1
|
Samreen, Ahmad I. Antibacterial and anti-biofilm efficacy of 1,4-naphthoquinone against Chromobacterium violaceum: an in vitro and in silico investigation. Arch Microbiol 2024; 207:11. [PMID: 39644379 DOI: 10.1007/s00203-024-04209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Antimicrobial resistance (AMR) is an urgent worldwide health concern, requiring the exploration for novel antimicrobial interventions. A Gram-negative bacterium, Chromobacterium violaceum, synthesizes quorum-sensing-regulated violacein pigment, develops resilient biofilms, and is often used for the screening of anti-infective drugs. The aim of this work is to assess the antibacterial and antibiofilm properties of three polyphenols: 1,4-naphthoquinone, caffeic acid, and piperine. The determination of antibacterial activity was conducted by the agar overlay and broth microdilution techniques. Analysis of membrane rupture was conducted by crystal violet uptake and β-galactosidase assay. Inhibition of biofilm was evaluated using a 96-well microtiter plate assay. Biofilm structures were visualized using light, scanning electron microscopy (SEM), and confocal laser scanning electron microscopy (CLSM). Among the phytochemicals, 1,4-naphthoquinone exhibited the highest antibacterial action (25 mm zone of inhibition). The minimum inhibitory concentration of 1,4-naphthoquinone was determined to be 405 µM. Outer and inner membrane permeability was enhanced by 52.01% and 1.28 absorbance, respectively. Violacein production was reduced by 74.85%, and biofilm formation was suppressed by 63.25% at sub-MIC levels (202.5 µM). Microscopic analyses confirmed reduced adhesion on surfaces. Hemolytic activity of 1,4-naphthoquinone showed a concentration-dependent effect, with 32.16% haemolysis at 202.5 µM. Molecular docking revealed significant interactions of 1,4-naphthoquinone with DNA gyrase followed by CviR. These findings highlight 1,4-naphthoquinone's potent antibacterial efficacy against C. violaceum, proposing its use as a surface coating agent to prevent biofilm formation on medical devices, thereby offering a promising strategy to combat bacterial infections.
Collapse
Affiliation(s)
- Samreen
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
2
|
Cervia D, Zecchini S, Pincigher L, Roux-Biejat P, Zalambani C, Catalani E, Arcari A, Del Quondam S, Brunetti K, Ottria R, Casati S, Vanetti C, Barbalace MC, Prata C, Malaguti M, Casati SR, Lociuro L, Giovarelli M, Mocciaro E, Falcone S, Fenizia C, Moscheni C, Hrelia S, De Palma C, Clementi E, Perrotta C. Oral administration of plumbagin is beneficial in in vivo models of Duchenne muscular dystrophy through control of redox signaling. Free Radic Biol Med 2024; 225:193-207. [PMID: 39326684 DOI: 10.1016/j.freeradbiomed.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease. Recently approved molecular/gene treatments do not solve the downstream inflammation-linked pathophysiological issues such that supportive therapies are required to improve therapeutic efficacy and patients' quality of life. Over the years, a plethora of bioactive natural compounds have been used for human healthcare. Among them, plumbagin, a plant-derived analog of vitamin K3, has shown interesting potential to counteract chronic inflammation with potential therapeutic significance. In this work we evaluated the effects of plumbagin on DMD by delivering it as an oral supplement within food to dystrophic mutant of the fruit fly Drosophila melanogaster and mdx mice. In both DMD models, plumbagin show no relevant adverse effect. In terms of efficacy plumbagin improved the climbing ability of the dystrophic flies and their muscle morphology also reducing oxidative stress in muscles. In mdx mice, plumbagin enhanced the running performance on the treadmill and the muscle strength along with muscle morphology. The molecular mechanism underpinning these actions was found to be the activation of nuclear factor erythroid 2-related factor 2 pathway, the re-establishment of redox homeostasis and the reduction of inflammation thus generating a more favorable environment for skeletal muscles regeneration after damage. Our data provide evidence that food supplementation with plumbagin modulates the main, evolutionary conserved, mechanistic pathophysiological hallmarks of dystrophy, thus improving muscle function in vivo; the use of plumbagin as a therapeutic in humans should thus be explored further.
Collapse
MESH Headings
- Naphthoquinones/administration & dosage
- Naphthoquinones/pharmacology
- Animals
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Mice
- Administration, Oral
- Mice, Inbred mdx
- Oxidation-Reduction/drug effects
- Signal Transduction/drug effects
- Disease Models, Animal
- Drosophila melanogaster
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Oxidative Stress/drug effects
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Humans
- Male
Collapse
Affiliation(s)
- Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Alessandro Arcari
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Roberta Ottria
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Sara Casati
- Department of Biomedical, Surgical, and Dental Science (DISBIOC), Università Degli Studi di Milano, Milano, 20133, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Laura Lociuro
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milano, 20132, Italy
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, F-75013, France
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; IRCCS Eugenio Medea, Bosisio Parini, 23842, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy.
