1
|
Begni V, Silipo DM, Bottanelli C, Papp M, Cattaneo A, Riva MA. Chronic treatment with the antipsychotic lurasidone modulates the neuroinflammatory changes associated with the vulnerability to chronic mild stress exposure in female rats. Brain Behav Immun 2025; 123:586-596. [PMID: 39384053 DOI: 10.1016/j.bbi.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024] Open
Abstract
Stress exposure is a key risk factor for the developmentof depressive-like conditions. However, despite the higher incidence of Major Depressive Disorder in the female population, classical stress-based experimental paradigms have primarily focused on males. In the present study, we used the well-established chronic mild stress (CMS) paradigm to investigate the development of anhedonia, a cardinal symptom of affective disorders, in the female animals and we also studied the potential effect of the antipsychotic drug lurasidone in normalizing the alterations brought about by stress exposure. We found that three weeks of CMS exposure produced a significant reduction of sucrose intake in 50% of the animals (vulnerable, CMS-V), whereas the others were resilient (CMS-R). The development of an anhedonic phenotype in CMS-V was associated with a significant elevation of different immune markers, such as Complement C3 and C4, and inflammatory cytokines, including INFß and Il1ß in dorsal and ventral hippocampus. Interestingly, sub-chronic treatment with the antipsychotic drug lurasidone was able to revert the anhedonic phenotype while normalizing most of the molecular alterations found in rats vulnerable to CMS exposure. This study extends the ability of lurasidone to normalize the anhedonic phenotype in CMS rats also to females. Moreover, we provide novel evidence on lurasidone's potential effectiveness in treating mental disorders characterized by immune-inflammatory dysfunction.
Collapse
Affiliation(s)
- Veronica Begni
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Diana Morena Silipo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Chiara Bottanelli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna Street 12, Krakow 31-343, Poland
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy.
| |
Collapse
|
2
|
Facal F, Costas J. Shared polygenic susceptibility to treatment response in severe affective and psychotic disorders: Evidence from GWAS data sets. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111183. [PMID: 39490915 DOI: 10.1016/j.pnpbp.2024.111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
While schizophrenia (SCZ), bipolar disorder (BD) and major depressive disorder (MDD) genetically correlate, the pleiotropy underlying response/resistance to drugs used in these disorders has not been investigated. The aim of this study is to analyze the genetic relationship between treatment-resistant schizophrenia (TRS), response to lithium in BD (respLi) and response to antidepressants in MDD (respAD) using the conditional/conjunctional false discovery rate (cond/conjFDR) methodology, based on the hypothesis that shared mechanisms related to a common psychopathology factor underlie these phenotypes. A cross-trait polygenic enrichment for TRS conditioned on associations with respLi was observed. The conjFDR analysis identified rs11631065 (chr15:66654304) as a shared locus between them. One of the genes at this locus is MAP2K1, previously reported as associated with TRS after conditioning on body mass index genome-wide association study (GWAS). The set of genes at TRS-respLi conjFDR < 0.95 showed enrichment in response to psychotropic drugs in severe mental disorders from GWAS Catalog as well as in neurodevelopment and synaptic pathways. In conclusion, our study constitutes the first evidence of a transdiagnostic genetic signal associated with response to different pharmacological treatments in psychotic and affective disorders. It is necessary to confirm these results when larger GWAS of these phenotypes are available.
Collapse
Affiliation(s)
- Fernando Facal
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain.
| | - Javier Costas
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
3
|
Di Bartolomeo M, Čerňanová A, Petrušová V, Di Martino S, Hodosy J, Drago F, Micale V, D'Addario C. DNA methylation at cannabinoid type 1 and dopamine D2 receptor genes in saliva samples of psychotic subjects: Is there an effect of Cannabis use? Pharmacol Res 2024; 208:107343. [PMID: 39127265 DOI: 10.1016/j.phrs.2024.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Psychosis is a characterizing feature of many mental disorders that dramatically affects human thoughts and perceptions, influencing the ability to distinguish between what is real and what is not. Both genetic and environmental factors, such as stressful events or drug use, play a pivotal role in the development of symptomatology and therefore changes in the epigenome may be of relevance in modeling a psychotic phenotype. According to the well-documented dysregulation of endocannabinoid and dopaminergic system genes in schizophrenia, we investigated DNA methylation cannabinoid type 1 receptor (CNR1) and dopamine D2 receptor (DRD2) genes in saliva samples from psychotic subjects using pyrosequencing. The epigenetic mark was significantly higher and directly correlated for both genes in psychotic subjects compared to healthy controls. We also showed that these DNA methylation levels were lower in psychotic subjects reporting current delta-9-tetrahydrocannabinol (THC) consumption, a well-known risk factor for developing psychosis throughout the lifespan, resembling those of controls at least for the DRD2 gene. Overall, our data confirm the key role of CNR1 and DRD2 gene regulation in psychosis and suggest DNA methylation levels at specific CpG sites as potential biomarkers, but just in those psychotic subjects not consuming THC.
