1
|
He C, He J. Metabolic reprogramming and signaling adaptations in anoikis resistance: mechanisms and therapeutic targets. Mol Cell Biochem 2025:10.1007/s11010-024-05199-3. [PMID: 39821582 DOI: 10.1007/s11010-024-05199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025]
Abstract
Anoikis, a form of programmed cell death triggered by detachment from the extracellular matrix (ECM), maintains tissue homeostasis by removing mislocalized or detached cells. Cancer cells, however, have evolved multiple mechanisms to evade anoikis under conditions of ECM detachment, enabling survival and distant metastasis. Studies have identified differentially expressed proteins between suspended and adherent cancer cells, revealing that key metabolic and signaling pathways undergo significant alterations during the acquisition of anoikis resistance. This review explores the regulatory roles of epithelial-mesenchymal transition, cancer stem cell characteristics, metabolic reprogramming, and various signaling pathway alterations in promoting anoikis resistance. And the corresponding reagents and non-coding RNAs that target the aforementioned pathways are reviewed. By discussing the regulatory mechanisms that facilitate anoikis resistance in cancer cells, this review aims to shed light on potential strategies for inhibiting tumor progression and preventing metastasis.
Collapse
Affiliation(s)
- Chao He
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie He
- Department of Nursing, Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Nalla LV, Khairnar A. Empagliflozin drives ferroptosis in anoikis-resistant cells by activating miR-128-3p dependent pathway and inhibiting CD98hc in breast cancer. Free Radic Biol Med 2024; 220:288-300. [PMID: 38734268 DOI: 10.1016/j.freeradbiomed.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/18/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
A tumour suppressor miRNA, miR-128-3p, is widely involved in various biological processes and has been found to get downregulated in breast cancer patients. We previously published that ectopically expressed miR-128-3p suppressed migration, invasion, cell cycle arrest, and breast cancer stem cells. In the present study, we explored the role of Empagliflozin (EMPA) as a miR-128-3p functionality-mimicking drug in inducing ferroptosis by inhibiting CD98hc. Given that CD98hc is one of the proteins critical in triggering ferroptosis, we confirmed that miR-128-3p and EMPA inhibited SP1, leading to inhibition of CD98hc expression. Further, transfection with siCD98hc, miR-128-3p mimics, and inhibitors was performed to assess their involvement in the ferroptosis of anoikis-resistant cells. We proved that anoikis-resistant cells possess high ROS and iron levels. Further, miR-128-3p and EMPA treatments induced ferroptosis by inhibiting GSH and enzymatic activity of GPX4 and also induced lipid peroxidation. Moreover, EMPA suppressed bioluminescence of 4T1-Red-FLuc induced thoracic cavity, peritoneal tumour burden and lung nodules in an in-vivo metastatic model of breast cancer. Collectively, we revealed that EMPA sensitized the ECM detached cells to ferroptosis by synergically activating miR-128-3p and lowering the levels of SP1 and CD98hc, making it a potential adjunct drug for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India; Department of Pharmacology, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, 602 00, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 62500, Czech Republic; International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 6250, Czech Republic.
| |
Collapse
|
3
|
Kavanaugh LG, Mahoney AR, Dey D, Wuest WM, Conn GL. Di-berberine conjugates as chemical probes of Pseudomonas aeruginosa MexXY-OprM efflux function and inhibition. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:12. [PMID: 39843773 PMCID: PMC11721654 DOI: 10.1038/s44259-023-00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/17/2023] [Indexed: 01/24/2025]
Abstract
The Resistance-Nodulation-Division (RND) efflux pump superfamily is pervasive among Gram-negative pathogens and contributes extensively to clinical antibiotic resistance. The opportunistic pathogen Pseudomonas aeruginosa contains 12 RND-type efflux systems, with four contributing to resistance including MexXY-OprM which is uniquely able to export aminoglycosides. At the site of initial substrate recognition, small molecule probes of the inner membrane transporter (e.g., MexY) have potential as important functional tools to understand substrate selectivity and a foundation for developing adjuvant efflux pump inhibitors (EPIs). Here, we optimized the scaffold of berberine, a known but weak MexY EPI, using an in-silico high-throughput screen to identify di-berberine conjugates with enhanced synergistic action with aminoglycosides. Further, docking and molecular dynamics simulations of di-berberine conjugates reveal unique contact residues and thus sensitivities of MexY from distinct P. aeruginosa strains. This work thereby reveals di-berberine conjugates to be useful probes of MexY transporter function and potential leads for EPI development.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA, USA.
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA, USA.