| |
Collapse
|
3
|
Kengne MF, Tsobeng OD, Dadjo BST, Kuete V, Mbaveng AT. Multidrug Resistant Enteric Bacteria from Cancer Patients Admitted in Douala Laquintinie Hospital, Littoral Region of Cameroon. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:2084884. [PMID: 39036470 PMCID: PMC11259499 DOI: 10.1155/2024/2084884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/16/2024] [Accepted: 06/22/2024] [Indexed: 07/23/2024]
Abstract
Patients with cancer have weakened immune systems, making them more vulnerable to infections. This study was carried out to determine the bacterial origins of enteric disorders in cancer patients and noncancer patients at the Oncology Department of Laquintinie Hospital in Douala. A cross-sectional study was conducted from October 2021 to March 2023. Stool samples from 307 cancer patients with enteric disorders and 200 noncancer patients with enteric disorders were examined to diagnose the presence of bacteria using various techniques. Among all participants in this study, 62.13% were female and 37.87% were male. The average age of the participants was 46.38 ± 15.81 years, with a minimum age of 10 years and a maximum age of 84 years. The average age of participants was significantly higher (p < 0.000) in cancer patients (49.54 ± 14.65 years) compared to noncancer patients (41.53 ± 16.33 years). Proteus mirabilis, Proteus vulgaris, Salmonella typhi, Enterobacter cloacae, Klebsiella pneumoniae, Yersinia intemedia, and Klebsiella oxytoca were more frequently isolated in cancer patients than in noncancer patients, with the respective percentages of 56.25% versus 43.75%, 50.00% versus 50.00%, 61.66% versus 38.34%, 66.66% versus 33.34%, 72.22% versus 27.78%, 80.00 versus 20.00%, and 100% versus 0.00%. Most isolates were sensitive to imipenem (IMP), gentamicin (GEN), and amikacin (AMK). Proteus vulgaris, the most prevalent isolate, showed significantly high resistance (with p < 0.05) in cancer patients compared to noncancer patients at amoxicillin/clavuranic acid (AMC) (89.13% versus 41.30%), ceftriaxone (CTR) (63.04% versus 39.13%), ciprofloxacin (CIP) (65.22% versus 34.18%), and tetracycline (TET) (93.48% versus 63.04%). Multidrug resistance was observed in cancer patients compared to noncancer patients for Klebsiella pneumoniae (85.00% versus 60.00%), Salmonella typhi (84.62% versus 60.00%), and Klebsiella oxytoca (86.49% versus 43.48%). The increase in the number of Gram-negative infections among cancer patients, as shown in the present study, highlights the need for broad-spectrum therapy and effective planning of control programs to reduce bacterial diseases among cancer patients.
Collapse
Affiliation(s)
- Michael F. Kengne
- Department of BiochemistryFaculty of ScienceUniversity of Dschang, Dschang, Cameroon
| | - Ornella D. Tsobeng
- Department of BiochemistryFaculty of ScienceUniversity of Dschang, Dschang, Cameroon
| | - Ballue S. T. Dadjo
- Department of BiochemistryFaculty of ScienceUniversity of Dschang, Dschang, Cameroon
| | - Victor Kuete
- Department of BiochemistryFaculty of ScienceUniversity of Dschang, Dschang, Cameroon
| | - Armelle T. Mbaveng
- Department of BiochemistryFaculty of ScienceUniversity of Dschang, Dschang, Cameroon
| |
Collapse
|
4
|
Olson KR, Clear KJ, Takata T, Gao Y, Ma Z, Pfaff E, Travlos A, Luu J, Wilson K, Joseph Z, Kyle I, Kasko SM, Jones Jr P, Fukuto J, Xian M, Wu G, Straub KD. Reaction Mechanisms of H 2S Oxidation by Naphthoquinones. Antioxidants (Basel) 2024; 13:619. [PMID: 38790724 PMCID: PMC11117753 DOI: 10.3390/antiox13050619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
1,4-naphthoquinones (NQs) catalytically oxidize H2S to per- and polysufides and sulfoxides, reduce oxygen to superoxide and hydrogen peroxide, and can form NQ-SH adducts through Michael addition. Here, we measured oxygen consumption and used sulfur-specific fluorophores, liquid chromatography tandem mass spectrometry (LC-MS/MS), and UV-Vis spectrometry to examine H2S oxidation by NQs with various substituent groups. In general, the order of H2S oxidization was DCNQ ~ juglone > 1,4-NQ > plumbagin >DMNQ ~ 2-MNQ > menadione, although this order varied somewhat depending on the experimental conditions. DMNQ does not form adducts with GSH or cysteine (Cys), yet it readily oxidizes H2S to polysulfides and sulfoxides. This suggests that H2S oxidation occurs at the carbonyl moiety and not at the quinoid 2 or 3 carbons, although the latter cannot be ruled out. We found little evidence from oxygen consumption studies or LC-MS/MS that NQs directly oxidize H2S2-4, and we propose that apparent reactions of NQs with inorganic polysulfides are due to H2S impurities in the polysulfides or an equilibrium between H2S and H2Sn. Collectively, NQ oxidation of H2S forms a variety of products that include hydropersulfides, hydropolysulfides, sulfenylpolysulfides, sulfite, and thiosulfate, and some of these reactions may proceed until an insoluble S8 colloid is formed.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kasey J. Clear
- Department of Chemistry and Biochemistry, Indiana University South Bend, South Bend, IN 46615, USA;
| | - Tsuyoshi Takata
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yan Gao
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
| | - Zhilin Ma
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ella Pfaff
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Anthony Travlos
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jennifer Luu
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katherine Wilson
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Zachary Joseph
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ian Kyle
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Stephen M. Kasko
- Department of Physiology, Indiana University School of Medicine—South Bend Center, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.); (A.T.); (J.L.); (K.W.); (Z.J.); (I.K.); (S.M.K.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Prentiss Jones Jr
- Toxicology Department, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA;
| | - Jon Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA;
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI 02912, USA;
| | - Gang Wu
- Department of Internal Medicine, University of Texas-McGovern Medical School, Houston, TX 77030, USA;
| | - Karl D. Straub
- Central Arkansas Veteran’s Healthcare System, Little Rock, AR 72205, USA;
- Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
5
|
Kolancılar H, Özcan H, Yılmaz AŞ, Salan AS, Ece A. 2,3-Dichloronaphthoquinone derivatives: Synthesis, antimicrobial activity, molecular modelling and ADMET studies. Bioorg Chem 2024; 146:107300. [PMID: 38522391 DOI: 10.1016/j.bioorg.2024.107300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
In the present study, an intermediate namely 2-(3-bromopropylamino)-3-chloronaphthalene-1,4-dione was initially synthesized via the nucleophilic addition-elimination reaction between 2,3-dichloro-1,4-naphthoquinone and 3-bromo-1-aminopropane. Then a coupling reaction between the intermediate and piperazine derivatives yielded a number of 1,4-naphthoquinone derivatives. Spectroscopic analysis successfully characterized the products that were obtained in good yields. In vitro antibacterial properties of the compounds were examined against different bacterial strains. In vitro antibacterial properties of the compounds were examined against the bacterial strains S. Aureus, E. Faecalis, E. Coli and P. Aeruginosa. While compound 9 was found to be effective against all bacterial strains used, compound 12 was active against three strains and compounds 10 and 11 were effective against the two. None of the compounds are effective against C. albicans strain. In silico molecular docking studies revealed that all compounds had docking scores comparable to the antibacterial drugs ciprofloxacin and gentamicin and might be considered as DNA gyrase B inhibitors. Molecular dynamics simulations were also conducted for a better understanding of the stability and the selected docked complexes. Additionally, the drug similarity of the synthesized compounds and ADMET characteristics were examined in conjunction with the antibiotic ciprofloxacin, and drug potentials were then evaluated. Compatible predictions were found with the drug similarity and ADMET parameters.
