
| |
Collapse
|
9
|
Ojha R, Chen IC, Hsieh CM, Nepali K, Lai RW, Hsu KC, Lin TE, Pan SL, Chen MC, Liou JP. Installation of Pargyline, a LSD1 Inhibitor, in the HDAC Inhibitory Template Culminated in the Identification of a Tractable Antiprostate Cancer Agent. J Med Chem 2021; 64:17824-17845. [PMID: 34908406 DOI: 10.1021/acs.jmedchem.1c00966] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pragmatic insertion of pargyline, a LSD1 inhibitor, as a surface recognition part in the HDAC inhibitory pharmacophore was planned in pursuit of furnishing potent antiprostate cancer agents. Resultantly, compound 14 elicited magnificent cell growth inhibitory effects against the PC-3 and DU-145 cell lines and led to remarkable suppression of tumor growth in human prostate PC-3 and DU-145 xenograft nude mouse models. The outcome of the enzymatic assays ascertained that the substantial antiproliferative effects of compound 14 were mediated through HDAC6 isoform inhibition as well as selective MAO-A and LSD1 inhibition. Moreover, the signatory feature of LSD1 inhibition by 14 in the context of H3K4ME2 accumulation was clearly evident from the results of western blot analysis. Gratifyingly, hydroxamic acid 14 demonstrates good human hepatocytic stability and good oral bioavailability in rats and exhibits enough promise to emerge as a therapeutic for the treatment of prostate cancer in the near future.
Collapse
Affiliation(s)
- Ritu Ojha
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - I-Chung Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan.,TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 110031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan.,TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 110031, Taiwan
| | - Row-Wen Lai
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110031, Taiwan.,TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 110031, Taiwan.,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Tony Eight Lin
- Master Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110031, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110031, Taiwan.,TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 110031, Taiwan.,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Mei-Chuan Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan.,TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 110031, Taiwan.,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110031, Taiwan.,Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan.,TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 110031, Taiwan
| |
Collapse
|
10
|
Han J, Ye S, Chen J, Wang K, Jin J, Zeng Z, Xue S. Lysine-Specific Histone Demethylase 1 Promotes Oncogenesis of the Esophageal Squamous Cell Carcinoma by Upregulating DUSP4. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1624-1634. [PMID: 34937541 DOI: 10.1134/s0006297921120117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a predominant subtype of esophageal cancer (EC) and has a poor prognosis due to its aggressive nature. Accordingly, it is necessary to find novel prognostic biomarkers and therapeutic targets for ESCC. Lysine-specific histone demethylase 1 (LSD1) plays a core role in the regulation of ESCC oncogenesis. However, the detailed mechanism of LSD1-regulated ESCC growth has not been elucidated. This study aims to explore molecular mechanism underlying the LSD1-regulated ESCC's oncogenesis. After LSD1 silencing, we detected differentially expressed genes (DEGs) in human ESCC cell line, TE-1, by transcriptome sequencing. Subsequently, we investigated expression pattern of the selected molecules in the ESCC tissues and cell lines by qRT-PCR and Western blotting. Furthermore, we explored the roles of selected molecules in ESCC using gene silencing and overexpression assays. Transcriptome sequencing showed that the expression of dual specificity phosphatase 4 (DUSP4) in TE-1 was significantly attenuated after the LSD1 silencing. In addition, the DUSP4 mRNA expression level was significantly higher in the ESCC tissues, especially in those derived from patients with invasion or metastasis. Moreover, the DUSP4 expression was positively associated with the LSD1 expression in the ESCC tissues. DUSP4 overexpression promoted proliferation, invasion, and migration of the ESCC cells, while DUSP4 silencing had an opposite effect. DUSP4 overexpression also enhanced tumorigenicity of the ESCC cells in vivo, while DUSP4 silencing inhibited tumor growth. Importantly, inhibition of cell proliferation, invasion, and migration by the LSD1 inhibitor (ZY0511) was reversed by DUSP4 overexpression. Conclusively, we found that LSD1 promotes ESCC's oncogenesis by upregulating DUSP4, the potential therapeutic and diagnostic target in ESCC.
