1
|
Rathore SS, Leno Jenita JJ, Dotherabandi M. A systematic review on hyaluronic acid coated nanoparticles: recent strategy in breast cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-42. [PMID: 39429014 DOI: 10.1080/09205063.2024.2416293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Hyaluronic acid, a non-sulphated glycosaminoglycan has attracted its usage in the management of breast cancer. Drug-loaded nanoparticles with hyaluronic acid surface modifications show potential as a promising method for targeting and delivering drugs to the tumor site. The aim of this study was to conduct a systematic review of articles and assess the impact of hyaluronic acid coated nanoparticles on breast cancer. The various database were used for this comprehensive review. The inclusion and exclusion criteria were selected according to the PRISMA guidelines. Studies associated with characterization, in vitro, and in vivo studies were collected and subjected for further analysis. According to the inclusion criteria, 41 literature were selected for analysis. From all the studies, it was observed that the nanoparticles coated with hyaluronic acid produced better particle size, shape, zeta potential, increased in vitro cytotoxicity, cellular uptake, cell apoptosis, and anti-tumor effect in vivo. Research has shown that hyaluronic acid exhibits a higher affinity for CD44 receptors, resulting in enhanced targeted nanoparticle activity on cancer cells while sparing normal cells.
Collapse
Affiliation(s)
- Seema S Rathore
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| | - J Josephine Leno Jenita
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| | - Manjula Dotherabandi
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| |
Collapse
|
2
|
Ashin ZF, Sadeghi-Mohammadi S, Vaezi Z, Najafi F, AdibAmini S, Sadeghizadeh M, Naderi-Manesh H. Synergistic effect of curcumin and tamoxifen loaded in pH-responsive gemini surfactant nanoparticles on breast cancer cells. BMC Complement Med Ther 2024; 24:337. [PMID: 39304876 DOI: 10.1186/s12906-024-04631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Drug combination therapy is preferred over monotherapy in clinical research to improve therapeutic effects. Developing a new nanodelivery system for cancer drugs can reduce side effects and provide several advantages, including matched pharmacokinetics and potential synergistic activity. This study aimed to examine and determine the efficiency of the gemini surfactants (GSs) as a pH-sensitive polymeric carrier and cell-penetrating agent in cancer cells to achieve dual drug delivery and synergistic effects of curcumin (Cur) combined with tamoxifen citrate (TMX) in the treatment of MCF-7 and MDA-MB-231 human BC cell lines. METHODS The synthesized NPs were self-assembled using a modified nanoprecipitation method. The functional groups and crystalline form of the nanoformulation were examined by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic light scattering (DLS) used to assess zeta potential and particle size, and the morphological analysis determined by transmission electron microscopy (TEM). The anticancer effect was evaluated through an in vitro cytotoxicity MTT assay, flow cytometry analysis, and apoptosis analysis performed for mechanism investigation. RESULTS The tailored NPs were developed with a size of 252.3 ± 24.6 nm and zeta potential of 18.2 ± 4.4 mV capable of crossing the membrane of cancer cells. The drug loading and release efficacy assessment showed that the loading of TMX and Cur were 93.84% ± 1.95% and 90.18% ± 0.56%, respectively. In addition, the drug release was more controlled and slower than the free state. Polymeric nanocarriers improved controlled drug release 72.19 ± 2.72% of Tmx and 55.50 ± 2.86% of Cur were released from the Tmx-Cur-Gs NPs after 72 h at pH = 5.5. This confirms the positive effect of polymeric nanocarriers on the controlled drug release mechanism. moreover, the toxicity test showed that combination-drug delivery was much more greater than single-drug delivery in MCF-7 and MDA-MB-231 cell lines. Cellular imaging showed excellent internalization of TMX-Cur-GS NPs in both MCF-7 and MDA-MB-231 cells and synergistic anticancer effects, with combination indices of 0.561 and 0.353, respectively. CONCLUSION The combined drug delivery system had a greater toxic effect on cell lines than single-drug delivery. The synergistic effect of TMX and Cur with decreasing inhibitory concentrations could be a more promising system for BC-targeted therapy using GS NPs.
