1
|
Zhou J, Wang W, Zhang Z, Zhu G, Qiao J, Guo S, Bai Y, Zhao C, Teng C, Qin P, Zhang L, Ren G. An underutilized bean: hyacinth bean [Lablab purpureus (L.) sweet]: bioactive compounds, functional activity, and future food prospect and applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:701-720. [PMID: 38961686 DOI: 10.1002/jsfa.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Hyacinth bean [Lablab purpureus (L.) Sweet], a plant belonging to the leguminous family and traditionally used for medicinal purposes in China, is a valuable resource with a wide range of health benefits. This review examines the bioactive compounds, health-promoting properties and functional food potential of hyacinth bean, highlighting its role in protecting against metabolic diseases and the underlying molecular mechanisms. According to existing research, hyacinth bean contains a diverse array of bioactive compounds, Consumption of hyacinth beans and hyacinth bean-related processed food products, as well as their use in medicines, is associated with a variety of health benefits that are increasingly favoured by the scientific community. In light of these findings, we posit that hyacinth bean holds great promise for further research and food application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiankang Zhou
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gege Zhu
- Wuhan No. 23 Middle School in Hanyang District, Wuhan, China
| | - Jiawei Qiao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Shengyuan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Bai
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Chaofan Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Cong Teng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peiyou Qin
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Ortega N, Schütte L, de Crom TOE, Voortman T, Okereke OI, Vinceti M, von Gunten A, Marques-Vidal P, Rodondi N, Chiolero A, Chocano-Bedoya PO. Dietary patterns, inflammatory biomarkers and cognition in older adults: An analysis of three population-based cohorts. Clin Nutr 2024; 43:2336-2343. [PMID: 39236406 DOI: 10.1016/j.clnu.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Targeting effective strategies to prevent cognitive decline is key in the aging population. Some diets have been linked to a slower cognitive decline, potentially through reducing inflammation. We aimed at determining the effect of inflammatory dietary patterns (IDPs) on cognitive function in three population-based cohorts. METHODS In this longitudinal study, we analyzed data from the Canadian Longitudinal Study of Aging, CoLaus|PsyCoLaus and Rotterdam Study. Our analytical sample included participants over 55 years old with baseline data on cognition, dietary intake, and inflammatory markers. IDPs were derived for each cohort using reduced rank regression to reflect maximal variation in three inflammatory markers. We calculated scores of consumption of the IDPs, higher scores indicating more IDP consumption. We used inverse probability of treatment and censoring weights in the marginal structural models to estimate associations of higher versus lower quarters of consumption of an IDP on general cognition (Mini-Mental State Evaluation) and four cognitive domains (memory, verbal fluency, verbal learning and processing speed and executive function) during at least 3 years of follow-up. RESULTS We included 10,366 participants (mean age 68) followed-up for a mean of 5 years. Diet explained between 1 and 2% of the variation of the inflammatory markers. There were no differences in general cognition when comparing the highest to the lowest quarter of consumption of IDPs among the three cohorts. Mean differences for the four cognitive domains were of small magnitude across cohorts and not clinically relevant. CONCLUSION Diet explained low variation in inflammatory markers. Consuming IDPs was not associated with mean differences in general or domain-specific cognitive function.
Collapse
Affiliation(s)
- Natalia Ortega
- Institute for Primary Health Care (BIHAM), University of Bern, Bern, Switzerland; Population Health Laboratory (#PopHealthLab), University of Fribourg, Fribourg, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Leona Schütte
- Institute for Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Tosca O E de Crom
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA
| | - Olivia I Okereke
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Armin von Gunten
- Service of Old-Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Rodondi
- Institute for Primary Health Care (BIHAM), University of Bern, Bern, Switzerland; Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Arnaud Chiolero
- Institute for Primary Health Care (BIHAM), University of Bern, Bern, Switzerland; Population Health Laboratory (#PopHealthLab), University of Fribourg, Fribourg, Switzerland; School of Population and Global Health, McGill University, Montreal, Canada
| | | |
Collapse
|
3
|
Li R, Miao Z, Liu Y, Chen X, Wang H, Su J, Chen J. The Brain-Gut-Bone Axis in Neurodegenerative Diseases: Insights, Challenges, and Future Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307971. [PMID: 39120490 PMCID: PMC11481201 DOI: 10.1002/advs.202307971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Neurodegenerative diseases are global health challenges characterized by the progressive degeneration of nerve cells, leading to cognitive and motor impairments. The brain-gut-bone axis, a complex network that modulates multiple physiological systems, has gained increasing attention owing to its profound effects on the occurrence and development of neurodegenerative diseases. No comprehensive review has been conducted to clarify the triangular relationship involving the brain-gut-bone axis and its potential for innovative therapies for neurodegenerative disorders. In light of this, a new perspective is aimed to propose on the interplay between the brain, gut, and bone systems, highlighting the potential of their dynamic communication in neurodegenerative diseases, as they modulate multiple physiological systems, including the nervous, immune, endocrine, and metabolic systems. Therapeutic strategies for maintaining the balance of the axis, including brain health regulation, intestinal microbiota regulation, and improving skeletal health, are also explored. The intricate physiological interactions within the brain-gut-bone axis pose a challenge in the development of effective treatments that can comprehensively target this system. Furthermore, the safety of these treatments requires further evaluation. This review offers a novel insights and strategies for the prevention and treatment of neurodegenerative diseases, which have important implications for clinical practice and patient well-being.
Collapse
Affiliation(s)
- Rong Li
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Zong Miao
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Yu'e Liu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Xiao Chen
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Hongxiang Wang
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Jiacan Su
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Juxiang Chen
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| |
Collapse
|
4
|
Ngoc APT, Zahoor A, Kim DG, Yang SH. Using Synbiotics as a Therapy to Protect Mental Health in Alzheimer's Disease. J Microbiol Biotechnol 2024; 34:1739-1747. [PMID: 39099195 PMCID: PMC11485767 DOI: 10.4014/jmb.2403.03021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that represents a major cause of dementia worldwide. Its pathogenesis involves multiple pathways, including the amyloid cascade, tau protein, oxidative stress, and metal ion dysregulation. Recent studies have suggested a critical link between changes in gut microbial diversity and the disruption of the gut-brain axis in AD. Previous studies primarily explored the potential benefits of probiotics and prebiotics in managing AD. However, studies have yet to fully describe a novel promising approach involving the use of synbiotics, which include a combination of active probiotics and new-generation prebiotics. Synbiotics show potential for mitigating the onset and progression of AD, thereby offering a holistic approach to address the multifaceted nature of AD. This review article primarily aims to gain further insights into the mechanisms of AD, specifically the intricate interaction between gut bacteria and the brain via the gut-brain axis. By understanding this relationship, we can identify potential targets for intervention and therapeutic strategies to combat AD effectively. This review also discusses substantial evidence supporting the role of synbiotics as a promising AD treatment that surpasses traditional probiotic or prebiotic interventions. We find that synbiotics may be used not only to address cognitive decline but also to reduce AD-related psychological burden, thus enhancing the overall quality of life of patients with AD.
Collapse
Affiliation(s)
- Anh Pham Thi Ngoc
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Adil Zahoor
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Dong Gyun Kim
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
5
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Burgaz C, Van-Dam I, Garton K, Swinburn BA, Sacks G, Asiki G, Claro R, Diouf A, Bartoletto Martins AP, Vandevijvere S. Which government policies to create sustainable food systems have the potential to simultaneously address undernutrition, obesity and environmental sustainability? Global Health 2024; 20:56. [PMID: 39068420 PMCID: PMC11282665 DOI: 10.1186/s12992-024-01060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION A transformation of food systems is urgently needed, given their contribution to three ongoing and interlinked global health pandemics: (1) undernutrition and food insecurity, (2) obesity and non-communicable diseases (NCDs), and (3) climate change and biodiversity loss. As policymakers make decisions that shape food systems, this study aimed to identify and prioritise policies with double- or triple-duty potential to achieve healthier and more environmentally sustainable food systems. METHODS This study undertook a 4-step methodological approach, including (i) a compilation of international policy recommendations, (ii) an online survey, (iii) four regional workshops with international experts and (iv) a ranking for prioritisation. Policies were identified and prioritised based on their double- or triple-duty potential, synergies and trade-offs. Using participatory and transdisciplinary approaches, policies were identified to have double- or triple-duty potential if they were deemed effective in tackling two or three of the primary outcomes of interest: (1) undernutrition, (2) obesity/NCDs and (3) environmental degradation. RESULTS The desk review identified 291 recommendations for governments, which were merged and classified into 46 initially proposed policies. Based on the results from the online survey, 61% of those policies were perceived to have double- or triple-duty potential. During the workshops, 4 potential synergies and 31 trade-offs of these policies were identified. The final list of 44 proposed policies for healthier and more environmentally sustainable food systems created was divided into two main policy domains: 'food supply chains' and 'food environments'. The outcome with the most trade-offs identified was 'undernutrition', followed by 'environmental sustainability', and 'obesity/NCDs'. Of the top five expert-ranked food supply chain policies, two were perceived to have triple-duty potential: (a) incentives for crop diversification; (b) support for start-ups, and small- and medium-sized enterprises. For food environments, three of the top five ranked policies had perceived triple-duty potential: (a) affordability of healthier and more sustainable diets; (b) subsidies for healthier and more sustainable foods; (c) restrictions on children's exposure to marketing through all media. CONCLUSION This study identified and prioritised a comprehensive list of double- and triple-duty government policies for creating healthier and more environmentally sustainable food systems. As some proposed policies may have trade-offs across outcomes, they should be carefully contextualised, designed, implemented and monitored.
Collapse
Affiliation(s)
- Celia Burgaz
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium.
- Department of Geosciences, Environment and Society, Free University of Brussels (ULB), Brussels, Belgium.
| | - Iris Van-Dam
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Kelly Garton
- School of Population Health, University of Auckland, Auckland, New Zealand
| | - Boyd A Swinburn
- School of Population Health, University of Auckland, Auckland, New Zealand
| | - Gary Sacks
- Global Centre for Preventive Health and Nutrition (GLOBE), Deakin University, Melbourne, Australia
| | - Gershim Asiki
- Chronic Diseases Management Unit, African Population and Health Research Center, Nairobi, Kenya
| | - Rafael Claro
- Nutrition Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adama Diouf
- Laboratoire de Recherche en Nutrition Alimentation Humaine, Université Cheikh Anta Diop, Dakar, Senegal
| | | | | |
Collapse
|
7
|
Zhang S, Xiao Y, Cheng Y, Ma Y, Liu J, Li C, Shang H. Associations of sugar intake, high-sugar dietary pattern, and the risk of dementia: a prospective cohort study of 210,832 participants. BMC Med 2024; 22:298. [PMID: 39020335 PMCID: PMC11256505 DOI: 10.1186/s12916-024-03525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Limited evidence demonstrated the potential relationship between dietary sugar intake and dementia. This association demands further clarification in a large-scale population. METHODS A total of 210,832 participants from the UK Biobank cohort were included in this prospective cohort study. Absolute and relative sugar intake and high-sugar dietary scores were utilized to reflect dietary sugar intake. Absolute sugar intake was identified by the Oxford WebQ in the UK Biobank. Relative sugar intake was calculated by dividing the absolute sugar intake by total diet energy. High-sugar dietary pattern was identified using the method of reduced rank regression. Cox proportional hazards regression analyses and restricted cubic splines were performed to examine the longitudinal associations between dietary sugar intake and all-cause dementia and its main subtype, Alzheimer's disease. Explorative mediation analyses were conducted to explore underlying mechanisms. RESULTS Increased absolute sugar intake (g/day) was significantly associated with a higher risk of all-cause dementia (HR = 1.003, [95%CI: 1.002-1.004], p < 0.001) and Alzheimer's disease (1.002, [1.001-1.004], 0.005). Relative sugar intake (%g/kJ/day) also demonstrated significant associations with all-cause dementia (1.317, [1.173-1.480], p < 0.001) and Alzheimer's disease (1.249, [1.041-1.500], 0.017), while the high-sugar dietary score was only significantly associated with a higher risk of all-cause dementia (1.090, [1.045-1.136], p < 0.001). In addition, both sugar intake and high-sugar dietary score demonstrated significant non-linear relationships with all-cause dementia and Alzheimer's disease (all p values for non-linearity < 0.05). CONCLUSIONS Our study provided evidence that excessive sugar intake was associated with dementia. Controlling the excess consumption of dietary sugar may be of great public health implications for preventing dementia.
Collapse
Affiliation(s)
- Sirui Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanzheng Ma
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiyong Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Ashique S, Mohanto S, Ahmed MG, Mishra N, Garg A, Chellappan DK, Omara T, Iqbal S, Kahwa I. Gut-brain axis: A cutting-edge approach to target neurological disorders and potential synbiotic application. Heliyon 2024; 10:e34092. [PMID: 39071627 PMCID: PMC11279763 DOI: 10.1016/j.heliyon.2024.e34092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The microbiota-gut-brain axis (MGBA) represents a sophisticated communication network between the brain and the gut, involving immunological, endocrinological, and neural mediators. This bidirectional interaction is facilitated through the vagus nerve, sympathetic and parasympathetic fibers, and is regulated by the hypothalamic-pituitary-adrenal (HPA) axis. Evidence shows that alterations in gut microbiota composition, or dysbiosis, significantly impact neurological disorders (NDs) like anxiety, depression, autism, Parkinson's disease (PD), and Alzheimer's disease (AD). Dysbiosis can affect the central nervous system (CNS) via neuroinflammation and microglial activation, highlighting the importance of the microbiota-gut-brain axis (MGBA) in disease pathogenesis. The microbiota influences the immune system by modulating chemokines and cytokines, impacting neuronal health. Synbiotics have shown promise in treating NDs by enhancing cognitive function and reducing inflammation. The gut microbiota's role in producing neurotransmitters and neuroactive compounds, such as short-chain fatty acids (SCFAs), is critical for CNS homeostasis. Therapeutic interventions targeting the MGBA, including dietary modulation and synbiotic supplementation, offer potential benefits for managing neurodegenerative disorders. However, more in-depth clinical studies are necessary to fully understand and harness the therapeutic potential of the MGBA in neurological health and disease.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Timothy Omara
- Department of Chemistry, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Shabnoor Iqbal
- African Medicines Innovations and Technologies Development, Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Uganda
| |
Collapse
|
9
|
Mehboodi D, Shahedi A, Namavar MR, Yadegari M, Vakili M. Effect of berberine on the hippocampal structure, biochemical factors, memory, and blood-brain barrier in rat model of transient global cerebral ischemia. Phytother Res 2024. [PMID: 38950958 DOI: 10.1002/ptr.8234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/03/2024]
Abstract
Global cerebral ischemia (GCI) results in damage to the neurons and leads to cognitive impairments. Berberine (BBR) is known for its neuroprotective qualities. This study aimed to investigate the effects of BBR on memory, Blood-brain barrier (BBB) permeability, biochemical factors, and neuronal structure. Sixty-three adult male Wistar rats were divided randomly into Sham (21), GCI (21), and GCI + BBR (21) groups. The GCI + BBR group received 50 mg/kg of BBR for 7 days before and 6 h after 20 min of GCI induction. After 24 h, assessments included hippocampal neuronal structure, catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GPX) levels, memory performance, and BBB permeability. The GCI + BBR group reduced volume loss in the CA1 and its sublayers (oriens, pyramidal, and radiatum) compared to the GCI group (p < 0.0001, p < 0.001, p < 0.01 and p < 0.001, respectively). Additionally, the GCI + BBR group showed higher pyramidal neuron density (p < 0.0001) and number (p < 0.0001) compared to the GCI group. BBR also decreased MDA levels (p < 0.0001) and increased CAT activity (p < 0.0001) in the GCI + BBR group compared to the GCI group, with GPX and SOD activity approaching Sham levels (p < 0.0001, both). BBR demonstrated significant improvements in short and long-term memory compared to the GCI group (p < 0.01, p < 0.0001, respectively). Furthermore, BBB permeability in the GCI + BBR group was significantly reduced compared to the GCI group (p < 0.0001). These findings demonstrated BBR's potential to protect the neurons in the CA1 and BBB structures, enhance antioxidant activity, and alleviate GCI-induced memory impairments.