Collapse
Affiliation(s)
- Hakan Kolancılar
- Department of Professional Pharmaceutical Sciences, Faculty of Pharmacy, Trakya University, 22030 Edirne, Türkiye.
| | - Hafize Özcan
- Department of Chemistry, Faculty of Science, Trakya University, 22030 Edirne, Türkiye
| | - Ayşen Şuekinci Yılmaz
- Department of Chemistry, Faculty of Science, Trakya University, 22030 Edirne, Türkiye
| | - Alparslan Semih Salan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Trakya University, 22030 Edirne, Türkiye
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Türkiye
| |
Collapse
|
6
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
7
|
Juang YP, Tsai JY, Gu WL, Hsu HC, Lin CL, Wu CC, Liang PH. Discovery of 5-Hydroxy-1,4-naphthoquinone (Juglone) Derivatives as Dual Effective Agents Targeting Platelet-Cancer Interplay through Protein Disulfide Isomerase Inhibition. J Med Chem 2024; 67:3626-3642. [PMID: 38381886 PMCID: PMC10945480 DOI: 10.1021/acs.jmedchem.3c02107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
In this study, a series of 2- and/or 3-substituted juglone derivatives were designed and synthesized. Among them, 9, 18, 22, 30, and 31 showed stronger inhibition activity against cell surface PDI or recombinant PDI and higher inhibitory effects on U46619- and/or collagen-induced platelet aggregation than juglone. The glycosylated derivatives 18 and 22 showed improved selectivity for inhibiting the proliferation of multiple myeloma RPMI 8226 cells, and the IC50 values reached 61 and 48 nM, respectively, in a 72 h cell viability test. In addition, 18 and 22 were able to prevent tumor cell-induced platelet aggregation and platelet-enhanced tumor cell proliferation. The molecular docking showed the amino acid residues Gln243, Phe440, and Leu443 are important for the compound-protein interaction. Our results reveal the potential of juglone derivatives to serve as novel antiplatelet and anticancer dual agents, which are available to interrupt platelet-cancer interplay through covalent binding to PDI catalytic active site.
Collapse
Affiliation(s)
- Yu-Pu Juang
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
| | - Ju-Ying Tsai
- Graduate
Institute of Natural Product, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Wan-Lan Gu
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
| | - Hui-Ching Hsu
- Graduate
Institute of Natural Product, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Chao-Lung Lin
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
| | - Chin-Chung Wu
- Graduate
Institute of Natural Product, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Pi-Hui Liang
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
- The
Genomics Research Center, Academia Sinica, Taipei 128, Taiwan
| |
Collapse
|
8
|
Di Foggia M, Taddei P, Boga C, Nocentini B, Micheletti G. Interactions between Damaged Hair Keratin and Juglone as a Possible Restoring Agent: A Vibrational and Scanning Electron Microscopy Study. Molecules 2024; 29:320. [PMID: 38257235 PMCID: PMC10819223 DOI: 10.3390/molecules29020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Juglone, a quinonic compound present in walnut extracts, was proposed as a restoring agent for hair keratin treated with permanent or discoloration processes. The proposed mechanism of restoration by juglone involves the formation of a Michael adduct between the quinone and the thiol moieties of cysteine residues. To this purpose, the first part of the present paper involved the spectroscopic study of the product of the reaction between juglone and N-acetyl-L-cysteine as a model compound. IR spectroscopy and Scanning Electron Microscopy (SEM) monitored the chemical and morphological variations induced by applying juglone to hair keratin. In order to simulate the most common hair treatments (i.e., permanent and discoloration), juglone was applied to hair that had been previously treated with a reducing agent, i.e., methyl thioglycolate (MT) or with bleaching agents (based on hydrogen peroxide and persulfates) followed by sodium hydrogen sulfite. IR spectroscopy allowed us to monitor the formation of Michael adducts between juglone and cysteine residues: the Michael adducts' content was related to the cysteine content of the samples. In fact, MT and sodium hydrogen sulfite favored the reduction of the disulfide bonds and increased the content of free cysteine residues, which can react with juglone. SEM analyses confirmed the trend observed by IR spectroscopy since hair samples treated with juglone adopted a more regular hair surface and more imbricated scales, thus supporting the possible use of juglone as a restoring agent for damaged hair keratins.