Collapse
Affiliation(s)
- Zeinab Fotouhi Ashin
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sanam Sadeghi-Mohammadi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zahra Vaezi
- Department of Bioactive Compounds, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | | | - Majid Sadeghizadeh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
- Department of Bioactive Compounds, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Wang Y, Cheng W, Zhu J, He L, Ren W, Bao D, Piao JG. Programmed Co-delivery of tamoxifen and docetaxel using lipid-coated mesoporous silica nanoparticles for overcoming CYP3A4-mediated resistance in triple-negative breast cancer treatment. Biomed Pharmacother 2024; 170:116084. [PMID: 38157645 DOI: 10.1016/j.biopha.2023.116084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE This study aims to revolutionize the treatment of aggressive triple-negative breast cancer (TNBC), notorious for its resistance to standard therapies. By ingeniously combining Tamoxifen (TMX) and Docetaxel (DTX) within a lipid-coated mesoporous silica nanoparticle (LP-MSN) delivery system, we intend to enhance therapeutic efficacy while circumventing DTX resistance mediated by CYP3A4 expression. METHODS We rigorously tested TNBC cell lines to confirm the responsiveness to Docetaxel (DTX) and Tamoxifen (TMX). We adeptly engineered LP-MSN nanoparticles and conducted a thorough examination of the optimal drug release strategy, evaluating the LP-MSN system's ability to mitigate the impact of CYP3A4 on DTX. Additionally, we comprehensively analyzed its pharmacological performance. RESULTS Our innovative approach utilizing TMX and DTX within LP-MSN showcased remarkable efficacy. Sequential drug release from the lipid layer and mesoporous core curbed CYP3A4-mediated metabolism, substantially enhancing cytotoxic effects on TNBC cells without harming normal cells. CONCLUSION This pioneering research introduces a breakthrough strategy for tackling TNBC. By capitalizing on synergistic TMX and DTX effects via LP-MSN, we surmount drug resistance mediated by CYP3A4. This advancement holds immense potential for transforming TNBC treatment, warranting further clinical validation.
Collapse
Affiliation(s)
- Yinan Wang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - WeiYi Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jingjing Zhu
- Fuyang TCM Hospital of Orthopedics Affiliated to Zhejiang Chinese Medical University (Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine), Hangzhou 311400, China
| | - Li He
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - WeiYe Ren
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dandan Bao
- Department of Dermatology & Cosmetology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| | - Ji-Gang Piao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
4
|
Pourmadadi M, Ghaemi A, Shamsabadipour A, Rajabzadeh-Khosroshahi M, Shaghaghi M, Rahdar A, Pandey S. Nanoparticles loaded with Daunorubicin as an advanced tool for cancer therapy. Eur J Med Chem 2023; 258:115547. [PMID: 37327678 DOI: 10.1016/j.ejmech.2023.115547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, with the advent of cutting-edge technologies in the field of biotechnology, some highly advanced medical methods are introduced to treat cancers more efficiently. In the chemotherapy processes, anti-cancer drugs can be encapsulated in a stimuli-responsive coating which is capable of being functionalized by diverse ligands to increase the biocompatibility and control drug release behavior in a targeted drug delivery system. Nanoparticles (NPs) are playing an important role as nanocarriers in chemotherapy procedures, recently, numerous novel drug delivery systems have been studied which employed diverse types of NPs with remarkable structural features like porous nanocarriers with active and extended surface areas to enhance the drug loading and delivery efficacy. In this study, Daunorubicin (DAU) as an effective anti-cancer drug for treating various cancers introduced, and its application for novel drug delivery systems either as a single chemotherapy agent or co-delivery alongside other drugs with diverse NPs has been reviewed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amirhossein Ghaemi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amin Shamsabadipour
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Rajabzadeh-Khosroshahi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Meysam Shaghaghi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University ofZabol, Zabol, 98613-35856, Iran.
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, South Korea.
| |
Collapse
|
5
|
Zamani M, Aghajanzadeh M, Sharafi A, Danafar H. In vivo study of miktoarm star copolymers as a promising nanocarrier to transfer hydrophobic chemotherapeutic agents to breast cancer tumor. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Tumor microenvironment pH-responsive pentagonal gold prism-based nanoplatform for multimodal imaging and combined therapy of castration-resistant prostate cancer. Acta Biomater 2022; 141:408-417. [PMID: 35032718 DOI: 10.1016/j.actbio.2022.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
Given that there is lack of effective therapies for castration-resistant prostate cancer (CRPC), the combination of photothermal (PTT), photodynamic (PDT), and chemical therapy (CT) has emerged as a prominent strategy. Tumor-targeted delivery and controlled release of antitumor drug are key-elements of any combined therapy. Considering these important elements, we designed and constructed tumor microenvironment (TME)-activated nanoprobes (PGP/CaCO3@IR820/DTX-HA). The CaCO3 shell could efficiently entrap the photosensitizer IR820 and the chemotherapeutic docetaxel (DTX) on the surface of pentagonal gold prisms (PGPs) to prevent elimination from the circulation, and it could act as a TME-trigger to achieve TME-responsive drug release. After modification with hyaluronic acid, PGP/CaCO3@IR820/DTX-HA was capable of synergistic TME-triggered PTT/PDT/CT and tumor-targeted delivery. Our in vitro and in vivo studies demonstrate that PGP/CaCO3@IR820/DTX-HA could achieve synergistic antitumor effects following near-infrared (NIR)-light irradiation. In addition, using the NIR fluorescence signal from IR820 and the photoacoustic (PA) signal from PGPs, i.e., through multimodal fluorescence/photoacoustic imaging, we could monitor the in vivo distribution and excretion of PGP/CaCO3@IR820/DTX-HA. Therefore, it can be concluded that PGP/CaCO3@IR820/DTX-HA shows promising clinical translational potential as a treatment for CRPC. STATEMENT OF SIGNIFICANCE: Utilizing pentagonal gold prisms (PGPs), we constructed a multifunctional nanoplatform (PGP/CaCO3@IR820/DTX-HA) for effectively delivering agents into the tumor microenvironment (TME) for the diagnosis and therapy of castration-resistant prostate cancer (CRPC). The synthetic nanoplatform can satisfy TME-activated synergistic photothermal therapy (PTT)/photodynamic therapy (PDT)/chemical therapy (CT) and NIR fluorescence imaging/photoacoustic (PA) imaging. Hyaluronic acid (HA) on the surface of nanoplatform allowed the specific tumor-targeting capacity and biocompatibility. In conclusion, PGP/CaCO3@IR820/DTX-HA could be a promising integrated nanoplatform for CRPC diagnosis and treatment.