Collapse
Affiliation(s)
- Dariush Mehboodi
- Department of Anatomical Sciences, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abbas Shahedi
- Department of Anatomical Sciences, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Neuroendocrine Research Center, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Reza Namavar
- Clinic Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Yadegari
- Department of Anatomical Sciences, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Neuroendocrine Research Center, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mahmood Vakili
- Health Monitoring Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
10
|
Petrauskiene A, Daugelaite S, Salomskiene A, Speckauskiene V. What Lithuanian First-Graders Eat: Results of a 15-Year Semi-Longitudinal, Cross-Sectional Surveillance Study. Nutrients 2024; 16:1970. [PMID: 38931323 PMCID: PMC11206776 DOI: 10.3390/nu16121970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
This article presents the dietary habits of Lithuanian first-grade (7-8-year-old) students over a 15-year surveillance period to understand the trends and changes in their nutrition patterns. The presented data were collected from three study rounds of the Lithuanian Growth Surveillance Study conducted between 2008 and 2023, with a total sample of 11,594 first-grade students from all 10 counties of Lithuania. The main findings reveal significant shifts in breakfast consumption, with an increase in daily breakfast intake observed over the surveillance period. Conversely, the consumption of cereal porridge showed a notable decrease, particularly in the frequency of consumption. Positive changes were noted in the consumption of vegetables and fresh fruits, indicating an improvement in dietary quality. Also, a concerning trend of declining consumption of certain nutritious food groups like fish and dairy products is identified, whereas the consumption of sugary beverages is low. These findings underscore the importance of ongoing efforts to promote healthier eating habits among school-age children in Lithuania. Addressing these trends requires a multifaceted approach involving education, policy changes, and community-based interventions to ensure the long-term health and well-being of children.
Collapse
Affiliation(s)
- Ausra Petrauskiene
- Faculty of Public Health, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (A.P.); (V.S.)
| | - Silvija Daugelaite
- Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Aurelija Salomskiene
- Institute of Biological Systems and Genetic Research, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Vita Speckauskiene
- Faculty of Public Health, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (A.P.); (V.S.)
| |
Collapse
|
11
|
Dai L, Lin X, Wang S, Gao Y, He F. The Mediterranean-dietary approaches to stop hypertension diet intervention for neurodegenerative delay (MIND) diet: a bibliometric analysis. Front Nutr 2024; 11:1348808. [PMID: 38946791 PMCID: PMC11211596 DOI: 10.3389/fnut.2024.1348808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
The MIND diet is a healthy dietary pattern that has some benefits for many health outcomes. Our study aims to conduct a bibliometric analysis of the MIND diet, identifying leading edges and hotspots to provide a reference for future research. The research on the MIND diet was gathered from the Web of Science Core Collection (WOSCC) database. For bibliometric analysis, VOSviewer 1.6.16 and the WOSCC Online Analysis Platform were utilized. In total, this comprehensive investigation encompassed 171 documents in the field of the MIND diet. The publications are globally distributed, with contributions from 953 authors across 362 institutions in 37 countries/regions, and published in 94 journals. The United States leads with 72 publications, and Iran and the People's Republic of China also show notable engagement with 28 and 19 publications, respectively. Rush University stands out with 21 publications, followed by Harvard University and Tehran University of Medical Sciences, demonstrating their substantial contributions to this field. Martha Clare Morris is a key figure with 10 publications, alongside Klodian Dhana and Puja Agarwal, each contributing 9 publications, highlighting their influence in the MIND diet research. The journal "Nutrients" is a major publication venue with 20 related articles, followed by "Frontiers in Nutrition" and "Journal of Nutrition Health Aging," reflecting their crucial roles in advancing knowledge about the MIND diet. The first high-cited publication was published in Alzheimers & Dementia and conducted by Martha Clare Morris, which focuses on the MIND diet's relationship with Alzheimer's disease prevention and cognitive decline and emphasizes the diet's neuroprotective potential, highlighting how even moderate adherence can substantially reduce Alzheimer's risk and slow cognitive decline. In conclusion, this is the first comprehensive bibliometric study that quantitatively and qualitatively analyzed the publications in the field of the MIND diet. The MIND diet may be a promising dietary pattern for dementia. However, the current evidence is restricted and highlights the urgency and necessity of further research to investigate the efficacy of this diet for cognitive function. In addition, the MIND diet may have some benefits for other health outcomes, including CVDs, cancer, and diabetes. The number of studies in the field of the MIND diet is limited. More studies are needed, and will give us more knowledge about the MIND diet to improve human health, especially for dementia.
Collapse
Affiliation(s)
| | | | - Shuai Wang
- Hangzhou First Hospital, Hangzhou, China
| | - Yue Gao
- Hangzhou First Hospital, Hangzhou, China
| | - Fei He
- Taizhou Municipal Hospital, Taizhou, China
| |
Collapse
|
12
|
Kalaria R, Maestre G, Mahinrad S, Acosta DM, Akinyemi RO, Alladi S, Allegri RF, Arshad F, Babalola DO, Baiyewu O, Bak TH, Bellaj T, Brodie‐Mends DK, Carrillo MC, Celestin K, Damasceno A, de Silva RK, de Silva R, Djibuti M, Dreyer AJ, Ellajosyula R, Farombi TH, Friedland RP, Garza N, Gbessemehlan A, Georgiou EE, Govia I, Grinberg LT, Guerchet M, Gugssa SA, Gumikiriza‐Onoria JL, Hogervorst E, Hornberger M, Ibanez A, Ihara M, Issac TG, Jönsson L, Karanja WM, Lee JH, Leroi I, Livingston G, Manes FF, Mbakile‐Mahlanza L, Miller BL, Musyimi CW, Mutiso VN, Nakasujja N, Ndetei DM, Nightingale S, Novotni G, Nyamayaro P, Nyame S, Ogeng'o JA, Ogunniyi A, de Oliveira MO, Okubadejo NU, Orrell M, Paddick S, Pericak‐Vance MA, Pirtosek Z, Potocnik FCV, Raman R, Rizig M, Rosselli M, Salokhiddinov M, Satizabal CL, Sepulveda‐Falla D, Seshadri S, Sexton CE, Skoog I, George‐Hyslop PHS, Suemoto CK, Thapa P, Udeh‐Momoh CT, Valcour V, Vance JM, Varghese M, Vera JH, Walker RW, Zetterberg H, Zewde YZ, Ismail O. The 2022 symposium on dementia and brain aging in low- and middle-income countries: Highlights on research, diagnosis, care, and impact. Alzheimers Dement 2024; 20:4290-4314. [PMID: 38696263 PMCID: PMC11180946 DOI: 10.1002/alz.13836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 05/04/2024]
Abstract
Two of every three persons living with dementia reside in low- and middle-income countries (LMICs). The projected increase in global dementia rates is expected to affect LMICs disproportionately. However, the majority of global dementia care costs occur in high-income countries (HICs), with dementia research predominantly focusing on HICs. This imbalance necessitates LMIC-focused research to ensure that characterization of dementia accurately reflects the involvement and specificities of diverse populations. Development of effective preventive, diagnostic, and therapeutic approaches for dementia in LMICs requires targeted, personalized, and harmonized efforts. Our article represents timely discussions at the 2022 Symposium on Dementia and Brain Aging in LMICs that identified the foremost opportunities to advance dementia research, differential diagnosis, use of neuropsychometric tools, awareness, and treatment options. We highlight key topics discussed at the meeting and provide future recommendations to foster a more equitable landscape for dementia prevention, diagnosis, care, policy, and management in LMICs. HIGHLIGHTS: Two-thirds of persons with dementia live in LMICs, yet research and costs are skewed toward HICs. LMICs expect dementia prevalence to more than double, accompanied by socioeconomic disparities. The 2022 Symposium on Dementia in LMICs addressed advances in research, diagnosis, prevention, and policy. The Nairobi Declaration urges global action to enhance dementia outcomes in LMICs.
Collapse
Grants
- P30AG066506 National Institute of Aging (NIA)
- P01 HD035897 NICHD NIH HHS
- R13 AG066391 NIA NIH HHS
- International Society for Neurochemistry
- National Council for Scientific and Technological Development
- R01 AG075775 NIA NIH HHS
- Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden
- U19 AG074865 NIA NIH HHS
- UH3 NS100605 NINDS NIH HHS
- R01AG072547 Multi partner Consortium for Dementia Research in Latino America-Dominican Republic (LATAM-FINGERS)
- ASP/06/RE/2012/18 University of Sri Jayewardenepura, Sri Lanka
- D43 TW011532 FIC NIH HHS
- UF1 NS125513 NINDS NIH HHS
- 2019-02397 Swedish Research Council
- FLR/R1/191813 UK Royal Society/African Academy of Sciences
- R01 AG054076 NIA NIH HHS
- GOK: Government of Karnataka
- R56 AG074467 NIA NIH HHS
- R21 AG069252 NIA NIH HHS
- RF1 AG059421 NIA NIH HHS
- R56 AG061837 NIA NIH HHS
- Global Brain Health Institute (GBHI)
- 1R01AG068472-01 National Institute of Aging (NIA)
- FCG/R1/201034 UK Royal Society/African Academy of Sciences
- Appel à Projet des Equipes Émergentes et Labellisées scheme (APREL)
- Alzheimer's Drug Discovery Foundation (ADDF)
- R01 AG062588 NIA NIH HHS
- 1R01AG070883 University of Wisconsin, Madison
- U01 HG010273 NHGRI NIH HHS
- R25 TW011214 FIC NIH HHS
- ASP/06/RE/2013/28 University of Sri Jayewardenepura, Sri Lanka
- R01 AG052496 NIA NIH HHS
- R01 AG080468 NIA NIH HHS
- RBM: Rotary Bangalore Midtown
- U19 AG068054 NIA NIH HHS
- ADSF-21-831376-C Alzheimer Drug Discovery Foundation
- ADSF-21-831377-C Alzheimer Drug Discovery Foundation
- Canadian Institute of Health Research
- U19 AG078558 NIA NIH HHS
- 1P30AG066546-01A1 National Institutes of Health (NIH)
- RF1 AG059018 NIA NIH HHS
- National Research Foundation (NRF)
- P30 AG062422 NIA NIH HHS
- LSIPL: M/s Lowes Services India Private Limited
- UKDRI-1003 UK Dementia Research Institute at UCL
- U19AG074865 Multi partner Consortium for Dementia Research in Latino America-Dominican Republic (LATAM-FINGERS)
- P01 AG019724 NIA NIH HHS
- National Institute for Health and Care Research, United Kingdom
- R01 AG066524 NIA NIH HHS
- RF1 AG063507 NIA NIH HHS
- WCUP/Ph.D./19B 2013 University of Sri Jayewardenepura (USJ), Sri Lanka
- WCUP/Ph.D./19/2013 University of Sri Jayewardenepura (USJ), Sri Lanka
- GBHI ALZ UK-21-724359 Pilot Award for Global Brain Health Leaders
- R01AG080468-01 National Institute of Aging (NIA)
- U01 AG058589 NIA NIH HHS
- R01 AG057234 NIA NIH HHS
- SP/CIN/2016/02) Ministry of Primary Industries, Sri Lanka
- R01 AG072547 NIA NIH HHS
- U01 AG051412 NIA NIH HHS
- P30 AG059305 NIA NIH HHS
- Alzheimer's Association, USA
- R35 AG072362 NIA NIH HHS
- R01 NS050915 NINDS NIH HHS
- P30 AG066546 NIA NIH HHS
- 2022-01018 Swedish Research Council
- U19 AG063893 NIA NIH HHS
- ALFGBG-71320 Swedish State Support for Clinical Research
- U01 AG052409 NIA NIH HHS
- 1R13AG066391-01 National Institutes of Health (NIH)
- R01 AG21051 NIH and the Fogarty International Center [FIC]
- DP1AG069870 National Institutes of Health (NIH)
- Marie Skłodowska-Curie
- U19 AG078109 NIA NIH HHS
- Chinese Neuroscience Society, China
- RF1 AG061872 NIA NIH HHS
- DP1 AG069870 NIA NIH HHS
- P30 AG066506 NIA NIH HHS
- Wellcome Trust
- U01HG010273 Multi partner Consortium for Dementia Research in Latino America-Dominican Republic (LATAM-FINGERS)
- JPND2021-00694 European Union Joint Programme - Neurodegenerative Disease Research
- ASP/06/RE/2010/07 University of Sri Jayewardenepura, Sri Lanka
- Rainwater Charitable Foundation - The Bluefield project to cure FTD, and Global Brain Health Institute
- 101053962 European Union's Horizon Europe
- R01 AG058464 NIA NIH HHS
- R01 AG068472 NIA NIH HHS
- Michael J. Fox Foundation for Parkinson's Research, USA
- UL1 TR001873 NCATS NIH HHS
- SG-21-814756 National Institutes of Health (NIH)
- 201809-2016862 Alzheimer Drug Discovery Foundation
- UK National Health Service, Newcastle University,
- R01 AG058918 NIA NIH HHS
- National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- ADSF-21-831381-C Alzheimer Drug Discovery Foundation
- R01 AG070864 NIA NIH HHS
- Wellcome Trust, UK
- Health Professionals Education Partnership Initiative Ethiopia
- ANR-09-MNPS-009-01 French National Research Agency
- R01 AG062562 NIA NIH HHS
- AXA Research Fund
- ICMR: Indian Council for Medical Research
- R01 AG070883 NIA NIH HHS
- International Society for Neurochemistry