Collapse
Affiliation(s)
- Junyong Han
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Shixin Ye
- Department of Cardiothoracic Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian, 350025, China.
| | - Jinyan Chen
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Kun Wang
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Jingjun Jin
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Zhiyong Zeng
- Department of Cardiothoracic Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian, 350025, China.
| | - Shijie Xue
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| |
Collapse
|
11
|
Su S, Chen M, Tang X, Peng F, Liu T, Zhou Q, Zhan W, He M, Xie C, Xue W. Design, Synthesis and Antibacterial Activity of Novel Pyrimidine-Containing 4H-Chromen-4-One Derivatives*. Chem Biodivers 2021; 18:e2100186. [PMID: 34159725 DOI: 10.1002/cbdv.202100186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/18/2021] [Indexed: 11/05/2022]
Abstract
A series of pyrimidine-containing 4H-chromen-4-one derivatives were designed and synthesized by combining bioactive substructures. Preliminary biological activity results showed that most of the compounds displayed significant inhibitory activities in vitro against Xanthomonas axonopodis pv. Citri (X. axonopodis), Xanthomonas oryzae pv. oryzae (X. oryzae) and Ralstonia solanacearum (R. solanacearum). In particular, compound 2-[(3-{[5,7-dimethoxy-4-oxo-2-(3,4,5-trimethoxyphenyl)-4H-1-benzopyran-3-yl]oxy}propyl)sulfanyl]-4-(4-methylphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (4c) demonstrated a good inhibitory effect against X. axonopodis and X. oryzae, with the half-maximal effective concentration (EC50 ) values of 15.5 and 14.9 μg/mL, respectively, and compound 2-[(3-{[5,7-Dimethoxy-4-oxo-2-(3,4,5-trimethoxyphenyl)-4H-1-benzopyran-3-yl]oxy}propyl)sulfanyl]-4-(3-fluorophenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (4h) showed the best antibacterial activity against R. solanacearum with an EC50 value of 14.7 μg/mL. These results were better than commercial reagents bismerthiazol (BT, 51.7, 70.1 and 52.7 μg/mL, respectively) and thiodiazole copper (TC, 77.9, 95.8 and 72.1 μg/mL, respectively). In vivo antibacterial activity results indicated that compound 4c displayed better curative (42.4 %) and protective (49.2 %) activities for rice bacterial leaf blight than BT (35.2, 39.1 %) and TC (30.8, 27.3 %). The mechanism of compound 4c against X. oryzae was analyzed through scanning electron microscopy (SEM). These results indicated that pyrimidine-containing 4H-chromen-4-one derivatives have important value in the research of new agrochemicals.
Collapse
Affiliation(s)
- Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Xuemei Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Wenliang Zhan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Chengwei Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| |
Collapse
|
12
|
Zhang XH, Guo Q, Wang HY, Li YH, Khamis MY, Ma LY, Wang B, Liu HM. Gramine-based structure optimization to enhance anti-gastric cancer activity. Bioorg Chem 2020; 107:104549. [PMID: 33383324 DOI: 10.1016/j.bioorg.2020.104549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023]
Abstract
Gramine is a natural indole alkaloid with a wide range of biological activities, but its anti-gastric cancer activity is poor. Herein, a pharmacophore fusion strategy was adopted to design and synthesize a new series of indole-azole hybrids on the structural basis of gramine. Based on our previous studies, different nitrogen-containing five-membered heterocyclic rings and terminal alkyne group were introduced into the indole-based scaffold to investigate their effect on improving the anti-gastric cancer activity of gramine derivatives. Structure-activity relationship (SAR) studies highlighted the role played by terminal alkyne in enhancing the inhibitory effect, and compound 16h displayed the best antiproliferative activity against gastric cancer MGC803 cells with IC50 value of 3.74 μM. Further investigations displayed compound 16h could induce mitochondria-mediated apoptosis, and caused cell cycle arrest at G2/M phase. Besides, compound 16h could inhibit the metastasis ability of MGC803 cells. Our studies may provide a new strategy for structural optimization of gramine to enhance anti-gastric cancer activity, and provide a potential candidate for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qian Guo
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Heng-Ying Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yi-Han Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mussa Yussuf Khamis
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; China Meheco Topfond Pharmaceutical Co., Ltd, PR China
| | - Bo Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
13
|
Yang YM, Hong P, Xu WW, He QY, Li B. Advances in targeted therapy for esophageal cancer. Signal Transduct Target Ther 2020; 5:229. [PMID: 33028804 PMCID: PMC7542465 DOI: 10.1038/s41392-020-00323-3] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/09/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Esophageal cancer (EC) is one of the most lethal cancers in the world, and its morbidity and mortality rates rank among the top ten in China. Currently, surgical resection, radiotherapy and chemotherapy are the primary clinical treatments for esophageal cancer. However, outcomes are still unsatisfactory due to the limited efficacy and severe adverse effects of conventional treatments. As a new type of approach, targeted therapies have been confirmed to play an important role in the treatment of esophageal cancer; these include cetuximab and bevacizumab, which target epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF), respectively. In addition, other drugs targeting surface antigens and signaling pathways or acting on immune checkpoints have been continuously developed. For example, trastuzumab, a monoclonal antibody targeting human epidermal growth factor receptor 2 (HER-2), has been approved by the Food and Drug Administration (FDA) as a first-line treatment of HER-2-positive cancer. Moreover, the PD-L1 inhibitor pembrolizumab has been approved as a highly efficient drug for patients with PD-L1-positive or advanced esophageal squamous cell carcinoma (ESCC). These novel drugs can be used alone or in combination with other treatment strategies to further improve the treatment efficacy and prognosis of cancer patients. Nevertheless, adverse events, optimal dosages and effective combinations still need further investigation. In this review, we expound an outline of the latest advances in targeted therapies of esophageal cancer and the mechanisms of relevant drugs, discuss their efficacy and safety, and provide a clinical rationale for precision medicine in esophageal cancer.