Collapse
Affiliation(s)
- Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy.
| | - Andrea Čerňanová
- Psychiatric Department SMU, Slovak Medical University and University Hospital Bratislava, Ružinov, Bratislava 82101, Slovakia
| | - Veronika Petrušová
- Psychiatric Department SMU, Slovak Medical University and University Hospital Bratislava, Ružinov, Bratislava 82101, Slovakia
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - Július Hodosy
- Emergency Department, University Hospital Bratislava, Ružinov, Bratislava 82101, Slovakia; Faculty of Medicine, Comenius University in Bratislava, Bratislava 81372, Slovakia
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
4
|
Vita A, Barlati S, Cavallaro R, Mucci A, Riva MA, Rocca P, Rossi A, Galderisi S. Definition, assessment and treatment of cognitive impairment associated with schizophrenia: expert opinion and practical recommendations. Front Psychiatry 2024; 15:1451832. [PMID: 39371908 PMCID: PMC11450451 DOI: 10.3389/fpsyt.2024.1451832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/22/2024] [Indexed: 10/08/2024] Open
Abstract
A considerable proportion of patients with schizophrenia perform below population norms on standardized neuropsychological tests, and the performance of those performing within normal range is lower than predicted based on parental education. Cognitive impairment predates the onset of psychosis, is observed during symptom remission and in non-affected first-degree relatives of patients. At the present time, cognitive deficits are regarded as key features of schizophrenia, important determinants of poor psychosocial outcome and targets for both pharmacological and non-pharmacological treatment strategies. A group of eight key opinion leaders reviewed and discussed latest advances in scientific research and current good clinical practices on assessment, management, and treatment of CIAS. In the present paper they summarize the current evidence, identify main gaps between current knowledge and mental health services clinical practice, and provide practical recommendations to reduce the gap.
Collapse
Affiliation(s)
- Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili of, Brescia, Italy
| | - Stefano Barlati
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili of, Brescia, Italy
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Armida Mucci
- Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Paola Rocca
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Alessandro Rossi
- Department of Biotechnological and Applied Clinical Sciences, Section of Psychiatry, University of L’Aquila, L’Aquila, Italy
| | - Silvana Galderisi
- Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
5
|
Vasiliu O, Budeanu B, Cătănescu MȘ. The New Horizon of Antipsychotics beyond the Classic Dopaminergic Hypothesis-The Case of the Xanomeline-Trospium Combination: A Systematic Review. Pharmaceuticals (Basel) 2024; 17:610. [PMID: 38794180 PMCID: PMC11124398 DOI: 10.3390/ph17050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Although the dopamine hypothesis of schizophrenia explains the effects of all the available antipsychotics in clinical use, there is an increasing need for developing new drugs for the treatment of the positive, negative, and cognitive symptoms of chronic psychoses. Xanomeline-trospium (KarXT) is a drug combination that is based on the essential role played by acetylcholine in the regulation of cognitive processes and the interactions between this neurotransmitter and other signaling pathways in the central nervous system, with a potential role in the onset of schizophrenia, Alzheimer's disease, and substance use disorders. A systematic literature review that included four electronic databases (PubMed, Cochrane, Clarivate/Web of Science, and Google Scholar) and the US National Library of Medicine database for clinical trials detected twenty-one sources referring to fourteen studies focused on KarXT, out of which only four have available results. Based on the results of these trials, the short-term efficacy and tolerability of xanomeline-trospium are good, but more data are needed before this drug combination may be recommended for clinical use. However, on a theoretical level, the exploration of KarXT is useful for increasing the interest of researchers in finding new, non-dopaminergic, antipsychotics that could be used either as monotherapy or as add-on drugs.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Department of Psychiatry, “Dr. Carol Davila” University Emergency Central Military Hospital, 010816 Bucharest, Romania
| | - Beatrice Budeanu
- Faculty of Medicine, « Carol Davila » University of Medicine and Pharmacy, 050474 Bucharest, Romania; (B.B.); (M.-Ș.C.)
| | - Mihai-Ștefan Cătănescu
- Faculty of Medicine, « Carol Davila » University of Medicine and Pharmacy, 050474 Bucharest, Romania; (B.B.); (M.-Ș.C.)
| |
Collapse
|
6
|
Li T, Hu K, Ye L, Ma J, Huang L, Guo C, Huang X, Jiang J, Xie X, Guo C, He Q. Association of Antipsychotic Drugs with Venous Thromboembolism: Data Mining of Food and Drug Administration Adverse Event Reporting System and Mendelian Randomization Analysis. J Atheroscler Thromb 2024; 31:396-418. [PMID: 38030236 PMCID: PMC10999720 DOI: 10.5551/jat.64461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
AIMS Past observational studies have reported on the association between antipsychotic drugs and venous thromboembolism (VTE); however, the conclusions remain controversial, and its mechanisms are yet to be fully understood. Thus, in this study, we aim to determine the associations of antipsychotic drugs with VTE, including deep vein thrombosis (DVT) and pulmonary embolism (PE), and their potential mechanisms. METHODS We first mined the adverse event signals of VTE, DVT, and PE caused by antipsychotic drugs in Food and Drug Administration Adverse Event Reporting System (FAERS). Next, we used two-sample Mendelian randomization (MR) method to investigate the association of antipsychotic drug target gene expression with VTE, DVT, and PE, using single-nucleotide polymorphisms as genetic instruments. We not only used the expression of all antipsychotic drug target genes as exposure to perform MR analyses but also analyzed the effect of single target gene expression on the outcomes. RESULTS In the FAERS, 1694 cases of VTE events were reported by 16 drugs. However, using the MR approach, no significant association was determined between the expression of all antipsychotic target genes and VTE, DVT, or PE, either in blood or brain tissue. Although the analysis of single gene expression data showed that the expression of nine genes was associated with VTE events, these targets lacked significant pharmacological action. CONCLUSIONS Adverse event mining results have supported the claim that antipsychotic drugs can increase the risk of VTE. However, we failed to find any genetic evidence for this causal association and potential mechanisms. Thus, vigilance is still needed for antipsychotic drug-related VTE despite the limited supporting evidence.