- French National Research Agency
- AXA Research Fund
- National Center for Advancing Translational Sciences
- National Council for Scientific and Technological Development
- Swedish Research Council
Collapse
Affiliation(s)
- Raj Kalaria
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Gladys Maestre
- Departments of Neuroscience and Human GeneticsUniversity of Texas Rio Grande ValleyOne W. University BlvdBrownsvilleTexasUSA
| | - Simin Mahinrad
- Division of Medical and Scientific RelationsAlzheimer's AssociationChicagoIllinoisUSA
| | - Daisy M. Acosta
- Universidad Nacional Pedro Henriquez Urena (UNPHU)Santo DomingoDominican Republic
| | - Rufus Olusola Akinyemi
- Neuroscience and Ageing Research UnitInstitute for Advanced Medical Research and TrainingCollege of MedicineUniversity of IbadanIbadanOyoNigeria
| | - Suvarna Alladi
- Department of NeurologyNational Institute of Mental Health and NeurosciencesBengaluruKarnatakaIndia
| | - Ricardo F. Allegri
- Fleni Neurological InstituteBuenos AiresArgentina
- Department of NeurosciencesUniversidad de la Costa (CUC)BarranquillaColombia
| | - Faheem Arshad
- Department of NeurologyNational Institute of Mental Health and NeurosciencesBengaluruKarnatakaIndia
| | | | | | | | | | | | - Maria C. Carrillo
- Division of Medical and Scientific RelationsAlzheimer's AssociationChicagoIllinoisUSA
| | - Kaputu‐Kalala‐Malu Celestin
- Department of NeurologyCentre Neuropsychopathologique (CNPP)Kinshasa University Teaching HospitalUniversity of KinshasaKinshasaRepublic Democratic of the Congo
| | | | - Ranil Karunamuni de Silva
- Interdisciplinary Centre for Innovation in Biotechnology and NeuroscienceFaculty of Medical SciencesUniversity of Sri JayewardenepuraNugegodaSri Lanka
- Institute for Combinatorial Advanced Research and Education (KDU‐CARE)General Sir John Kotelawala Defence UniversityRatmalanaSri Lanka
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of ClinicalMovement NeuroscienceUCL Queen Square Institute of NeurologyLondonUK
| | - Mamuka Djibuti
- Partnership for Research and Action for Health (PRAH)TbilisiGeorgia
| | | | - Ratnavalli Ellajosyula
- Cognitive Neurology ClinicManipal Hospitaland Annasawmy Mudaliar HospitalBengaluruKarnatakaIndia
- Manipal Academy of Higher Education (MAHE)ManipalKarnatakaIndia
| | | | | | - Noe Garza
- Department of Neuroscience and Human GeneticsUniversity of Texas Rio Grande ValleyHarlingenTexasUSA
| | - Antoine Gbessemehlan
- Inserm U1094, IRD U270University of LimogesCHU Limoges, EpiMaCT ‐ Epidemiology of Chronic Diseases in Tropical ZoneInstitute of Epidemiology and Tropical NeurologyOmegaHealthLimogesFrance
- Inserm, Bordeaux Population Health Research CenterUniversity of BordeauxBordeauxFrance
| | - Eliza Eleni‐Zacharoula Georgiou
- Department of PsychiatryPatras University General HospitalFaculty of Medicine, School of Health SciencesUniversity of PatrasPatrasGreece
| | - Ishtar Govia
- Caribbean Institute for Health ResearchThe University of the West Indies, JamaicaWest IndiesJamaica
- Institute for Global HealthUniversity College LondonLondonUK
| | - Lea T. Grinberg
- Department of Neurology and PathologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of Sao PauloR. da Reitoria, R. Cidade UniversitáriaSão PauloSao PauloBrazil
| | - Maëlenn Guerchet
- Inserm U1094, IRD U270University of LimogesCHU Limoges, EpiMaCT ‐ Epidemiology of Chronic Diseases in Tropical ZoneInstitute of Epidemiology and Tropical NeurologyOmegaHealthLimogesFrance
| | - Seid Ali Gugssa
- Department of NeurologySchool of MedicineAddis Ababa UniversityAddis AbabaEthiopia
| | | | - Eef Hogervorst
- Loughborough UniversityLoughboroughUK
- Respati UniversityYogyakartaIndonesia
| | | | - Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat)Universidad Adolfo IbanezPeñalolénSantiagoChile
- Global Brain Health Institute (GBHI)University California San Francisco (UCSF)San FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinLloyd Building Trinity College DublinDublinIreland
- Cognitive Neuroscience Center (CNC)Universidad de San Andrés, and National Scientific and Technical Research Council (CONICET)VictoriaProvincia de Buenos AiresArgentina
| | - Masafumi Ihara
- Department of NeurologyNational Cerebral and Cardiovascular CenterSuitaOsakaJapan
| | - Thomas Gregor Issac
- Centre for Brain ResearchIndian Institute of Science (IISc)BengaluruKarnatakaIndia
| | - Linus Jönsson
- Department of NeurobiologyCare Science and Society, section for NeurogeriatricsKarolinska Institute, SolnavägenSolnaSweden
| | - Wambui M. Karanja
- Global Brain Health Institute (GBHI)Trinity College DublinLloyd Building Trinity College DublinDublinIreland
- Brain and Mind InstituteAga Khan UniversityNairobiKenya
| | - Joseph H. Lee
- Sergievsky CenterTaub Institute for Research on Alzheimer's Disease and the Aging BrainDepartments of Neurology and EpidemiologyColumbia UniversityNew YorkNew YorkUSA
| | - Iracema Leroi
- Global Brain Health Institute (GBHI)Trinity College DublinLloyd Building Trinity College DublinDublinIreland
| | | | - Facundo Francisco Manes
- Institute of Cognitive and Translational Neuroscience (INCYT)INECO FoundationFavaloro UniversityBuenos AiresArgentina
| | - Lingani Mbakile‐Mahlanza
- Global Brain Health Institute (GBHI)University California San Francisco (UCSF)San FranciscoCaliforniaUSA
- University of BotswanaGaboroneBotswana
| | - Bruce L. Miller
- Department of NeurologyMemory and Aging CenterUniversity of California San Francisco Weill Institute for NeurosciencesSan FranciscoCaliforniaUSA
| | | | - Victoria N. Mutiso
- Africa Mental Health Research and Training FoundationNairobiKenya
- Department of PsychiatryUniversity of NairobiNairobiKenya
- World Psychiatric Association Collaborating Centre for Research and TrainingNairobiKenya
| | | | - David M. Ndetei
- Africa Mental Health Research and Training FoundationNairobiKenya
- Department of PsychiatryUniversity of NairobiNairobiKenya
- World Psychiatric Association Collaborating Centre for Research and TrainingNairobiKenya
| | - Sam Nightingale
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Gabriela Novotni
- University Clinic of NeurologyMedical Faculty University Ss Cyril and Methodius Institute for Alzheimer's Disease and NeuroscienceSkopjeNorth Macedonia
| | - Primrose Nyamayaro
- Global Brain Health Institute (GBHI)Trinity College DublinLloyd Building Trinity College DublinDublinIreland
- Faculty of Medicine and Health SciencesUniversity of ZimbabweHarareZimbabwe
| | - Solomon Nyame
- Kintampo Health Research CentreGhana Health ServiceHospital RoadNear Kintampo‐north Municipal HospitalKintampoGhana
| | | | | | - Maira Okada de Oliveira
- Global Brain Health Institute (GBHI)University California San Francisco (UCSF)San FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinLloyd Building Trinity College DublinDublinIreland
- Department of Psychiatry at Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Cognitive Neurology and Behavioral Unit (GNCC)University of Sao PauloR. da Reitoria, R. Cidade UniversitáriaSão PauloSao PauloBrazil
| | - Njideka U. Okubadejo
- Neurology UnitDepartment of MedicineFaculty of Clinical SciencesCollege of MedicineUniversity of LagosYabaLagosNigeria
| | - Martin Orrell
- Institute of Mental HealthUniversity of NottinghamNottinghamUK
| | - Stella‐Maria Paddick
- Newcastle UniversityNewcastle upon TyneUK
- Gateshead Health NHS Foundation TrustSheriff HillTyne and WearUK
| | - Margaret A. Pericak‐Vance
- John P Hussman Institute for Human GenomicsMiller School of MedicineUniversity of MiamiCoral GablesFloridaUSA
- Dr. John T Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineCoral GablesFloridaUSA
| | - Zvezdan Pirtosek
- Faculty of MedicineUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Felix Claude Victor Potocnik
- Old Age Psychiatry Unit, Depth PsychiatryStellenbosch UniversityWestern Cape, Stellenbosch CentralStellenboschSouth Africa
| | - Rema Raman
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mie Rizig
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyQueen SquareLondonUK
| | - Mónica Rosselli
- Department of PsychologyCharles E. Schmidt College of ScienceFlorida Atlantic UniversityBoca RatonFloridaUSA
- Florida Alzheimer's Disease Research CenterGainesvilleFloridaUSA
| | | | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | - Diego Sepulveda‐Falla
- Molecular Neuropathology of Alzheimer's DiseaseInstitute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases and South Texas ADRCUT Health San AntonioSan AntonioTexasUSA
- University of Texas Health Sciences CenterSan AntonioTexasUSA
| | - Claire E. Sexton
- Division of Medical and Scientific RelationsAlzheimer's AssociationChicagoIllinoisUSA
| | - Ingmar Skoog
- Institute of Neuroscience and FysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Peter H. St George‐Hyslop
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainDepartment of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Cambridge Institute for Medical Research and Department of Clinical NeurosciencesSchool of Clinical MedicineUniversity of CambridgeAddenbrookes Biomedical CampusTrumpingtonCambridgeUK
- Department of Medicine (Neurology)Temerty Faculty of MedicineUniversity of Torontoand University Health Network27 King's College CirTorontoOntarioCanada
| | - Claudia Kimie Suemoto
- Division of GeriatricsUniversity of Sao Paulo Medical SchoolR. da Reitoria, R. Cidade UniversitáriaSão PauloSao PauloBrazil
| | - Prekshy Thapa
- Global Brain Health Institute (GBHI)Trinity College DublinLloyd Building Trinity College DublinDublinIreland
| | - Chinedu Theresa Udeh‐Momoh
- Global Brain Health Institute (GBHI)University California San Francisco (UCSF)San FranciscoCaliforniaUSA
- FINGERS Brain Health Institutec/o Stockholms SjukhemStockholmSweden
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of NeurobiologyCare Sciences and Society (NVS)Division of Clinical GeriatricsKarolinska Institute, SolnavägenSolnaSweden
- Imarisha Centre for Brain health and AgingBrain and Mind InstituteAga Khan UniversityNairobiKenya
| | - Victor Valcour
- Memory and Aging CenterDepartment of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Jeffery M. Vance
- John P Hussman Institute for Human GenomicsMiller School of MedicineUniversity of MiamiCoral GablesFloridaUSA
| | - Mathew Varghese
- St. John's Medical CollegeSarjapur ‐ Marathahalli Rd, beside Bank Of Baroda, John Nagar, KoramangalaBengaluruKarnatakaIndia
| | - Jaime H. Vera
- Department of Global Health and InfectionBrighton and Sussex Medical SchoolBrightonUK
| | - Richard W. Walker
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgGöteborgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen Square, Queen SquareLondonUK
- UK Dementia Research Institute at UCLUniversity College LondonLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Yared Z. Zewde
- Department of NeurologySchool of MedicineAddis Ababa UniversityAddis AbabaEthiopia
| | - Ozama Ismail
- Division of Medical and Scientific RelationsAlzheimer's AssociationChicagoIllinoisUSA
| |
Collapse
|
13
|
Albar NY, Hassaballa H, Shikh H, Albar Y, Ibrahim AS, Mousa AH, Alshanberi AM, Elgebaly A, Bahbah EI. The interaction between insulin resistance and Alzheimer's disease: a review article. Postgrad Med 2024; 136:377-395. [PMID: 38804907 DOI: 10.1080/00325481.2024.2360887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Insulin serves multiple functions as a growth-promoting hormone in peripheral tissues. It manages glucose metabolism by promoting glucose uptake into cells and curbing the production of glucose in the liver. Beyond this, insulin fosters cell growth, drives differentiation, aids protein synthesis, and deters degradative processes like glycolysis, lipolysis, and proteolysis. Receptors for insulin and insulin-like growth factor-1 are widely expressed in the central nervous system. Their widespread presence in the brain underscores the varied and critical functions of insulin signaling there. Insulin aids in bolstering cognition, promoting neuron extension, adjusting the release and absorption of catecholamines, and controlling the expression and positioning of gamma-aminobutyric acid (GABA). Importantly, insulin can effortlessly traverse the blood-brain barrier. Furthermore, insulin resistance (IR)-induced alterations in insulin signaling might hasten brain aging, impacting its plasticity and potentially leading to neurodegeneration. Two primary pathways are responsible for insulin signal transmission: the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway, which oversees metabolic responses, and the mitogen-activated protein kinase (MAPK) pathway, which guides cell growth, survival, and gene transcription. This review aimed to explore the potential shared metabolic traits between Alzheimer's disease (AD) and IR disorders. It delves into the relationship between AD and IR disorders, their overlapping genetic markers, and shared metabolic indicators. Additionally, it addresses existing therapeutic interventions targeting these intersecting pathways.