Collapse
Affiliation(s)
- Yan-Ming Yang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Pan Hong
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| |
Collapse
|
14
|
Mehndiratta S, Liou JP. Histone lysine specific demethylase 1 inhibitors. RSC Med Chem 2020; 11:969-981. [PMID: 33479691 PMCID: PMC7513387 DOI: 10.1039/d0md00141d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
LSD1 plays a pivotal role in numerous biological functions. The overexpression of LSD1 is reported to be associated with different malignancies. Over the last decade, LSD1 has emerged as an interesting target for the treatment of acute myeloid leukaemia (AML). Numerous researchers have designed, synthesized, and evaluated various LSD1 inhibitors with diverse chemical architectures. Some of these inhibitors have entered clinical trials and are currently at different phases of clinical evaluation. This comprehensive review enlists recent research developments in LSD1 targeting pharmacophores reported over the last few years.
Collapse
Affiliation(s)
- Samir Mehndiratta
- School of Pharmacy , College of Pharmacy , Taipei Medical University , Taiwan . ; Tel: +886 2 2736 1661 ext 6130
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , Los Angeles , California , USA
| | - Jing-Ping Liou
- School of Pharmacy , College of Pharmacy , Taipei Medical University , Taiwan . ; Tel: +886 2 2736 1661 ext 6130
| |
Collapse
|
15
|
Arifuzzaman S, Khatun MR, Khatun R. Emerging of lysine demethylases (KDMs): From pathophysiological insights to novel therapeutic opportunities. Biomed Pharmacother 2020; 129:110392. [PMID: 32574968 DOI: 10.1016/j.biopha.2020.110392] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, there have been remarkable scientific advancements in the understanding of lysine demethylases (KDMs) because of their demethylation of diverse substrates, including nucleic acids and proteins. Novel structural architectures, physiological roles in the gene expression regulation, and ability to modify protein functions made KDMs the topic of interest in biomedical research. These structural diversities allow them to exert their function either alone or in complex with numerous other bio-macromolecules. Impressive number of studies have demonstrated that KDMs are localized dynamically across the cellular and tissue microenvironment. Their dysregulation is often associated with human diseases, such as cancer, immune disorders, neurological disorders, and developmental abnormalities. Advancements in the knowledge of the underlying biochemistry and disease associations have led to the development of a series of modulators and technical compounds. Given the distinct biophysical and biochemical properties of KDMs, in this review we have focused on advances related to the structure, function, disease association, and therapeutic targeting of KDMs highlighting improvements in both the specificity and efficacy of KDM modulation.
Collapse
Affiliation(s)
- Sarder Arifuzzaman
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh; Everest Pharmaceuticals Ltd., Dhaka-1208, Bangladesh.
| | - Mst Reshma Khatun
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh
| | - Rabeya Khatun
- Department of Pediatrics, TMSS Medical College and Rafatullah Community Hospital, Gokul, Bogura, 5800, Bangladesh
| |
Collapse
|
16
|
Romussi A, Cappa A, Vianello P, Brambillasca S, Cera MR, Dal Zuffo R, Fagà G, Fattori R, Moretti L, Trifirò P, Villa M, Vultaggio S, Cecatiello V, Pasqualato S, Dondio G, So CWE, Minucci S, Sartori L, Varasi M, Mercurio C. Discovery of Reversible Inhibitors of KDM1A Efficacious in Acute Myeloid Leukemia Models. ACS Med Chem Lett 2020; 11:754-759. [PMID: 32435381 PMCID: PMC7236255 DOI: 10.1021/acsmedchemlett.9b00604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/13/2020] [Indexed: 11/28/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1 or KDM1A) is a FAD-dependent enzyme that acts as a transcription corepressor or coactivator by regulating the methylation status of histone H3 lysines K4 and K9, respectively. KDM1A represents an attractive target for cancer therapy. While, in the past, the main medicinal chemistry strategy toward KDM1A inhibition was based on the optimization of ligands that irreversibly bind the FAD cofactor within the enzyme catalytic site, we and others have also identified reversible inhibitors. Herein we reported the discovery of 5-imidazolylthieno[3,2-b]pyrroles, a new series of KDM1A inhibitors endowed with picomolar inhibitory potency, active in cells and efficacious after oral administration in murine leukemia models.