Collapse
Affiliation(s)
- Michele Di Foggia
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy;
| | - Paola Taddei
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy;
| | - Carla Boga
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum-Università di Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy; (C.B.); (G.M.)
| | | | - Gabriele Micheletti
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum-Università di Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy; (C.B.); (G.M.)
| |
Collapse
|
9
|
Efeoglu C, Taskin S, Selcuk O, Celik B, Tumkaya E, Ece A, Sari H, Seferoglu Z, Ayaz F, Nural Y. Synthesis, anti-inflammatory activity, inverse molecular docking, and acid dissociation constants of new naphthoquinone-thiazole hybrids. Bioorg Med Chem 2023; 95:117510. [PMID: 37926047 DOI: 10.1016/j.bmc.2023.117510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Chronic Inflammation is associated with various types of diseases that involves pro-inflammatory cytokines like IL-6 and TNF-α. High costs and serious side effects of available anti-inflammatory/immunomodulatory drugs led us to design new compounds with promising anti-inflammatory activities. Many drugs and biologically important compounds involve naphthoquinone and thiazole moieties in their core structures. Thereby, here we report the synthesis, characterization and anti-inflammatory activities of new naphthoquinone thiazole hybrids by reaction of naphthoquinone acyl thioureas with various α-bromoketone derivatives. The position of NO2 group in one of the phenyl rings of naphthoquinone thiazole hybrids was changed while different substituents were introduced at the para position of the second phenyl ring. All compounds were tested for potential immunomodulatory effect. No inflammatory cytokines were observed in the absence of LPS stimulant. On the other hand, they had promising anti-inflammatory immunomodulatory activities by being able to decrease the production of the pro-inflammatory cytokines (TNF-α and IL-6) in the LPS-stimulated cells. In an effort to find the possible mechanism of action, several enzymes involved in signalling pathways that play critical roles in inflammatory responses were screened in silico. Subsequent to inverse molecular docking approach, PI3K was predicted be the potential target. The docked complexes of the most potent compounds 5g and 5i were subjected to molecular dynamics simulation to assess the binding stability of the igands with the putative target. Acid dissociation constants (pKa) of the products were also determined potentiometrically.
Collapse
Affiliation(s)
- Cagla Efeoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin TR-33169, Türkiye
| | - Sena Taskin
- Department of Analytical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul 34010, Türkiye
| | - Ozge Selcuk
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin TR-33169, Türkiye
| | - Begum Celik
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, TR-33440 Mersin, Türkiye; Mersin University Biotechnology Research and Application Center, Mersin University, TR-33440 Mersin, Türkiye
| | - Ece Tumkaya
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, TR-33440 Mersin, Türkiye; Mersin University Biotechnology Research and Application Center, Mersin University, TR-33440 Mersin, Türkiye
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul 34010, Türkiye.
| | - Hayati Sari
- Department of Chemistry, Faculty of Science and Arts, Gaziosmanpasa University, 60250 Tokat, Türkiye
| | - Zeynel Seferoglu
- Department of Chemistry, Faculty of Science, Gazi University, TR-06560 Ankara, Türkiye
| | - Furkan Ayaz
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, İstanbul 34010, Türkiye.
| | - Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin TR-33169, Türkiye.
| |
Collapse
|
10
|
Catalani E, Del Quondam S, Brunetti K, Cherubini A, Bongiorni S, Taddei AR, Zecchini S, Giovarelli M, De Palma C, Perrotta C, Clementi E, Prantera G, Cervia D. Neuroprotective role of plumbagin on eye damage induced by high-sucrose diet in adult fruit fly Drosophila melanogaster. Biomed Pharmacother 2023; 166:115298. [PMID: 37597318 DOI: 10.1016/j.biopha.2023.115298] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023] Open
Abstract
The natural compound plumbagin has a wide range of pharmacological and potential therapeutic activities, although its role in neuroretina degeneration is unknown. Here we evaluated the effects of plumbagin on retina homeostasis of the fruit fly Drosophila melanogaster fed with high glucose diet, a model of hyperglycemia-induced eye impairment to study the pathophysiology of diabetic retinopathy at the early stages. To this aim, the visual system of flies orally administered with plumbagin has been analyzed at structural, functional, and molecular/cellular level as for instance neuronal apoptosis/autophagy dysregulation and oxidative stress-related signals. Our results demonstrated that plumbagin ameliorates the visual performance of hyperglycemic flies. Drosophila eye-structure, clearly altered by hyperglycemia, i.e. defects of the pattern of ommatidia, irregular rhabdomeres, vacuoles, damaged mitochondria, and abnormal phototransduction units were rescued, at least in part, by plumbagin. In addition, it reactivated autophagy, decreased the presence of cell death/apoptotic features, and exerted antioxidant effects in the retina. In terms of mechanisms favoring death/survival ratio, Nrf2 signaling activation may be one of the strategies by which plumbagin reduced redox unbalance mainly increasing the levels of glutathione-S-transferase. Likewise, plumbagin may act additively and/or synergistically inhibiting the mitochondrial-endoplasmic reticulum stress and unfolded protein response pathways, which prevented neuronal impairment and eye damage induced by reactive oxygen species. These results provide an avenue for further studies, which may be helpful to develop novel therapeutic candidates and drug targets against eye neurotoxicity by high glucose, a key aspect in retinal complications of diabetes.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Agnese Cherubini
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Silvia Bongiorni
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Anna Rita Taddei
- Section of Electron Microscopy, Great Equipment Center, Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via L. Vanvitelli 32, 20129 Milano, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; Scientific Institute IRCCS "Eugenio Medea", via Don Luigi Monza 20, 23842 Bosisio Parini, Italy
| | - Giorgio Prantera
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|
11
|