Collapse
Affiliation(s)
- Tong Li
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University
| | - Kai Hu
- Department of Neurology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University
| | - Ling Ye
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University
| | - Junlong Ma
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University
| | | | - Chengjun Guo
- School of Applied Mathematics, Guangdong University of Technology
| | - Xin Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University
| | - Jie Jiang
- Department of Pediatrics, The Affiliated Changsha Central Hospital, University of South China Hengyang Medical School, University of South China
| | - Xiaoxue Xie
- Department of Radiotherapy, Hunan Provincial Tumor Hospital and Affiliated Tumor Hospital of Xiangya Medical School, Central South University
| | - Chengxian Guo
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University
| |
Collapse
|
7
|
Featherstone RE, Li H, Sengar A, Borgmann-Winter KE, Melnychenko O, Crown LM, Gifford RL, Amirfathi F, Banerjee A, Parekh K, Heller M, Zhang W, Marc AD, Salter MW, Siegel SJ, Hahn CG. Blocking Src-PSD-95 interaction rescues glutamatergic signaling dysregulation in schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584132. [PMID: 38496466 PMCID: PMC10942437 DOI: 10.1101/2024.03.08.584132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The complex and heterogeneous genetic architecture of schizophrenia inspires us to look beyond individual risk genes for therapeutic strategies and target their interactive dynamics and convergence. Postsynaptic NMDA receptor (NMDAR) complexes are a site of such convergence. Src kinase is a molecular hub of NMDAR function, and its protein interaction subnetwork is enriched for risk-genes and altered protein associations in schizophrenia. Previously, Src activity was found to be decreased in post-mortem studies of schizophrenia, contributing to NMDAR hypofunction. PSD-95 suppresses Src via interacting with its SH2 domain. Here, we devised a strategy to suppress the inhibition of Src by PSD-95 via employing a cell penetrating and Src activating PSD-95 inhibitory peptide (TAT-SAPIP). TAT-SAPIP selectively increased post-synaptic Src activity in humans and mice, and enhanced synaptic NMDAR currents in mice. Chronic ICV injection of TAT-SAPIP rescued deficits in trace fear conditioning in Src hypomorphic mice. We propose blockade of the Src-PSD-95 interaction as a proof of concept for the use of interfering peptides as a therapeutic strategy to reverse NMDAR hypofunction in schizophrenia and other illnesses.
Collapse
|
8
|
Riva MA, Cattaneo A. The complex scenario behind the term antipsychotic drug. Eur Neuropsychopharmacol 2024; 80:3-4. [PMID: 38128334 DOI: 10.1016/j.euroneuro.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, Brescia 25125, Italy.
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, Brescia 25125, Italy
| |
Collapse
|
9
|
Begni V, Marizzoni M, Creutzberg KC, Silipo DM, Papp M, Cattaneo A, Riva MA. Transcriptomic analyses of rats exposed to chronic mild stress: Modulation by chronic treatment with the antipsychotic drug lurasidone. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110885. [PMID: 37865392 DOI: 10.1016/j.pnpbp.2023.110885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Exposure to stressful experiences accounts for almost half of the risk for mental disorders. Hence, stress-induced alterations represent a key target for pharmacological interventions aimed at restoring brain function in affected individuals. We have previously demonstrated that lurasidone, a multi-receptor antipsychotic drug approved for the treatment of schizophrenia and bipolar depression, can normalize the functional and molecular impairments induced by stress exposure, representing a valuable tool for the treatment of stress-induced mental illnesses. However, the mechanisms that may contribute to the therapeutic effects of lurasidone are still poorly understood. Here, we performed a transcriptomic analysis on the prefrontal cortex (PFC) of adult male rats exposed to the chronic mild stress (CMS) paradigm and we investigated the impact of chronic lurasidone treatment on such changes. We found that CMS exposure leads to an anhedonic phenotype associated with a down-regulation of different pathways associated to neuronal guidance and synaptic plasticity within the PFC. Interestingly, a significant part of these alterations (around 25%) were counteracted by lurasidone treatment. In summary, we provided new insights on the transcriptional changes relevant for the therapeutic intervention with lurasidone, which may ultimately promote resilience.
Collapse
Affiliation(s)
- Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy; Lab of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| | - Kerstin Camile Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Diana Morena Silipo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Mariusz Papp
- Institute of Pharmacology and Polish Academy of Sciences, Smętna Street 12, Kraków 31-343, Poland
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy.
| |
Collapse
|
10
|
Bright Y, Maas DA, Verheij MM, Paladini MS, Amatdjais-Groenen HI, Molteni R, Riva MA, Martens GJ, Homberg JR. The Natural Protoalkaloid Methyl-2-Amino-3-Methoxybenzoate (MAM) Alleviates Positive as well as Cognitive Symptoms in Rat and Mouse Schizophrenia Models. Curr Neuropharmacol 2024; 22:323-338. [PMID: 37475559 PMCID: PMC10788887 DOI: 10.2174/1570159x21666230720122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 07/22/2023] Open
Abstract
The development of new antipsychotics with pro-cognitive properties and less side effects represents a priority in schizophrenia drug research. In this study, we present for the first time a preclinical exploration of the effects of the promising natural atypical antipsychotic Methyl-2-Amino-3- Methoxybenzoate (MAM), a brain-penetrable protoalkaloid from the seed of the plant Nigella damascena. Using animal models related to hyperdopaminergic activity, namely the pharmacogenetic apomorphine (D2/D1 receptor agonist)-susceptible (APO-SUS) rat model and pharmacologically induced mouse and rat models of schizophrenia, we found that MAM reduced gnawing stereotypy and climbing behaviours induced by dopaminergic agents. This predicts antipsychotic activity. In line, MAM antagonized apomorphine-induced c-Fos and NPAS4 mRNA levels in post-mortem brain nucleus accumbens and dorsolateral striatum of APO-SUS rats. Furthermore, phencyclidine (PCP, an NMDA receptor antagonist) and 2,5-Dimethoxy-4-iodoamphetamine (DOI, a 5HT2A/2C receptor agonist) induced prepulse inhibition deficits, reflecting the positive symptoms of schizophrenia, which were rescued by treatment with MAM and atypical antipsychotics alike. Post-mortem brain immunostaining revealed that MAM blocked the strong activation of both PCP- and DOI-induced c-Fos immunoreactivity in a number of cortical areas. Finally, during a 28-day subchronic treatment regime, MAM did not induce weight gain, hyperglycemia, hyperlipidemia or hepato- and nephrotoxic effects, side effects known to be induced by atypical antipsychotics. MAM also did not show any cataleptic effects. In conclusion, its brain penetrability, the apparent absence of preclinical side effects, and its ability to antagonize positive and cognitive symptoms associated with schizophrenia make MAM an exciting new antipsychotic drug that deserves clinical testing.
