1
|
Zou Z, Xue Y, Adu-Frimpong M, Wang C, Jin Z, Xu Y, Yu J, Xu X, Zhu Y. Formononetin-Loaded Self-Microemulsion Drug Delivery Systems for Improved Solubility and Oral Bioavailability: Fabrication, Characterization, In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2024; 25:261. [PMID: 39487315 DOI: 10.1208/s12249-024-02975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
This study aimed to construct a self-microemulsion drug delivery system (SMEDDS) for Formononetin (FMN) to improve its solubility and bioavailability while combining the nanocrystals (NCs) technology. The SMEDDS prescription composition was optimized with a pseudo-three-phase diagram, followed by a series of in vitro and in vivo evaluations of the selected optimal prescriptions. FMN-NCs loaded SMEDDS showed a homogeneous spherical shape in the Transmission electron microscope and the particle size was measured as (20.65 ± 1.42) nm. The in vitro cumulative release rate in each dissolution medium within 30 min was higher than 80%, much higher than that of FMN (6%) and FMN-NCs (40%); Cellular experiments confirm that the formulation has a high safety profile and significantly promotes cellular uptake. The results of pharmacokinetics and intestinal absorption in rats showed that the relative bioavailability of FMN-NCs and FMN-NCs loaded SMEDDS were (154.80 ± 3.76)% and (557.73 ± 32.88)%, respectively, and both of them significantly increased the rate and extent of absorption of the drug in intestinal segments. FMN-NCs loaded SMEDDS significantly enhanced the solubility and bioavailability of FMN.
Collapse
Affiliation(s)
- Zhihui Zou
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuanyuan Xue
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), 0215-5321, Navrongo, UK, Ghana
| | - ChengWei Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhou Jin
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ying Xu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuan Zhu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
2
|
Yigit E, Unsal S. Isoflavones obtained from red clover improve both dyslipidemia and menopausal symptoms in menopausal women: a prospective randomized placebo-controlled trial. Climacteric 2024:1-7. [PMID: 39254422 DOI: 10.1080/13697137.2024.2393121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/10/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVE This study aimed to investigate the effects of red clover isoflavones on menopausal symptoms and the lipid profile in menopausal females. METHODS This study included postmenopausal women with dyslipidemia. The red clover group (n = 39) received 40 mg isoflavone red clover capsule twice daily for 6 months, while placebo (n = 36) was 40 mg starch capsule twice daily. Data were collected at baseline, 3 months and 6 months. The Menopause Rating Scale (MRS) was applied to calculate subdimension and total scores. RESULTS The two groups were similar in terms of age, MRS and lipid profile at baseline. In the red clover group, MRS scores decreased significantly at both 3 and 6 months. Similarly, total cholesterol, low-density lipoprotein cholesterol (LDL-C) and triglyceride levels decreased at both 3 months and 6 months. High-density lipoprotein cholesterol increased significantly from baseline to 3 months and 6 months. Except for LDL-C and MRS urogenital score at 3 months, the improvements were significantly in favor of red clover isoflavone treatment. CONCLUSIONS Red clover treatment for 3-6 months demonstrated significant improvements in lipid profiles and menopausal symptoms. While promising, further research is crucial to ascertain long-term safety and recommend the use of red clover isoflavones during menopause.
Collapse
Affiliation(s)
- Ece Yigit
- Department of Internal Medicine, Istanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| | - Saadet Unsal
- Department of Gynecology and Obstetrics, Istanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
3
|
Chen J, Cai Y, Wei D, Cao L, He Q, Zhang Y. Formononetin inhibits neuroinflammation in BV2 microglia induced by glucose and oxygen deprivation reperfusion through TLR4/NF-κB signaling pathway. Brain Res 2024; 1845:149218. [PMID: 39218334 DOI: 10.1016/j.brainres.2024.149218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Ischemic stroke, caused by diminished or interrupted cerebral blood flow, triggers the activation of microglial cells and subsequent inflammatory responses. Formononetin (FMN) has been observed to inhibit BV2 microglial cell activation and alleviate ensuing neuroinflammatory reactions. Despite extensive research, the precise underlying mechanism remains unclear. To investigate the neuroinflammatory response following FMN-mediated inhibition of BV2 microglial activation, we employed an in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model. BV2 microglial cells were categorized into four groups: control, FMN, OGD/R, and OGD/R+FMN. Cell viability was assessed using the CCK-8 assay, while flow cytometry assessed M1 and M2 cell populations within BV2 cells. Immunofluorescence was utilized to detect the expression levels of apoptosis-inducing factor (AIF), p53, Toll-like receptor 4 (TLR4), and NF-κB p65. Western blotting (WB) was conducted to quantify p65/p-p65, IκB-α/p-IκB-α, and TLR4 protein levels in each group. Additionally, ELISA was employed to measure IL-1β and TNF-α levels in cell supernatants from each group. The results revealed a significant increase in the proportion of iNOS/CD206-positive M1/M2 cells in the OGD/R group compared to the control group (p < 0.05). There was also a notable increase in nuclear translocation of NF-κB p65 and elevated expression of inflammatory factors IL-1β and TNF-α in cell supernatants. Moreover, levels of p-p65, p-IκB-α, and TLR4 proteins were significantly elevated in the OGD/R group (p < 0.05). However, the addition of FMN reversed these effects. Specifically, FMN administration notably attenuated cell death and inflammation in BV2 microglia induced by OGD/R through modulation of the TLR4/NF-κB signaling pathway.These findings suggest that FMN may serve as a potential therapeutic agent against neuroinflammation associated with ischemic stroke by targeting microglial activation pathways.
Collapse
Affiliation(s)
- Jun Chen
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, PR China
| | - Youde Cai
- Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang 550081, Guizhou, PR China
| | - Dingling Wei
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, PR China
| | - Liping Cao
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, PR China
| | - Qiansong He
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, PR China.
| | - Yazhou Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province 550025, PR China.
| |
Collapse
|
4
|
Yan XJ, Wang ZJ, Wang H, Wei MZ, Chen YC, Zhao YL, Luo XD. Formononetin Derivative for Osteoporosis by Simultaneous Regulating Osteoblast and Osteoclast. JOURNAL OF NATURAL PRODUCTS 2024; 87:2004-2013. [PMID: 39033408 DOI: 10.1021/acs.jnatprod.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Seven new formononetin derivatives (1-7) were designed and prepared from formononetin (phase II phytoestrogen). The derivatives 9-butyl-3-(4-methoxyphenyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (2) and 9-(furan-3-ylmethyl)-3-(4-methoxyphenyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one (7) promoted significant osteoblast formation by modulating the BMP/Smad pathway. Compound 7 exhibited potent antiosteoclastogenesis activity in RANKL-induced RAW264.7 cells and ovariectomy (OVX)-induced osteoporosis in mice by regulation of the RANK/RANKL/OPG pathway. Compound 7 regulated osteoblast and osteoclast simultaneously and showed better effect than the well-known drug ipriflavone in vivo, suggesting 7 as a patented antiosteoporosis candidate.
Collapse
Affiliation(s)
- Xiao-Jun Yan
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Huan Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Mei-Zhen Wei
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Yi-Chi Chen
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| |
Collapse
|
5
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
6
|
Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S. High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals (Basel) 2024; 17:975. [PMID: 39204080 PMCID: PMC11357401 DOI: 10.3390/ph17080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Sajid Khan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Surya Misri
- Section of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Kailash S. Gaira
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Sandeep Rawat
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Balwant Rawat
- School of Agriculture, Graphic Era University, Dehradun 24800, Utarakhand, India;
| | - M. A. Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Mohd Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
7
|
Luo J, Cai Y, Wei D, Cao L, He Q, Wu Y. Formononetin alleviates cerebral ischemia-reperfusion injury in rats by targeting the PARP-1/PARG/Iduna signaling pathway. Brain Res 2024; 1829:148845. [PMID: 38452845 DOI: 10.1016/j.brainres.2024.148845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Formononetin has been demonstrated to protect against cerebral ischemia-reperfusion injury, however its mechanism has to be further researched. This study examined the effect of formononetin on cerebral ischemia-reperfusion injury in rats using the PARP-1/PARG/Iduna signaling pathway. In male SD rats, a model of cerebral ischemia-reperfusion injury was developed. Animals were randomly assigned to one of eight groups: Sham operation, Sham operation + formononetin, MCAO, MCAO + formononetin, PARP inhibitor (PJ34) + MCAO, formononetin + PJ34 + MCAO, PARG inhibitor (Ethacridine lactate) + MCAO, and ethacridine lactate + formononetin. The neurological deficit test, TTC staining, HE staining, Nissl staining, TUNEL staining, and western blotting were utilized to assess formononetin's protective effects in MCAO rats. The data show that formononetin can effectively alleviate neurological dysfunction and pathological changes in brain tissue in rats with cerebral ischemia-reperfusion injury, reduce the area of cerebral infarction and neuronal apoptosis, decrease the protein levels of PARP-1, PARG, Caspase-3, P53, and AIF in brain tissue, and increase the protein levels of Iduna and p-AKT. As a result, we concluded that formononetin improves brain ischemia-reperfusion injury in rats by modulating the PARP-1/PARG/Iduna signaling pathway.
Collapse
Affiliation(s)
- Jie Luo
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Youde Cai
- Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang 550081, Guizhou, China
| | - Dingling Wei
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Liping Cao
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Qiansong He
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China.
| | - Yuanhua Wu
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China.