Masnoon J, Ishaque A, Khan I, Salim A, Kabir N. Effect of lawsone-preconditioned mesenchymal stem cells on the regeneration of pancreatic β cells in Type 1 diabetic rats. Cell Biochem Funct 2023; 41:833-844. [PMID: 37814478 DOI: 10.1002/cbf.3833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 10/11/2023]
Abstract
Diabetes is one of the major health issues globally. Type 1 diabetes mellitus develops due to the destruction of pancreatic β cells. Mesenchymal stem cells (MSCs) having remarkable self-renewal and differentiation potential, can regenerate β cells. MSCs preconditioned with bioactive small molecules possess enhanced biological features and therapeutic potential under in vivo environment. Interestingly, compounds of naphthoquinone class possess antidiabetic and anti-inflammatory properties, and can be explored as potential candidates for preconditioning MSCs. This study analyzed the effect of lawsone-preconditioned human umbilical cord MSCs (hUMSCs) on the regeneration of β cells in the streptozotocin (STZ)-induced Type 1 diabetes (T1D) rats. hUMSCs were isolated and characterized for the presence of surface markers. MSCs were preconditioned with optimized concentration of lawsone. T1D rat model was established by injecting 50 mg/kg of STZ intraperitoneally. Untreated and lawsone-preconditioned hUMSCs were transplanted into the diabetic rats via tail vein. Fasting blood sugar and body weight were monitored regularly for 4 weeks. Pancreas was harvested and β cell regeneration was evaluated by hematoxylin and eosin staining, and gene expression analysis. Immunohistochemistry was also done to assess the insulin expression. Lawsone-preconditioned hUMSCs showed better anti-hyperglycemic effect in comparison with untreated hUMSCs. Histological analysis presented the regeneration of islets of Langerhans with upregulated expression of βcell genes and reduced expression of inflammatory markers. Immunohistochemistry revealed strong insulin expression in the preconditioned hUMSCs compared with the untreated hUMSCs. It is concluded from the present study that lawsone-preconditioned hMSCs were able to exhibit pronounced anti-hyperglycemic effect in vivo compared with hUMSCs alone.
Collapse
Affiliation(s)
- Javeria Masnoon
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Aisha Ishaque
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Khan
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asmat Salim
- Stem Cell Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nurul Kabir
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Petrocelli G, Marrazzo P, Bonsi L, Facchin F, Alviano F, Canaider S. Plumbagin, a Natural Compound with Several Biological Effects and Anti-Inflammatory Properties. Life (Basel) 2023; 13:1303. [PMID: 37374085 DOI: 10.3390/life13061303] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochemicals from various medicinal plants are well known for their antioxidant properties and anti-cancer effects. Many of these bioactive compounds or natural products have demonstrated effects against inflammation, while some showed a role that is only approximately described as anti-inflammatory. In particular, naphthoquinones are naturally-occurring compounds with different pharmacological activities and allow easy scaffold modification for drug design approaches. Among this class of compounds, Plumbagin, a plant-derived product, has shown interesting counteracting effects in many inflammation models. However, scientific knowledge about the beneficial effect of Plumbagin should be comprehensively reported before candidating this natural molecule into a future drug against specific human diseases. In this review, the most relevant mechanisms in which Plumbagin plays a role in the process of inflammation were summarized. Other relevant bioactive effects were reviewed to provide a complete and compact scenario of Plumbagin's potential therapeutic significance.
Collapse
Affiliation(s)
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Laura Bonsi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, BO, Italy
| | - Silvia Canaider
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| |
Collapse
|
13
|
Olson KR, Clear KJ, Gao Y, Ma Z, Cieplik NM, Fiume AR, Gaziano DJ, Kasko SM, Luu J, Pfaff E, Travlos A, Velander C, Wilson KJ, Edwards ED, Straub KD, Wu G. Redox and Nucleophilic Reactions of Naphthoquinones with Small Thiols and Their Effects on Oxidization of H 2S to Inorganic and Organic Hydropolysulfides and Thiosulfate. Int J Mol Sci 2023; 24:ijms24087516. [PMID: 37108682 PMCID: PMC10138938 DOI: 10.3390/ijms24087516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Naphthoquinone (1,4-NQ) and its derivatives (NQs, juglone, plumbagin, 2-methoxy-1,4-NQ, and menadione) have a variety of therapeutic applications, many of which are attributed to redox cycling and the production of reactive oxygen species (ROS). We previously demonstrated that NQs also oxidize hydrogen sulfide (H2S) to reactive sulfur species (RSS), potentially conveying identical benefits. Here we use RSS-specific fluorophores, mass spectroscopy, EPR and UV-Vis spectrometry, and oxygen-sensitive optodes to examine the effects of thiols and thiol-NQ adducts on H2S-NQ reactions. In the presence of glutathione (GSH) and cysteine (Cys), 1,4-NQ oxidizes H2S to both inorganic and organic hydroper-/hydropolysulfides (R2Sn, R=H, Cys, GSH; n = 2-4) and organic sulfoxides (GSnOH, n = 1, 2). These reactions reduce NQs and consume oxygen via a semiquinone intermediate. NQs are also reduced as they form adducts with GSH, Cys, protein thiols, and amines. Thiol, but not amine, adducts may increase or decrease H2S oxidation in reactions that are both NQ- and thiol-specific. Amine adducts also inhibit the formation of thiol adducts. These results suggest that NQs may react with endogenous thiols, including GSH, Cys, and protein Cys, and that these adducts may affect both thiol reactions as well as RSS production from H2S.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kasey J Clear
- Department of Chemistry and Biochemistry, Indiana University South Bend, South Bend, IN 46615, USA
| | - Yan Gao
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
| | - Zhilin Ma
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nathaniel M Cieplik
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alyssa R Fiume
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dominic J Gaziano
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Stephen M Kasko
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jennifer Luu
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ella Pfaff
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Anthony Travlos
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cecilia Velander
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katherine J Wilson
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elizabeth D Edwards