Collapse
Affiliation(s)
- Alessia Romussi
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Anna Cappa
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Paola Vianello
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Silvia Brambillasca
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Maria Rosaria Cera
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Roberto Dal Zuffo
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Giovanni Fagà
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Raimondo Fattori
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Loris Moretti
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Paolo Trifirò
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Manuela Villa
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Stefania Vultaggio
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Valentina Cecatiello
- Biochemistry
and Structural Biology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Sebastiano Pasqualato
- Biochemistry
and Structural Biology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Giulio Dondio
- Aphad
Srl, Via della Resistenza
65, 20090 Buccinasco, MI, Italy
| | - Chi Wai Eric So
- Leukemia
and Stem Cell Biology Group, Division of Cancer Studies, Department
of Haematological Medicine, King’s
College London, Denmark Hill
Campus, London SE5 9NU, U.K.
| | - Saverio Minucci
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department
of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Luca Sartori
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Mario Varasi
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Ciro Mercurio
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
17
|
Wang S, Shen D, Zhao L, Yuan X, Cheng J, Yu B, Zheng Y, Liu H. Discovery of [1,2,4]triazolo[1,5-a]pyrimidine derivatives as new bromodomain-containing protein 4 (BRD4) inhibitors. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Fang Y, Liao G, Yu B. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J Hematol Oncol 2019; 12:129. [PMID: 31801559 PMCID: PMC6894138 DOI: 10.1186/s13045-019-0811-9] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Histone demethylase LSD1 plays key roles during carcinogenesis, targeting LSD1 is becoming an emerging option for the treatment of cancers. Numerous LSD1 inhibitors have been reported to date, some of them such as TCP, ORY-1001, GSK-2879552, IMG-7289, INCB059872, CC-90011, and ORY-2001 currently undergo clinical assessment for cancer therapy, particularly for small lung cancer cells (SCLC) and acute myeloid leukemia (AML). This review is to provide a comprehensive overview of LSD1 inhibitors in clinical trials including molecular mechanistic studies, clinical efficacy, adverse drug reactions, and PD/PK studies and offer prospects in this field.
Collapse
Affiliation(s)
- Yuan Fang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
19
|
Amino-carboxamide benzothiazoles as potential LSD1 hit inhibitors. Part I: Computational fragment-based drug design. J Mol Graph Model 2019; 93:107440. [DOI: 10.1016/j.jmgm.2019.107440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 01/08/2023]
|
20
|
Design, synthesis and evaluation of structurally diverse chrysin-chromene-spirooxindole hybrids as anticancer agents. Bioorg Med Chem 2019; 27:115109. [DOI: 10.1016/j.bmc.2019.115109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 02/04/2023]
|
21
|
Synthesis, structure-activity relationship studies and biological characterization of new [1,2,4]triazolo[1,5-a]pyrimidine-based LSD1/KDM1A inhibitors. Eur J Med Chem 2019; 167:388-401. [DOI: 10.1016/j.ejmech.2019.02.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/13/2019] [Accepted: 02/10/2019] [Indexed: 02/03/2023]
|
22
|
Li ZR, Wang S, Yang L, Yuan XH, Suo FZ, Yu B, Liu HM. Experience-based discovery (EBD) of aryl hydrazines as new scaffolds for the development of LSD1/KDM1A inhibitors. Eur J Med Chem 2019; 166:432-444. [DOI: 10.1016/j.ejmech.2019.01.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/01/2019] [Accepted: 01/29/2019] [Indexed: 01/22/2023]
|
23
|
Zhao TQ, Zhao YD, Liu XY, Li ZH, Wang B, Zhang XH, Cao YQ, Ma LY, Liu HM. Novel 3-(2,6,9-trisubstituted-9H-purine)-8-chalcone derivatives as potent anti-gastric cancer agents: Design, synthesis and structural optimization. Eur J Med Chem 2019; 161:493-505. [PMID: 30388465 DOI: 10.1016/j.ejmech.2018.10.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
|
24
|
Ma QS, Yao Y, Zheng YC, Feng S, Chang J, Yu B, Liu HM. Ligand-based design, synthesis and biological evaluation of xanthine derivatives as LSD1/KDM1A inhibitors. Eur J Med Chem 2019; 162:555-567. [DOI: 10.1016/j.ejmech.2018.11.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/28/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022]
|
25
|
Yuan S, Yu B, Liu H. Brønsted Acid‐Catalyzed Direct C(
sp
2
)−H Heteroarylation Enabling the Synthesis of Structurally Diverse Biaryl Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuo Yuan