Collapse
|
7
|
Safwat S, Hathout RM, Ishak RA, Mortada ND. Elaborated survey in the scope of nanocarriers engineering for boosting chemotherapy cytotoxicity: A meta-analysis study. Int J Pharm 2021; 610:121268. [PMID: 34748812 DOI: 10.1016/j.ijpharm.2021.121268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023]
Abstract
Cancer is the prime cause of mortality throughout the world. Although the conventional chemotherapeutic agents damage the cancerous cells, they exert prominent injury to the normal cells owing to their lack of specificity. With advances in science, many research studies have been established to boost the cytotoxic effect of the chemotherapeutic agents via innovating novel nano-formulations having different variables. In the current meta-analysis study, combined data from different research articles were gathered for the evidence-based proof of the superiority of drug loaded nanocarriers over their corresponding conventional solutions in boosting the cytotoxic effect of chemotherapy in terms of IC50 values. The meta-analysis was subdivided into three subgroups; nanoparticles versus nanofibers, surface functionalized nanocarriers versus naked ones, and protein versus non-protein-based platforms. The different subgroups interestingly showed distinct scoring outcome data paving the road for cytotoxicity enhancement of the anti-cancer drugs in an evidence-based manner.
Collapse
Affiliation(s)
- Sally Safwat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt.
| | - Rania A Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| |
Collapse
|
8
|
Jiang G, Huang Z, Yuan Y, Tao K, Feng W. Intracellular delivery of anti-BCR/ABL antibody by PLGA nanoparticles suppresses the oncogenesis of chronic myeloid leukemia cells. J Hematol Oncol 2021; 14:139. [PMID: 34488814 PMCID: PMC8422775 DOI: 10.1186/s13045-021-01150-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The pathogenesis of chronic myeloid leukemia (CML) is the formation of the BCR/ABL protein, which is encoded by the bcr/abl fusion gene, possessing abnormal tyrosine kinase activity. Despite the wide application of tyrosine kinase inhibitors (TKIs) in CML treatment, TKIs drug resistance or intolerance limits their further usage in a subset of patients. Furthermore, TKIs inhibit the tyrosine kinase activity of the BCR/ABL oncoprotein while failing to eliminate the pathologenic oncoprotein. To develop alternative strategies for CML treatment using therapeutic antibodies, and to address the issue that antibodies cannot pass through cell membranes, we have established a novel intracellular delivery of anti-BCR/ABL antibodies, which serves as a prerequisite for CML therapy. METHODS Anti-BCR/ABL antibodies were encapsulated in poly(D, L-lactide-co-glycolide) nanoparticles (PLGA NPs) by a double emulsion method, and transferrin was labeled on the surface of the nanoparticles (Ab@Tf-Cou6-PLGA NPs). The characteristics of nanoparticles were measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Cellular uptake of nanoparticles was measured by flow cytometry (FCM). The effect of nanoparticles on the apoptosis and proliferation of CML cells was testified by FCM and CCK-8 assay. In addition, the anti-cancer impact of nanoparticles was evaluated in mouse models of CML. RESULTS The results demonstrated that the Ab@Tf-Cou6-PLGA NPs functioned as an intracellular deliverer of antibodies, and exhibited an excellent effect on degrading BCR/ABL oncoprotein in CML cells via the Trim-Away pathway. Treatment with Ab@Tf-Cou6-PLGA NPs inhibited the proliferation and induced the apoptosis of CML cells in vitro as well as impaired the oncogenesis ability of CML cells in vivo. CONCLUSIONS In conclusion, our study indicated that this approach achieved safe and efficient intracellular delivery of antibodies and degraded BCR/ABL oncoprotein via the Trim-Away pathway, which provides a promising therapeutic strategy for CML patients, particularly those with TKI resistance.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/therapeutic use
- Carcinogenesis/pathology
- Cell Line, Tumor
- Drug Carriers/chemistry
- Female
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice, SCID
- Nanoparticles/chemistry
- Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
- Mice
Collapse
Affiliation(s)
- Guoyun Jiang
- Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Zhenglan Huang
- Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Ying Yuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Kun Tao
- Department of Immunology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Wenli Feng
- Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
9
|
Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02018-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Gao M, Deng H, Zhang W. Hyaluronan-based Multifunctional Nano-carriers for Combination Cancer Therapy. Curr Top Med Chem 2021; 21:126-139. [PMID: 32962617 DOI: 10.2174/1568026620666200922113846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022]