Collapse
Affiliation(s)
- Yami Bright
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dorien A. Maas
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Faculty of Science, Nijmegen, The Netherlands
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michel M.M. Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Maria S. Paladini
- Department of Pharmacological and Biomolecular Sciences, Universita’ degli Studi di Milano, Milan, Italy
- Altos Labs Bay Area Institute of Science, Altos Labs, Inc., Redwood City, CA, USA
| | | | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, Universita’ degli Studi di Milano, Milan, Italy
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, Universita’ degli Studi di Milano, Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Gerard J.M. Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Faculty of Science, Nijmegen, The Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Markowicz-Piasecka M, Kubisiak M, Asendrych-Wicik K, Kołodziejczyk M, Grzelińska J, Fabijańska M, Pietrzak T. Long-Acting Injectable Antipsychotics-A Review on Formulation and In Vitro Dissolution. Pharmaceutics 2023; 16:28. [PMID: 38258037 PMCID: PMC10820045 DOI: 10.3390/pharmaceutics16010028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Long-acting injectable (LAI) neuroleptics constitute an effective therapeutical alternative for individuals suffering from persistent mental illness. These injectable pharmaceuticals help patients manage their condition better and improve long-term outcomes by preventing relapses and improving compliance. This review aims to analyse the current formulation aspects of LAI neuroleptics, with particular emphasis on analysis of drug release profiles as a critical test to guarantee drug quality and relevant therapeutical activity. While there is no officially approved procedure for depot parenteral drug formulations, various dissolution tests which were developed by LAI manufacturers are described. In vitro dissolution tests also possess a critical function in the estimation of the in vivo performance of a drug formulation. For that reason, thorough inspection of the in vitro-in vivo correlation (IVIVC) is also discussed.
Collapse
Affiliation(s)
| | - Marcin Kubisiak
- Liquid Dosage Form Laboratory, Research and Development Department, Polfa Warszawa S.A., Karolkowa 22/24, 01-207 Warsaw, Poland; (M.K.); (K.A.-W.); (J.G.); (T.P.)
| | - Katarzyna Asendrych-Wicik
- Liquid Dosage Form Laboratory, Research and Development Department, Polfa Warszawa S.A., Karolkowa 22/24, 01-207 Warsaw, Poland; (M.K.); (K.A.-W.); (J.G.); (T.P.)
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland
| | - Michał Kołodziejczyk
- Department of Drug Form Technology, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland;
| | - Joanna Grzelińska
- Liquid Dosage Form Laboratory, Research and Development Department, Polfa Warszawa S.A., Karolkowa 22/24, 01-207 Warsaw, Poland; (M.K.); (K.A.-W.); (J.G.); (T.P.)
| | - Małgorzata Fabijańska
- Department of Bioinorganic Chemistry, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland;
| | - Tomasz Pietrzak
- Liquid Dosage Form Laboratory, Research and Development Department, Polfa Warszawa S.A., Karolkowa 22/24, 01-207 Warsaw, Poland; (M.K.); (K.A.-W.); (J.G.); (T.P.)
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
12
|
O'Connell KS, Koch E, Lenk HÇ, Akkouh IA, Hindley G, Jaholkowski P, Smith RL, Holen B, Shadrin AA, Frei O, Smeland OB, Steen NE, Dale AM, Molden E, Djurovic S, Andreassen OA. Polygenic overlap with body-mass index improves prediction of treatment-resistant schizophrenia. Psychiatry Res 2023; 325:115217. [PMID: 37146461 PMCID: PMC10788293 DOI: 10.1016/j.psychres.2023.115217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
Treatment resistant schizophrenia (TRS) is characterized by repeated treatment failure with antipsychotics. A recent genome-wide association study (GWAS) of TRS showed a polygenic architecture, but no significant loci were identified. Clozapine is shown to be the superior drug in terms of clinical effect in TRS; at the same time it has a serious side effect profile, including weight gain. Here, we sought to increase power for genetic discovery and improve polygenic prediction of TRS, by leveraging genetic overlap with Body Mass Index (BMI). We analysed GWAS summary statistics for TRS and BMI applying the conditional false discovery rate (cFDR) framework. We observed cross-trait polygenic enrichment for TRS conditioned on associations with BMI. Leveraging this cross-trait enrichment, we identified 2 novel loci for TRS at cFDR <0.01, suggesting a role of MAP2K1 and ZDBF2. Further, polygenic prediction based on the cFDR analysis explained more variance in TRS when compared to the standard TRS GWAS. These findings highlight putative molecular pathways which may distinguish TRS patients from treatment responsive patients. Moreover, these findings confirm that shared genetic mechanisms influence both TRS and BMI and provide new insights into the biological underpinnings of metabolic dysfunction and antipsychotic treatment.