| |
Collapse
|
8
|
Li Y, Wu J, Yu H, Lu X, Ni Y. Formononetin ameliorates cisplatin-induced hair cell death via activation of the PI3K/AKT-Nrf2 signaling pathway. Heliyon 2024; 10:e23750. [PMID: 38192850 PMCID: PMC10772176 DOI: 10.1016/j.heliyon.2023.e23750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Cisplatin (CDDP) stands as a highly effective chemotherapeutic agent; however, its ototoxicity remains a perplexing challenge in the field. Formononetin (FMNT), a potent flavonoid isolated from Astragalus membranaceus, displays a diverse range of promising pharmacological activities, encompassing antioxidant, anti-apoptotic, and anti-inflammatory effects. Nonetheless, the advantageous effects of FMNT on cisplatin-induced cochlear hair cell injury demand further investigation. This study aimed to assess the protective properties of FMNT against cisplatin-induced hair cell damage by conducting in vitro assays on explant-cultured cochlear hair cells. The findings revealed that FMNT exhibited a notable reduction in cisplatin-induced hair cell apoptosis. Also, FMNT effectively mitigated the accumulation of reactive oxygen species and mitochondrial damage in cochlear explants exposed to cisplatin, while also restoring the turnover of the reduced glutathione (GSH)/glutathione disulfide (GSSG) ratio. Furthermore, our study demonstrated that FMNT protects hair cells against CDDP injury through the activation of the PI3K/AKT-Nrf2 signaling pathway. Consequently, formononetin emerges as a potential therapeutic agent for the treatment of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Yimeng Li
- Otorhinolaryngology Department and ENT Institute of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai 200031, People's Republic of China
| | - Jingfang Wu
- Otorhinolaryngology Department and ENT Institute of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai 200031, People's Republic of China
| | - Huiqian Yu
- Otorhinolaryngology Department and ENT Institute of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai 200031, People's Republic of China
| | - Xiaoling Lu
- Otorhinolaryngology Department and ENT Institute of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai 200031, People's Republic of China
| | - Yusu Ni
- Otorhinolaryngology Department and ENT Institute of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai 200031, People's Republic of China
| |
Collapse
|
9
|
Yang YZ, Wang T, Chen QL, Chen HB, He QS, Zhang YZ. Identification of the Metabolites of Both Formononetin in Rat Hepatic S9 and Ononin in Rat Urine Samples and Preliminary Network Pharmacology Evaluation of Their Main Metabolites. Molecules 2023; 28:7451. [PMID: 37959870 PMCID: PMC10648658 DOI: 10.3390/molecules28217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Astragalus membranaceus is a traditional Chinese medicine derived from the roots of Astragalus membranaceus (Fisch.) Bge., which has the same medicinal and edible uses in China. It is also widely used in daily food, and its pharmacological effects mainly include antioxidant effects, vascular softening effects, etc. Currently, it is increasingly widely used in the prevention of hypertension, cerebral ischemia, and stroke in China. Formononetin and its glucopyranoside (ononin) are both important components of Astragalus membranaceuss and may play important roles in the treatment of cardiovascular diseases (CVDs). This study conducted metabolic studies using formononectin and its glucopyranoside (ononin), including a combination of the in vitro metabolism of Formonetin using rat liver S9 and the in vivo metabolism of ononin administered orally to rats. Five metabolites (Sm2, 7, 9, 10, and 12) were obtained from the solution incubated with formononetin and rat hepatic S9 fraction using chromatographic methods. The structures of the five metabolites were elucidated as (Sm2)6,7,4'-trihydroxy-isoflavonoid; (Sm7)7,4'-dihydroxy-isoflavonoid; (Sm9)7,8,4'-trihydroxy-isoflavonoid; (Sm10)7,8,-dihydroxy-4'-methoxy-isoflavonoid; and (Sm12)6,7-dihydroxy-4'-methoxy- isoflavonoid on the basis of UV, NMR, and MS data. Totally, 14 metabolites were identified via HPLC-DAD-ESI-IT-TOF-MSn analysis, from which the formononetin was incubated with rat hepatic S9 fraction, and the main metabolic pathways were hydroxylation, demethylation, and glycosylation. Then, 21 metabolites were identified via HPLC-DAD-ESI-IT-TOF-MSn analysis from the urine samples from SD rats to which ononin was orally administered, and the main metabolic pathways were glucuronidation, hydroxylation, demethylation, and sulfonation. The main difference between the in vitro metabolism of formononetin and the in vivo metabolism of ononin is that ononin undergoes deglycemic transformation into Formonetin in the rat intestine, while Formonetin is absorbed into the bloodstream for metabolism, and the metabolic products also produce combined metabolites during in vivo metabolism. The six metabolites obtained from the aforementioned separation indicate the primary forms of formononetin metabolism, and due to their higher contents of similar isoflavone metabolites, they are considered the main active compounds that are responsible for pharmacological effects. To investigate the metabolites of the active ingredients of formononetin in the rat liver S9 system, network pharmacology was used to evaluate the cardiovascular disease (CVD) activities of the six primary metabolites that were structurally identified. Additionally, the macromolecular docking results of six main components and two core targets (HSP90AA1 and SRC) related to CVD showed that formononetin and its main metabolites, Sm10 and Sm12, may have roles in CVD treatment due to their strong binding activities with the HSP90AA1 receptor, while the Sm7 metabolite may have a role in CVD treatment due to its strong binding activity with the SRC receptor.
Collapse
Affiliation(s)
- Yu-Zhu Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China;
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; (Q.-L.C.); (H.-B.C.)
| | - Tao Wang
- Departments of, Medicine and Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G1Y6, Canada;
| | - Qi-Lei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; (Q.-L.C.); (H.-B.C.)
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; (Q.-L.C.); (H.-B.C.)
| | - Qian-Song He
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Ya-Zhou Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China;
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; (Q.-L.C.); (H.-B.C.)
| |
Collapse
|
10
|
Ren Y, Qu S. Constituent isoflavones of Puerariae radix as a potential neuroprotector in cognitive impairment: Evidence from preclinical studies. Ageing Res Rev 2023; 90:102040. [PMID: 37619620 DOI: 10.1016/j.arr.2023.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
With the increasing aging population worldwide, the incidence of senile cognitive impairment (CI) is increasing, posing a serious threat to the health of elderly persons. Despite developing new drugs aimed at improving CI, progress in this regard has been insufficient. Natural preparations derived from plants have become an unparalleled resource for developing new drugs. Puerariae radix (PR) has a long history as Chinese herbal medicine. PR is rich in various chemical components such as isoflavones, triterpenes, and saponins. The isoflavones (puerarin, daidzein, formononetin, and genistein) exhibit potential therapeutic effects on CI through multiple mechanisms. Relevant literature was organized from major scientific databases such as PubMed, Elsevier, SpringerLink, ScienceDirect, and Web of Science. Using "Puerariae radix," "Pueraria lobata," "isoflavones," "puerarin," "antioxidant," "daidzein," "formononetin," "genistein," "Alzheimer"s disease," and "vascular cognitive impairment" as keywords, the relevant literature was extracted from the databases mentioned above. We found that isoflavones from PR have neuroprotective effects on multiple models of CI via multiple targets and mechanisms. These isoflavones prevent Aβ aggregation, inhibit tau hyperphosphorylation, increase cholinergic neurotransmitter levels, reduce neuroinflammation and oxidative stress, improve synaptic plasticity, promote nerve regeneration, and prevent apoptosis. PR has been used as traditional Chinese herbal medicine for a long time, and its constituent isoflavones exert significant therapeutic effects on CI through various neuroprotective mechanisms. This review will contribute to the future development of isoflavones present in PR as novel drug candidates for the clinical treatment of CI.
Collapse
Affiliation(s)
- Yaoyao Ren
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao St, Shenyang 110004, PR China.
| |
Collapse
|
11
|
Han NR, Park HJ, Ko SG, Moon PD. The Mixture of Natural Products SH003 Exerts Anti-Melanoma Effects through the Modulation of PD-L1 in B16F10 Cells. Nutrients 2023; 15:2790. [PMID: 37375695 DOI: 10.3390/nu15122790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Melanoma is the most invasive and lethal skin cancer. Recently, PD-1/PD-L1 pathway modulation has been applied to cancer therapy due to its remarkable clinical efficacy. SH003, a mixture of natural products derived from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii, and formononetin (FMN), an active constituent of SH003, exhibit anti-cancer and anti-oxidant properties. However, few studies have reported on the anti-melanoma activities of SH003 and FMN. This work aimed to elucidate the anti-melanoma effects of SH003 and FMN through the PD-1/PD-L1 pathway, using B16F10 cells and CTLL-2 cells. Results showed that SH003 and FMN reduced melanin content and tyrosinase activity induced by α-MSH. Moreover, SH003 and FMN suppressed B16F10 growth and arrested cells at the G2/M phase. SH003 and FMN also led to cell apoptosis with increases in PARP and caspase-3 activation. The pro-apoptotic effects were further enhanced when combined with cisplatin. In addition, SH003 and FMN reversed the increased PD-L1 and STAT1 phosphorylation levels induced by cisplatin in the presence of IFN-γ. SH003 and FMN also enhanced the cytotoxicity of CTLL-2 cells against B16F10 cells. Therefore, the mixture of natural products SH003 demonstrates therapeutic potential in cancer treatment by exerting anti-melanoma effects through the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Bhardwaj VK, Purohit R. A comparative study on inclusion complex formation between formononetin and β-cyclodextrin derivatives through multiscale classical and umbrella sampling simulations. Carbohydr Polym 2023; 310:120729. [PMID: 36925262 DOI: 10.1016/j.carbpol.2023.120729] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Formononetin, a naturally occurring isoflavone exhibits a wide range of therapeutic applications including antioxidant, anti-tumor, antiviral, anti-diabetic and neuroprotective activities. However, the low hydro-solubility of formononetin has limited its prospective use in cosmetic, neutraceutical and pharmaceutical industries. Cyclodextrins (CDs), especially β-CD and its derivatives have emerged as promising agents to improve the water solubility of poorly hydrosoluble compounds by the formation of inclusion complexes. We employed multiscale (1000 ns) explicit solvent and umbrella sampling molecular dynamics (MD) simulations to study the interactions and thermodynamic parameters of inclusion complex formation between formononetin and five most commonly used β-CD derivatives. Classical MD simulations revealed two possible binding conformations of formononetin inside the central cavity of hydroxypropyl-β-CD (HP-β-CD), randomly methylated-β-CD (ME-β-CD), and sulfobutylether-β-CD (SBE-β-CD). The binding conformation with the benzopyrone ring of formononetin inside the central cavity of β-CD derivatives was more frequent than the phenyl group occupying the hydrophobic cavity. These interactions were supported by a variety of non-bonded contacts including hydrogen bonds, pi-lone pair, pi-sigma, and pi-alkyl interactions. Formononetin showed favorable end-state MD-driven thermodynamic binding free energies with all the selected β-CD derivatives, except succinyl-β-CD (S-β-CD). Furthermore, umbrella sampling simulations were used to investigate the interactions and thermodynamic parameters of the host-guest inclusion complexes. The SBE-β-CD/formononetin inclusion complex showed the lowest binding energy signifying the highest affinity among all the selected host-guest inclusion complexes. Our study could be used as a standard for analyzing and comparing the ability of different β-CD derivatives to enhance the hydro-solubility of poorly soluble molecules.
Collapse
Affiliation(s)
- Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
13
|
Toigo L, Dos Santos Teodoro EI, Guidi AC, Gancedo NC, Petruco MV, Melo EB, Tonin FS, Fernandez-Llimos F, Chierrito D, de Mello JCP, de Medeiros Araújo DC, Sanches ACC. Flavonoid as possible therapeutic targets against COVID-19: a scoping review of in silico studies. Daru 2023; 31:51-68. [PMID: 37195402 PMCID: PMC10191091 DOI: 10.1007/s40199-023-00461-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
OBJECTIVES This scoping review aims to present flavonoid compounds' promising effects and possible mechanisms of action on potential therapeutic targets in the SARS-CoV-2 infection process. METHODS A search of electronic databases such as PubMed and Scopus was carried out to evaluate the performance of substances from the flavonoid class at different stages of SARS-CoV-2 infection. RESULTS The search strategy yielded 382 articles after the exclusion of duplicates. During the screening process, 265 records were deemed as irrelevant. At the end of the full-text appraisal, 37 studies were considered eligible for data extraction and qualitative synthesis. All the studies used virtual molecular docking models to verify the affinity of compounds from the flavonoid class with crucial proteins in the replication cycle of the SARS-CoV-2 virus (Spike protein, PLpro, 3CLpro/ MPro, RdRP, and inhibition of the host's ACE II receptor). The flavonoids with more targets and lowest binding energies were: orientin, quercetin, epigallocatechin, narcissoside, silymarin, neohesperidin, delphinidin-3,5-diglucoside, and delphinidin-3-sambubioside-5-glucoside. CONCLUSION These studies allow us to provide a basis for in vitro and in vivo assays to assist in developing drugs for the treatment and prevention of COVID-19.