Collapse
Affiliation(s)
- Nezar Y Albar
- Internal Medicine Department, Dr. Samir Abbas Hospital, Jeddah, Saudi Arabia
| | | | - Hamza Shikh
- Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Yassin Albar
- Fakeeh College of Medical Sciences, Jeddah, Saudi Arabia
| | | | - Ahmed Hafez Mousa
- Department of Neurosurgery, Postgraduate Medical Education, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Neurosurgery, Rashid Hospital, Dubai Academic Health Cooperation, Dubai, United Arab Emirates
| | - Asim Muhammed Alshanberi
- Department of Community Medicine and Pilgrims Health Care, Umm Alqura University, Makkah, Saudi Arabia
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ahmed Elgebaly
- Smart Health Academic Unit, University of East London, London, UK
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| |
Collapse
|
14
|
Chen JH, Yin X, He H, Lu LW, Wang M, Liu B, Cheng KW. Potential neuroprotective benefits of plant-based fermented foods in Alzheimer's disease: an update on preclinical evidence. Food Funct 2024; 15:3920-3938. [PMID: 38517682 DOI: 10.1039/d3fo03805j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Alzheimer's disease (AD) currently lacks effective treatments, making its prevention a critical focus. While accumulating evidence supports that plant-based fermented foods may contribute to AD prevention, the neuroprotective effect of plant-based fermented foods on AD has not been comprehensively reviewed. In this study, we conducted a systematic review of preclinical studies on the efficacy of plant-based fermented foods in AD. The literature search was based on databases including PubMed, Embase, Web of Science, and Scopus. The PICO approach was employed for report inclusion, and each report was assessed for risk of bias using the SYRCLE's RoB tool. From the analysis of 25 retrieved reports, we extracted essential details, including bibliographic information, animal models and characteristics, sources of plant-based fermented foods, dosages, administration routes, durations, and outcome measures. Our findings indicate that plant-based fermented foods may positively impact acute and long-term cognitive function, as well as beta-amyloid-mediated neurodegeneration. This review sheds light on the potential neuroprotective benefits of plant-based fermented foods for various AD-related aspects, including oxidative stress, synaptotoxicity, neuroinflammation, tau hyperphosphorylation, dysfunctional amyloidogenic pathways, and cognitive deficits, as observed in rodent models of AD. However, the small number of studies obtained from our literature search and the finding that many of them were of moderate methodological quality suggest the need for further investigation to substantiate the beneficial potential of this class of functional food for the management of AD.
Collapse
Affiliation(s)
- Jie-Hua Chen
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xuan Yin
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hui He
- School of Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Louise Weiwei Lu
- School of Biological Sciences, Faculty of Science, The University, of Auckland, Auckland 1010, New Zealand
| | - Mingfu Wang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
15
|
Warren A. The relationship between gender differences in dietary habits, neuroinflammation, and Alzheimer's disease. Front Aging Neurosci 2024; 16:1395825. [PMID: 38694261 PMCID: PMC11061392 DOI: 10.3389/fnagi.2024.1395825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Neurocognitive decline is one of the foremost dire issues in medicine today. The mechanisms by which dementia pathogenesis ensues are complicated and multifactorial, particularly in the case of Alzheimer's disease (AD). One irrefutable, yet unexplained factor is the gender disparity in AD, in which women are disproportionately affected by AD, both in the rate and severity of the disease. Examining the multifaceted contributing causes along with unique gender dynamics in modifiable risk factors, such as diet, may lend some insight into why this disparity exists and potential paths forward. The aim of this brief narrative review is to summarize the current literature of gender differences in dietary habits and how they may relate to neuroinflammatory states that contribute to AD pathogenesis. As such, the interplay between diet, hormones, and inflammation will be discussed, along with potential interventions to inform care practices.
Collapse
Affiliation(s)
- Alison Warren
- The Department of Clinical Research and Leadership, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
16
|
Mohamed DA, Fouda K, Mabrok HB, El-Shamarka ME, Hamed IM. Sourdough bread as nutritional intervention tool for improvement of cognitive dysfunction in diabetic rats. BMC Nutr 2024; 10:53. [PMID: 38528644 DOI: 10.1186/s40795-024-00861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The current research targeted to study the impact of nutritional intervention by two sourdough breads in improvement of cognitive dysfunction in diabetic rats. METHODS Type-2 diabetes was induced in rats by Streptozotocin-Nicotinamide (STZ-NC). Diabetic rats were fed on balanced diet or balanced diet containing 20% of sourdough bread I or II for a month. Lipid profile, oxidative stress, inflammatory markers and cognitive functions were assessed in all rats. Gene expression of brain-derived neurotrophic factor (BDNF) and nuclear respiratory factor 2 (NRF-2) were assessed in hippocampal tissue, while expression of phosphoenol pyruvate carboxy kinase (PEPCK), and glucose transporter 2 (GLUT2) genes were evaluated in hepatic tissue. Chemical composition and fatty acids profile were evaluated in the prepared sourdough bread. RESULTS Sourdough bread II showed higher content of phenolic compounds, fat, fiber and carbohydrates. Fatty acids profile revealed that sourdough bread I was higher in saturated fatty acids (16.08%), while sourdough bread sample II was higher in unsaturated fatty acids (79.33%). Sourdough bread I or II feeding rats' showed significant improvement in hyperglycemia, oxidative stress markers, inflammatory markers, lipid profile, liver and kidney functions in association with improvement in cognitive function. Gene expression of BDNF and NRF2 in hippocampal tissue were increased significantly, while hepatic GLUT2 and PEPCK gene expression were down-regulated in diabetic given sourdough bread I or II. CONCLUSION Sourdough bread II was superior in all the studied parameters. The anti-diabetic effect and protection from cognitive dysfunction of sourdough bread samples may be ascribed to the occurrence of dietary fibers, phenolic compounds, and polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Doha A Mohamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| | - Karem Fouda
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Hoda B Mabrok
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Marwa E El-Shamarka
- Toxicology and Narcotics Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ibrahim M Hamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
17
|
Lei C, Wu G, Cui Y, Xia H, Chen J, Zhan X, Lv Y, Li M, Zhang R, Zhu X. Development and validation of a cognitive dysfunction risk prediction model for the abdominal obesity population. Front Endocrinol (Lausanne) 2024; 15:1290286. [PMID: 38481441 PMCID: PMC10932956 DOI: 10.3389/fendo.2024.1290286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/22/2024] [Indexed: 03/26/2024] Open
Abstract
Objectives This study was aimed to develop a nomogram that can accurately predict the likelihood of cognitive dysfunction in individuals with abdominal obesity by utilizing various predictor factors. Methods A total of 1490 cases of abdominal obesity were randomly selected from the National Health and Nutrition Examination Survey (NHANES) database for the years 2011-2014. The diagnostic criteria for abdominal obesity were as follows: waist size ≥ 102 cm for men and waist size ≥ 88 cm for women, and cognitive function was assessed by Consortium to Establish a Registry for Alzheimer's Disease (CERAD), Word Learning subtest, Delayed Word Recall Test, Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). The cases were divided into two sets: a training set consisting of 1043 cases (70%) and a validation set consisting of 447 cases (30%). To create the model nomogram, multifactor logistic regression models were constructed based on the selected predictors identified through LASSO regression analysis. The model's performance was assessed using several metrics, including the consistency index (C-index), the area under the receiver operating characteristic (ROC) curve (AUC), calibration curves, and decision curve analysis (DCA) to assess the clinical benefit of the model. Results The multivariate logistic regression analysis revealed that age, sex, education level, 24-hour total fat intake, red blood cell folate concentration, depression, and moderate work activity were significant predictors of cognitive dysfunction in individuals with abdominal obesity (p < 0.05). These predictors were incorporated into the nomogram. The C-indices for the training and validation sets were 0.814 (95% CI: 0.875-0.842) and 0.805 (95% CI: 0.758-0.851), respectively. The corresponding AUC values were 0.814 (95% CI: 0.875-0.842) and 0.795 (95% CI: 0.753-0.847). The calibration curves demonstrated a satisfactory level of agreement between the nomogram model and the observed data. The DCA indicated that early intervention for at-risk populations would provide a net benefit, as indicated by the line graph. Conclusion Age, sex, education level, 24-hour total fat intake, red blood cell folate concentration, depression, and moderate work activity were identified as predictive factors for cognitive dysfunction in individuals with abdominal obesity. In conclusion, the nomogram model developed in this study can effectively predict the clinical risk of cognitive dysfunction in individuals with abdominal obesity.
Collapse
Affiliation(s)
- Chun Lei
- General Practice, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Gangjie Wu
- General Practice, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yan Cui
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hui Xia
- General Practice, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jianbing Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoyao Zhan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yanlan Lv
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Meng Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Ronghua Zhang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
- Cancer Research Institution, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong, China
| | - Xiaofeng Zhu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
- Traditional Chinese Medicine Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Keramati M, Kheirouri S, Etemadifar M. Dietary approach to stop hypertension (DASH), but not Mediterranean and MIND, dietary pattern protects against Parkinson's disease. Food Sci Nutr 2024; 12:943-951. [PMID: 38370088 PMCID: PMC10867496 DOI: 10.1002/fsn3.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 02/20/2024] Open
Abstract
The neuroprotective effects of dietary patterns have been reported in previous studies. This study aimed to examine the association between the dietary approach to stop hypertension (DASH), the Mediterranean diet (MeDi), and the Mediterranean-DASH intervention for neurodegenerative delay (MIND) with the severity and risk of Parkinson's disease (PD). In this comparative cross-sectional study, 120 patients with PD and 50 healthy participants participated. Adherence to DASH, MeDi, and MIND dietary patterns was determined according to the dietary intake data using a food frequency questionnaire (FFQ). The Severity of PD was determined by the Unified Parkinson's Disease Rating Scale (UPDRS). The mean score of the DASH was significantly lower in the PD group compared to the healthy group (p = .006), but the mean score of MeDi and MIND did not significantly differ between the two groups (p > .05). Also, the mean score of the DASH was significantly lower in men than in women in the healthy group (p = .018). High adherence to the DASH diet decreased the risk of PD by 15% (OR = 0.856, 95% CI: 0.751, 0.976, p = .020). Participants in quartiles 3 and 4 of the DASH dietary pattern had 86% (p = .003) and 87% (p = .007), respectively, lower risk of PD. MeDi and MIND diets were not significantly associated with the risk of PD. There was no significant association between dietary patterns and the severity of PD. The findings indicate that high adherence to the DASH dietary pattern may protect against PD.
Collapse
Affiliation(s)
- Majid Keramati
- Faculty of Nutrition and Food SciencesTabriz University of medical sciencesTabrizIran
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Sorayya Kheirouri
- Faculty of Nutrition and Food SciencesTabriz University of medical sciencesTabrizIran
| | - Masoud Etemadifar
- Department of NeurosurgeryIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
19
|
Watanabe A, Shimada M, Maeda H, Narumi T, Ichita J, Itoku K, Nakajima A. Apple Pomace Extract Improves MK-801-Induced Memory Impairment in Mice. Nutrients 2024; 16:194. [PMID: 38257087 PMCID: PMC10818464 DOI: 10.3390/nu16020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that involves progressive cognitive decline accompanied by synaptic degeneration and impaired neurotransmission. Recent studies revealed that apple pomace, a waste byproduct of the apple processing industry, has beneficial health properties, but its potential to prevent and treat AD has not been determined. Herein, we examined the effects of apple pomace extract on N-methyl-D-aspartate receptor antagonist MK-801-induced memory impairment in mice. Repeated treatment with apple pomace extract for 7 days reversed the MK-801-induced impairment of associative memory and recognition memory. RNA sequencing revealed that repeated treatment with apple pomace extract altered the gene expression profile in the hippocampus of mice. Real-time PCR showed that apple pomace extract induced upregulation of the mRNA expression for Zfp125 and Gstp1. Furthermore, gene sets related to synapse and neurotransmission were upregulated by apple pomace extract. These findings indicate that apple pomace extract may be useful for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Ayako Watanabe
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan (H.M.)
- Department of Industry Development Sciences, Graduate School of Sustainable Community Studies, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan
| | - Minori Shimada
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan (H.M.)
| | - Hayato Maeda
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan (H.M.)
- Department of Industry Development Sciences, Graduate School of Sustainable Community Studies, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan
| | - Tsuyoshi Narumi
- Nihon Haruma Co., Ltd., 398 Kanda, Hirosaki 036-8052, Japan; (T.N.); (J.I.); (K.I.)
| | - Junji Ichita
- Nihon Haruma Co., Ltd., 398 Kanda, Hirosaki 036-8052, Japan; (T.N.); (J.I.); (K.I.)
| | - Koh Itoku
- Nihon Haruma Co., Ltd., 398 Kanda, Hirosaki 036-8052, Japan; (T.N.); (J.I.); (K.I.)
| | - Akira Nakajima
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan (H.M.)
- Department of Industry Development Sciences, Graduate School of Sustainable Community Studies, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan
| |
Collapse
|
20
|
Valentin-Escalera J, Leclerc M, Calon F. High-Fat Diets in Animal Models of Alzheimer's Disease: How Can Eating Too Much Fat Increase Alzheimer's Disease Risk? J Alzheimers Dis 2024; 97:977-1005. [PMID: 38217592 PMCID: PMC10836579 DOI: 10.3233/jad-230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
High dietary intake of saturated fatty acids is a suspected risk factor for neurodegenerative diseases, including Alzheimer's disease (AD). To decipher the causal link behind these associations, high-fat diets (HFD) have been repeatedly investigated in animal models. Preclinical studies allow full control over dietary composition, avoiding ethical concerns in clinical trials. The goal of the present article is to provide a narrative review of reports on HFD in animal models of AD. Eligibility criteria included mouse models of AD fed a HFD defined as > 35% of fat/weight and western diets containing > 1% cholesterol or > 15% sugar. MEDLINE and Embase databases were searched from 1946 to August 2022, and 32 preclinical studies were included in the review. HFD-induced obesity and metabolic disturbances such as insulin resistance and glucose intolerance have been replicated in most studies, but with methodological variability. Most studies have found an aggravating effect of HFD on brain Aβ pathology, whereas tau pathology has been much less studied, and results are more equivocal. While most reports show HFD-induced impairment on cognitive behavior, confounding factors may blur their interpretation. In summary, despite conflicting results, exposing rodents to diets highly enriched in saturated fat induces not only metabolic defects, but also cognitive impairment often accompanied by aggravated neuropathological markers, most notably Aβ burden. Although there are important variations between methods, particularly the lack of diet characterization, these studies collectively suggest that excessive intake of saturated fat should be avoided in order to lower the incidence of AD.