Abstract
Hyaluronan (HA) is a natural linear polysaccharide that has excellent hydrophilicity, biocompatibility, biodegradability, and low immunogenicity, making it one of the most attractive biopolymers used for biomedical researches and applications. Due to the multiple functional sites on HA and its intrinsic affinity for CD44, a receptor highly expressed on various cancer cells, HA has been widely engineered to construct different drug-loading nanoparticles (NPs) for CD44-targeted anti-tumor therapy. When a cocktail of drugs is co-loaded in HA NP, a multifunctional nano-carriers could be obtained, which features as a highly effective and self-targeting strategy to combat cancers with CD44 overexpression. The HA-based multidrug nano-carriers can be a combination of different drugs, various therapeutic modalities, or the integration of therapy and diagnostics (theranostics). Up to now, there are many types of HA-based multidrug nano-carriers constructed by different formulation strategies, including drug co-conjugates, micelles, nano-gels and hybrid NP of HA and so on. This multidrug nano-carrier takes the full advantages of HA as an NP matrix, drug carriers and targeting ligand, representing a simplified and biocompatible platform to realize the targeted and synergistic combination therapy against the cancers. In this review, recent progress of HA-based multidrug nano-carriers for combination cancer therapy is summarized and the potential challenges for translational applications have been discussed.
Collapse
Affiliation(s)
- Menghan Gao
- State Key Laboratory of Medical Molecular Biology & Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Hong Deng
- State Key Laboratory of Medical Molecular Biology & Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Weiqi Zhang
- State Key Laboratory of Medical Molecular Biology & Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
11
|
A Reflection on the Mechanism of the Role of Nanoparticles in Increasing the Efficacy of Anti-tumour Properties of Docetaxel. CURRENT PATHOBIOLOGY REPORTS 2021. [DOI: 10.1007/s40139-021-00223-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Fulfager AD, Yadav KS. Understanding the implications of co-delivering therapeutic agents in a nanocarrier to combat multidrug resistance (MDR) in breast cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Jeevanandam J, Kulabhusan PK, Sabbih G, Akram M, Danquah MK. Phytosynthesized nanoparticles as a potential cancer therapeutic agent. 3 Biotech 2020; 10:535. [PMID: 33224704 PMCID: PMC7669941 DOI: 10.1007/s13205-020-02516-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
Plants are the well-known sources for the hyper-accumulation and reduction of metallic ions. Analysis of various plant extracts has justified the presence of different types of phytochemicals that possess the stabilization and reduction functionalities of precursors to form nanoparticles. Such characteristics make plants as an attractive source for synthesizing eco-friendly nanoparticles (NPs) with potentially less toxicity to the body. Recently, phytosynthesized nanoparticles have been explored for targeted inhibition and diagnosis of cancer cells without affecting non-cancerous healthy cells. The aim of this review is to discuss the characteristic performance of NPs synthesized from various plant sources for the diagnosis and inhibition of cancer. The mode of action of phytosynthesized nanoparticles for anti-cancer applications are also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Prabir Kumar Kulabhusan
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, ON K1N6N5 Canada
| | - Godfred Sabbih
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, 38000 Pakistan
| | - Michael K. Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| |
Collapse
|
14
|
Misiak P, Markiewicz KH, Szymczuk D, Wilczewska AZ. Polymeric Drug Delivery Systems Bearing Cholesterol Moieties: A Review. Polymers (Basel) 2020; 12:E2620. [PMID: 33172152 PMCID: PMC7694753 DOI: 10.3390/polym12112620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
This review aims to provide an overview of polymers comprising cholesterol moiety/ies designed to be used in drug delivery. Over the last two decades, there have been many papers published in this field, which are summarized in this review. The primary focus of this article is on the methods of synthesis of polymers bearing cholesterol in the main chain or as side chains. The data related to the composition, molecular weight, and molecular weight distribution of polymers are presented. Moreover, other aspects, such as forms of carriers, types of encapsulated drugs, encapsulation efficiency and capacity, are also included.