Collapse
Affiliation(s)
- Larissa Toigo
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | | | - Ana Carolina Guidi
- Laboratório de Biologia Farmacêutica, Departamento de Farmácia, Universidade Estadual de Maringá, Maringá, Brazil
| | - Naiara Cássia Gancedo
- Laboratório de Biologia Farmacêutica, Departamento de Farmácia, Universidade Estadual de Maringá, Maringá, Brazil
| | - Marcus Vinícius Petruco
- Clínica de Reumatologia-Pneumologia Laboratório do Sono de Maringá e Hospital Bom Samaritano de Maringá, Maringá, Brazil
| | - Eduardo Borges Melo
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Fernanda Stumpf Tonin
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Brazil
- H&TRC- Health & Technology Research Center, ESTeSLEscola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | | | - Danielly Chierrito
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
- Centro Universitário Ingá - UNINGÁ, Maringá, Brazil
| | - João Carlos Palazzo de Mello
- Laboratório de Biologia Farmacêutica, Departamento de Farmácia, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | |
Collapse
|
14
|
Yu S, Caruso F, Belli S, Rossi M. Scavenging of Superoxide in Aprotic Solvents of Four Isoflavones That Mimic Superoxide Dismutase. Int J Mol Sci 2023; 24:ijms24043815. [PMID: 36835226 PMCID: PMC9965188 DOI: 10.3390/ijms24043815] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Isoflavones are plant-derived natural products commonly found in legumes that show a large spectrum of biomedical activities. A common antidiabetic remedy in traditional Chinese medicine, Astragalus trimestris L. contains the isoflavone formononetin (FMNT). Literature reports show that FMNT can increase insulin sensitivity and potentially target the peroxisome proliferator-activated receptor gamma, PPARγ, as a partial agonist. PPARγ is highly relevant for diabetes control and plays a major role in Type 2 diabetes mellitus development. In this study, we evaluate the biological role of FMNT, and three related isoflavones, genistein, daidzein and biochanin A, using several computational and experimental procedures. Our results reveal the FMNT X-ray crystal structure has strong intermolecular hydrogen bonding and stacking interactions which are useful for antioxidant action. Cyclovoltammetry rotating ring disk electrode (RRDE) measurements show that all four isoflavones behave in a similar manner when scavenging the superoxide radical. DFT calculations conclude that antioxidant activity is based on the familiar superoxide σ-scavenging mode involving hydrogen capture of ring-A H7(hydroxyl) as well as the π-π (polyphenol-superoxide) scavenging activity. These results suggest the possibility of their mimicking superoxide dismutase (SOD) action and help explain the ability of natural polyphenols to assist in lowering superoxide concentrations. The SOD metalloenzymes all dismutate O2•- to H2O2 plus O2 through metal ion redox chemistry whereas these polyphenolic compounds do so through suitable hydrogen bonding and stacking intermolecular interactions. Additionally, docking calculations suggest FMNT can be a partial agonist of the PPARγ domain. Overall, our work confirms the efficacy in combining multidisciplinary approaches to provide insight into the mechanism of action of small molecule polyphenol antioxidants. Our findings promote the further exploration of other natural products, including those known to be effective in traditional Chinese medicine for potential drug design in diabetes research.
Collapse
|
15
|
Bai Y, He Z, Duan W, Gu H, Wu K, Yuan W, Liu W, Huang H, Li Y. Sodium formononetin-3'-sulphonate alleviates cerebral ischemia-reperfusion injury in rats via suppressing endoplasmic reticulum stress-mediated apoptosis. BMC Neurosci 2022; 23:74. [PMID: 36482320 PMCID: PMC9733209 DOI: 10.1186/s12868-022-00762-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sodium formononetin-3'-sulphonate (Sul-F) may alleviate I/R injury in vivo with uncertain mechanism. Endoplasmic reticulum (ER) stress-mediated apoptosis participates in the process of cerebral ischemia-reperfusion (I/R) injury. Our aim is to figure out the effect of Sul-F on cerebral I/R injury and to verify whether it works through suppressing ER stress-mediated apoptosis. RESULTS The cerebral lesions of middle cerebral artery occlusion (MCAO) model in SD rats were aggravated after 24 h of reperfusion, including impaired neurological function, increased infarct volume, intensified inflammatory response and poor cell morphology. After intervention, the edaravone (EDA, 3 mg/kg) group and Sul-F high-dose (Sul-F-H, 80 mg/kg) group significantly alleviated I/R injury via decreasing neurological score, infarct volume and the serum levels of inflammatory factors (TNF-α, IL-1β and IL-6), as well as alleviating pathological injury. Furthermore, the ER stress level and apoptosis rate were elevated in the ischemic penumbra of MCAO group, and were significantly blocked by EDA and Sul-F-H. In addition, EDA and Sul-F-H significantly down-regulated the ER stress related PERK/eIF2α/ATF4 and IRE1 signal pathways, which led to reduced cell apoptosis rate compared with the MCAO group. Furthermore, there was no difference between the EDA and Sul-F-H group in terms of therapeutic effect on cerebral I/R injury, indicating a therapeutic potential of Sul-F for ischemic stroke. CONCLUSIONS Sul-F-H can significantly protects against cerebral I/R injury through inhibiting ER stress-mediated apoptosis in the ischemic penumbra, which might be a novel therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Yue Bai
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Zhiwei He
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Weisong Duan
- grid.452702.60000 0004 1804 3009Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - He Gu
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Kefeng Wu
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Wei Yuan
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Wenkang Liu
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Huaipeng Huang
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Yanan Li
- grid.256883.20000 0004 1760 8442Department of Clinical Laboratory Diagnosis, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| |
Collapse
|
16
|
Network Pharmacology-Based Investigation on the Mechanism of the JinGuanLan Formula in Treating Acne Vulgaris. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6944792. [PMID: 35873639 PMCID: PMC9300327 DOI: 10.1155/2022/6944792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/06/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
Abstract
Background JinGuanLan (JGL) formula is a traditional Chinese medicine (TCM) developed by the Department of Pharmacology at the First Hospital of Lanzhou University. The network pharmacology approach was applied to determine the potential active compounds, therapeutic targets, and main pathways of the JGL formula to evaluate its application value in acne vulgaris. Methods Data on the active compounds and their related targets were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Acne vulgaris-related targets were searched from the Online Mendelian Inheritance in Man (OMIM) database, GeneCards Database, Comparative Toxicogenomics Database (CTD), Therapeutic Target Database (TTD), and DisGeNET Database. Targets intersecting between JGL- and acne vulgaris-related targets were chosen as potential therapeutic targets. The protein-protein interaction (PPI) network of potential therapeutic targets was visualized using Cytoscape software based on the PPI data collected from the STRING database. Three topological features, namely, "Degree," "MCC," and "EPC" of each node in the PPI network were calculated using the cytoHubba plugin of Cytoscape to excavate the core targets. R program was used for the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the potential therapeutic targets. Finally, the compound-target-pathway network was constructed. Result Among the 148 active compounds that were identified, quercetin and kaempferol showed the highest degree of target interaction and thus may play essential roles in the pharmacological effect of the JGL formula for acne treatment. Among the 97 potential therapeutic targets that were screened out, the 6 core targets were TNF, JUN, IL6, STAT3, MAPK1, and MAPK3. A total of 2260 terms of GO enrichment analysis were obtained, including 2090 for biological processes (BP), 37 for cellular components (CC), and 133 for molecular function (MF). A total of 156 enriched KEGG pathways were identified, including TNF, IL-17, Th17 cell differentiation, MAPK, PI3K-Akt, T cell receptor, and Toll-like receptor signalling pathways. Conclusion This work showed that the JGL formula might reverse the pathological changes associated with acne vulgaris through its antiinflammatory effect and regulate the excessive lipogenesis in sebaceous glands via different signalling pathways. This new drug has application value and is worthy of further research and development.
Collapse
|
17
|
Sultana S, Foster K, Lim LY, Hammer K, Locher C. A Review of the Phytochemistry and Bioactivity of Clover Honeys (Trifolium spp.). Foods 2022; 11:foods11131901. [PMID: 35804717 PMCID: PMC9265896 DOI: 10.3390/foods11131901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/30/2022] Open
Abstract
This review covers a comprehensive overview of the phytoconstituents and bioactivities reported to date for clover honeys produced from various Trifolium spp. against the backdrop of a more general discussion of the chemistry and bioactivity of these important agricultural species. While research into the phytochemical composition of various honeys and their associated bioactivities is growing, this review demonstrates that the literature to date has seen only a limited number of studies on clover honeys. Surprisingly, there appear to be no comparative data on the concentration of flavonoids in general or isoflavonoids specifically in different clover honeys, although the latter have been identified as a main group of bioactive compounds in red clover plants. Based on the findings of this review, the presence of phytoestrogenic isoflavonoids (e.g., formononetin, biochanin A, genistein, daidzein, glycitein) in clover plants and, by extension, in clover honeys should be further investigated, specifically of clover species outside the three popular perennial clovers (red, white and alsike clovers) to exploit new opportunities of potential benefit to both the pharmaceutical and apiculture industries.
Collapse
Affiliation(s)
- Sharmin Sultana
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth 6009, Australia; (S.S.); (L.Y.L.)
| | - Kevin Foster
- UWA School of Agriculture and Environment, University of Western Australia, Perth 6009, Australia;
- Cooperative Research Centre for Honey Bee Products Limited, 128 Yanchep Beach Road, Perth 6035, Australia;
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth 6009, Australia; (S.S.); (L.Y.L.)
| | - Katherine Hammer
- Cooperative Research Centre for Honey Bee Products Limited, 128 Yanchep Beach Road, Perth 6035, Australia;
- School of Biomedical Sciences, University of Western Australia, Perth 6009, Australia
| | - Cornelia Locher
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth 6009, Australia; (S.S.); (L.Y.L.)