Collapse
Affiliation(s)
- Kevin S O'Connell
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Elise Koch
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hasan Çağın Lenk
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ibrahim A Akkouh
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Guy Hindley
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Psychosis Studies, Institute of Psychiatry, Psychology and Neurosciences, King's College London, United Kingdom
| | - Piotr Jaholkowski
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Robert Løvsletten Smith
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Børge Holen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey A Shadrin
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Bioinformatics, Department of Informatics, University of Oslo, 0316 Oslo, Norway
| | - Olav B Smeland
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA; Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA 92093, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
13
|
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants (Basel) 2023; 12:antiox12040975. [PMID: 37107350 PMCID: PMC10135787 DOI: 10.3390/antiox12040975] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants' mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
14
|
Markiewicz-Gospodarek A, Markiewicz R, Borowski B, Dobrowolska B, Łoza B. Self-Regulatory Neuronal Mechanisms and Long-Term Challenges in Schizophrenia Treatment. Brain Sci 2023; 13:brainsci13040651. [PMID: 37190616 DOI: 10.3390/brainsci13040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Schizophrenia is a chronic and relapsing disorder that is characterized not only by delusions and hallucinations but also mainly by the progressive development of cognitive and social deficits. These deficits are related to impaired synaptic plasticity and impaired neurotransmission in the nervous system. Currently, technological innovations and medical advances make it possible to use various self-regulatory methods to improve impaired synaptic plasticity. To evaluate the therapeutic effect of various rehabilitation methods, we reviewed methods that modify synaptic plasticity and improve the cognitive and executive processes of patients with a diagnosis of schizophrenia. PubMed, Scopus, and Google Scholar bibliographic databases were searched with the keywords mentioned below. A total of 555 records were identified. Modern methods of schizophrenia therapy with neuroplastic potential, including neurofeedback, transcranial magnetic stimulation, transcranial direct current stimulation, vagus nerve stimulation, virtual reality therapy, and cognitive remediation therapy, were reviewed and analyzed. Since randomized controlled studies of long-term schizophrenia treatment do not exceed 2-3 years, and the pharmacological treatment itself has an incompletely estimated benefit-risk ratio, treatment methods based on other paradigms, including neuronal self-regulatory and neural plasticity mechanisms, should be considered. Methods available for monitoring neuroplastic effects in vivo (e.g., fMRI, neuropeptides in serum), as well as unfavorable parameters (e.g., features of the metabolic syndrome), enable individualized monitoring of the effectiveness of long-term treatment of schizophrenia.
Collapse
Affiliation(s)
| | - Renata Markiewicz
- Department of Neurology, Neurological and Psychiatric Nursing, Medical University of Lublin, 20-093 Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Beata Dobrowolska
- Department of Holistic Care and Management in Nursing, Medical University of Lublin, 20-081 Lublin, Poland
| | - Bartosz Łoza
- Department of Psychiatry, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
15
|
de Bartolomeis A, Ciccarelli M, De Simone G, Mazza B, Barone A, Vellucci L. Canonical and Non-Canonical Antipsychotics' Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:ijms24065945. [PMID: 36983018 PMCID: PMC10051989 DOI: 10.3390/ijms24065945] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics' receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na2+ channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
16
|
Tamaian R, Porozov Y, Shityakov S. Exhaustive in silico design and screening of novel antipsychotic compounds with improved pharmacodynamics and blood-brain barrier permeation properties. J Biomol Struct Dyn 2023; 41:14849-14870. [PMID: 36927517 DOI: 10.1080/07391102.2023.2184179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/18/2023] [Indexed: 03/18/2023]
Abstract
Antipsychotic drugs or neuroleptics are widely used in the treatment of psychosis as a manifestation of schizophrenia and bipolar disorder. However, their effectiveness largely depends on the blood-brain barrier (BBB) permeation (pharmacokinetics) and drug-receptor pharmacodynamics. Therefore, in this study, we developed and implemented the in silico pipeline to design novel compounds (n = 260) as leads using the standard drug scaffolds with improved PK/PD properties from the standard scaffolds. As a result, the best candidates (n = 3) were evaluated in molecular docking to interact with serotonin and dopamine receptors. Finally, haloperidol (HAL) derivative (1-(4-fluorophenyl)-4-(4-hydroxy-4-{4-[(2-phenyl-1,3-thiazol-4-yl)methyl]phenyl}piperidin-1-yl)butan-1-one) was identified as a "magic shotgun" lead compound with better affinity to the 5-HT2A, 5-HT1D, D2, D3, and 5-HT1B receptors than the control molecule. Additionally, this hit substance was predicted to possess similar BBB permeation properties and much lower toxicological profiles in comparison to HAL. Overall, the proposed rational drug design platform for novel antipsychotic drugs based on the BBB permeation and receptor binding might be an invaluable asset for a medicinal chemist or translational pharmacologist.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Radu Tamaian
- ICSI Analytics, National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm. Vâlcea, Râmnicu Vâlcea, Romania
| | - Yuri Porozov
- Center of Bio- and Chemoinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| |
Collapse
|
17
|
D'Urso G, Toscano E, Barone A, Palermo M, Dell'Osso B, Di Lorenzo G, Mantovani A, Martinotti G, Fornaro M, Iasevoli F, de Bartolomeis A. Transcranial direct current stimulation for bipolar depression: systematic reviews of clinical evidence and biological underpinnings. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110672. [PMID: 36332699 DOI: 10.1016/j.pnpbp.2022.110672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/09/2022] [Accepted: 10/26/2022] [Indexed: 11/08/2022]
Abstract
Despite multiple available treatments for bipolar depression (BD), many patients face sub-optimal responses. Transcranial direct current stimulation (tDCS) has been advocated in the management of different conditions, including BD, especially in treatment-resistant cases. The optimal dose and timing of tDCS, the mutual influence with other concurrently administered interventions, long-term efficacy, overall safety, and biological underpinnings nonetheless deserve additional assessment. The present study appraised the existing clinical evidence about tDCS for bipolar depression, delving into the putative biological underpinnings with a special emphasis on cellular and molecular levels, with the ultimate goal of providing a translational perspective on the matter. Two separate systematic reviews across the PubMed database since inception up to August 8th 2022 were performed, with fourteen clinical and nineteen neurobiological eligible studies. The included clinical studies encompass 207 bipolar depression patients overall and consistently document the efficacy of tDCS, with a reduction in depression scores after treatment ranging from 18% to 92%. The RCT with the largest sample clearly showed a significant superiority of active stimulation over sham. Mild-to-moderate and transient adverse effects are attributed to tDCS across these studies. The review of neurobiological literature indicates that several molecular mechanisms may account for the antidepressant effect of tDCS in BD patients, including the action on calcium homeostasis in glial cells, the enhancement of LTP, the regulation of neurotrophic factors and inflammatory mediators, and the modulation of the expression of plasticity-related genes. To the best of our knowledge, this is the first study on the matter to concurrently provide a synthesis of the clinical evidence and an in-depth appraisal of the putative biological underpinnings, providing consistent support for the efficacy, safety, and tolerability of tDCS.