Collapse
Affiliation(s)
- Paweł Misiak
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Poland; (K.H.M.); (D.S.)
| | | | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Poland; (K.H.M.); (D.S.)
| |
Collapse
|
15
|
Nanostructured Biosilica of Diatoms: From Water World to Biomedical Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196811] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diatoms—unicellular photosynthetic algae—are promising natural sources of nanostructured silica. These microorganisms produce in their membrane approximately a highly ordered porous cell wall called a frustule as protection from environmental stress. Diatom frustules consist of hydrated silica that show peculiar properties including biocompatibility, tailorable surface chemistry, chemical inertness, and thermal stability. Frustules harvested from aquatic ecosystems or diatomaceous fossil sediments represent an excellent cost-effective source of biosilica for a broad range of biomedical applications. The porous ultrastructure of the frustules displays a large surface area available for coating with various biomolecules through different functionalization methods. In this review article, we highlight the main features of diatom biosilica and present some of the most advantageous properties that support the employment of frustules in the field of drug delivery, biosensing, and regenerative medicine. In particular, it is offered an insight into the most common functionalization strategies through which diatom physicochemical properties can be modified and tailored according to the described field of application.
Collapse
|
16
|
Zamani M, Aghajanzadeh M, Rostamizadeh K, Kheiri Manjili H, Fridoni M, Danafar H. In vivo study of poly (ethylene glycol)-poly (caprolactone)-modified folic acid nanocarriers as a pH responsive system for tumor-targeted co-delivery of tamoxifen and quercetin. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Lei M, Ma G, Sha S, Wang X, Feng H, Zhu Y, Du X. Dual-functionalized liposome by co-delivery of paclitaxel with sorafenib for synergistic antitumor efficacy and reversion of multidrug resistance. Drug Deliv 2019; 26:262-272. [PMID: 30856352 PMCID: PMC6419656 DOI: 10.1080/10717544.2019.1580797] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 01/19/2023] Open
Abstract
Multidrug resistance (MDR) remains one of the major reasons for inefficiency of many chemotherapeutic agents in cancer therapy. In this study, a D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and polylysine-deoxycholic acid copolymer (PLL-DA) co-modified cationic liposome coating with hyaluronic acid (HA) was constructed for co-delivery of paclitaxel (PTX) and chemosensitizing agent, sorafenib (SOR) to treat the MDR cancer. The multifunctional liposome (HA-TPD-CL-PTX/SOR) presented good stability against rat plasma and was capable of reversing surface zeta potential under acidic conditions in the presence of HAase. Additionally, experimental result confirmed that the PLL-DA copolymer would facilitate the endo-lysosomal escape of the liposome. In vitro study demonstrated that HA-TPD-CL-PTX/SOR could significantly enhance drug accumulation in resistant MCF-7/MDR cells by inhibiting the P-gp efflux, and effectively inhibited growth of tumor cells. Furthermore, the liposome showed an enhanced anticancer activity in vivo, with a tumor growth inhibition rate of 78.52%. In summary, HA-TPD-CL-PTX/SOR exhibited a great potential for effective therapy of resistant cancers by combining with chemotherapeutic agents and could be a promising nano-carrier for reversing MDR and improving the effectiveness of chemotherapy.
Collapse
Affiliation(s)
- Meng Lei
- College of Science, Nanjing Forestry University, Nanjing, PR China
| | - Guanglan Ma
- College of Life Science, Nanjing Normal University, Nanjing, PR China
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Sijia Sha
- College of Science, Nanjing Forestry University, Nanjing, PR China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, Nanjing, PR China
| | - Haiting Feng
- College of Life Science, Nanjing Normal University, Nanjing, PR China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, Nanjing, PR China
| | - Xiao Du
- College of Life Science, Nanjing Normal University, Nanjing, PR China
| |
Collapse
|
18
|
Kabir A, Nazeer N, Bissessur R, Ahmed M. Diatoms embedded, self-assembled carriers for dual delivery of chemotherapeutics in cancer cell lines. Int J Pharm 2019; 573:118887. [PMID: 31765771 DOI: 10.1016/j.ijpharm.2019.118887] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/10/2019] [Accepted: 11/15/2019] [Indexed: 01/17/2023]
Abstract
The concept of dual drug delivery to treat relapsing tumors is a well-studied approach to improve the antitumor efficacies and to reduce the side effects of single drug chemotherapeutic treatments. One of the major issues with dual drug delivery to treat drug resistant tumors is the concentration and ratio dependent antagonistic behavior of two drugs, which may reverse the anticancer efficacies of individual chemotherapeutics and stimulate the growth of tumor cells. In this paper, we address this issue by developing diatomaceous earth embedded core shell materials, which are capable of encapsulating two chemotherapeutic drugs at constant molar ratios, in different compartments of a single drug delivery carrier. The encapsulation of each drug in different compartments of delivery carrier (core of diatoms versus shell of cyclodextrin) then controls the release rate of both drugs in situ, and maintains the optimal molar ratios required for their synergistic outcomes in vitro.