- Cooperative Research Centre for Honey Bee Products Limited, 128 Yanchep Beach Road, Perth 6035, Australia;
- Correspondence:
| |
Collapse
|
18
|
Essono Mintsa M, Otogo N’nang E, Choque É, Siah A, Jacquin J, Muchembled J, Molinié R, Roulard R, Cailleu D, Beniddir MA, Sima Obiang C, Ondo JP, Kumulungui B, Mesnard F. Combined LC-MS/MS and Molecular Networking Approach Reveals Antioxidant and Antimicrobial Compounds from Erismadelphus exsul Bark. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111505. [PMID: 35684277 PMCID: PMC9182967 DOI: 10.3390/plants11111505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 05/19/2023]
Abstract
Erismadelphus exsul Mildbr bark is widely used in Gabonese folk medicine. However, little is known about the active compounds associated with its biological activities. In the present study, phytochemical profiling of the ethanolic extract of Erismadelphus exsul was performed using a de-replication strategy by coupling HPLC-ESI-Q/TOF with a molecular network approach. Eight families of natural compounds were putatively identified, including cyclopeptide alkaloids, esterified amino acids, isoflavonoid- and flavonoid-type polyphenols, glycerophospholipids, steroids and their derivatives, and quinoline alkaloids. All these compounds were identified for the first time in this plant. The use of molecular networking obtained a detailed phytochemical overview of this species. Furthermore, antioxidant (2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) and ferric reducing capacity (FRAP)) and in vitro antimicrobial activities were assessed. The crude extract, as well as fractions obtained from Erismadelphus exsul, showed a better reactivity to FRAP than DPPH. The fractions were two to four times more antioxidant than ascorbic acid while reacting to FRAP, and there was two to nine times less antioxidant than this reference while reacting to DPPH. In addition, several fractions and the crude extract exhibited a significant anti-oomycete activity towards the Solanaceae phytopathogen Phytophthora infestans in vitro, and, at a lower extent, the antifungal activity against the wheat pathogen Zymoseptoria tritici had growth inhibition rates ranging from 0 to 100%, depending on the tested concentration. This study provides new insights into the phytochemical characterization and the bioactivities of ethanolic extract from Erismadelphus exsul bark.
Collapse
Affiliation(s)
- Morel Essono Mintsa
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, F-80000 Amiens, France; (M.E.M.); (É.C.); (R.M.); (R.R.)
| | - Elvis Otogo N’nang
- Laboratoire de Substances Naturelles, Université des Sciences et Techniques de Masuku, Franceville P.O. Box 943, Gabon
- Correspondence: (E.O.N.); (F.M.); Tel.: +241-062801523 (E.O.N.); +33-684189115 (F.M.)
| | - Élodie Choque
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, F-80000 Amiens, France; (M.E.M.); (É.C.); (R.M.); (R.R.)
| | - Ali Siah
- UMRt BioEcoAgro 1158-INRAE, JUNIA, Équipe Métabolites Spécialisés D’origine Végétale, Institut Charles Viollette, F-59000 Lille, France; (A.S.); (J.J.); (J.M.)
| | - Justine Jacquin
- UMRt BioEcoAgro 1158-INRAE, JUNIA, Équipe Métabolites Spécialisés D’origine Végétale, Institut Charles Viollette, F-59000 Lille, France; (A.S.); (J.J.); (J.M.)
| | - Jerome Muchembled
- UMRt BioEcoAgro 1158-INRAE, JUNIA, Équipe Métabolites Spécialisés D’origine Végétale, Institut Charles Viollette, F-59000 Lille, France; (A.S.); (J.J.); (J.M.)
| | - Roland Molinié
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, F-80000 Amiens, France; (M.E.M.); (É.C.); (R.M.); (R.R.)
| | - Romain Roulard
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, F-80000 Amiens, France; (M.E.M.); (É.C.); (R.M.); (R.R.)
| | - Dominique Cailleu
- Plateforme Analytique, Université de Picardie Jules Verne, 33 Rue Saint Leu, F-80039 Amiens, France;
| | - Mehdi A. Beniddir
- Équipe Chimie des Substances Naturelles BioCIS, CNRS, Université Paris Saclay, 5 Rue J.-B. Clément, F-92290 Châtenay-Malabry, France;
| | - Cédric Sima Obiang
- Laboratoire de Recherches en Biochimie, Université des Sciences et Techniques de Masuku, Franceville P.O. Box 943, Gabon; (C.S.O.); (J.-P.O.)
| | - Joseph-Privat Ondo
- Laboratoire de Recherches en Biochimie, Université des Sciences et Techniques de Masuku, Franceville P.O. Box 943, Gabon; (C.S.O.); (J.-P.O.)
| | - Brice Kumulungui
- Centre International de Recherches Médicales de Franceville P.O. Box 943, Gabon;
| | - François Mesnard
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, F-80000 Amiens, France; (M.E.M.); (É.C.); (R.M.); (R.R.)
- Correspondence: (E.O.N.); (F.M.); Tel.: +241-062801523 (E.O.N.); +33-684189115 (F.M.)
| |
Collapse
|
19
|
Tian J, Wang XQ, Tian Z. Focusing on Formononetin: Recent Perspectives for its Neuroprotective Potentials. Front Pharmacol 2022; 13:905898. [PMID: 35712702 PMCID: PMC9196267 DOI: 10.3389/fphar.2022.905898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Nervous system is the most complex system of the human body, hence, the neurological diseases often lack effective treatment strategies. Natural products have the potential to yield unique molecules and produce integrative and synergic effects compared to standard therapy. Mounting evidence has shown that isoflavonoids contained in traditional medicinal plant or dietary supplementation may play a crucial role in the prevention and treatment of neurological diseases due to their pronounced biological activities correlating to nervous system. Formononetin, a non-steroidal isoflavonoid, is a bioactive constituent of numerous medicinal plants such as red clover (Trifolium pratense) and Astragalus membranaceus. Emerging evidence has shown that formononetin possesses considerable anti-inflammatory, antioxidant and anti-cancer effects. This review intends to analyze the neuropharmacological potential of formononetin on the therapy of nervous system disorders. The neuroprotective properties of formononetin are observed in multiple neurological disorders including Alzheimer’s disease, dementia, cerebral ischemia, traumatic brain injury, anxiety, and depression. The beneficial effects of formononetin are achieved partially through attenuating neuroinflammation and oxidative stress via the related signaling pathway. Despite its evident effects in numerous preclinical studies, the definite role of formononetin on humans is still less known. More well-designed clinical trials are required to further confirm the neuroprotective efficacy and safety profile of formononetin before its application in clinic.
Collapse
Affiliation(s)
- Jiao Tian
- Department of Infection, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xing-Qin Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Xing-Qin Wang, ; Zhen Tian,
| | - Zhen Tian
- Department of Pharmacology, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Xing-Qin Wang, ; Zhen Tian,
| |
Collapse
|
20
|
Chojnacka K, Lewandowska U. Inhibition of Pro-Inflammatory Cytokine Secretion by Polyphenol-Rich Extracts in Macrophages via NF-κB Pathway. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2071936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Skin-Whitening and Antiwrinkle Proprieties of Maackia amurensis Methanolic Extract Lead Compounds. Processes (Basel) 2022. [DOI: 10.3390/pr10050855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
(1) Background: This study aimed to investigate the feasibility of using Maackia amurensis branch extract as a cosmetic ingredient with skin-whitening and antiwrinkle effects. (2) Methods: The skin-whitening effect of M. amurensis branch extract was confirmed by investigating α-melanocyte-stimulating hormone (α-MSH)-induced melanin synthesis and melanogenic protein expression in B16F1 cells. The antiwrinkle effect of M. amurensis branch extract was verified by assessing matrix metalloproteinase (MMP)-1 expression and soluble collagen content in CCD-986sk cells. The major compounds in M. amurensis branch extract were identified through isolation and characterization and confirmed by high-performance liquid chromatography analysis. (3) Results: M. amurensis branch extract significantly inhibited α-MSH-induced melanin synthesis by 49%, 42%, and 18% at 50, 37.5, and 25 μg/mL concentrations, respectively, compared with the negative control (NC). M. amurensis branch extract also significantly reduced the expression of the microphthalmia-associated transcription factor, tyrosinase-related protein (TRP)-1, TRP-2, and tyrosinase in B16F1 cells. Furthermore, M. amurensis branch extracts decreased ultraviolet A-induced MMP-1 expression and increased soluble collagen synthesis in CCD-986sk cells. In addition, the major compounds present in M. amurensis branch extract were found to be formononetin, genistein, trans-resveratrol, piceatannol, and tectoridin. (4) Conclusions: M. amurensis branch extract has skin-whitening and antiwrinkle properties. Therefore, it can be used as an ingredient in functional cosmetics with skin-whitening and antiwrinkle effects.
Collapse
|
22
|
Potential of Polyphenols to Restore SIRT1 and NAD+ Metabolism in Renal Disease. Nutrients 2022; 14:nu14030653. [PMID: 35277012 PMCID: PMC8837945 DOI: 10.3390/nu14030653] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
SIRT1 is an NAD+-dependent class III histone deacetylase that is abundantly expressed in the kidney, where it modulates gene expression, apoptosis, energy homeostasis, autophagy, acute stress responses, and mitochondrial biogenesis. Alterations in SIRT1 activity and NAD+ metabolism are frequently observed in acute and chronic kidney diseases of diverse origins, including obesity and diabetes. Nevertheless, in vitro and in vivo studies and clinical trials with humans show that the SIRT1-activating compounds derived from natural sources, such as polyphenols found in fruits, vegetables, and plants, including resveratrol, quercetin, and isoflavones, can prevent disease and be part of treatments for a wide variety of diseases. Here, we summarize the roles of SIRT1 and NAD+ metabolism in renal pathophysiology and provide an overview of polyphenols that have the potential to restore SIRT1 and NAD+ metabolism in renal diseases.
Collapse
|
23
|
Ivanova S, Petkova V. Specificity of clinical trials of some osteoporosis medicines. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e79258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clinical trials of medicinal products related to the prevention and treatment of osteoporosis cover all activities, operations, methods and means for obtaining summary data and their interpretation in order to reveal the nature of the procedures, as well as certain relationships and dependencies of interest imposed the relevant study. The main objectives of the analysis are to characterize the relationships and dependencies, to measure the significance of these relationships, to model statistically significant relationships and dependencies. An important condition for conducting the statistical analysis is that the data are comparable, i.e. to be based on unambiguously defined features and criteria for their internal content.
Objective: This work covers a documentary analysis of conducted clinical trials of drugs for the treatment of osteoporosis, as well as an analysis of the conducted clinical trials of the drug.
Denosumab.
Methods: Gathering primary empirical information, allowing for: objectification of certain facts; for retrospective study of events and phenomena in a long period; allows to determine the direction of development of the process of clinical trials and processes. The applied statistical analysis covers activities, operations, methods and means for obtaining summary data and for their interpretation in order to reveal the nature of the procedures, as well as certain connections and dependencies.
Results: Studies show that clinical trials of osteoporosis products have the following limitations: gender differentiation – although the disease occurs in both sexes, studies in female patients are more common, patients are required to are in menopause, in some studies it is required as including criteria – the presence of a fracture due to osteoporosis, the age characteristic of patients is on average 45–80 years. All analyzed drugs show a positive effect on the state of bone density and bone structure.
Conclusion: All analyzed medicinal products show a positive effect on the state of bone density and bone structure but the process is irreversible, so early prevention associated with early diagnosis would lead to earlier treatment measures in the early stages of the disease, which in turn, it would lead to long-term savings in indirect and difficult-to-estimate costs for society as a whole.