Collapse
Affiliation(s)
- Josue Valentin-Escalera
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| |
Collapse
|
21
|
Villoz F, Filippini T, Ortega N, Kopp-Heim D, Voortman T, Blum MR, Del Giovane C, Vinceti M, Rodondi N, Chocano-Bedoya PO. Dairy Intake and Risk of Cognitive Decline and Dementia: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv Nutr 2024; 15:100160. [PMID: 38043604 PMCID: PMC10788406 DOI: 10.1016/j.advnut.2023.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Dairy intake may influence cognition through several molecular pathways. However, epidemiologic studies yield inconsistent results, and no dose-response meta-analysis has been conducted yet. Therefore, we performed a systematic review with a dose-response meta-analysis about the association between dairy intake and cognitive decline or incidence of dementia. We investigated prospective studies with a follow-up ≥6 mo on cognitive decline or dementia incidence in adults without known chronic conditions through a systematic search of Embase, Medline, Cochrane Library, Web of Science, and Google Scholar from inception to 11 July 2023. We evaluated the dose-response association using a random-effects model. We identified 15 eligible cohort studies with >300,000 participants and a median follow-up of 11.4 y. We observed a negative nonlinear association between cognitive decline/dementia incidence and dairy intake as assessed through the quantity of consumption, with the nadir at ∼150 g/d (risk ratio: 0.88; 95% confidence interval: 0.78, 0.99). Conversely, we found an almost linear negative association when we considered the frequency of consumption (risk ratio for linear trend: 0.84; 95% confidence interval: 0.77, 0.92 for 1 time/d increase of dairy products). Stratified analysis by dairy products showed different shapes of the association with linear inverse relationship for milk intake, whereas possibly nonlinear for cheese. The inverse association was limited to Asian populations characterized by generally lower intake of dairy products, compared with the null association reported by European studies. In conclusion, our study suggests a nonlinear inverse association between dairy intake and cognitive decline or dementia, also depending on dairy types and population characteristics, although the heterogeneity was still high in overall and several subgroup analyses. Additional studies should be performed on this topic, including a wider range of intake and types of dairy products, to confirm a potential preventing role of dairy intake on cognitive decline and identify ideal intake doses. This review was registered at PROSPERO as CRD42020192395.
Collapse
Affiliation(s)
- Fanny Villoz
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland; Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tommaso Filippini
- Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, United States
| | - Natalia Ortega
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland; Population Health Laboratory, University of Fribourg, Fribourg, Switzerland
| | - Doris Kopp-Heim
- Public Health and Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Manuel R Blum
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland; Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cinzia Del Giovane
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland; Population Health Laboratory, University of Fribourg, Fribourg, Switzerland; Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Marco Vinceti
- Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Nicolas Rodondi
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland; Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Patricia O Chocano-Bedoya
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland; Population Health Laboratory, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
22
|
Weaver DF. Thirty Risk Factors for Alzheimer's Disease Unified by a Common Neuroimmune-Neuroinflammation Mechanism. Brain Sci 2023; 14:41. [PMID: 38248256 PMCID: PMC10813027 DOI: 10.3390/brainsci14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
One of the major obstacles confronting the formulation of a mechanistic understanding for Alzheimer's disease (AD) is its immense complexity-a complexity that traverses the full structural and phenomenological spectrum, including molecular, macromolecular, cellular, neurological and behavioural processes. This complexity is reflected by the equally complex diversity of risk factors associated with AD. However, more than merely mirroring disease complexity, risk factors also provide fundamental insights into the aetiology and pathogenesis of AD as a neurodegenerative disorder since they are central to disease initiation and subsequent propagation. Based on a systematic literature assessment, this review identified 30 risk factors for AD and then extended the analysis to further identify neuroinflammation as a unifying mechanism present in all 30 risk factors. Although other mechanisms (e.g., vasculopathy, proteopathy) were present in multiple risk factors, dysfunction of the neuroimmune-neuroinflammation axis was uniquely central to all 30 identified risk factors. Though the nature of the neuroinflammatory involvement varied, the activation of microglia and the release of pro-inflammatory cytokines were a common pathway shared by all risk factors. This observation provides further evidence for the importance of immunopathic mechanisms in the aetiopathogenesis of AD.
Collapse
Affiliation(s)
- Donald F Weaver
- Krembil Research Institute, University Health Network, Departments of Medicine, Chemistry, Pharmaceutical Sciences, University of Toronto, Toronto, ON M5T 0S8, Canada
| |
Collapse
|
23
|
Kim SH, Yoon JB, Han J, Seo YA, Kang BH, Lee J, Ochar K. Green Onion ( Allium fistulosum): An Aromatic Vegetable Crop Esteemed for Food, Nutritional and Therapeutic Significance. Foods 2023; 12:4503. [PMID: 38137307 PMCID: PMC10742967 DOI: 10.3390/foods12244503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, there has been a shift towards a greater demand for more nutritious and healthier foods, emphasizing the role of diets in human well-being. Edible Alliums, including common onions, garlic, chives and green onions, are staples in diverse cuisines worldwide and are valued specifically for their culinary versatility, distinct flavors and nutritional and medicinal properties. Green onions are widely cultivated and traded as a spicy vegetable. The mild, onion-like flavor makes the crop a pleasant addition to various dishes, serving as a staple ingredient in many world cuisines, particularly in Eastern Asian countries such as China, Japan and the Republic of Korea. The green pseudostems, leaves and non-developed bulbs of green onions are utilized in salads, stir-fries, garnishes and a myriad of culinary preparations. Additionally, green onions have a rich historical background in traditional medicine and diets, capturing the attention of chefs and the general public. The status of the crop as an important food, its culinary diversity and its nutraceutical and therapeutic value make it a subject of great interest in research. Therefore, the present review has examined the distribution, culinary, nutritional and therapeutic significance of green onions, highlighting the health benefits derived from the consumption of diets with this aromatic vegetable crop as a constituent.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea
| | - Jung Beom Yoon
- National Institute of Horticultural and Herbal Science, RDA, Wanju 55365, Republic of Korea;
| | - Jiwon Han
- National Institute of Horticultural and Herbal Science, RDA, Muan 58545, Republic of Korea;
| | - Yum Am Seo
- Department of Data Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Byeong-Hee Kang
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jaesu Lee
- Korea Partnership for Innovation of Agriculture, RDA, Jeonju 54875, Republic of Korea;
| | - Kingsley Ochar
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana
| |
Collapse
|
24
|
Łuszczki E, Boakye F, Zielińska M, Dereń K, Bartosiewicz A, Oleksy Ł, Stolarczyk A. Vegan diet: nutritional components, implementation, and effects on adults' health. Front Nutr 2023; 10:1294497. [PMID: 38024367 PMCID: PMC10665534 DOI: 10.3389/fnut.2023.1294497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Vegan diet has emerged as a popular dietary choice for people worldwide in recent times, due to concerns such as health issues, animal rights and welfare, and the sustainability of the environment. The purpose of this literature review was to explain how a vegan diet may affect the health of adults and to point out beneficial components found in it as well as any difficulties associated with its implementation. Evidence supports that a vegan diet can reduce the risk of chronic diseases, such as type 2 diabetes, hypertension, and certain types of cancer. A well-planned vegan diet must include adequate calories and nutrients, as well as the necessary supplements, such as vitamin B12, vitamin D and EPA/DHA. Given the current growing interest in plant-based diets among the general population, it is crucial to understand both the barriers, risks, and benefits of the vegan diet among physicians, policy makers, and the general population.
Collapse
Affiliation(s)
- Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszów University, Rzeszów, Poland
| | - Faustina Boakye
- Institute of Health Sciences, Medical College of Rzeszów University, Rzeszów, Poland
| | - Magdalena Zielińska
- Institute of Health Sciences, Medical College of Rzeszów University, Rzeszów, Poland
| | - Katarzyna Dereń
- Institute of Health Sciences, Medical College of Rzeszów University, Rzeszów, Poland
| | - Anna Bartosiewicz
- Institute of Health Sciences, Medical College of Rzeszów University, Rzeszów, Poland
| | - Łukasz Oleksy
- Faculty of Health Sciences, Department of Physiotherapy, Jagiellonian University Medical College, Kraków, Poland
| | - Artur Stolarczyk
- Orthopedic and Rehabilitation Department, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Zhu M, Ding X, Wang Q, Xue J, Shi J, Li Z. Association between self-perception of aging and cognitive function in Chinese older adults: The mediation effect of health behaviors. Geriatr Nurs 2023; 54:350-356. [PMID: 37967507 DOI: 10.1016/j.gerinurse.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVE To investigate the association between self-perception of aging (SPA) and cognitive function in Chinese older adults, and to explore the mediating role of health behaviors. METHODS This study included 5,445 Chinese older adults from the 2018 wave of the Chinese Longitudinal Healthy Longevity Survey (CLHLS). Correlation, linear regression and mediation effect analysis were employed to evaluate the association. RESULTS SPA is significantly related to the health behaviors (r = 0.160, P < 0.01) and cognition (r = 0.086, P < 0.01), and health behaviors exhibited a positive correlation with cognition (r = 0.179, P < 0.01). SPA and health behaviors significantly impacted cognition (β = 0.032, P = 010; β = 0.103, P < 0.001). Health behaviors partially mediated the effect of SPA on cognitive function, accounting for 27.12 % of the total effect. CONCLUSION Health behaviors mediate the association between SPA and cognitive function. Healthcare providers should prioritize addressing SPA of older adults and encourage them to engage in health behaviors for cognitive health.
Collapse
Affiliation(s)
- Mingyue Zhu
- School of Nursing, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaotong Ding
- School of Nursing, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Wang
- School of Nursing, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; School of Nursing, Lanzhou University, Lanzhou, China
| | - Jiajun Xue
- School of Nursing, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiyuan Shi
- School of Nursing, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zheng Li
- School of Nursing, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
26
|
Tate BN, Van Guilder GP, Aly M, Spence LA, Diaz-Rubio ME, Le HH, Johnson EL, McFadden JW, Perry CA. Changes in Choline Metabolites and Ceramides in Response to a DASH-Style Diet in Older Adults. Nutrients 2023; 15:3687. [PMID: 37686719 PMCID: PMC10489641 DOI: 10.3390/nu15173687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
This feeding trial evaluated the impact of the Dietary Approaches to Stop Hypertension diet on changes in plasma choline, choline metabolites, and ceramides in obese older adults; 28 adults consumed 3oz (n = 15) or 6oz (n = 13) of beef within a standardized DASH diet for 12 weeks. Plasma choline, betaine, methionine, dimethylglycine (DMG), phosphatidylcholine (PC), lysophosphotidylcholine (LPC), sphingomyelin, trimethylamine-N-oxide (TMAO), L-carnitine, ceramide, and triglycerides were measured in fasted blood samples. Plasma LPC, sphingomyelin, and ceramide species were also quantified. In response to the study diet, with beef intake groups combined, plasma choline decreased by 9.6% (p = 0.012); DMG decreased by 10% (p = 0.042); PC decreased by 51% (p < 0.001); total LPC increased by 281% (p < 0.001); TMAO increased by 26.5% (p < 0.001); total ceramide decreased by 22.1% (p < 0.001); and triglycerides decreased by 18% (p = 0.021). All 20 LPC species measured increased (p < 0.01) with LPC 16:0 having the greatest response. Sphingomyelin 16:0, 18:0, and 18:1 increased (all p < 0.001) by 10.4%, 22.5%, and 24%, respectively. In contrast, we observed that sphingomyelin 24:0 significantly decreased by 10%. Ceramide 22:0 and 24:0 decreased by 27.6% and 10.9% (p < 0.001), respectively, and ceramide 24:1 increased by 36.8% (p = 0.013). Changes in choline and choline metabolites were in association with anthropometric and cardiometabolic outcomes. These findings show the impact of the DASH diet on choline metabolism in older adults and demonstrate the influence of diet to modify circulating LPC, sphingomyelin, and ceramide species.
Collapse
Affiliation(s)
- Brianna N. Tate
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; (B.N.T.); (J.W.M.)
| | - Gary P. Van Guilder
- High Altitude Exercise Physiology Department, Western Colorado University, Gunnison, CO 81231, USA;
| | - Marwa Aly
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| | - Lisa A. Spence
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| | - M. Elena Diaz-Rubio
- Proteomic and Metabolomics Facility, Cornell University, Ithaca, NY 14853, USA;
| | - Henry H. Le
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (H.H.L.); (E.L.J.)
| | - Elizabeth L. Johnson
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (H.H.L.); (E.L.J.)
| | - Joseph W. McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; (B.N.T.); (J.W.M.)
| | - Cydne A. Perry
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| |
Collapse
|
27
|
Wang Y, Xu H, Geng Z, Geng G, Zhang F. Dementia and the history of disease in older adults in community. BMC Public Health 2023; 23:1555. [PMID: 37582737 PMCID: PMC10428616 DOI: 10.1186/s12889-023-16494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/09/2023] [Indexed: 08/17/2023] Open
Abstract
INTRODUCTION Many studies have revealed the effect of medical history on dementia. The aim of this study was to explore the relationship between the history of disease and onset of dementia. METHODS This was a multi-center, cross-sectional study, with 2595 older adults enrolled. The onset of dementia was evaluated with Revised Hasegawa Dementia Scale (HDS-R). The diagnosed diseases after the age of 40 of the participants were investigated, including respiratory system diseases, digestive system diseases, cardiovascular diseases, endocrine disorders, genitourinary system diseases, nervous system disease, sensory system diseases, dental/oral diseases, bone/joint diseases and mental illnesses. RESULTS Data of 2458 older adults were analyzed. Univariate analysis showed that diabetes, thyroid disease, mental illness, hearing loss, stroke, dental/oral disease, Denture use, fracture/osteoporosis, kidney disease and number of diseases were risk factors for dementia. After controlling for demographic sociological variables, diabetes, dental/oral disease, and denture use were independent risk factors for dementia. Thyroid disease (P = 0.313), mental illnesses (P = 0.067), hearing loss (P = 0.595), stroke (P = 0.538), fractures/osteoporosis (P = 0.069), kidney disease (P = 0.168) were no longer significant to dementia. CONCLUSION Diabetes, dental/oral disease and denture use were main risk factors for dementia.