Collapse
Affiliation(s)
- Anayet Kabir
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada
| | - Nauman Nazeer
- Faculty of Sustainable Design & Engineering, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada
| | - Rabin Bissessur
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada; Faculty of Sustainable Design & Engineering, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada.
| |
Collapse
|
19
|
da Fonseca TG, Abessa DMS, Bebianno MJ. Effects of mixtures of anticancer drugs in the benthic polychaete Nereis diversicolor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1180-1192. [PMID: 31252116 DOI: 10.1016/j.envpol.2019.05.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 05/24/2023]
Abstract
The increasing consumption of anticancer drugs through single and/or combinatory chemotherapy worldwide raised concern regarding their toxicity burden in coastal zones. The toxicity of a mixture of three compounds involving the drugs cisplatin (CisPt), cyclophosphamide (CP) and tamoxifen (TAM) was determined on the marine polychaete Nereis diversicolor exposed to an increasing range of their concentrations, respectively: Mix A: 0.1 + 10 + 0.1 ng L-1; Mix B: 10 + 100 + 10 ng L-1; Mix C: 100 + 500 + 25 ng L-1; Mix D: 100 + 1000 + 100 ng L-1. Different endpoints were assessed, including disturbance in the burrowing behaviour, neurotoxicity (acetylcholinesterase - AChE activity), antioxidant enzymes (superoxide dismutase - SOD; catalase - CAT; selenium-dependent glutathione peroxidase - Se-GPx and total glutathione peroxidases T-GPx activities), biotransformation metabolism (glutathione-S-transferases - GST), lipid peroxidation (LPO) and genotoxicity (DNA damage). Biological effects of the mixtures of anticancer compounds on N. diversicolor were compared with previous studies about effects on the same biological model under single-drug exposure conducted with the same molecules. Regarding SOD activity, TAM showed an antagonist effect over CisPt and CP in mixtures C and D. In Mix D, there was a synergistic effect of TAM and CisPt that inhibited CAT activity and an additive interaction of CisPt and CP on the Phase II biotransformation enzyme. Drugs in Mix A also suppressed polychaetes' GST activity, although different from the respective single-drug responses, besides able to induce T-GPx activity, that was not sufficient to avoid oxidative damage and mid-grade DNA damage. Due to the absence of burrowing impairment in Mix A, mechanisms involved in neurotoxicity were other than the one driven by AChE alterations. At the intermediary concentrations (Mix B and C), only LPO occurred. Data from drugs individually may not predict the risks provided by mixtures.
Collapse
Affiliation(s)
- Tainá Garcia da Fonseca
- Centro de Investigação Marinha e Ambiental (CIMA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal; NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia. Aquática, Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, São Vicente, SP, 11330-900, Brazil
| | - Denis M S Abessa
- NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia. Aquática, Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, São Vicente, SP, 11330-900, Brazil
| | - Maria João Bebianno
- Centro de Investigação Marinha e Ambiental (CIMA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| |
Collapse
|
20
|
PEG-conjugated triacontanol micelles as docetaxel delivery systems for enhanced anti-cancer efficacy. Drug Deliv Transl Res 2019; 10:122-135. [DOI: 10.1007/s13346-019-00667-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Sakurai Y, Harashima H. Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opin Drug Deliv 2019; 16:915-936. [DOI: 10.1080/17425247.2019.1645115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Sakurai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | |
Collapse
|
22
|
Zhu Z, Pan H, Li Y, Pan W. Evaluation of the Synergism Mechanism of Tamoxifen and Docetaxel by Nanoparticles. Anticancer Agents Med Chem 2019; 19:1991-2000. [PMID: 31267877 DOI: 10.2174/1871520619666190702120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Our previous studies have shown that Docetaxel (DTX) and Tamoxifen (TMX) loaded nanoparticles(Co-NPs) could exhibit a synergistic effect on estrogen receptor positive cell lines. In the current study,we have studied the synergistic effect of Co-NPs and underlying possible molecular mechanism. METHODS Cell apoptosis assay, pharmacokinetic experiment and immunohistochemistry experiment were used to explore the synergistic effect and underlying possible mechanism in vitro and in vivo. RESULTS Cell apoptosis assay revealed that Co-NPs could mediate cell sensitization to a cytotoxic agent, resulting in remarkable cell apoptosis. In addition, pharmacokinetic experiment research showed that Co-NPs have longer circulation time in vivo, which could prolong the treatment time of the chemotherapeutic drugs. Immunohistochemistry experiment revealed that the Co-NPs could downregulate the expression of P-gp level to reduce the drugs' efflux. CONCLUSION The possible mechanism of the synergistic effect of DTX and TMX by Co-NPs was attributed to the longer in vivo circulation time, significantly increased rate of cell apoptosis and downregulated expression of P-gp level to the tumor cells.