Collapse
|
24
|
Geng LM, Jiang JG. The neuroprotective effects of formononetin: Signaling pathways and molecular targets. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
25
|
Ononin inhibits cerebral ischemia/reperfusion injury via suppression of inflammatory responses in experimental rats and SH-SY5Y cells. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Pan R, Zhuang Q, Wang J. Ononin alleviates H 2O 2-induced cardiomyocyte apoptosis and improves cardiac function by activating the AMPK/mTOR/autophagy pathway. Exp Ther Med 2021; 22:1307. [PMID: 34584565 PMCID: PMC8461629 DOI: 10.3892/etm.2021.10742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Ononin (ON) is an isoflavone with numerous reported bioactivities, including anti-oxidative, anti-inflammatory and neuroprotective effects. Autophagy is a critical homeostatic process in the body that has been reported to closely associate with the apoptotic processes of cardiomyocytes. Using flow cytometry, western blotting, echocardiography and Masson's staining, the present study investigated the effects of ON on H2O2-induced cardiomyocyte apoptosis and myocardial infarction, in addition to any potential underlying molecular mechanisms. H2O2 treatment reliably induced apoptosis in H9C2 cells. The anti-apoptotic effects of ON were revealed by flow cytometry results and by the downregulation of cleaved-caspase 3. Further investigations indicated that ON may alleviate apoptosis by enhancing autophagy, as evidenced by increased microtubule-associated proteins 1A/1B light chain 3B expression and p62 degradation. Activation of the 5' AMP-activated protein kinase (AMPK)/mTOR pathway was observed after ON administration following H2O2-induced cardiomyocyte injury. However, these anti-apoptotic effects mediated by ON were lost after autophagy inhibition by chloroquine or AMPK inhibition by Compound C. Finally, the protective effects of ON on cardiomyocytes in vitro could also be observed in vivo. A myocardial infarction model was established by ligating the left anterior descending branch of the rat heart. Using echocardiography and Masson's staining, ON was shown to increase the ejection fraction and decrease cardiac fibrosis in rats with myocardial infarction. These results suggest that ON exerts cardioprotective effects by improving autophagy via the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Rongrong Pan
- Department of Cardiology, Cixi People's Hospital, Wenzhou Medical University, Cixi, Zhejiang 315300, P.R. China
| | - Qin Zhuang
- Department of Cardiology, Cixi People's Hospital, Wenzhou Medical University, Cixi, Zhejiang 315300, P.R. China
| | - Jiangtin Wang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
27
|
Xiong W, Lan Q, Liang X, Zhao J, Huang H, Zhan Y, Qin Z, Jiang X, Zheng L. Cartilage-targeting poly(ethylene glycol) (PEG)-formononetin (FMN) nanodrug for the treatment of osteoarthritis. J Nanobiotechnology 2021; 19:197. [PMID: 34217311 PMCID: PMC8254262 DOI: 10.1186/s12951-021-00945-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Intra-articular (IA) injection is an efficient treatment for osteoarthritis, which will minimize systemic side effects. However, the joint experiences rapid clearance of therapeutics after intra-articular injection. Delivering system modified through active targeting strategies to facilitate localization within specific joint tissues such as cartilage is hopeful to increase the therapeutic effects. In this study, we designed a nanoscaled amphiphilic and cartilage-targeting polymer-drug delivery system by using formononetin (FMN)-poly(ethylene glycol) (PEG) (denoted as PCFMN), which was prepared by PEGylation of FMN followed by coupling with cartilage-targeting peptide (CollBP). Our results showed that PCFMN was approximately regular spherical with an average diameter about 218 nm. The in vitro test using IL-1β stimulated chondrocytes indicated that PCFMN was biocompatible and upregulated anabolic genes while simultaneously downregulated catabolic genes of the articular cartilage. The therapeutic effects in vivo indicated that PCFMN could effectively attenuate the progression of OA as evidenced by immunohistochemical staining and histological analysis. In addition, PCFMN showed higher intention time in joints and better anti-inflammatory effects than FMN, indicating the efficacy of cartilage targeting nanodrug on OA. This study may provide a reference for clinical OA therapy.
Collapse
Affiliation(s)
- Wei Xiong
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qiumei Lan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaonan Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hanji Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yanting Zhan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Xianfang Jiang
- Department of Oral Radiology, Guangxi Medical University College of Stomatology, Nanning, 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
28
|
Icariin, Formononetin and Caffeic Acid Phenethyl Ester Inhibit Feline Calicivirus Replication In Vitro. Arch Virol 2021; 166:2443-2450. [PMID: 34173062 DOI: 10.1007/s00705-021-05107-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Cats infected with feline calicivirus (FCV) often display oral ulcers and inflammation of the upper respiratory tract, which can lead to death in severe cases. Antiviral therapy is one of the most effective ways to control FCV infection. Natural compounds in Chinese herbal medicines and medicinal plants provide abundant resources for research on antiviral drugs. In this study, we found that icariin (ICA), formononetin (FMN) and caffeic acid phenethyl ester (CPAE) show low cytotoxicity towards F81 cells, that the three natural compounds have apparent antiviral effects on FCV in vitro, and that they can inhibit different FCV strains. Then, we found that ICA and FMN mainly function in the early stage of FCV infection, while CAPE can function in both the early and late stages of FCV infection. Finally, we found that ICA has an antagonistic effect on FMN and CAPE in FCV infection, and FMN has a synergistic effect with CAPE against FCV infection. Our results showed that ICA, FMN and CAPE may be potential drug candidates for FCV-induced diseases.
Collapse
|
29
|
Sugimoto M, Ko R, Goshima H, Koike A, Shibano M, Fujimori K. Formononetin attenuates H 2O 2-induced cell death through decreasing ROS level by PI3K/Akt-Nrf2-activated antioxidant gene expression and suppressing MAPK-regulated apoptosis in neuronal SH-SY5Y cells. Neurotoxicology 2021; 85:186-200. [PMID: 34077701 DOI: 10.1016/j.neuro.2021.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
Formononetin is an isoflavone, found in herbs like Trifolium pratense, which executes a variety of physiological activities including anti-neurodegenerative effect. However, the molecular mechanism of formononetin-mediated neuroprotection remains unclear. In this study, we investigated the protective effect of formononetin on hydrogen peroxide (H2O2)-induced death of human neuroblastoma SH-SY5Y cells and its underlying molecular mechanism. Formononetin suppressed H2O2-induced cytotoxicity. H2O2-induced increase in the intracellular reactive oxygen species (ROS) levels was decreased by formononetin, together with the enhanced expression of the antioxidant genes. H2O2-induced elevation of the Bax/Bcl-2 ratio and cleaved caspase-3 and caspase-7 levels were lowered by formononetin treatment. Moreover, formononetin repressed H2O2-induced phosphorylation of mitogen-activated protein kinases (MAPKs). Nuclear factor erythroid 2-related factor 2 (Nrf2) siRNA decreased antioxidant gene expression and elevated the H2O2-induced ROS level in the formononetin-treated cells. Furthermore, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling is involved in the activation of the nuclear translocation of Nrf2. These results indicate that the neuroprotective effect of formononetin against H2O2-induced cell death is due to a decrease in the ROS level with the enhanced expression of the antioxidant genes through activation of the PI3K/Akt-Nrf2 signaling. In addition, formononetin suppressed apoptosis through inhibition of phosphorylation of MAPKs in SH-SY5Y cells. Thus, formononetin is a potential therapeutic agent for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mayuko Sugimoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Risa Ko
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Hiromi Goshima
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Atsushi Koike
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Makio Shibano
- Department of Clinical Kampo Medicines, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
30
|
Machado Dutra J, Espitia PJP, Andrade Batista R. Formononetin: Biological effects and uses - A review. Food Chem 2021; 359:129975. [PMID: 33962193 DOI: 10.1016/j.foodchem.2021.129975] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Formononetin (FORM) is an isoflavone from the group of phytoestrogens that exhibits a broad spectrum of physiological effects beneficial to health through dependent and independent mechanisms of estrogen. This article aimed to present FORM main functions and future prospects for applications in different areas. Scientific publications and patents dated between 1998 and 2019 were analyzed. FORM has potential as an active compound of interest to product development for the industries of food, medicine, and cosmetics, among others. Moreover, in the medical area, this active compound has shown potential in the prevention and treatment of several diseases, including chronic ones, such as cancer, obesity, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Juliana Machado Dutra
- Departamento de Farmácia, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, Cidade Universitária, CEP 49100-000 São Cristóvão, SE, Brazil
| | - Paula J P Espitia
- Nutrition and Dietetics School, University of Atlántico, Atlántico, Colombia.
| | - Rejane Andrade Batista
- Institute of Technology and Research of Sergipe, Rua Campo do Brito, 371, 49.020-380 Aracaju, Brazil
| |
Collapse
|
31
|
Xue Z, Gao X, Yu W, Zhang Q, Song W, Li S, Zheng X, Kou X. Biochanin A alleviates oxidative damage caused by the urban particulate matter. Food Funct 2021; 12:1958-1972. [PMID: 33496707 DOI: 10.1039/d0fo02582h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Urban particulate matter (UPM), an air pollutant-absorbing toxic substance, can access alveoli, leading to pulmonary diseases. Studies have shown that the water-soluble components of UPM (WS-UPM), containing main toxic substances, can induce oxidative damage in lung cells. In this study, the UPM particle size and composition were detected via instrumental analysis. The isoflavones (biochanin A (BCA), formononetin and daidzein) from chickpeas possess biological antioxidant properties. The present study aimed to investigate the mechanism of the oxidative damage induced by WS-UPM, and the protective role of isoflavones in human alveolar basal epithelial cells. The antioxidant activity of BCA, formononetin and daidzein was investigated through the total reduction capacity, diphenylpicrylhydrazine radical (DPPH), superoxide radical, and hydroxyl radical scavenging capacity detection. We also established cell models in vitro to further explore the BCA-protective mechanism. BCA presented a significant protection, and increased the levels of antioxidant makers including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). The effects were also reflected as the reduction of malondialdehyde (MDA) and nitric oxide (NO). Moreover, results obtained from RT-PCR and western blot techniques revealed that MEK5/ERK5 played an indispensable role in regulating the antioxidant effect of BCA, alleviating WS-UPM-induced lung injury. Furthermore, BCA mitigated WS-UPM-exposed damage through upregulating the Nrf2 signaling pathway to enhance the antioxidase expression downstream of Nrf2. In summary, our findings indicated that the WS-UPM-induced pulmonary disease was involved in oxidative stress and the MEK5/ERK5-Nrf2 signaling pathway, and BCA regulated the WS-UPM-induced lung damage via upregulation of the MEK5/ERK5-Nrf2 pathway.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xin Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Qian Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Weichen Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Shihao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xu Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
32
|
Edible Flowers Extracts as a Source of Bioactive Compounds with Antioxidant Properties—In Vitro Studies. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Edible plants began to play an important role in past decade as a part of therapy, a recovery process or a healthy life style. The availability and relatively low price of the raw material, as well as proven bioactive health benefits, are key to consumers’ choice of nutrients. The red clover (Trifolium pratense) is a popular plant with healthy properties such as antiseptic and analgesic effects. The less known white clover (Trifolium repens), a fodder and honey plant, has anti-rheumatic and anti-diabetic properties. Both species may serve as a potential source of bioactive substances with antioxidant properties as a food additive or supplement. The study material consisted of flower extracts of Trifolium repens and Trifolium pratense. The total content of polyphenols and DPPH (2.2-diphenyl-1-picrylhydrazyl) and ferric reducing antioxidant power (FRAP) were measured using spectrophotometry methods. Oxidative stress in THP1 cells was induced via sodium fluoride. Subsequently, flower extracts were added and their influences on proliferation, antioxidant potential and the activity of antioxidant enzymes were evaluated. The extracts have a high total content of polyphenols as well as high antioxidant potential. We also demonstrated positive extracts impact on cells proliferation, high antioxidant potential and increasing activity of antioxidant enzymes on cell cultures under high oxidative stress induced by fluoride. Both red clover and the less known white clover may serve as valuable sources of antioxidants in the everyday diet.