Collapse
Affiliation(s)
- Giordano D'Urso
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy.
| | - Elena Toscano
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Annarita Barone
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Mario Palermo
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences Luigi Sacco, Ospedale Luigi Sacco Polo Universitario, ASST Fatebenefratelli Sacco, Milan, Italy; Department of Psychiatry and Behavioural Sciences, Bipolar Disorders Clinic, Stanford University, CA, USA; CRC "Aldo Ravelli" for Neuro-technology & Experimental Brain Therapeutics, University of Milan, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, Tor Vergata University of Rome, Italy; Psychiatric and Clinical Psychology Unit, Fondazione Policlinico Tor Vergata, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Mantovani
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio" Università degli Studi del Molise, Campobasso, Italy; Dipartimento di Salute Mentale e delle Dipendenze, Azienda Sanitaria Regionale del Molise (ASReM), Campobasso, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging, Clinical Sciences, University Gabriele d'Annunzio, Chieti-Pescara, Italy; Department of Pharmacy, Pharmacology, Clinical Sciences, University of Hertfordshire, Herts, UK
| | - Michele Fornaro
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Felice Iasevoli
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
18
|
Cicala G, de Filippis R, Barbieri MA, Cutroneo PM, De Fazio P, Schoretsanitis G, Spina E. Tolerability profile of paliperidone palmitate formulations: A pharmacovigilance analysis of the EUDRAVigilance database. Front Psychiatry 2023; 14:1130636. [PMID: 37091708 PMCID: PMC10116827 DOI: 10.3389/fpsyt.2023.1130636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Long-acting injectable antipsychotics (LAIs) have proven to be effective in the maintenance treatment of patients suffering from schizophrenia, and their safety and tolerability profiles represent a key factor in their long-term use and choice in clinical practice. Paliperidone palmitate (PP) is the only second-generation LAI (SGA-LAI), available in both one- (PP1M) and 3-month (PP3M) formulations. However, real-world prospective studies on PP1M and PP3M are still few and mostly conducted on small samples. In this context, we aimed to better define the safety and tolerability profile of PP using real world pharmacovigilance data. Methods We retrospectively analyzed the publicly available data regarding Individual Case Safety Reports (ICSRs), presenting PP1M and/or PP3M as suspected drugs, reported on EUDRAVigilance between 2011 and June 30th, 2022. ICSRs relative to at least one SGA-LAI other than PP, reported between 2003 and June 30th, 2022, were also examined as reference group. Data were evaluated with a descriptive analysis, and then, as disproportionality measures, crude reporting odds ratio (ROR) and 95% confidence interval (CI) were calculated. Results A total of 8,152 ICSRs met the inclusion criteria, of those 77.7% (n = 6,332) presented as suspected drug PP1M, 21.2% (n = 1,731) PP3M, while 89 cases indicated both PP1M and PP3M. Significantly higher probabilities of reporting in PP-related reports were observed for the primary Standardized MedDRA Queries "Sexual Dysfunctions" (ROR = 1.45; 95% CI 1.23-1.70), "Haemodynamic oedema, effusions and fluid overload" (ROR = 1.42; 1.18-1.70), as well as "Fertility disorders" (ROR = 2.69; 1.51-4.80). Discussion Our analysis indicates that the tolerability and safety profiles of PP are in line with what is known for the other SGA-LAIs. However, differences regarding endocrine system ADRs have been noticed. The results presented in this work do not discourage the prescription of SGA-LAI formulations but aim to enhance their safety.