Collapse
Affiliation(s)
- Yuan Wang
- Medical College of Nantong University, 19 QiXiu Road, Nantong City, Jiangsu Province, China
| | - Honglian Xu
- Nantong North Rehabilitation Hospital, Nantong City, Jiangsu Province, China
| | - Zihan Geng
- Medical College of Nantong University, 19 QiXiu Road, Nantong City, Jiangsu Province, China
| | - Guiling Geng
- Medical College of Nantong University, 19 QiXiu Road, Nantong City, Jiangsu Province, China
| | - Feng Zhang
- Medical College of Nantong University, 19 QiXiu Road, Nantong City, Jiangsu Province, China.
| |
Collapse
|
28
|
Castro CB, Dias CB, Hillebrandt H, Sohrabi HR, Chatterjee P, Shah TM, Fuller SJ, Garg ML, Martins RN. Medium-chain fatty acids for the prevention or treatment of Alzheimer's disease: a systematic review and meta-analysis. Nutr Rev 2023; 81:1144-1162. [PMID: 36633304 DOI: 10.1093/nutrit/nuac104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
CONTEXT In preclinical Alzheimer's disease (AD), the brain gradually becomes insulin resistant. As a result, brain glucose utilization is compromised, causing a cellular energy deficit that leads to the accumulation of free radicals, which increases inflammation and damages neurons. When glucose utilization is impaired, ketone bodies offer an alternative energy source. Ketone bodies are synthesized from fats, obtained from either the diet or adipose tissue. Dietary medium-chain fatty acids (MCFAs), which are preferentially metabolized into ketone bodies, have the potential to supply the insulin-resistant brain with energy. OBJECTIVE This systematic review and meta-analysis aims to review the effect of MCFA supplements on circulating ketone bodies and cognition in individuals with subjective cognitive decline, mild cognitive impairment, and AD. DATA SOURCES A comprehensive search of electronic databases was performed on August 12, 2019, to retrieve all publications meeting the inclusion criteria. Alerts were then set to identify any publications after the search date up until January 31, 2021. DATA EXTRACTION Data were extracted by 2 authors and assessed by a third. In total, 410 publications were identified, of which 16 (n = 17 studies) met the inclusion criteria. DATA ANALYSIS All studies assessing change in levels of blood ketone bodies due to MCFA supplementation (n = 12) reported a significant increase. Cognition outcomes (measured in 13 studies), however, varied, ranging from no improvement (n = 4 studies) to improvement (n = 8 studies) or improvement only in apolipoprotein E allele 4 (APOE ε4) noncarriers (n = 2 studies). One study reported an increase in regional cerebral blood flow in APOE ε4 noncarriers and another reported an increase in energy metabolism in the brain. CONCLUSION MCFA supplementation increases circulating ketone body levels, resulting in increased brain energy metabolism. Further research is required to determine whether this MCFA-mediated increase in brain energy metabolism improves cognition. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42019146967.
Collapse
Affiliation(s)
- Carolina B Castro
- Murdoch University Centre for Healthy Ageing, Murdoch University, Perth, Western Australia, Australia
- Australian Alzheimer's Research Foundation, Perth, Western Australia, Australia
| | - Cintia B Dias
- Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Heidi Hillebrandt
- Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Hamid R Sohrabi
- Murdoch University Centre for Healthy Ageing, Murdoch University, Perth, Western Australia, Australia
- Australian Alzheimer's Research Foundation, Perth, Western Australia, Australia
| | - Pratishtha Chatterjee
- Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Tejal M Shah
- Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
- Australian Alzheimer's Research Foundation, Perth, Western Australia, Australia
| | - Stephanie J Fuller
- Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Manohar L Garg
- Nutraceuticals Research Program, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Ralph N Martins
- Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
- Australian Alzheimer's Research Foundation, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowen University, Perth, Western Australia, Australia
| |
Collapse
|
29
|
Han W, Jiao Y, Mi S, Han S, Xu J, Li S, Liu Y, Guo L. Stevioside reduces inflammation in periodontitis by changing the oral bacterial composition and inhibiting P. gingivalis in mice. BMC Oral Health 2023; 23:550. [PMID: 37563632 PMCID: PMC10416424 DOI: 10.1186/s12903-023-03229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Excessive sugar intake has become a major challenge in modern societies. Stevioside is a promising non-calorie sweetener with anti-inflammatory effects; however, its effects on the oral environment and periodontitis remain unclear. Therefore, this study explores the effect of stevioside on periodontitis in mice. METHODS Mice were divided into four groups, namely, control, treated with water, and periodontitis models, established using 5 - 0 silk sutures ligation around the second molar then infected the oral cavity with Porphyromonas gingivalis (P. gingivalis) viscous suspension, divided into three groups treated with 0.1% stevioside (P + S), 10% glucose (P + G), or water (P). Micro-CT scanning was used to assess alveolar bone resorption, while RT-PCR was used to evaluate the inflammatory factors expression and P. gingivalis invasion in the gingiva. The composition of the oral bacteria was analysed using 16 S rRNA sequence in the saliva. In addition, P. gingivalis was co-cultured with stevioside at different concentrations in vitro, and bacterial activity was detected via optical density values and live/dead staining. The virulence was detected using RT-PCR, while biofilm formation was detected using scanning electron microscopy. RESULTS Compared with 10% glucose, treatment with 0.1% stevioside reduced alveolar bone absorption and osteoclasts while decreasing IL-6, TNF-α, IL-1β, and P. gingivalis in the gingiva of periodontitis mice. The CEJ-ABC distance in the P + S group was significantly lower than that in the P and P + G groups (P < 0.05). Moreover, the composition of the oral bacteria in the P + S group was similar to that of the control. In vitro stevioside treatment also reduced the bacterial activity and toxicity of P. gingivalis in a dose-dependent manner and affected its biofilm composition. CONCLUSION Our results indicate that, compared with 10% glucose, 0.1% stevioside intake can reduce alveolar bone resorption and inflammation in periodontal tissues in mice; the bacterial composition following 0.1% stevioside intake was similar to that of a healthy environment. In vitro, high concentrations of stevioside reduced P. gingivalis activity, biofilm formation, and virulence expression. Therefore, stevioside is a potential alternative to glucose for patients with periodontitis.
Collapse
Affiliation(s)
- Wenrui Han
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yao Jiao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Sicong Mi
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Shu Han
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Song Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
30
|
de Crom TOE, Blekkenhorst L, Vernooij MW, Ikram MK, Voortman T, Ikram MA. Dietary nitrate intake in relation to the risk of dementia and imaging markers of vascular brain health: a population-based study. Am J Clin Nutr 2023; 118:352-359. [PMID: 37536866 DOI: 10.1016/j.ajcnut.2023.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Nitric oxide is a free radical that can be produced from dietary nitrate and positively affects cardiovascular health. With cardiovascular health playing an important role in the etiology of dementia, we hypothesized a link between dietary nitrate intake and the risk of dementia. OBJECTIVES This study aimed to find the association of total, vegetable, and nonvegetable dietary nitrate intake with the risk of dementia and imaging markers of vascular brain health, such as total brain volume, global cerebral perfusion, white matter hyperintensity volume, microbleeds, and lacunar infarcts. METHODS Between 1990 and 2009, dietary intake was assessed using food-frequency questionnaires in 9543 dementia-free participants (mean age, 64 y; 58% female) from the prospective population-based Rotterdam Study. Participants were followed up for incidence dementia until January 2020. We used Cox models to determine the association between dietary nitrate intake and incident dementia. Using linear mixed models and logistic regression models, we assessed the association of dietary nitrate intake with changes in imaging markers across 3 consecutive examination rounds (mean interval between images 4.6 y). RESULTS Participants median dietary nitrate consumption was 85 mg/d (interquartile range, 55 mg/d), derived on average for 81% from vegetable sources. During a mean follow-up of 14.5 y, 1472 participants developed dementia. A higher intake of total and vegetable dietary nitrate was associated with a lower risk of dementia per 50-mg/d increase [hazard ratio (HR): 0.92; 95% confidence interval (CI): 0.87, 0.98; and HR: 0.92; 95% CI: 0.86, 0.97, respectively] but not with changes in neuroimaging markers. No association between nonvegetable dietary nitrate intake and the risk of dementia (HR: 1.15; 95% CI: 0.64, 2.07) or changes in neuroimaging markers were observed. CONCLUSIONS A higher dietary nitrate intake from vegetable sources was associated with a lower risk of dementia. We found no evidence that this association was driven by vascular brain health.
Collapse
Affiliation(s)
- Tosca O E de Crom
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Lauren Blekkenhorst
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Royal Perth Hospital Research Foundation, Perth, Western Australia, Australia
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Neurology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
31
|
Choi PG, Park SH, Nirmala FS, Kim HS, Kim MJ, Hahm JH, Seo HD, Ahn J, Ha T, Jung CH. Geniposide-Rich Gardenia jasminoides Ellis Fruit Extract Increases Healthspan in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2023; 78:1108-1115. [PMID: 36821434 DOI: 10.1093/gerona/glad066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 02/24/2023] Open
Abstract
The human life span has been markedly extended since the 1900s, but it has not brought healthy aging to everyone. This increase in life expectancy without an increase in healthspan is a major global concern that imposes considerable health care budgets and degrades the quality of life of older adults. Dietary interventions are a promising strategy to increase healthspan. In this study, we evaluated whether a Gardenia jasminoides Ellis fruit ethanol extract (GFE) increases the life span of Caenorhabditis elegans (C. elegans). Treatment with 10 mg/mL GFE increased the life span by 27.1% when compared to the vehicle group. GFE (10 mg/mL) treatment improved healthspan-related markers (pharyngeal pumping, muscle quality, age-pigment, and reactive oxygen species accumulation) and exerted a protective effect against amyloid β 1-42 toxicity. These effects of GFE are related to the inhibition of insulin/IGF-1 signaling and activation of SKN-1/Nrf, thereby promoting the expression of stress resistance-related genes. In addition, treatment with 10 mM geniposide, the most abundant component of GFE, improved healthspan-related markers and increased life span by 18.55% when compared to the vehicle group. Collectively, these findings demonstrate that GFE and its component geniposide increase the life span along with healthspan in C. elegans.
Collapse
Affiliation(s)
- Pyeong Geun Choi
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - So-Hyun Park
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Farida S Nirmala
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Hee Soo Kim
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Min Jung Kim
- Personalized Diet Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Hyo-Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Jiyun Ahn
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Taeyoul Ha
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Chang Hwa Jung
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| |
Collapse
|
32
|
Wang J, Yu Z, Peng Y, Xu B. Insights into prevention mechanisms of bioactive components from healthy diets against Alzheimer's disease. J Nutr Biochem 2023:109397. [PMID: 37301484 DOI: 10.1016/j.jnutbio.2023.109397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease in which senile plaques, neurofibrillary tangles, insulin resistance, oxidative stress, chronic neuroinflammation, and abnormal neurotransmission are the potential mechanisms involved in its onset and development. Although it is still an intractable disorder, diet intervention has been developed as an innovative strategy for AD prevention. Some bioactive compounds and micronutrients from food, including soy isoflavones, rutin, vitamin B1, etc., have exhibited numerous neuronal health-promoting effects in both in vivo and in vitro studies. It is well known that their antiapoptotic, antioxidative, and anti-inflammatory properties prevent the neuronal or glial cells from injury or death, minimize oxidative damage, inhibit the production of proinflammatory cytokines by modulating typical signaling pathways of MAPK, NF-kβ, and TLR, and further reduce Aβ genesis and tau hyperphosphorylation. However, parts of the dietary components trigger AD-related proteins productions and inflammasome as well as inflammatory gene upregulation. This review summarized the neuroprotective or nerve damage-promoting role and underlying molecular mechanisms of flavonoids, vitamins, and fatty acids via the data from library databases, PubMed, and journal websites, which provides a comprehensive analysis of the prevention potential of these dietary components against AD.
Collapse
Affiliation(s)
- Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Zhiling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
33
|
Zou B, Li J, Ma RX, Cheng XY, Ma RY, Zhou TY, Wu ZQ, Yao Y, Li J. Gut Microbiota is an Impact Factor based on the Brain-Gut Axis to Alzheimer's Disease: A Systematic Review. Aging Dis 2023; 14:964-1678. [PMID: 37191418 DOI: 10.14336/ad.2022.1127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/27/2022] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. The pathogenesis of AD has been explained using cholinergic, β-amyloid toxicity, tau protein hyperphosphorylation, and oxidative stress theories. However, an effective treatment method has not been developed. In recent years, with the discovery of the brain-gut axis (BGA) and breakthroughs made in Parkinson's disease, depression, autism, and other diseases, BGA has become a hotspot in AD research. Several studies have shown that gut microbiota can affect the brain and behavior of patients with AD, especially their cognitive function. Animal models, fecal microbiota transplantation, and probiotic intervention also provide evidence regarding the correlation between gut microbiota and AD. This article discusses the relationship and related mechanisms between gut microbiota and AD based on BGA to provide possible strategies for preventing or alleviating AD symptoms by regulating gut microbiota.
Collapse
Affiliation(s)
- Bin Zou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Rui-Xia Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Rui-Yin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ting-Yuan Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zi-Qi Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
34
|
Xu Lou I, Ali K, Chen Q. Effect of nutrition in Alzheimer's disease: A systematic review. Front Neurosci 2023; 17:1147177. [PMID: 37214392 PMCID: PMC10194838 DOI: 10.3389/fnins.2023.1147177] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 05/24/2023] Open
Abstract
Background and objective Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by declining cognitive ability. Currently, there are no effective treatments for this condition. However, certain measures, such as nutritional interventions, can slow disease progression. Therefore, the objective of this systematic review was to identify and map the updates of the last 5 years regarding the nutritional status and nutritional interventions associated with AD patients. Study design A systematic review. Methods A search was conducted for randomized clinical trials, systematic reviews, and meta-analyses investigating the association between nutritional interventions and AD published between 2018 and 2022 in the PubMed, Web of Science, Scopus, and Cochrane Library databases. A total of 38 studies were identified, of which 17 were randomized clinical trials, and 21 were systematic reviews and/or meta-analyses. Results The results show that the western diet pattern is a risk factor for developing AD. In contrast, the Mediterranean diet, ketogenic diet, and supplementation with omega-3 fatty acids and probiotics are protective factors. This effect is significant only in cases of mild-to-moderate AD. Conclusion Certain nutritional interventions may slow the progression of AD and improve cognitive function and quality of life. Further research is required to draw more definitive conclusions.
Collapse
Affiliation(s)
- Inmaculada Xu Lou
- International Education College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Kamran Ali
- Department of Oncology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qilan Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
35
|
Formolo DA, Yu J, Lin K, Tsang HWH, Ou H, Kranz GS, Yau SY. Leveraging the glymphatic and meningeal lymphatic systems as therapeutic strategies in Alzheimer's disease: an updated overview of nonpharmacological therapies. Mol Neurodegener 2023; 18:26. [PMID: 37081555 PMCID: PMC10116684 DOI: 10.1186/s13024-023-00618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Understanding and treating Alzheimer's disease (AD) has been a remarkable challenge for both scientists and physicians. Although the amyloid-beta and tau protein hypothesis have largely explained the key pathological features of the disease, the mechanisms by which such proteins accumulate and lead to disease progression are still unknown. Such lack of understanding disrupts the development of disease-modifying interventions, leaving a therapeutic gap that remains unsolved. Nonetheless, the recent discoveries of the glymphatic pathway and the meningeal lymphatic system as key components driving central solute clearance revealed another mechanism underlying AD pathogenesis. In this regard, this narrative review integrates the glymphatic and meningeal lymphatic systems as essential components involved in AD pathogenesis. Moreover, it discusses the emerging evidence suggesting that nutritional supplementation, non-invasive brain stimulation, and traditional Chinese medicine can improve the pathophysiology of the disease by increasing glymphatic and/or meningeal lymphatic function. Given that physical exercise is a well-regarded preventive and pro-cognitive intervention for dementia, we summarize the evidence suggesting the glymphatic system as a mediating mechanism of the physical exercise therapeutic effects in AD. Targeting these central solute clearance systems holds the promise of more effective treatment strategies.