Collapse
Affiliation(s)
- Zhihong Zhu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hao Pan
- College of Pharmacy, Liaoning University, Shenyang 110036, China
| | - Yuenan Li
- College of Pharmacy, Liaoning University, Shenyang 110036, China
| | - Weisan Pan
- College of Pharmacy, Liaoning University, Shenyang 110036, China
| |
Collapse
|
23
|
Meng D, Lei H, Zheng X, Han Y, Sun R, Zhao D, Liu R. A temperature-sensitive phase-change hydrogel of tamoxifen achieves the long-acting antitumor activation on breast cancer cells. Onco Targets Ther 2019; 12:3919-3931. [PMID: 31213826 PMCID: PMC6538837 DOI: 10.2147/ott.s201421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Breast cancer is one of the foremost threats to female health nowadays. Tamoxifen, an antagonist of estrogen receptor-α (ERα), is the first choice for endocrine-dependent breast cancer (ERα-positive breast cancer) treatment. However, ERα has an important function in the normal physical regulation of estrogen, and current oral administration of tamoxifen has potential side effects on normal endocrine secretion. In the present work, we aim to develop novel approaches to increase the antitumor effect of tamoxifen on breast cancer cells and decrease the potential side effects in the human body during treatment. Methods: A temperature-sensitive phase-change hydrogel for tamoxifen (Tam-Gel) was generated. After establishing subcutaneous tumors formed by MCF-7, an ERα-positive breast cancer cell line, in nude mice, an intratumoral injection of Tam-Gel was performed to examine whether Tam-Gel facilitated the slow-release or antitumor effect of tamoxifen. A metastatic breast cancer model was established using the intrahepatic growth of MCF-7 cells in immunodeficient rats. Results: Tam-Gel can transform from liquid to hydrogel at room temperature. An intratumoral injection of Tam-Gel facilitated the slow-release or antitumor effect of tamoxifen. Once Tam-Gel, but not Tam-Sol, was administered by intratumoral injection, it significantly decreased the uptake of radionuclide probes (18F-fluoroestradiol or 18F-fluorodeoxyglucose) by cells in rats' livers and the intrahepatic growth of MCF-7 cells in rats' livers. Conclusion: A novel slow-release system was successfully prepared to facilitate the long-term release of tamoxifen in breast cancer tissues, and achieved an antitumor effect in the long term.
Collapse
Affiliation(s)
- Du Meng
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Hongwei Lei
- Department of Radio Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, People's Republic of China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Yaxuan Han
- Department of Oncology, The Xi'an Chest Hospital, Xi'an, Shaanxi Province, 710000, People's Republic of China
| | - Ronggang Sun
- Department of Radio Oncology, The People's Hospital of YangZhong City, YangZhong, Jiangsu Province, 212200, People's Republic of China
| | - Dongli Zhao
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Rui Liu
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, 710061, People's Republic of China
| |
Collapse
|
24
|
A potential carrier for anti-tumor targeted delivery-hyaluronic acid nanoparticles. Carbohydr Polym 2018; 208:356-364. [PMID: 30658811 DOI: 10.1016/j.carbpol.2018.12.074] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/03/2018] [Accepted: 12/21/2018] [Indexed: 11/22/2022]
Abstract
In recent years, biomacromolecules have been widely used in anti-tumor delivery systems due to the biocompatibility and biodegradability. However, their applications are limited due to the lack of specific targeting. Hyaluronic acid (HA) is a natural polysaccharide and presents in extracellular matrix and synovial fluid which can specifically recognize receptors over-expressed by tumor cells. In addition, they can self-assemble into nanoparticles. HA nanoparticles provide new hierarchical targeting strategies: passively targeting tumor tissue by enhanced permeability and retention effect, actively targeting tumor cells by cluster determinant 44 (CD44) receptor, and then entering cells through receptor-mediated endocytosis. In this review, the synthesis of HA nanoparticles is described in detail from several aspects and applications are also discussed for improving the delivery of hydrophobic drugs, nucleic acids and photosensitizers into the tumor cells. In addition, the modification of HA for improving the targeting and drug releasing characteristics are also discussed.