Collapse
|
33
|
Silva H. The Vascular Effects of Isolated Isoflavones-A Focus on the Determinants of Blood Pressure Regulation. BIOLOGY 2021; 10:49. [PMID: 33445531 PMCID: PMC7827317 DOI: 10.3390/biology10010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/27/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Isoflavones are phytoestrogen compounds with important biological activities, including improvement of cardiovascular health. This activity is most evident in populations with a high isoflavone dietary intake, essentially from soybean-based products. The major isoflavones known to display the most important cardiovascular effects are genistein, daidzein, glycitein, formononetin, and biochanin A, although the closely related metabolite equol is also relevant. Most clinical studies have been focused on the impact of dietary intake or supplementation with mixtures of compounds, with only a few addressing the effect of isolated compounds. This paper reviews the main actions of isolated isoflavones on the vasculature, with particular focus given to their effect on the determinants of blood pressure regulation. Isoflavones exert vasorelaxation due to a multitude of pathways in different vascular beds. They can act in the endothelium to potentiate the release of NO and endothelium-derived hyperpolarization factors. In the vascular smooth muscle, isoflavones modulate calcium and potassium channels, leading to hyperpolarization and relaxation. Some of these effects are influenced by the binding of isoflavones to estrogen receptors and to the inhibition of specific kinase enzymes. The vasorelaxation effects of isoflavones are mostly obtained with plasma concentrations in the micromolar range, which are only attained through supplementation. This paper highlights isolated isoflavones as potentially suitable alternatives to soy-based foodstuffs and supplements and which could enlarge the current therapeutic arsenal. Nonetheless, more studies are needed to better establish their safety profile and elect the most useful applications.
Collapse
Affiliation(s)
- Henrique Silva
- Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam;
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| |
Collapse
|
34
|
Chakraborty D, Gupta K, Biswas S. A mechanistic insight of phytoestrogens used for Rheumatoid arthritis: An evidence-based review. Biomed Pharmacother 2020; 133:111039. [PMID: 33254019 DOI: 10.1016/j.biopha.2020.111039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Assessment of the potential therapeutic benefits offered by naturally occurring phytoestrogens necessitate inspection of their potency and sites of action in impeding the chronic, systemic, autoimmune, joint destructing disorder Rheumatoid arthritis (RA). Possessing structural and functional similarity with human estrogen, phytoestrogen promisingly replaces the use of hormone therapy in eradicating RA symptoms with their anti-inflammatory, anti-oxidative, anti-proliferative, anti-angiogenesis, immunomodulatory, joint protection properties abolishing the harmful side effects of synthetic drugs. Scientific evidences revealed that use of phytoestrogens from different chemical categories including flavonoids, alkaloids, stilbenoids derived from different plant species manifest beneficial effects on RA through various cellular mechanisms including suppression of pro-inflammatory cytokines in particular tumor necrosis factor (TNF-α), interleukin(IL-6) and nuclear factor kappa B (NF-κB) and destructive metalloproteinases, inhibition of oxidative stress, suppressing inflammatory signalling pathways, attenuating osteoclastogenesis ameliorating cartilage degradation and bone erosion. This review summarizes the evidences of different phytoestrogen treatment and their pharmacological mechanisms in both in vitro and in vivo studies along with discussing clinical evaluations in RA patients showing phytoestrogen as a promising agent for RA therapy. Further investigations and more clinical trials are mandatory to clarify the utility of these plant derived compounds in RA prevention and in managing oestrogen deficient diseases in patients.
Collapse
Affiliation(s)
- Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Kriti Gupta
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India.
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
35
|
Hao Y, Miao J, Liu W, Peng L, Chen Y, Zhong Q. Formononetin protects against cisplatin‑induced acute kidney injury through activation of the PPARα/Nrf2/HO‑1/NQO1 pathway. Int J Mol Med 2020; 47:511-522. [PMID: 33416097 PMCID: PMC7797437 DOI: 10.3892/ijmm.2020.4805] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury (AKI) is characterized by an abrupt deterioration of renal function. Formononetin (FOR) protects against cisplatin (CIS)‑induced AKI, and it has various potential pharmacological and biological effects, including anti‑inflammatory, antioxidative and anti‑apoptotic effects. The current study investigated the role of FOR in CIS‑induced AKI. Rats were treated with CIS to establish an AKI model, followed by treatment with FOR. HK‑2 cells were treated with CIS, FOR, GW6471 [a peroxisome proliferator‑activated receptor α (PPARα) antagonist], eupatilin (a PPARα agonist) and nuclear factor erythroid 2‑related factor 2 (Nrf2) small interfering RNA (siNrf2), and cell proliferation and apoptosis were determined by MTT and flow cytometry assays. The mRNA and proteins levels of PPARα, Nrf2, heme oxygenase‑1 (HO‑1) and NAD(P)H quinone dehydrogenase 1 (NQO1) were measured by reverse transcription‑quantitative PCR and western blotting. The results demonstrated that FOR attenuated the histopathological changes, the levels of blood urea nitrogen, creatinine, TNF‑α and IL‑1β, and the MDA content and MPO activity, whereas it enhanced CAT activity in the AKI rat model. Furthermore, FOR and eupatilin promoted cell viability and CAT activity, and increased the levels of PPARα, Nrf2 and HO‑1 and NQO1, but suppressed apoptosis and MPO activity, and reduced the levels of MDA, TNF‑α and IL‑1β in CIS‑treated HK‑2 cells. Notably, the aforementioned effects were reversed by GW6471 treatment or siNrf2 transfection. In conclusion, FOR protects against CIS‑induced AKI via activation of the PPARα/Nrf2/HO‑1/NQO1 pathway.
Collapse
Affiliation(s)
- Yan Hao
- Department of Nephrology, Zigong First People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Jie Miao
- Department of Imaging Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan 643000, P.R. China
| | - Wenjia Liu
- Department of Nephrology, Zigong First People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Li Peng
- Department of Nephrology, Zigong First People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yue Chen
- Department of Nephrology, Zigong First People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Qing Zhong
- Department of Nephrology, Zigong First People's Hospital, Zigong, Sichuan 643000, P.R. China
| |
Collapse
|
36
|
Jain PG, Nayse PG, Patil DJ, Shinde SD, Surana SJ. The possible antioxidant capabilities of formononetin in guarding against streptozotocin-induced diabetic nephropathy in rats. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00071-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Oxidative stress has been considered as a contributory aspect for major complications of diabetes mellitus consisting of diabetic nephropathy. This study aimed to examine the therapeutic effect of formononetin in streptozotocin (STZ)-induced diabetic nephropathy through measuring biochemical parameters, oxidative indicators, and histopathological examination of renal tissues.
Results
Administration of a dose of STZ (55 mg/kg of body weight) intraperitoneal induced diabetic nephropathy in rats as indicated by an increase in serum glucose, creatinine, triglyceride, cholesterol, and BUN levels related to the depletion of serum albumin level. Besides, STZ treatment led to the depletion of antioxidant enzymes together with superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT). Administration of formononetin at the dose of 10, 20, and 40 mg/kg extensively decreased biochemical parameters with a rise in serum albumin level. Formononetin was observed to improved antioxidant enzyme ranges and offered protection against lipid peroxidation (LPO). STZ administered rats show an elevated level of TNF-α and IL-6. Meanwhile, formononetin-treated rats inhibited the elevated level of cytokine.
Conclusion
This study concluded that formononetin may additionally modulate oxidative stress and protected renal tissues from STZ injury. It also showed improvement in renal histopathological architecture in STZ-induced diabetic nephropathy.
Collapse
|
37
|
Ahmad S, Zeb A. Phytochemical profile and pharmacological properties of Trifolium repens. J Basic Clin Physiol Pharmacol 2020; 32:/j/jbcpp.ahead-of-print/jbcpp-2020-0015/jbcpp-2020-0015.xml. [PMID: 32776902 DOI: 10.1515/jbcpp-2020-0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/07/2020] [Indexed: 11/15/2022]
Abstract
Trifolium repens belongs to the family Leguminosae and has been used for therapeutic purposes as traditional medicine. The plant is widely used as fodder and leafy vegetables for human uses. However, there is a lack of a detailed review of its phytochemical profile and pharmacological properties. This review presents a comprehensive overview of the phytochemical profile and biological properties of T. repens. The plant is used as antioxidants and cholinesterase inhibitors and for anti-inflammatory, antiseptic, analgesic, antirheumatic ache, and antimicrobial purposes. This review has summarized the available updated useful information about the different bioactive compounds such as simple phenols, phenolic acids, flavones, flavonols, isoflavones, pterocarpans, cyanogenic glucosides, saponins, and condensed tannins present in T. repens. The pharmacological roles of these secondary metabolites present in T. repens have been presented. It has been revealed that T. repens contain important phytochemicals, which is the potential source of health-beneficial bioactive components for food and nutraceuticals industries.
Collapse
Affiliation(s)
- Sultan Ahmad
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
38
|
Kim MR, Kim HJ, Yu SH, Lee BS, Jeon SY, Lee JJ, Lee YC. Combination of Red Clover and Hops Extract Improved Menopause Symptoms in an Ovariectomized Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7941391. [PMID: 32595737 PMCID: PMC7262655 DOI: 10.1155/2020/7941391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/02/2022]
Abstract
Red clover and hops are already known for their alternative menopausal therapies; however, their combination has not yet been studied. This study aimed to evaluate the efficacy of the combination of red clover and hops extract (RHEC) for treating menopausal symptoms for the first time. A high-performance liquid chromatography (HPLC) method for RHEC was developed and validated for the analysis of biochanin A in red clover extract and xanthohumol in hops extract. An in vivo study was conducted using an ovariectomized rat model treated with RHEC (125, 250, and 500 mg/kg, p.o.) for a 12-week test period. Changes in body weight, tail skin temperature (TST), serum lipid profile, bone metabolism, antioxidants, and markers of vasorelaxation and uterus endometrium were evaluated. RHEC significantly inhibited body weight gain and decreased fat weight. Changes in TST associated with flashes were significantly inhibited in the RHEC groups. Other markers related to menopausal symptoms, such as blood lipid profile (total cholesterol and low-density-lipoprotein cholesterol), bone metabolism (serum alkaline phosphatase, osteocalcin, and c-terminal telopeptide type 1), antioxidants (superoxide dismutase and malondialdehyde), and vasorelaxants (endothelin-1 and nitric oxide), were significantly improved after the administration of RHEC. We also confirmed the safety of RHEC through histopathological observation of the endometrium. Our findings demonstrate that RHEC appears to have high potential for comprehensively improving various symptoms of menopause.