Collapse
Affiliation(s)
- Douglas A Formolo
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, S.A.R, China
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong S.A.R, China
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong S.A.R, China
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, S.A.R, China
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong S.A.R, China
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong S.A.R, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao City, Shandong Province, China
| | - Hector W H Tsang
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, S.A.R, China
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong S.A.R, China
| | - Haining Ou
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, S.A.R, China
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong S.A.R, China
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong S.A.R, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, S.A.R, China.
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong S.A.R, China.
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong S.A.R, China.
| |
Collapse
|
36
|
Doak S, Kearney JM, McCormack JM, Keaver L. The relationship between diet and lifestyle behaviours in a sample of higher education students; a cross-sectional study. Clin Nutr ESPEN 2023; 54:293-299. [PMID: 36963876 DOI: 10.1016/j.clnesp.2023.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Transitioning into higher education (HE) impacts health behaviours. Poor dietary and lifestyle behaviours may correlate and increase risk of co-morbidities. The introduction of the Okanagan Charter detailed the important role of health promotion within a HE setting. The aim of this study was to assess the relationship between dietary quality and lifestyle behaviours of students attending HE. METHODS Full-time students, aged 18+, were eligible to participate in this online cross-sectional study. Self-reported questions were asked in relation to demographics, body mass index (BMI), smoking, and COVID-19. A food frequency questionnaire measured dietary quality along with tools assessing alcohol use, sleep quality, perceived stress, and physical activity. Statistical analyses were performed using chi-square, one-way ANOVA, independent sample t-tests, Pearson's correlation, and multivariate linear regression. RESULTS Evidence of a correlation between poor diet quality and having a higher BMI (p = 0.040), higher alcohol consumption (p = <0.001), poorer sleep quality (p = 0.003), higher stress levels (p = 0.006) and smoking (p = 0.001) was found. Low fruit and vegetable consumption were associated with higher BMI (p = 0.013), higher alcohol consumption (p = <0.001), lower physical activity levels (p = 0.006), higher stress levels (p = <0.001), smoking (p = <0.001) and being male (p = 0.002). CONCLUSIONS This study provides data on the association between dietary quality and lifestyle behaviours among HE students and will inform healthy campus initiatives.
Collapse
Affiliation(s)
- Stephen Doak
- Department of Health and Nutritional Science, Atlantic Technological University, Ash Lane, Sligo F91 YW50, Ireland
| | - John M Kearney
- School of Biological and Health Sciences, Technological University Dublin, Dublin City Campus, Grangegorman, Dublin 7, Ireland
| | - Jacqueline M McCormack
- Vice President for Equality, Diversity & Inclusion and Online Development, Atlatnic Technological University, Ash Lane, Sligo F91 YW50, Ireland
| | - Laura Keaver
- Department of Health and Nutritional Science, Atlantic Technological University, Ash Lane, Sligo F91 YW50, Ireland.
| |
Collapse
|
37
|
Marshall LJ, Bailey J, Cassotta M, Herrmann K, Pistollato F. Poor Translatability of Biomedical Research Using Animals - A Narrative Review. Altern Lab Anim 2023; 51:102-135. [PMID: 36883244 DOI: 10.1177/02611929231157756] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The failure rate for the translation of drugs from animal testing to human treatments remains at over 92%, where it has been for the past few decades. The majority of these failures are due to unexpected toxicity - that is, safety issues revealed in human trials that were not apparent in animal tests - or lack of efficacy. However, the use of more innovative tools, such as organs-on-chips, in the preclinical pipeline for drug testing, has revealed that these tools are more able to predict unexpected safety events prior to clinical trials and so can be used for this, as well as for efficacy testing. Here, we review several disease areas, and consider how the use of animal models has failed to offer effective new treatments. We also make some suggestions as to how the more human-relevant new approach methodologies might be applied to address this.
Collapse
Affiliation(s)
- Lindsay J Marshall
- Animal Research Issues, 94219The Humane Society of the United States, Gaithersburg, MD, USA
| | - Jarrod Bailey
- 380235Cruelty Free International, London, UK; 542332Animal Free Research UK, London, UK
| | | | - Kathrin Herrmann
- Johns Hopkins Bloomberg School of Public Health, 457389Center for Alternatives to Animal Testing, Baltimore, MD, USA; Senate Department for the Environment, Urban Mobility, Consumer Protection and Climate Action, Berlin, Germany
| | | |
Collapse
|
38
|
Andreo-López MC, Contreras-Bolívar V, Muñoz-Torres M, García-Fontana B, García-Fontana C. Influence of the Mediterranean Diet on Healthy Aging. Int J Mol Sci 2023; 24:4491. [PMID: 36901921 PMCID: PMC10003249 DOI: 10.3390/ijms24054491] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The life expectancy of the global population has increased. Aging is a natural physiological process that poses major challenges in an increasingly long-lived and frail population. Several molecular mechanisms are involved in aging. Likewise, the gut microbiota, which is influenced by environmental factors such as diet, plays a crucial role in the modulation of these mechanisms. The Mediterranean diet, as well as the components present in it, offer some proof of this. Achieving healthy aging should be focused on the promotion of healthy lifestyle habits that reduce the development of pathologies that are associated with aging, in order to increase the quality of life of the aging population. In this review we analyze the influence of the Mediterranean diet on the molecular pathways and the microbiota associated with more favorable aging patterns, as well as its possible role as an anti-aging treatment.
Collapse
Affiliation(s)
| | - Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Cristina García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| |
Collapse
|
39
|
Mahinrad S, Sorond F, Gorelick PB. The Role of Vascular Risk Factors in Cognitive Impairment and Dementia and Prospects for Prevention. Clin Geriatr Med 2023; 39:123-134. [PMID: 36404025 DOI: 10.1016/j.cger.2022.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the most challenging clinical expressions of population aging is cognitive impairment and dementia. Among risk factors for the development of dementia, modifiable vascular risk factors have emerged as contributors to both vascular and nonvascular types of dementia. Epidemiologic studies have been particularly informative in understanding the link between vascular risks and dementia across the life course. We discuss vascular risks for dementia and cognitive impairment and practical management recommendations.
Collapse
Affiliation(s)
- Simin Mahinrad
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 625 N. Michigan Avenue, 11th Floor, Suite 1150, Chicago, IL 60611, USA.
| | - Farzaneh Sorond
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 625 N. Michigan Avenue, 11th Floor, Suite 1150, Chicago, IL 60611, USA
| | - Philip B Gorelick
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 625 N. Michigan Avenue, 11th Floor, Suite 1150, Chicago, IL 60611, USA
| |
Collapse
|
40
|
Nyulas KI, Germán-Salló M, Fazakas Z, Preg Z, Pál T, Pál S, Tripon RG, Cseh MJ, Simon-Szabó Z, Arbănași EM, Nemes-Nagy E. Relationship between Nutrition, Lifestyle Habits and Laboratory Parameters in Hypertensive Patients with/without Cognitive Dysfunction. Life (Basel) 2023; 13:311. [PMID: 36836668 PMCID: PMC9960921 DOI: 10.3390/life13020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
(1) Background: Cognitive dysfunction is a major concern in hypertensive patients. Lifestyle habits and nutrition influence laboratory parameters, with an impact on clinical course. The objective of the study was to evaluate nutrition and lifestyle habits in hypertensive patients with/without cognitive dysfunction and establish correlations to laboratory parameters. MATERIAL AND METHODS 50 patients admitted to the Cardiovascular Rehabilitation Clinic in Târgu Mureș were enrolled in this study between March-June 2021. We evaluated their cognitive function, and they filled in a questionnaire about lifestyle and nutrition. Biochemical blood tests were performed using a Konelab Prime 60i analyzer. IBM-SPSS22 and GraphPad InStat3 were used for statistics. RESULTS Mean age of hypertensive patients (n = 50) was 70.42 ± 4.82 (SD) years, half of them had cognitive dysfunction. Zinc deficiency was present in 74% of the subjects. The subgroup with cognitive dysfunction had significantly higher BMI (p = 0.009) and microalbuminuria (p = 0.0479), as well as significantly lower magnesium intake (p = 0.032) and cholesterol intake (p = 0.022), compared to those with normal cognitive status. CONCLUSIONS Nutrition is in a close relationship with laboratory parameters; significant differences (microalbuminuria, cholesterol intake, BMI, etc.) are present between hypertensive patients with/without cognitive dysfunction. A healthy diet is important for the maintenance of metabolic balance, the achievement of optimal body weight, and the prevention of complications.
Collapse
Affiliation(s)
- Kinga-Ilona Nyulas
- Doctoral School of GE Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540136 Târgu Mureş, Romania
| | - Márta Germán-Salló
- Department of Internal Medicine II, Faculty of Medicine, GE Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540136 Târgu Mureş, Romania
| | - Zita Fazakas
- Department of Biochemistry and Chemistry of Environmental Factors, Faculty of Pharmacy, GE Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540136 Târgu Mureş, Romania
| | - Zoltán Preg
- Department of General Medicine, Faculty of Medicine, GE Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540136 Târgu Mureş, Romania
| | - Tünde Pál
- Emergency Institute for Cardiovascular Diseases and Transplantation, GE Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540136 Târgu Mureş, Romania
| | - Sándor Pál
- Department of Laboratory Medicine, Department of Transfusion Medicine, Medical School, University of Pécs, H-7622 Pécs, Hungary
| | - Robert Gabriel Tripon
- Department of Ophthalmology, Faculty of Medicine, GE Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540136 Târgu Mureş, Romania
| | - Margit Judit Cseh
- Nutrition and Dietetics Deparment, GE Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540136 Târgu Mureş, Romania
| | - Zsuzsánna Simon-Szabó
- Department of Pathophysiology, Faculty of Medicine, GE Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540136 Târgu Mureş, Romania
| | - Emil Marian Arbănași
- Clinic of Vascular Surgery, Mureș County Emergency Hospital, 540136 Târgu Mureș, Romania
| | - Enikő Nemes-Nagy
- Department of Chemistry and Medical Biochemistry, Faculty of Medicine in English, GE Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540136 Târgu Mureş, Romania
| |
Collapse
|
41
|
Tuska RM, Helm SM, Graf CF, James C, Kong G, Stiemsma LT, Green DB, Helm SE. Surfeit folic acid, protein, and exercise modify oncogenic inflammatory biomarkers and fecal microbiota. Front Nutr 2023; 9:1060212. [PMID: 36742002 PMCID: PMC9894611 DOI: 10.3389/fnut.2022.1060212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Intestinal microbiota, diet, and physical activity are inextricably linked to inflammation occurring in the presence of tumor progression and declining neurocognition. This study aimed to explore how fecal microbiota, inflammatory biomarkers, and neurocognitive behavior are influenced by voluntary exercise and surplus dietary protein and folic acid which are common health choices. Dietary treatments provided over 8 weeks to C57BL/CJ male mice (N = 76) were: Folic Acid (FA) Protein (P) Control (FPC, 17.9% P; 2 mgFA/kg); Folic Acid Deficient (FAD); Folic Acid Supplemented (FAS; 8 mgFA/kg); Low Protein Diet (LPD, 6% P); and High Protein Diet (HPD, 48% P). FAS mice had decreased plasma HCys (p < 0.05), therefore confirming consumption of FA. Objectives included examining influence of exercise using Voluntary Wheel Running (VWR) upon fecal microbiota, inflammatory biomarkers C - reactive protein (CRP), Vascular Endothelial Growth Factor (VEGF), Interleukin-6 (IL-6), nuclear factor kappa ß subunit (NF-κßp65), Caspase-3 (CASP3), Tumor Necrosis Factor-alpha (TNF-α), and neurocognitive behavior. CRP remained stable, while a significant exercise and dietary effect was notable with decreased VEGF (p < 0.05) and increased CASP3 (p < 0.05) for exercised HPD mice. Consumption of FAS did significantly increase (p < 0.05) muscle TNF-α and the ability to build a nest (p < 0.05) was significantly decreased for both FAD and LPD exercised mice. Rearing behavior was significantly increased (p < 0.05) in mice fed HPD. An emerging pattern with increased dietary protein intake revealed more distance explored in Open Field Testing. At week 1, both weighted and unweighted UniFrac principal coordinates analysis yielded significant clustering (permanova, p ≤ 0.05) associated with the specific diets. Consumption of a HPD diet resulted in the most distinct fecal microbiota composition. At the phylum level-comparing week 1 to week 8-we report a general increase in the Firmicutes/Bacteroidetes ratio, characterized by an outgrowth of Firmicutes by week 8 in all groups except the HPD. MaAsLin2 analysis corroborates this finding and emphasizes an apparent inversion of the microbiome composition at week 8 after HPD. Explicit modification of oncogenic inflammatory biomarkers and fecal microbiome post high FA and protein intake along with voluntary exercise contributed to current underlying evidence that this diet and exercise relationship has broader effects on human health and disease-perhaps importantly as a practical modulation of cancer progression and declining neurocognition.