Collapse
Affiliation(s)
- Giuseppe Cicala
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- *Correspondence: Giuseppe Cicala,
| | - Renato de Filippis
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Paola Maria Cutroneo
- Sicilian Regional Pharmacovigilance Center, Azienda Ospedaliera Universitaria Policlinico G. Martino, Messina, Italy
| | - Pasquale De Fazio
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
- The Zucker Hillside Hospital, Department of Psychiatry Research, Northwell Health, Glen Oaks, NY, United States
- Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, United States
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Sicilian Regional Pharmacovigilance Center, Azienda Ospedaliera Universitaria Policlinico G. Martino, Messina, Italy
| |
Collapse
|
19
|
Granero R, Fernández-Aranda F, Demetrovics Z, Lara-Huallipe M, Morón-Fernández A, Jiménez-Murcia S. Network Analysis of the Structure of the Core Symptoms and Clinical Correlates in Comorbid Schizophrenia and Gambling Disorder. Int J Ment Health Addict 2022; 22:1-27. [PMID: 36589470 PMCID: PMC9794112 DOI: 10.1007/s11469-022-00983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/28/2022] Open
Abstract
Few studies have analyzed the clinical profile of treatment-seeking patients with the comorbid presence of schizophrenia (SCZ) and gambling disorder (GD), which warrants new research to assess the network structure of this complex mental condition. The aim of this study was to explore the organization of the symptoms and other clinical correlates of SCZ with GD. Network analysis was applied to a sample of N = 179 SCZ patients (age range: 19-70 years, mean=39.5, SD=9.9) who met clinical criteria for gambling disorder-related problems. Variables included in the network were the core GD symptoms according to the DSM-5, psychotic and paranoid ideation levels, global psychological distress, GD severity measures (debts and illegal behavior related with gambling), substances (tobacco, alcohol, and illegal drugs), and personality profile. The nodes with the highest authority in the network (variables of highest relevance) were personality traits and psychological distress. Four empirical modules/clusters were identified, and linkage analysis identified the nodes with the highest closeness (bridge nodes) to be novelty seeking and reward dependence (these traits facilitate the transition between the modules). Identification of the variables with the highest centrality/linkage can be particularly useful for developing precise management plans to prevent and treat SCZ with GD. Supplementary Information The online version contains supplementary material available at 10.1007/s11469-022-00983-y.
Collapse
Affiliation(s)
- Roser Granero
- Department of Psychobiology and Methodology, Universitat Autònoma de Barcelona - UAB, Barcelona, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Spain
| | - Fernando Fernández-Aranda
- Ciber Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Spain
- Department of Psychiatry, Hospital Universitari de Bellvitge-IDIBELL and CIBERObn, c/ Feixa Llarga s/n, 08907, L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, Universitat de Barcelona - UB, L’Hospitalet de Llobregat, Spain
| | - Zsolt Demetrovics
- Centre of Excellence in Responsible Gaming, University of Gibraltar, Gibraltar, Gibraltar
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Milagros Lara-Huallipe
- Department of Psychiatry, Hospital Universitari de Bellvitge-IDIBELL and CIBERObn, c/ Feixa Llarga s/n, 08907, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Alex Morón-Fernández
- Faculty of Psychology, Universitat Autònoma de Barcelona - UAB, Barcelona, Spain
| | - Susana Jiménez-Murcia
- Ciber Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Spain
- Department of Psychiatry, Hospital Universitari de Bellvitge-IDIBELL and CIBERObn, c/ Feixa Llarga s/n, 08907, L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, Universitat de Barcelona - UB, L’Hospitalet de Llobregat, Spain
| |
Collapse
|
20
|
de Bartolomeis A, De Simone G, Ciccarelli M, Castiello A, Mazza B, Vellucci L, Barone A. Antipsychotics-Induced Changes in Synaptic Architecture and Functional Connectivity: Translational Implications for Treatment Response and Resistance. Biomedicines 2022; 10:3183. [PMID: 36551939 PMCID: PMC9776416 DOI: 10.3390/biomedicines10123183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a severe mental illness characterized by alterations in processes that regulate both synaptic plasticity and functional connectivity between brain regions. Antipsychotics are the cornerstone of schizophrenia pharmacological treatment and, beyond occupying dopamine D2 receptors, can affect multiple molecular targets, pre- and postsynaptic sites, as well as intracellular effectors. Multiple lines of evidence point to the involvement of antipsychotics in sculpting synaptic architecture and remodeling the neuronal functional unit. Furthermore, there is an increasing awareness that antipsychotics with different receptor profiles could yield different interregional patterns of co-activation. In the present systematic review, we explored the fundamental changes that occur under antipsychotics' administration, the molecular underpinning, and the consequences in both acute and chronic paradigms. In addition, we investigated the relationship between synaptic plasticity and functional connectivity and systematized evidence on different topographical patterns of activation induced by typical and atypical antipsychotics.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
de Bartolomeis A, Ciccarelli M, Vellucci L, Fornaro M, Iasevoli F, Barone A. Update on novel antipsychotics and pharmacological strategies for treatment resistant schizophrenia. Expert Opin Pharmacother 2022; 23:2035-2052. [DOI: 10.1080/14656566.2022.2145884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Dentistry, University of Naples “Federico II”, Naples, Italy
| | - Mariateresa Ciccarelli
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Dentistry, University of Naples “Federico II”, Naples, Italy
| | - Licia Vellucci
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Dentistry, University of Naples “Federico II”, Naples, Italy
| | - Michele Fornaro
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Dentistry, University of Naples “Federico II”, Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Dentistry, University of Naples “Federico II”, Naples, Italy
| | - Annarita Barone
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Dentistry, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
22
|