Collapse
Affiliation(s)
- Mi Ran Kim
- Natural Product Team, Naturech Co, Ltd., Chungcheongnam-do 31257, Republic of Korea
| | - Hyun Jin Kim
- Natural Product Team, Naturech Co, Ltd., Chungcheongnam-do 31257, Republic of Korea
| | - Su Hyun Yu
- Natural Product Team, Naturech Co, Ltd., Chungcheongnam-do 31257, Republic of Korea
| | - Bo Su Lee
- Natural Product Team, Naturech Co, Ltd., Chungcheongnam-do 31257, Republic of Korea
| | - Se Yeong Jeon
- Natural Product Team, Naturech Co, Ltd., Chungcheongnam-do 31257, Republic of Korea
| | - Jeong Jun Lee
- Natural Product Team, Naturech Co, Ltd., Chungcheongnam-do 31257, Republic of Korea
| | - Young Chul Lee
- Natural Product Team, Naturech Co, Ltd., Chungcheongnam-do 31257, Republic of Korea
| |
Collapse
|
39
|
Effects of red clover (Trifolium pratense) isoflavones on the lipid profile of perimenopausal and postmenopausal women—A systematic review and meta-analysis. Maturitas 2020; 132:7-16. [DOI: 10.1016/j.maturitas.2019.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/08/2019] [Accepted: 11/01/2019] [Indexed: 01/07/2023]
|
40
|
Lee SA, Park BR, Moon SM, Han SH, Kim CS. Anti-inflammatory potential of Trifolium pratense L. leaf extract in LPS-stimulated RAW264.7 cells and in a rat model of carrageenan-induced inflammation. Arch Physiol Biochem 2020; 126:74-81. [PMID: 30320514 DOI: 10.1080/13813455.2018.1493607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study evaluated the anti-inflammatory potential of a 40% prethanol extract of Trifolium pratense leaves (40% PeTP) using in vitro (RAW264.7 cells) and in vivo (carrageenan-induced inflammation model) experiments. Pretreatment with 40% PeTP significantly inhibited the LPS-induced expression of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and inflammatory cytokines, including tumour necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in RAW264.7 cells, without inducing cytotoxicity. The inhibitory effects of 40% PeTP are mediated through suppression of the nuclear translocation of nuclear factor (NF)-κB and the phosphorylation of mitogen-activated protein kinases (MAPKs). Oral administration of 40% PeTP at 50, 100, and 200 mg/kg of body weight suppressed carrageenan-induced oedema in a dose-dependent manner. Collectively, our results suggested that 40% PeTP exerts potential anti-inflammatory effects by suppressing the activation of the NF-κB and MAPK pathways in vitro, and by reducing carrageenan-induced paw oedema in vivo.
Collapse
Affiliation(s)
- Seul Ah Lee
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Bo-Ram Park
- Department of Dental Hygiene, Chodang University, Muan, Republic of Korea
| | - Sung-Min Moon
- CStech Research Institute, Gwangju, Republic of Korea
| | - Seul Hee Han
- CStech Research Institute, Gwangju, Republic of Korea
| | - Chun Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
41
|
Cho IA, Kim TH, Lim H, Park JH, Kang KR, Lee SY, Kim CS, Kim DK, Kim HJ, Yu SK, Kim SG, Kim JS. Formononetin Antagonizes the Interleukin-1β-Induced Catabolic Effects Through Suppressing Inflammation in Primary Rat Chondrocytes. Inflammation 2020; 42:1426-1440. [PMID: 30937838 DOI: 10.1007/s10753-019-01005-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study, we demonstrated the anti-catabolic effects of formononetin, a phytoestrogen derived from herbal plants, against interleukin-1β (IL-1β)-induced severe catabolic effects in primary rat chondrocytes and articular cartilage. Formononetin did not affect the viability of primary rat chondrocytes in both short- (24 h) and long-term (21 days) treatment periods. Furthermore, formononetin effectively antagonized the IL-1β-induced catabolic effects including the decrease in proteoglycan content, suppression of pericellular matrix formation, and loss of proteoglycan through the decreased expression of cartilage-degrading enzymes like matrix metalloproteinase (MMP)-13, MMP-1, and MMP-3 in primary rat chondrocytes. Moreover, catabolic oxidative stress mediators like nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, and prostaglandin E2 were significantly downregulated by formononetin in primary rat chondrocytes treated with IL-1β. Sequentially, the upregulation of pro-inflammatory cytokines (like IL-1α, IL-1β, IL-6, and tumor necrosis factor α), chemokines (like fractalkine, monocyte chemoattractant protein-1, and macrophage inflammatory protein-3α), and vascular endothelial growth factor were significantly downregulated by formononetin in primary rat chondrocytes treated with IL-1β. These data suggest that formononetin may suppress IL-1β-induced severe catabolic effects and osteoarthritic condition. Furthermore, formononetin may be a promising candidate for the treatment and prevention of osteoarthritis.
Collapse
Affiliation(s)
- In-A Cho
- Oral Biology Research Institute, School of Dentistry, Chosun University, 309 Philmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Tae-Hyeon Kim
- Oral Biology Research Institute, School of Dentistry, Chosun University, 309 Philmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - HyangI Lim
- Oral Biology Research Institute, School of Dentistry, Chosun University, 309 Philmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Jong-Hyun Park
- Oral Biology Research Institute, School of Dentistry, Chosun University, 309 Philmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Kyeong-Rok Kang
- Oral Biology Research Institute, School of Dentistry, Chosun University, 309 Philmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Sook-Young Lee
- Oral Biology Research Institute, School of Dentistry, Chosun University, 309 Philmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea.,Marine Bio Research Center, Chosun University, Wando-gun, 59146, Jeollanam-do, Republic of Korea
| | - Chun Sung Kim
- Oral Biology Research Institute, School of Dentistry, Chosun University, 309 Philmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea.,Marine Bio Research Center, Chosun University, Wando-gun, 59146, Jeollanam-do, Republic of Korea
| | - Do Kyung Kim
- Oral Biology Research Institute, School of Dentistry, Chosun University, 309 Philmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Heung-Joong Kim
- Oral Biology Research Institute, School of Dentistry, Chosun University, 309 Philmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Sun-Kyoung Yu
- Oral Biology Research Institute, School of Dentistry, Chosun University, 309 Philmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Su-Gwan Kim
- Oral Biology Research Institute, School of Dentistry, Chosun University, 309 Philmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Jae-Sung Kim
- Oral Biology Research Institute, School of Dentistry, Chosun University, 309 Philmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
42
|
Luo L, Zhou J, Zhao H, Fan M, Gao W. The anti-inflammatory effects of formononetin and ononin on lipopolysaccharide-induced zebrafish models based on lipidomics and targeted transcriptomics. Metabolomics 2019; 15:153. [PMID: 31768751 DOI: 10.1007/s11306-019-1614-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Formononetin (MBHS) and its glycosylated derivative ononin (MBHG), as the major isoflavones, have exhibited the anti-inflammatory impacts on the lipopolysaccharide (LPS)-induced inflammation. Although various researches have focused on interpreting the pharmaceutical activities of MBHG and MBHS, the molecular mechanisms in zebrafish models are still unclear. OBJECTIVE The purpose of the present work is to investigate the molecular mechanisms of the anti-inflammatory effects of MGHG and MBHS based on lipidomics and targeted transcriptomics. METHODS UHPLC-MS was applied for the lipid analyses and RT-PCR was adopted for the mRNA analyses, and the results of different groups were compared for exploring the significantly changed lipids and mRNAs. RESULTS The results of lipidomics revealed that phosphatidylcholines (PCs) were drastically down-regulated in the MBHG or MBHS treated LPS-induced inflammatory zebrafish models. Besides, MBHS can also decrease the levels of triacylglycerols (TAGs). For the targeted transcriptomics analyses, 4 cytokines (TNF-α, IL-1β, IL-6 and IFN-γ) and 3 mRNA (JNK1, ERK1 and p38a) involved in the MAPK pathway were down-regulated and IL-10 was up-regulated under the treatment of MBHG or MBHS. CONCLUSION Combining the results of lipidomics and targeted transcriptomics, we indicated that MBHG and MBHS exerted potent anti-inflammatory effects on the LPS-induced zebrafish models through the MyD88 or TRIF MAPK/ERK and MAPK/JNK pathways and the glycerophospholipid, glycosylphosphatidylinositol (GPI)-anchor biosynthesis and glycerolipid metabolisms. Our results provided new insights into the anti-inflammatory mechanisms of MBHG or MBHS and supplied an effective method to interpret the pharmacological mechanisms of drugs.
Collapse
Affiliation(s)
- Liyu Luo
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Junyi Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Miaoxuan Fan
- Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute of Drug Control, Beijing, 102206, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
43
|
Investigating the Systems-Level Effect of Pueraria lobata for Menopause-Related Metabolic Diseases Using an Ovariectomized Rat Model and Network Pharmacological Analysis. Biomolecules 2019; 9:biom9110747. [PMID: 31752216 PMCID: PMC6921005 DOI: 10.3390/biom9110747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 12/29/2022] Open
Abstract
This study was conducted to evaluate the biological activities of Pueraria lobata (PL) on menopause-related metabolic diseases and to explore the underlying mechanism of PL by network pharmacological analyses. We used ovariectomized (OVX) rats as a postmenopausal model and administered PL at different doses (50, 100, and 200 mg/kg). In OVX rats, decreased uterine weights and PPAR-γ (peroxisome proliferator-activated receptor-gamma) mRNA expression in the thigh muscle were significantly recovered after PL administration. PL also significantly alleviated OVX-induced increases in total cholesterol, triglyceride, alanine aminotransferase (ALT/GPT), and aspartate aminotransferase (AST/GOT) levels. To identify the systems-level mechanism of PL, we performed network pharmacological analyses by predicting the targets of the potential bioactive compounds and their associated pathways. We identified 61 targets from four potential active compounds of PL: formononetin, beta-sitosterol, 3’-methoxydaidzein, and daidzein-4,7-diglucoside. Pathway enrichment analysis revealed that among female sex hormone-related pathways, the estrogen signaling pathways, progesterone-mediated oocyte maturation, oxytocin signaling pathways, and prolactin signaling pathways were associated with multiple targets of PL. In conclusion, we found that PL improved various indicators associated with lipid metabolism in the postmenopausal animal model, and we also identified that its therapeutic effects are exerted via multiple female sex hormone-related pathways.