- Department of Chemistry and Biochemistry, Indiana University South Bend, South Bend, IN 46615, USA
| | - Karl D Straub
- Central Arkansas Veteran's Healthcare System, Little Rock, AR 72205, USA
- Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Gang Wu
- Department of Internal Medicine, The University of Texas-McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
14
|
Wang K, Wang B, Ma H, Wang Z, Liu Y, Wang Q. Natural Products for Pesticides Discovery: Structural Diversity Derivation and Biological Activities of Naphthoquinones Plumbagin and Juglone. Molecules 2023; 28:molecules28083328. [PMID: 37110562 PMCID: PMC10141837 DOI: 10.3390/molecules28083328] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Plant diseases and insect pests seriously affect the yield and quality of crops and are difficult to control. Natural products are an important source for the discovery of new pesticides. In this work, naphthoquinones plumbagin and juglone were selected as parent structures, and a series of their derivatives were designed, synthesized and evaluated for their fungicidal activities, antiviral activities and insecticidal activities. We found that the naphthoquinones have broad-spectrum anti-fungal activities against 14 types of fungus for the first time. Some of the naphthoquinones showed higher fungicidal activities than pyrimethanil. Compounds I, I-1e and II-1a emerged as new anti-fungal lead compounds with excellent fungicidal activities (EC50 values: 11.35-17.70 µg/mL) against Cercospora, arachidicola Hori. Some compounds also displayed good to excellent antiviral activities against the tobacco mosaic virus (TMV). Compounds I-1f and II-1f showed similar level of anti-TMV activities with ribavirin, and could be used as new antiviral candidates. These compound also exhibited good to excellent insecticidal activities. Compounds II-1d and III-1c displayed a similar level of insecticidal activities with matrine, hexaflumuron and rotenone against Plutella xylostella. In current study, plumbagin and juglone were discovered as parent structures, which lays a foundation for their application in plant protection.
Collapse
Affiliation(s)
- Kaihua Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Beibei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Henan Ma
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Daltoé RD, Rangel LBA, Delarmelina M, Madeira KP, Porto ML, Meirelles SS, Dos Santos Guimarães I, Filho ÉV, Pereira AR, de Queiroz Ferreira R, Dos Santos GFS, de França Schaffel I, de Mesquita Carneiro JW, Silva AMS, Greco SJ. Synthetic Naphthoquinone Derivatives as Anticancer Agents in Ovarian Cancer: Cytotoxicity Assay and Investigation of Possible Biological Mechanisms Action. Chem Biodivers 2023; 20:e202200807. [PMID: 36302719 DOI: 10.1002/cbdv.202200807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 01/13/2023]
Abstract
In this study, eight naphthoquinone derivatives were synthesized in yields ranging from 52 to 96% using easy, fast, and low-cost methodologies. All naphthoquinone derivatives were screened for their in vitro anti-proliferative activities against OVCA A2780 cancer cell lines. Amongst all analysed compounds, derivatives 3-5 presented the most prominent cytotoxic potential. Naphthoquinones 3 and 4, bearing sulfur-containing groups, were identified as having high potential for ROS production, in particular the superoxide anion. Furthermore, 3 and 4 compounds caused a decrease in the cell population in G0/G1 and induced more than 90% of the cell population to apoptosis. Compound 5 did not act in any of these processes. Finally, compounds 3-5 were tested for their inhibitory ability against PI3K and MAPK. Compounds 3 and 4 do not inhibit the PI3K enzyme. On the other hand, the naphthoquinone-polyphenol 5 was only able to inhibit the percentage of cells expressing pERK.
Collapse
Affiliation(s)
- Renata Dalmaschio Daltoé
- Pharmaceutical Sciences Department, Federal University of Espirito Santo, Vitória, Espírito Santo, 29047-105, Brazil
| | | | - Maicon Delarmelina
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Klesia Pirola Madeira
- Pharmacy and Nutrition Department, Federal University of Espírito Santo, Alegre, Espírito Santo, 29500-000, Brazil
| | - Marcella Leite Porto
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, Espírito Santo, 29106-010, Brazil
| | - Silvana Santos Meirelles
- Phisiological Sciences Department, Federal University of Espirito Santo, Vitória, Espírito Santo, 29047-105, Brazil
| | | | - Éclair Venturini Filho
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Alan Reinke Pereira
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | | | | | | | | | - Artur M S Silva
- REQUIMTE & Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Sandro José Greco
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| |
Collapse
|
16
|
Jabbar AA, Ibrahim IAA, Abdullah FO, Aziz KF, Alzahrani AR, Abdulla MA. Chemopreventive Effects of Onosma mutabilis against Azoxymethane-Induced Colon Cancer in Rats via Amendment of Bax/Bcl-2 and NF-κB Signaling Pathways. Curr Issues Mol Biol 2023; 45:885-902. [PMID: 36826002 PMCID: PMC9954954 DOI: 10.3390/cimb45020057] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
Onosma species (Boraginaceae) are well known as medicinal plants due to their wide range of pharmaceutical potential. The present study aims to investigate the anticancer (in vitro) and chemo-protective (in vivo) efficacies of Onosma mutabilis extract (OME) in the azoxymethane (AOM)-induced aberrant crypt foci (ACF) in rats. The in vitro antiproliferative effects of OME were determined on two human tumor cell lines (Caco-2 and HT-29) via MTT assay. The in vivo chemoprotective effects of OME were investigated by performing various biochemical analyses in serum and tissue homogenates of albino rats, along with determining oxidative stress biomarkers. Inflammatory biomarkers of colon, colonic gross morphology (by methylene blue), ACF formation, and colonic histopathology (H & E stain) were determined. The immunohistochemistry of colonic tissues was also assessed by Bax and Bcl-2 protein expression. The results showed that the antitumor activity of OME against Caco-2 and HT-29 colorectal cancer cells ranged between 22.28-36.55 µg/mL. OME supplementation caused a significant drop in the ACF values and improved the immunohistochemistry of the rats shown by up-regulation of Bax and down-regulation of Bcl-2 protein expressions. These outcomes reveal that O. mutabilis may have chemoprotective efficiency against AOM-induced colon cancer represented by the attenuation of ACF formation possibly through inhibition of free radicals, inflammation, and stimulation of the colon antioxidant armory (SOD, CAT, and GPx) and positive regulation of the Nrf2-Keap1 pathway.