Collapse
|
25
|
Hyaluronic acid-functionalized half-generation of sectorial dendrimers for anticancer drug delivery and enhanced biocompatibility. Carbohydr Polym 2018; 202:513-522. [DOI: 10.1016/j.carbpol.2018.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 06/27/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022]
|
26
|
Meng D, Lei M, Han Y, Zhao D, Zhang X, Yang Y, Liu R. MicroRNA-645 targets urokinase plasminogen activator and decreases the invasive growth of MDA-MB-231 triple-negative breast cancer cells. Onco Targets Ther 2018; 11:7733-7743. [PMID: 30464522 PMCID: PMC6223385 DOI: 10.2147/ott.s187221] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Urokinase plasminogen activator (uPA) promotes the in vivo invasive growth of HCC cells by cleaving and activating matrix metalloproteinases (MMPs) to induce the destruction of the extracellular matrix of triple-negative breast cancer (TNBC) cells. The identification of microRNAs that target uPA and decrease uPA expression would be useful for attenuating the in vivo invasive growth of TNBC cells. Materials and methods MicroRNA-645 (miR-645) was identified using an online tool (miRDB) as potentially targeting uPA; miR-645 inhibition of uPA was confirmed by western blot experiments. The effects of miR-645 on the in vivo invasive growth of TNBC cells were examined using an intrahepatic tumor model in nude mice, and the miR-645 mechanism of action was explored with MMP cleaving experiments. Results Through virtual screening, we discovered that miR-645 potentially targeted the uPA 3′ untranslated region. This targeting was confirmed by western blot experiments and miR-645 lentiviral particle (LV-645) transduction that inhibited uPA expression in MDA-MB-231 TNBC cells. The LV-645 inhibition of uPA led to the decreased invasive growth of TNBC cells in nude mice. The mechanism data indicated that the uPA inhibition resulted in a decreased cleaving of the pro-MMP-9 protein. Conclusion Targeting uPA with miR-645 decreased the in vivo invasive growth of TNBC cells. These results suggest that miR-645 may represent a promising treatment strategy for TNBC.
Collapse
Affiliation(s)
- Du Meng
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, Shaanxi Province, People's Republic of China,
| | - Ming Lei
- Department of Cardiothoracic Surgery, The NO 3 Hospital of Xi'an, Xi'an 710000, Shaanxi Province, People's Republic of China
| | - Yaxuan Han
- Department of Oncology, The Xi'an Chest Hospital, Xi'an 710000, Shaanxi Province, People's Republic of China
| | - Dongli Zhao
- Department of Cardiothoracic Surgery, The NO 3 Hospital of Xi'an, Xi'an 710000, Shaanxi Province, People's Republic of China
| | - Xiaozhi Zhang
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, Shaanxi Province, People's Republic of China,
| | - Yunyi Yang
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, Shaanxi Province, People's Republic of China,
| | - Rui Liu
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, Shaanxi Province, People's Republic of China,
| |
Collapse
|
27
|
Du X, Yin S, Zhou F, Du X, Xu J, Gu X, Wang G, Li J. Reduction-sensitive mixed micelles for selective intracellular drug delivery to tumor cells and reversal of multidrug resistance. Int J Pharm 2018; 550:1-13. [DOI: 10.1016/j.ijpharm.2018.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/31/2018] [Accepted: 08/12/2018] [Indexed: 12/17/2022]
|
28
|
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16:71. [PMID: 30231877 PMCID: PMC6145203 DOI: 10.1186/s12951-018-0392-8] [Citation(s) in RCA: 2972] [Impact Index Per Article: 424.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/25/2018] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner. Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines. Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc.) in the treatment of various diseases. The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (e.g., natural products) and selective diagnosis through disease marker molecules. The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed. In addition, we have included information regarding the trends and perspectives in nanomedicine area.
Collapse
Affiliation(s)
- Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si, 10326 Republic of Korea
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si, 10326 Republic of Korea
| | - Leonardo Fernandes Fraceto
- Sao Paulo State University (UNESP), Institute of Science and Technology, Sorocaba, São Paulo Zip Code 18087-180 Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo Zip code 13083-862 Brazil
| | - Estefania Vangelie Ramos Campos
- Sao Paulo State University (UNESP), Institute of Science and Technology, Sorocaba, São Paulo Zip Code 18087-180 Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo Zip code 13083-862 Brazil
| | - Maria del Pilar Rodriguez-Torres
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores, Unidad Leon, Universidad Nacional Autonóma de México (UNAM), Boulevard UNAM No 2011. Predio El Saucillo y El Potrero, 37684 León, Guanajuato Mexico
| | - Laura Susana Acosta-Torres
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores, Unidad Leon, Universidad Nacional Autonóma de México (UNAM), Boulevard UNAM No 2011. Predio El Saucillo y El Potrero, 37684 León, Guanajuato Mexico
| | | | - Renato Grillo
- Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, SP 15385-000 Brazil
| | - Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, Uttar Pradesh 211004 India
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Medway Campus-Science, Grenville Building (G102/G107), Central Avenue, Chatham-Maritime, Kent, ME4 4TB UK
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University, Ilsandong-gu, Goyang, Gyeonggi-do 10326 Republic of Korea
| |
Collapse
|