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 People's Republic of China E-mail: zzuyubin.weebly.com
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety Zhengzhou 450001 People's Republic of China
- Key Laboratory of Advanced Technology of Drug Preparation Technologies (Zhengzhou University)Ministry of Education of China Zhengzhou 450001 People's Republic of China
| | - Bin Yu
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 People's Republic of China E-mail: zzuyubin.weebly.com
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety Zhengzhou 450001 People's Republic of China
- Key Laboratory of Advanced Technology of Drug Preparation Technologies (Zhengzhou University)Ministry of Education of China Zhengzhou 450001 People's Republic of China
- State key Laboratory of Pharmaceutical BiotechnologyNanjing University Nanjing 210023, Jiangsu People's Republic of China
| | - Hong‐Min Liu
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 People's Republic of China E-mail: zzuyubin.weebly.com
- Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety Zhengzhou 450001 People's Republic of China
- Key Laboratory of Advanced Technology of Drug Preparation Technologies (Zhengzhou University)Ministry of Education of China Zhengzhou 450001 People's Republic of China
| |
Collapse
|
26
|
Ghosh S, Singharoy D, Bhattacharya SC. Spectroscopic and theoretical investigation of conformational changes of proteins by synthesized pyrimidine derivative and its sensitivity towards FRET application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 195:7-15. [PMID: 29358093 DOI: 10.1016/j.saa.2018.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/29/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Interest in synthesizing and characterizing (IR, NMR and HRMS spectroscopic methods) a pyrimidine based Schiff-base ligand, 2-(2-(Anthracen-9-ylmethylene) hydrazinyl)-4,6-dimethyl pyrimidine (ANHP) has been developed for its application to ascertain the conformational change of protein and sensitivity towards fluorescence resonance energy transfer (FRET) process. Location of ANHP in bovine serum albumin (BSA) and human serum albumin (HSA) proteins environment has been determined using different spectroscopic techniques. Weakly fluorescent ANHP have shown greater protein induced fluorescence enhancement (PIFE) in case of HSA than BSA, though in both cases energy transfer efficiency are almost same but difference in binding constant values encourages us to find the location of ANHP within the complex protein environment. From the FRET parameter and α-helicity change, it has been found that ANHP bound with Trp-214 of HSA and surface Trp-134 of BSA. Conformational changes of proteins have been observed more for HSA than BSA in presence of ANHP, which has confirmed the location of ANHP in both the protein environments. Coupled with experimental studies, molecular docking analysis has also been done to explain the locations and distance dependent FRET process of ANHP in both proteins.
Collapse
Affiliation(s)
- Swadesh Ghosh
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Dipti Singharoy
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | |
Collapse
|
27
|
Zhao TQ, Zhao YD, Liu XY, Wang B, Li ZH, He ZX, Zhang XH, Liang JJ, Ma LY, Liu HM. Discovery of 6-chloro-2-(propylthio)-8,9-dihydro-7H-purines containing a carboxamide moiety as potential selective anti-lung cancer agents. Eur J Med Chem 2018; 151:327-338. [PMID: 29635165 DOI: 10.1016/j.ejmech.2018.03.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 11/18/2022]
Abstract
A new series of 6-chloro-2-(propylthio)-8,9-dihydro-7H-purine-8-caboxamide derivatives were designed, synthesized, and further evaluated for their antiproliferative activities on four human cancer cell lines (A549, MGC803, PC-3 and TE-1). The structure-activity relationships (SARs) studies were conducted through the variation in the two regions, which including position 8 and 9, of purine core. One of the compounds, 8, containing a terminal piperazine appendage with a carboxamide moiety at position 8 and phenyl group at position 9 of 6-chloro-8,9-dihydro-7H-purine core, showed the most potent antiproliferative activity and good selectivity between cancer and normal cells (IC50 values of 2.80 μM against A549 and 303.03 μM against GES-1, respectively). In addition, compound 8 could inhibit the colony formation and migration of A549 cells in a concentration-dependent manner, as well as induce the apoptosis possibly through the intrinsic pathway.
Collapse
Affiliation(s)
- Tao-Qian Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yuan-Di Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xin-Yang Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Bo Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhong-Hua Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhang-Xu He
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jian-Jia Liang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|