Leucht S, Chaimani A, Krause M, Schneider-Thoma J, Wang D, Dong S, Samara M, Peter N, Huhn M, Priller J, Davis JM. The response of subgroups of patients with schizophrenia to different antipsychotic drugs: a systematic review and meta-analysis. Lancet Psychiatry 2022; 9:884-893. [PMID: 36228647 DOI: 10.1016/s2215-0366(22)00304-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/10/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND As comparatively few trials in subgroups of patients with schizophrenia have been done, clinicians need to know whether they can rely on the results of randomised controlled trials (RCTs) in the general population of patients with schizophrenia. We aimed to compare the efficacy and side-effects of antipsychotic drugs in different subgroups. METHODS In this systematic review and meta-analysis, we searched reference lists of previous systematic reviews and meta-analyses, the Cochrane Schizophrenia Group's Study-Based Register (from database inception to April 27, 2020), and PubMed (from April 1, 2020 to June 14, 2021). We excluded studies in patients with stable schizophrenia (ie, relapse prevention studies), studies with a high risk of bias, and studies from mainland China due to quality concerns concerning allocation and masking methods. We included single-blind RCTs or better that assessed one or more of 16 second-generation and 18 first-generation antipsychotics in the general population of patients with schizophrenia or in one or more of the subgroups: children and adolescents (age range as defined in the original studies), patients with a first episode, patients with predominant or prominent negative symptoms, patients with comorbid substance use, patients with treatment-resistant schizophrenia, or older patients (age range as defined in the original studies). Two authors independently screened the results of the search, retrieved full-text articles, and checked the inclusion criteria. Using the Preferred Reporting Items for Systematic Reviews and Meta-analyses guideline, all parameters were extracted in duplicate. The primary outcome was change in overall symptoms. We compared drug efficacy between subgroups, by sex, schizoaffective disorder versus schizophrenia, and study origin using random-effects, inverse variance meta-analyses and random-effects subgroup tests, and meta-regression. FINDINGS We included 537 RCTs with 76 382 participants, 26 627 (34·9%) women, 49 755 (65·1%) men, mean age 37·3 years (range of means 7·9-80·2; ethnicity data not available). 412 RCTs included patients in the general population of patients with schizophrenia, 42 included patients with treatment-resistant schizophrenia, 25 included children and adolescents, 20 included patients with their first episode, 20 included patients with predominant or prominent negative symptoms, 13 included patients with comorbid substance use, and 11 included older patients. Of 507 random-effects subgroup tests done, 46 (9%) showed a significant difference (p<0·05) between subgroups, but there was no clear indication as to which drug should be used in which subgroup. INTERPRETATION The effects of antipsychotics in various patient subgroups were usually similar to those in the general population of patients with schizophrenia, but comparably few studies contributed to the subgroups, in particular in terms of side-effects. If the evidence for treatment in a given subgroup is small, guideline makers and clinicians should consider using the results in the much better studied group of the general population of patients with schizophrenia. FUNDING German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung; FKZ 01KG1508).
Collapse
Affiliation(s)
- Stefan Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry, Department of Psychosis Studies, and Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Anna Chaimani
- Université Paris Cité, Centre of Research in Epidemiology and Statistics (CRESS-U1153), INSERM, Paris, France
| | - Marc Krause
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Johannes Schneider-Thoma
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dongfang Wang
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Shimeng Dong
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Myrto Samara
- Department of Psychiatry, University of Thessaly, Larisa, Greece
| | - Natalie Peter
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maximilian Huhn
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, Sozialstiftung Bamberg, Klinikum Bamberg, Bamberg, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - John M Davis
- Psychiatric Institute, University of Illinois, Chicago, IL, USA
| |
Collapse
|
23
|
de Bartolomeis A, Barone A, Vellucci L, Mazza B, Austin MC, Iasevoli F, Ciccarelli M. Linking Inflammation, Aberrant Glutamate-Dopamine Interaction, and Post-synaptic Changes: Translational Relevance for Schizophrenia and Antipsychotic Treatment: a Systematic Review. Mol Neurobiol 2022; 59:6460-6501. [PMID: 35963926 PMCID: PMC9463235 DOI: 10.1007/s12035-022-02976-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022]
Abstract
Evidence from clinical, preclinical, and post-mortem studies supports the inflammatory/immune hypothesis of schizophrenia pathogenesis. Less evident is the link between the inflammatory background and two well-recognized functional and structural findings of schizophrenia pathophysiology: the dopamine-glutamate aberrant interaction and the alteration of dendritic spines architecture, both believed to be the “quantal” elements of cortical-subcortical dysfunctional network. In this systematic review, we tried to capture the major findings linking inflammation, aberrant glutamate-dopamine interaction, and post-synaptic changes under a direct and inverse translational perspective, a paramount picture that at present is lacking. The inflammatory effects on dopaminergic function appear to be bidirectional: the inflammation influences dopamine release, and dopamine acts as a regulator of discrete inflammatory processes involved in schizophrenia such as dysregulated interleukin and kynurenine pathways. Furthermore, the link between inflammation and glutamate is strongly supported by clinical studies aimed at exploring overactive microglia in schizophrenia patients and maternal immune activation models, indicating impaired glutamate regulation and reduced N-methyl-D-aspartate receptor (NMDAR) function. In addition, an inflammatory/immune-induced alteration of post-synaptic density scaffold proteins, crucial for downstream NMDAR signaling and synaptic efficacy, has been demonstrated. According to these findings, a significant increase in plasma inflammatory markers has been found in schizophrenia patients compared to healthy controls, associated with reduced cortical integrity and functional connectivity, relevant to the cognitive deficit of schizophrenia. Finally, the link between altered inflammatory/immune responses raises relevant questions regarding potential new therapeutic strategies specifically for those forms of schizophrenia that are resistant to canonical antipsychotics or unresponsive to clozapine.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy. .,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy.
| | - Annarita Barone
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Licia Vellucci
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Benedetta Mazza
- Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Mark C Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University (ISU), Pocatello, ID, USA
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Mariateresa Ciccarelli
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| |
Collapse
|
24
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|