Collapse
Affiliation(s)
- Ahmed Aj. Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil 44001, Iraq
- Correspondence: ; Tel.: +964-750-468-1242
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Fuad O. Abdullah
- Department of Chemistry, College of Science, Salahaddin University, Erbil 44001, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil 44001, Iraq
| | - Kareem Fattah Aziz
- Department of Nursing, College of Nursing, Hawler Medical University, Erbil 44001, Iraq
- Department of Nursing, Faculty of Nursing, Tishk International University, Erbil 44001, Iraq
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil 44001, Iraq
| |
Collapse
|
17
|
Feineis D, Bringmann G. Asian Ancistrocladus Lianas as Creative Producers of Naphthylisoquinoline Alkaloids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 119:1-335. [PMID: 36587292 DOI: 10.1007/978-3-031-10457-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This book describes a unique class of secondary metabolites, the mono- and dimeric naphthylisoquinoline alkaloids. They occur in lianas of the paleotropical Ancistrocladaceae and Dioncophyllaceae families, exclusively. Their unprecedented structures include stereogenic centers and rotationally hindered, and thus likewise stereogenic, axes. Extended recent investigations on six Ancistrocladus species from Asia, as reported in this review, shed light on their fascinating phytochemical productivity, with over 100 such intriguing natural products. This high chemodiversity arises from a likewise unique biosynthesis from acetate-malonate units, following a novel polyketidic pathway to plant-derived isoquinoline alkaloids. Some of the compounds show most promising antiparasitic activities. Likewise presented are strategies for the regio- and stereoselective total synthesis of the alkaloids, including the directed construction of the chiral axis.
Collapse
Affiliation(s)
- Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
18
|
Liu H, Pei Z, Li W. Hypoglycemic and antioxidative activity evaluation of phenolic compounds derived from walnut diaphragm produced in Xinjiang. J Food Biochem 2022; 46:e14403. [PMID: 36121702 DOI: 10.1111/jfbc.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 01/13/2023]
Abstract
Walnut diaphragm is defined as a dry wood septum located between the walnut shell and kernel. In this work, seven phenolic compounds from walnut diaphragm were purified and characterized, and their antioxidant activities and mechanisms of hypoglycemia were investigated. Compounds 1-7 were tested for DPPH, ABTS scavenging ability, and FRAP assay to evaluate the antioxidant activity. α-Amylase inhibition assay was introduced to assess the hypoglycemic activity, and the mechanism was investigated by kinetic analysis, CD spectrum, and molecular docking. Compound 6 showed the strongest antioxidant ability, while compound 1 exhibited the strongest inhibition of α-amylase by changing the secondary structure of α-amylase in a mixed competitive inhibition mode. Molecular docking test predicted that the tetrahydropyran part in compound 1 may contribute to its hypoglycemic effect. This study furnishes a new theoretical reference for the utilization and development of walnut diaphragm into a health food with antioxidant and hypoglycemic properties. PRACTICAL APPLICATIONS: The finding of this research may serve as a basis for the subsequent development of walnut diaphragm into instant tea-based health food or added to other food carriers to achieve auxiliary antioxidant and hypoglycemic effects. This study revealed that polyphenolic components were the material basis for the antioxidant and hypoglycemic effects of walnut diaphragm, which could be identified as landmark chemical components for controlling quality standards in the development of walnut diaphragm, thus accelerating the research process of quality standards for walnut diaphragm-related products. Furthermore, the studies on the mechanism of hypoglycemic activity supply more credible data to support the development of walnut diaphragm into a safe and consumer-friendly health food. With abundant resources and clear efficacy, walnut diaphragm has great development prospect and application value.