Collapse
|
42
|
Xiao QY, Ye TY, Wang XL, Qi DM, Cheng XR. Effects of Qi-Fu-Yin on aging of APP/PS1 transgenic mice by regulating the intestinal microbiome. Front Cell Infect Microbiol 2023; 12:1048513. [PMID: 36710967 PMCID: PMC9880330 DOI: 10.3389/fcimb.2022.1048513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Alzheimer's disease is the most common form of dementia and closely related to aging. Qi-Fu-Yin is widely used to treat dementia, but its anti-aging effects is unknown. Methods We used 11-month-old APP/PS1 transgenic mice for behavioral tests to observe the changes in cognitive function and age-related symptoms after Qi-Fu-Yin treatment. Fecal samples were collected for 16sRNA sequencing and metagenomic sequencing. Differences among the groups of intestinal microbiota and the associations with aging and intestinal microbiota were analyzed based on the results. Results Here we found that Qi-Fu-Yin improved the ability of motor coordination, raised survival rate and prolonged the survival days under cold stress stimulation in aged APP/ PS1 transgenic mice. Our data from 16sRNA and metagenomic sequencing showed that at the Family level, the intestinal microbiota was significantly different among wild-type mice, APP/PS1 transgenic mice and the Qi-Fu-Yin group by PCA analysis. Importantly, Qi-Fu-Yin improved the functional diversity of the major KEGG pathways, carbohydrate-active enzymes, and major virulence factors in the intestinal flora of APP/PS1 transgenic mice. Among them, the functions of eight carbohydrate-active enzymes (GT2_Glycos_transf_2, GT4, GT41, GH2, CE1, CE10, CE3, and GH24) and the functions of top three virulence factors (defensive virulence factors, offensive virulence factors and nonspecific virulence factors) were significantly and positively correlated with the level of grasping ability. We further indicated that the Qi-Fu-Yin significantly reduced the plasma levels of IL-6. Conclusion Our results indicated that the effects of Qi-Fu-Yin anti-aging of APP/PS1 transgenic mice might be through the regulation of intestinal flora diversity, species richness and the function of major active enzymes.
Collapse
Affiliation(s)
- Qiu-yue Xiao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tian-yuan Ye
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-long Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dong-mei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-rui Cheng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
43
|
Castro CB, Costa LM, Dias CB, Chen J, Hillebrandt H, Gardener SL, Brown BM, Loo RL, Garg ML, Rainey-Smith SR, Martins RN, Sohrabi HR. Multi-Domain Interventions for Dementia Prevention - A Systematic Review. J Nutr Health Aging 2023; 27:1271-1280. [PMID: 38151879 DOI: 10.1007/s12603-023-2046-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/10/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES There is a growing incidence of cognitive decline and dementia associated with the ageing population. Lifestyle factors such as diet, physical activity, and cognitive activities may individually or collectively be undertaken to increase one's odds of preventing cognitive decline and future dementia. This study will examine whether clinical trials using multidomain lifestyle intervention can significantly decrease the risk of cognitive decline and therefore dementia. DESIGN, SETTING AND PARTICIPANTS This systematic literature review of multidomain lifestyle interventions for the prevention of cognitive decline and dementia followed the PRISMA guidelines. Clinical trials involving multidomain intervention (i.e., diet and physical activity, or without cognitive training) in older adults (≥ 49 years old) at higher risk of dementia were identified through 5 electronic databases (EMBASE, MEDLINE, CINAHL, Cochrane, and Scopus). A comprehensive search was performed to identify and retrieve publications until 15 November 2022. Trials were published in English. RESULTS The included studies (n=15) assessed change in cognition in response to a multidomain lifestyle intervention. However, the cognitive outcome measures used in these studies were heterogeneous. Despite this heterogeneity, two thirds of the studies showed improvement in cognition following a multidomain intervention (n=10 with a total of 9,439 participants). However, five studies reported no improvement in cognition following the multidomain intervention. The most common form of dietary intervention included higher amount of fruit and vegetable intake; whole-grain cereal products instead of refined; low fat options in milk and meat products; and limiting sucrose intake to less than 50 g/day. Most clinical trial studies were powered to examining the effects of multidomain interventions in cognition but were not designed to test the contribution of individual domains (i.e., dietary changes, increased physical activity, or increased cognitive stimulation alone). CONCLUSION This systematic review aimed to determine the effect of multimodal lifestyle interventions on cognitive outcomes in older adults at risk of dementia. We found that participants with conditions that may increase the risk of dementia, (e.g., hypertension, cardiovascular fragility) do benefit from multi-modal lifestyle changes including diet, physical activity, and cognitive training. Two thirds of studies using multidomain lifestyle interventions showed improvements in cognitive function. Trials with a focus on cognitive training, dietary improvement, and physical activity may prevent or delay cognitive decline in older adults including those at risk of developing dementia. Future studies should consider longer follow-up periods and adequate power to be able to examine the effects of each lifestyle component in the context of multimodal interventions.
Collapse
Affiliation(s)
- C B Castro
- Professor Hamid R. Sohrabi, Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia, Phone: +61 8 9360 6901, E-mail: ; Professor Ralph N. Martins, Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fasogbon BM, Ademuyiwa OH, Adebo OA. Fermented foods and gut microbiome: a focus on African Indigenous fermented foods. INDIGENOUS FERMENTED FOODS FOR THE TROPICS 2023:315-331. [DOI: 10.1016/b978-0-323-98341-9.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
45
|
Nejabati HR, Roshangar L. Kaempferol as a potential neuroprotector in Alzheimer's disease. J Food Biochem 2022; 46:e14375. [PMID: 35929364 DOI: 10.1111/jfbc.14375] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder, is largely associated with cognitive disability, amnesia, and abnormal behavior, which accounts for about two third of people with dementia worldwide. A growing body of research demonstrates that AD is connected to several factors, such as aberrant accumulation of amyloid-beta (Aβ), increase in the hyperphosphorylation of Tau protein, and the formation of neurofibrillary tangles, mitochondrial dysfunction, and inordinate production of reactive oxygen species (ROS). Despite remarkable efforts to realize the etiology and pathophysiology of AD, until now, scientists have not developed and introduced medications that can permanently cease the progression of AD. Thus, nowadays, research on the role of natural products in the treatment and prevention of AD has attracted great attention. Kaempferol (KMP), one of the prominent members of flavonols, exerts its ameliorative actions via attenuating oxidative stress and inflammation, reducing Aβ-induced neurotoxicity, and regulating the cholinergic system. Therefore, in this review article, we outlined the possible effects of KMP in the prevention and treatment of AD. PRACTICAL APPLICATIONS: Kaempferol (KMP) exerts its ameliorative actions against AD via attenuating oxidative stress and inflammation, reducing Aβ-induced neurotoxicity, and regulating the cholinergic system. The beneficial effects of KMP were addressed in both in vitro and in vivo studies; however, conducting further research can warrant its long-term effects as a safe agent. Therefore, after confirming its favorable functions in the prevention and treatment of AD, it could be used as a safe and effective agent.
Collapse
Affiliation(s)
- Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Katonova A, Sheardova K, Amlerova J, Angelucci F, Hort J. Effect of a Vegan Diet on Alzheimer's Disease. Int J Mol Sci 2022; 23:14924. [PMID: 36499257 PMCID: PMC9738978 DOI: 10.3390/ijms232314924] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
There is evidence indicating that a vegan diet could be beneficial in the prevention of neurodegenerative disorders, including Alzheimer's disease (AD). The purpose of this review is to summarize the current knowledge on the positive and negative aspects of a vegan diet regarding the risk of AD. Regarding AD prevention, a vegan diet includes low levels of saturated fats and cholesterol, contributing to a healthy blood lipid profile. Furthermore, it is rich in phytonutrients, such as vitamins, antioxidants, and dietary fiber, that may help prevent cognitive decline. Moreover, a vegan diet contributes to the assumption of quercetin, a natural inhibitor of monoamine oxidase (MAO), which can contribute to maintaining mental health and reducing AD risk. Nonetheless, the data available do not allow an assessment of whether strict veganism is beneficial for AD prevention compared with vegetarianism or other diets. A vegan diet lacks specific vitamins and micronutrients and may result in nutritional deficiencies. Vegans not supplementing micronutrients are more prone to vitamin B12, vitamin D, and DHA deficiencies, which have been linked to AD. Thus, an evaluation of the net effect of a vegan diet on AD prevention and/or progression should be ascertained by taking into account all the positive and negative effects described here.
Collapse
Affiliation(s)
- Alzbeta Katonova
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Katerina Sheardova
- International Clinical Research Centre, St. Anne’s University Hospital, 602 00 Brno, Czech Republic
| | - Jana Amlerova
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Francesco Angelucci
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| |
Collapse
|
47
|
Young LM, Gauci S, Arnoldy L, Martin L, Perry N, White DJ, Meyer D, Lassemillante AC, Ogden E, Silber B, Scholey A, Pipingas A. Investigating the Effects of a Multinutrient Supplement on Cognition, Mood and Biochemical Markers in Middle-Aged Adults with 'Optimal' and 'Sub-Optimal' Diets: A Randomized Double Blind Placebo Controlled Trial. Nutrients 2022; 14:5079. [PMID: 36501109 PMCID: PMC9741460 DOI: 10.3390/nu14235079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Previous randomized controlled trials examining cognitive and mood effects of combination multivitamin supplements in healthy, non-clinical adults have reported mixed results. One purported explanation for this is that the dietary status of participants at the start of supplement interventions may influence the magnitude of the effect of supplementation. Methods: In this study, we evaluated the effect of a multinutrient formula containing B group vitamins, Bacopa monniera and Ginkgo biloba on memory, attention, mood and biochemical markers of nutrient status in middle-aged adults (M = 52.84 years, n = 141) with 'optimal' and 'sub-optimal' diets over 12 weeks. We hypothesised that active supplementation would differentially improve memory and attention in those with a 'sub-optimal' diet. Results: Mixed model, repeated measures analysis revealed that, in comparison to placebo, active treatment was associated with significant increases in B vitamin status (B1, B6, B12). Regarding behavioural outcomes there was no significant benefit to memory (F(1, 113.51) = 0.53, p = 0.470) nor attention (F(1,113.77) = 1.89, p = 0.171) in the whole cohort. Contrary to our hypothesis, there was a significant beneficial effect of supplementation on attentional performance in individuals with an 'optimal' diet prior to supplementation (F(1,57.25) = 4.94, p = 0.030). In the absence of a main effect of supplementation across the entire cohort, there were also a number of significant three-way interactions (treatment by time by diet group) detected in secondary outcomes including lower state anxiety and mental fatigue in those with an 'optimal' diet. Conclusion: These findings suggest that the cognitive benefit of B vitamin and herbal supplementation may be dependent on diet quality, supporting the concepts of 'co-nutrient optimisation' and interdependency of nutrients. This warrants further investigation. This study advocates characterising the diet of participants prior to supplementation as it may influence the effect of a nutraceutical intervention.
Collapse
Affiliation(s)
- Lauren M. Young
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia
| | - Sarah Gauci
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia
- Food & Mood Centre, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Lizanne Arnoldy
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia
| | - Laura Martin
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia
| | - Naomi Perry
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia
| | - David J. White
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia
| | - Denny Meyer
- Department of Health Sciences and Biostatistics, Swinburne University, Melbourne, VIC 3122, Australia
- Centre for Mental Health, Swinburne University, Melbourne, VIC 3122, Australia
| | - Annie-Claude Lassemillante
- Department of Nursing and Allied Health, Faculty of Health, Arts and Design, Swinburne University, Melbourne, VIC 3122, Australia
| | - Edward Ogden
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia
| | - Beata Silber
- Swisse Wellness Pty Ltd., Melbourne, VIC 3066, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia
| |
Collapse
|
48
|
Li Z, Li S, Xiao Y, Zhong T, Yu X, Wang L. Nutritional intervention for diabetes mellitus with Alzheimer's disease. Front Nutr 2022; 9:1046726. [PMID: 36458172 PMCID: PMC9707640 DOI: 10.3389/fnut.2022.1046726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 01/04/2025] Open
Abstract
The combined disease burden of diabetes mellitus (DM) and Alzheimer's disease (AD) is increasing, and the two diseases share some common pathological changes. However, the pharmacotherapeutic approach to this clinical complexity is limited to symptomatic rather than disease-arresting, with the possible exception of metformin. Whether nutritional intervention might extend or synergize with these effects of metformin is of interest. In particular, dietary patterns with an emphasis on dietary diversity shown to affect cognitive function are of growing interest in a range of food cultural settings. This paper presents the association between diabetes and AD. In addition, the cross-cultural nutritional intervention programs with the potential to mitigate both insulin resistance (IR) and hyperglycemia, together with cognitive impairment are also reviewed. Both dietary patterns and nutritional supplementation showed the effects of improving glycemic control and reducing cognitive decline in diabetes associated with AD, but the intervention specificity remained controversial. Multi-nutrient supplements combined with diverse diets may have preventive and therapeutic potential for DM combined with AD, at least as related to the B vitamin group and folate-dependent homocysteine (Hcy). The nutritional intervention has promise in the prevention and management of DM and AD comorbidities, and more clinical studies would be of nutritional scientific merit.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
49
|
Intestinal Flora Affect Alzheimer's Disease by Regulating Endogenous Hormones. Neurochem Res 2022; 47:3565-3582. [DOI: 10.1007/s11064-022-03784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
|
50
|
Adherence to dietary guidelines and risk of dementia: a prospective cohort study of 94 184 individuals. Epidemiol Psychiatr Sci 2022; 31:e71. [PMID: 36214322 PMCID: PMC9583631 DOI: 10.1017/s2045796022000567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
AIMS Recent estimates suggest that 40% of dementia cases could be avoided by treating recognised cardiovascular risk factors such as hypertension, diabetes, smoking and physical inactivity. Whether diet is associated with dementia remains largely unknown. We tested if low adherence to established dietary guidelines is associated with elevated lipids and lipoproteins and with increased risk of Alzheimer's disease and non-Alzheimer's dementia – a dementia subtype with a high frequency of cardiovascular risk factors. METHODS We used the prospective Copenhagen General Population Study including 94 184 individuals with dietary information and free of dementia at baseline. Mean age at study entry was 58 years, and 55% (N = 51 720) were women and 45% (N = 42 464) were men. Adherence to dietary guidelines was grouped into low, intermediate and high adherence based on food frequency questionnaires. Main outcomes were non-Alzheimer's dementia and Alzheimer's disease. RESULTS Low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol and plasma triglyceride levels were higher in individuals with intermediate and low adherence to dietary guidelines compared with individuals with high adherence (all p for trends <0.001). Age and sex-adjusted hazard ratios (HRs) for non-Alzheimer's dementia v. individuals with high adherence were 1.19 (95% confidence interval 0.97–1.46) for intermediate adherence, and 1.54 (1.18–2.00) for low adherence. Corresponding HRs in multivariable-adjusted models including APOE genotype were 1.14 (0.92–1.40) and 1.35 (1.03–1.79). These relationships were not observed in individuals on lipid-lowering therapy. CONCLUSIONS Low adherence to national dietary guidelines is associated with an atherogenic lipid profile and with increased risk of non-Alzheimer's dementia – the subtype of dementia with a high frequency of vascular risk factors. This study suggests that implementation of dietary guidelines associated with an anti-atherogenic lipid profile could be important for prevention of non-Alzheimer's dementia.
Collapse
|