Collapse
|
44
|
Cai C, Xiang Y, Wu Y, Zhu N, Zhao H, Xu J, Lin W, Zeng C. Formononetin attenuates monocrotaline‑induced pulmonary arterial hypertension via inhibiting pulmonary vascular remodeling in rats. Mol Med Rep 2019; 20:4984-4992. [PMID: 31702810 PMCID: PMC6854580 DOI: 10.3892/mmr.2019.10781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life‑threatening disease induced by the excessive proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs). Formononetin (FMN) is a natural isoflavone with numerous cardioprotective properties, which can inhibit the proliferation and induce the apoptosis of tumor cells; however, whether FMN has a therapeutic effect on PAH remains unclear. In the present study, PAH was induced in rats with monocrotaline (MCT, 60 mg/kg); rats were then administered FMN (10, 30 or 60 mg/kg/day). At the end of the experiment, hemodynamic changes, right ventricular hypertrophy and lung morphological characteristics were evaluated. α‑smooth muscle actin (α‑SMA), proliferating cell nuclear antigen (PCNA), and TUNEL were detected by immunohistochemical staining. The expression of PCNA, Bcl‑2‑associated X protein (Bax), Bcl‑2 and, cleaved caspase‑3, and activation of AKT and ERK were examined by western blot analysis. The results demonstrated that FMN significantly ameliorated the right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary vascular remodeling induced by MCT. FMN also attenuated MCT‑induced increased expression of α‑SMA and PCNA. The ratio of Bax/Bcl‑2 and cleaved caspase‑3 expression increased in rat lung tissue in response to FMN treatment. Furthermore, reduced phosphorylation of AKT and ERK was also observed in FMN‑treated rats. Therefore, FMN may provide protection against MCT‑induced PAH by preventing pulmonary vascular remodeling, potentially by suppressing the PI3K/AKT and ERK pathways in rats.
Collapse
Affiliation(s)
- Changhong Cai
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Yijia Xiang
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Yonghui Wu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Ning Zhu
- Department of Cardiology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Huan Zhao
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Jian Xu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Wensheng Lin
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Chunlai Zeng
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
45
|
Gong N, Zhang B, Hu K, Gao Z, Du G, Lu Y. Development and Certification of Formononetin Reference Material for Quality Control of Functional Foods and Botanical Supplements. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180411152309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Formononetin is a common soy isoflavonoid that can be found abundantly in
many natural plants. Previous studies have shown that formononetin possesses a variety of activities
which can be applied for various medicinal purposes. Certified Reference Materials (CRMs) play a
fundamental role in the food, traditional medicine and dietary supplement fields, and can be used for
method validation, uncertainty estimation, as well as quality control.
Methods:
The purity of formononetin was determined by Differential Scanning Calorimetry (DSC),
Coulometric Titration (CT) and Mass Balance (MB) methods.
Results:
This paper reports the sample preparation methodology, homogeneity and stability studies,
value assignment, and uncertainty estimation of a new certified reference material of formononetin.
DSC, CT and MB methods proved to be sufficiently reliable and accurate for the certification purpose.
The purity of the formononetin CRM was therefore found to be 99.40% ± 0.24 % (k = 2) based on the
combined value assignments and the expanded uncertainty.
Conclusion:
This CRM will be a reliable standard for the validation of the analytical methods and for
quality assurance/quality control of formononetin and formononetin-related traditional herbs, food
products, dietary supplements and pharmaceutical formulations.
Collapse
Affiliation(s)
- Ningbo Gong
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Baoxi Zhang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kun Hu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhaolin Gao
- Shandong Key laboratory of Polymorphic Drugs, Tengzhou, Shandong, 277500, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
46
|
Ahmad S, Zeb A. Effects of phenolic compounds from aqueous extract of Trifolium repens against acetaminophen-induced hepatotoxicity in mice. J Food Biochem 2019; 43:e12963. [PMID: 31489655 DOI: 10.1111/jfbc.12963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
Abstract
The aqueous extract of Trifolium repens (TR) leaves was analyzed for the phenolic profile using reversed phase HPLC-DAD and administered to mice against acetaminophen-induced hepatoxicity. Twenty-four phenolic compounds were identified and quantified. The highest amounts present were of kaempferol-3-(caffeoyldiglucoside)-7-glucoside (983.7 µg/ml), followed by p-coumaroyl-4-glucoside (905.6 µg/ml) and daidzein-O-sulfate (808.3 µg/ml). The aqueous extract was administered to mice along with acetaminophen at different doses. Acetaminophen was found to significantly alter body weight, serum biochemistry, and hematological indices of mice, which were ameliorated by the co-administration of aqueous extract. Liver histopathological studies revealed that acetaminophen significantly induced toxicity, while TR aqueous extract provides curative functions. Lipid peroxidation and total reduced glutathione in the liver were also normalized by the aqueous extract of TR. The aqueous extract of TR was rich in important phenolic compounds, which can be used as a source of beneficial bioactive compounds with hepato-protective function. PRACTICAL APPLICATIONS: Acetaminophen has been widely used as antipyretic and analgesic. However, the major complication reported is hepatotoxicity. Synthetic or conventional drugs used for hepatic diseases or against hepatotoxicity are insufficient and causes severe side effects. For this purpose, traditional medicinal plants or nutraceuticals are used to decrease in the side effects of different hepatotoxic medicine are demanding. Food and neutraceuticals are rich in important polyphenolic compounds which are the best antioxidants. This study was aimed to evaluate the phenolic composition of aqueous extract of Trifolium repens and its potential protective action against the acetaminophen-induced toxicity in mice. This study showed for the first time that the aqueous extract of TR was protective against the hepatotoxicity induced by acetaminophen.
Collapse
Affiliation(s)
- Sultan Ahmad
- Laboratory of Biochemistry, Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| | - Alam Zeb
- Laboratory of Biochemistry, Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
47
|
Focus on Formononetin: Anticancer Potential and Molecular Targets. Cancers (Basel) 2019; 11:cancers11050611. [PMID: 31052435 PMCID: PMC6562434 DOI: 10.3390/cancers11050611] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/22/2019] [Accepted: 04/28/2019] [Indexed: 12/11/2022] Open
Abstract
Formononetin, an isoflavone, is extracted from various medicinal plants and herbs, including the red clover (Trifolium pratense) and Chinese medicinal plant Astragalus membranaceus. Formononetin's antioxidant and neuroprotective effects underscore its therapeutic use against Alzheimer's disease. Formononetin has been under intense investigation for the past decade as strong evidence on promoting apoptosis and against proliferation suggests for its use as an anticancer agent against diverse cancers. These anticancer properties are observed in multiple cancer cell models, including breast, colorectal, and prostate cancer. Formononetin also attenuates metastasis and tumor growth in various in vivo studies. The beneficial effects exuded by formononetin can be attributed to its antiproliferative and cell cycle arrest inducing properties. Formononetin regulates various transcription factors and growth-factor-mediated oncogenic pathways, consequently alleviating the possible causes of chronic inflammation that are linked to cancer survival of neoplastic cells and their resistance against chemotherapy. As such, this review summarizes and critically analyzes current evidence on the potential of formononetin for therapy of various malignancies with special emphasis on molecular targets.
Collapse
|
48
|
Wang XS, Guan SY, Liu A, Yue J, Hu LN, Zhang K, Yang LK, Lu L, Tian Z, Zhao MG, Liu SB. Anxiolytic effects of Formononetin in an inflammatory pain mouse model. Mol Brain 2019; 12:36. [PMID: 30961625 PMCID: PMC6454770 DOI: 10.1186/s13041-019-0453-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022] Open
Abstract
Chronic pain is commonly accompanied with anxiety disorder, which complicates treatment. In this study, we investigated the analgesic and anxiolytic effects of Formononetin (FMNT), an active component of traditional Chinese medicine red clover (Trifolium pratense L.) that is capable of protecting neurons from N-methyl-D-aspartate (NMDA)-evoked excitotoxic injury, on mice suffering from complete Freund’s adjuvant (CFA)-induced chronic inflammatory pain. The results show that FMNT administration significantly reduces anxiety-like behavior but does not affect the nociceptive threshold in CFA-injected mice. The treatment reverses the upregulation of NMDA, GluA1, and GABAA receptors, as well as PSD95 and CREB in the basolateral amygdala (BLA). The effects of FMNT on NMDA receptors and CREB binding protein (CBP) were further confirmed by the potential structure combination between these compounds, which was analyzed by in silico docking technology. FMNT also inhibits the activation of the NF-κB signaling pathway and microglia in the BLA of mice suffering from chronic inflammatory pain. Therefore, the anxiolytic effects of FMNT are partially due to the attenuation of inflammation and neuronal hyperexcitability through the inhibition of NMDA receptor and CBP in the BLA.
Collapse
Affiliation(s)
- Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shao-Yu Guan
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - An Liu
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiao Yue
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Li-Ning Hu
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Liu-Kun Yang
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Lu
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen Tian
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.,The 154th Central Hospital of PLA, Xinyang, 464000, China
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
49
|
In Vivo Rodent Models of Type 2 Diabetes and Their Usefulness for Evaluating Flavonoid Bioactivity. Nutrients 2019; 11:nu11030530. [PMID: 30823474 PMCID: PMC6470730 DOI: 10.3390/nu11030530] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/10/2023] Open
Abstract
About 40% of the world’s population is overweight or obese and exist at risk of developing type 2 diabetes mellitus (T2D). Obesity is a leading pathogenic factor for developing insulin resistance (IR). It is well established that IR and a progressive decline in functional β-cell mass are hallmarks of developing T2D. In order to mitigate the global prevalence of T2D, we must carefully select the appropriate animal models to explore the cellular and molecular mechanisms of T2D, and to optimize novel therapeutics for their safe use in humans. Flavonoids, a group of polyphenols, have drawn great interest for their various health benefits, and have been identified in naturally occurring anti-diabetic compounds. Results from many clinical and animal studies demonstrate that dietary intake of flavonoids might prove helpful in preventing T2D. In this review, we discuss the currently available rodent animal models of T2D and analyze the advantages, the limitations of each T2D model, and highlight the potential anti-diabetic effects of flavonoids as well as the mechanisms of their actions.
Collapse
|
50
|
Formononetin attenuates kidney damage in type 2 diabetic rats. Life Sci 2019; 219:109-121. [PMID: 30641085 DOI: 10.1016/j.lfs.2019.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
AIM Diabetic nephropathy is the commonly developed complication of vasculature in type 2 diabetic patients. Chronic hyperglycemia leads to nephropathy in diabetics because of the formation of excessive reactive oxygen species and advanced glycation end products which is reflected in the form of glomerulosclerosis, tubular atrophy and interstitial fibrosis. As per the various reports reduction in SIRT1 expression in kidney tissue is key factor in the development of nephropathy in diabetes because its reduction in tissue is linked with excessive formation of ROS. Formononetin is a polyphenolic compound reported for its effect on SIRT1 and ROS. MAIN METHODS Type 2 diabetes was induced in rats by diet modification using high fat diet for fifteen days prior to streptozotocin regimen (35 mg/kg, i.p.). Treatment of formononetin was started after confirmation of diabetes and continued for 16 weeks. Formononetin was administered orally to the diabetic animals at the dose of 10. 20 and 40 mg/kg. KEY FINDINGS Formononetin treatment for 16 week was able to control hyperglycemia and insulin resistance in diabetic animals. It has also been reduced triglyceride and cholesterol in blood. Formononetin treatment reduced blood concentration of creatinine, blood urea nitrogen and increased albumin concentration. Formononetin treatment also enhanced creatinine clearance in diabetic animals. Oxidative stress burden was also reduced significantly after formononetin treatment along with increased SIRT1 expression in kidney tissues of diabetic animals. SIGNIFICANCE Formononetin is a potential molecule which increases the expression of SIRT1 in kidney tissue of diabetic. Thus formononetin is an effective molecule to control nephropathy in type 2 diabetes mellitus.
Collapse
|