Collapse
Affiliation(s)
- Hongcui Liu
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhuo Pei
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Li
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
19
|
Naphthoquinones Oxidize H 2S to Polysulfides and Thiosulfate, Implications for Therapeutic Applications. Int J Mol Sci 2022; 23:ijms232113293. [PMID: 36362080 PMCID: PMC9657496 DOI: 10.3390/ijms232113293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
1,4-Napththoquinones (NQs) are clinically relevant therapeutics that affect cell function through production of reactive oxygen species (ROS) and formation of adducts with regulatory protein thiols. Reactive sulfur species (RSS) are chemically and biologically similar to ROS and here we examine RSS production by NQ oxidation of hydrogen sulfide (H2S) using RSS-specific fluorophores, liquid chromatography-mass spectrometry, UV-Vis absorption spectrometry, oxygen-sensitive optodes, thiosulfate-specific nanoparticles, HPLC-monobromobimane derivatization, and ion chromatographic assays. We show that NQs, catalytically oxidize H2S to per- and polysulfides (H2Sn, n = 2−6), thiosulfate, sulfite and sulfate in reactions that consume oxygen and are accelerated by superoxide dismutase (SOD) and inhibited by catalase. The approximate efficacy of NQs (in decreasing order) is, 1,4-NQ ≈ juglone ≈ plumbagin > 2-methoxy-1,4-NQ ≈ menadione >> phylloquinone ≈ anthraquinone ≈ menaquinone ≈ lawsone. We propose that the most probable reactions are an initial two-electron oxidation of H2S to S0 and reduction of NQ to NQH2. S0 may react with H2S or elongate H2Sn in variety of reactions. Reoxidation of NQH2 likely involves a semiquinone radical (NQ·−) intermediate via several mechanisms involving oxygen and comproportionation to produce NQ and superoxide. Dismutation of the latter forms hydrogen peroxide which then further oxidizes RSS to sulfoxides. These findings provide the chemical background for novel sulfur-based approaches to naphthoquinone-directed therapies.
Collapse
|
20
|
Liu Z, Shen Z, Xiang S, Sun Y, Cui J, Jia J. Evaluation of 1,4-naphthoquinone derivatives as antibacterial agents: activity and mechanistic studies. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2022; 17:31. [PMID: 36313056 PMCID: PMC9589524 DOI: 10.1007/s11783-023-1631-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/17/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED The diverse and large-scale application of disinfectants posed potential health risks and caused ecological damage during the 2019-nCoV pandemic, thereby increasing the demands for the development of disinfectants based on natural products, with low health risks and low aquatic toxicity. In the present study, a few natural naphthoquinones and their derivatives bearing the 1,4-naphthoquinone skeleton were synthesized, and their antibacterial activity against selected bacterial strains was evaluated. In vitro antibacterial activities of the compounds were investigated against Escherichia coli and Staphylococcus aureus. Under the minimum inhibitory concentration (MIC) of ⩽ 0.125 µmol/L for juglone (1a), 5,8-dimethoxy-1,4-naphthoquinone (1f), and 7-methyl-5-acetoxy-1,4-naphthoquinone (3c), a strong antibacterial activity against S. aureus was observed. All 1,4-naphthoquinone derivatives exhibited a strong antibacterial activity, with MIC values ranging between 15.625 and 500 µmol/L and EC50 values ranging between 10.56 and 248.42 µmol/L. Most of the synthesized compounds exhibited strong antibacterial activities against S. aureus. Among these compounds, juglone (1a) showed the strongest antibacterial activity. The results from mechanistic investigations indicated that juglone, a natural naphthoquinone, caused cell death by inducing reactive oxygen species production in bacterial cells, leading to DNA damage. In addition, juglone could reduce the self-repair ability of bacterial DNA by inhibiting RecA expression. In addition to having a potent antibacterial activity, juglone exhibited low cytotoxicity in cell-based investigations. In conclusion, juglone is a strong antibacterial agent with low toxicity, indicating that its application as a bactericidal agent may be associated with low health risks and aquatic toxicity. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available in the online version of this article at 10.1007/s11783-023-1631-2 and is accessible for authorized users.
Collapse
Affiliation(s)
- Zhizhuo Liu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Zhemin Shen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shouyan Xiang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yang Sun
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jinping Jia
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
21
|
Gencheva R, Cheng Q, Arnér ESJ. Thioredoxin reductase selenoproteins from different organisms as potential drug targets for treatment of human diseases. Free Radic Biol Med 2022; 190:320-338. [PMID: 35987423 DOI: 10.1016/j.freeradbiomed.2022.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
Abstract
Human thioredoxin reductase (TrxR) is a selenoprotein with a central role in cellular redox homeostasis, utilizing a highly reactive and solvent-exposed selenocysteine (Sec) residue in its active site. Pharmacological modulation of TrxR can be obtained with several classes of small compounds showing different mechanisms of action, but most often dependent upon interactions with its Sec residue. The clinical implications of TrxR modulation as mediated by small compounds have been studied in diverse diseases, from rheumatoid arthritis and ischemia to cancer and parasitic infections. The possible involvement of TrxR in these diseases was in some cases serendipitously discovered, by finding that existing clinically used drugs are also TrxR inhibitors. Inhibiting isoforms of human TrxR is, however, not the only strategy for human disease treatment, as some pathogenic parasites also depend upon Sec-containing TrxR variants, including S. mansoni, B. malayi or O. volvulus. Inhibiting parasite TrxR has been shown to selectively kill parasites and can thus become a promising treatment strategy, especially in the context of quickly emerging resistance towards other drugs. Here we have summarized the basis for the targeting of selenoprotein TrxR variants with small molecules for therapeutic purposes in different human disease contexts. We discuss how Sec engagement appears to be an indispensable part of treatment efficacy and how some therapeutically promising compounds have been evaluated in preclinical or clinical studies. Several research questions remain before a wider application of selenoprotein TrxR inhibition as a first-line treatment strategy might be developed. These include further mechanistic studies of downstream effects that may mediate treatment efficacy, identification of isoform-specific enzyme inhibition patterns for some given therapeutic compounds, and the further elucidation of cell-specific effects in disease contexts such as in the tumor microenvironment or in host-parasite interactions, and which of these effects may be dependent upon the specific targeting of Sec in distinct TrxR isoforms.
Collapse
Affiliation(s)
- Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Selenoprotein Research, National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary.
| |
Collapse
|