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Kavanaugh LG, Mahoney AR, Dey D, Wuest WM, Conn GL. Di-berberine conjugates as chemical probes of Pseudomonas aeruginosa MexXY-OprM efflux function and inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.533986. [PMID: 37425949 PMCID: PMC10327050 DOI: 10.1101/2023.03.24.533986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The Resistance-Nodulation-Division (RND) efflux pump superfamily is pervasive among Gram-negative pathogens and contributes extensively to clinical antibiotic resistance. The opportunistic pathogen Pseudomonas aeruginosa contains 12 RND-type efflux systems, with four contributing to resistance including MexXY-OprM which is uniquely able to export aminoglycosides. At the site of initial substrate recognition, small molecule probes of the inner membrane transporter (e.g., MexY) have potential as important functional tools to understand substrate selectivity and a foundation for developing adjuvant efflux pump inhibitors (EPIs). Here, we optimized the scaffold of berberine, a known but weak MexY EPI, using an in-silico high-throughput screen to identify di-berberine conjugates with enhanced synergistic action with aminoglycosides. Further, docking and molecular dynamics simulations of di-berberine conjugates reveal unique contact residues and thus sensitivities of MexY from distinct P. aeruginosa strains. This work thereby reveals di-berberine conjugates to be useful probes of MexY transporter function and potential leads for EPI development.
Collapse
Affiliation(s)
- Logan G. Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
| | | | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, GA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA
| |
Collapse
|
5
|
USLU B, YAMAN M, ÖZDEMİR SANCI T, GÜNGÖRMÜŞ M, KÖPRÜ ÇZ, GÜNEŞ FE. Acetone extracts of Berberis vulgaris and Cornus mas L. induce apoptosis in MCF-7 breast cancer cells. Turk J Med Sci 2023; 53:1476-1488. [PMID: 38813021 PMCID: PMC10763770 DOI: 10.55730/1300-0144.5715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2023] [Accepted: 09/09/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim This study aimed to determine the proliferation and apoptotic effects of extracts from Cornus mas L. and Berberis vulgaris fruits on human breast cancer cells (MCF-7). Materials and methods The Cornus mas L. and Berberis vulgaris fruits, which constitute the herbal material of the study, were turned into 80% acetone extract after washing. The total phenolic content in Berberis vulgaris fruit extracts was determined calorimetrically using Folin-Ciocalteu reagent. The spectrophotometric method was used to determine the total flavonoid amount of the extracts. In order to measure the antioxidant capacity of Cornus mas L. and Berberis vulgaris fruits and extracts, DPPH Radical Scavenging Power test and Cu (II) ion reducing antioxidant capacity method were applied. Cell viability rates were determined by the XTT method. Flow cytometric measurement was performed to examine the apoptotic role of the extracts in the cell by using the Annexin-V/7-AAD commercial kit. Results According to the data, Berberis vulgaris fruit extract appeared more effective on MCF-7 breast cancer cells in both 24 and 48 hours of exposure. Analyses made to examine the phenolic component and antioxidant capacity properties of the fruits used in the study and the results we encountered when we exposed the cell were found to be compatible with each other. Annexin-V/7-AAD method showed that the apoptotic effects of the extracts in 48 hour exposures were more effective. Conclusion It has been determined that Cornus mas L. and Berberis vulgaris fruits, which are rich in phenolic components with high flavonoid content and high antioxidant capacities, support the apoptosis of cancer cells.
Collapse
Affiliation(s)
- Burcu USLU
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Yüksek Ihtisas University, Ankara,
Turkiye
| | - Mustafa YAMAN
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Sabahattin Zaim University, İstanbul,
Turkiye
| | - Tuba ÖZDEMİR SANCI
- Department of Histology and Embryology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara,
Turkiye
- Central Research Laboratory Application and Research Center, Ankara Yıldırım Beyazıt University, Ankara,
Turkiye
| | - Mustafa GÜNGÖRMÜŞ
- Central Research Laboratory Application and Research Center, Ankara Yıldırım Beyazıt University, Ankara,
Turkiye
- Department of Basic Sciences, School of Dentistry, Ankara Yıldırım Beyazıt University, Ankara,
Turkiye
| | - Çağla Zübeyde KÖPRÜ
- Department of Histology and Embryology, Faculty of Medicine, Yuksek Ihtisas University, Ankara,
Turkiye
| | - Fatma Esra GÜNEŞ
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medeniyet University, İstanbul,
Turkiye
| |
Collapse
|
6
|
Azizi H, Akbari N, Kheirandish F, Sepahvand A. Biogenic synthesized copper oxide nanoparticles by Bacillus subtilis: Investigating antibacterial activity on the mexAB-oprM efflux pump genes and cytotoxic effect on MCF-7 cells. J Basic Microbiol 2023; 63:960-970. [PMID: 37189220 DOI: 10.1002/jobm.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/19/2023] [Accepted: 03/04/2023] [Indexed: 05/17/2023]
Abstract
One of the main characteristics of Pseudomonas aeruginosa is remarkable intrinsic antibiotic resistance which is associated with production of β-lactamases and the expression of inducible efflux pumps. Nanoparticles (NPs) are a novel option for coping with this resistant bacteria. Hence, the aim of present study was production of CuO NPs via Bacillus subtilis and applied them to deal with resistant bacteria. For this purpose, first NPs were synthesized and were analyzed with different standard techniques containing scanning electron microscope, Fourier-transform infrared spectroscopy, and X-ray powder diffraction. Microdilution Broth Method and real-time polymerase chain reaction were used to antibacterial properties of the CuO NPs and expression of mexAB-oprM in clinical samples of P. aeruginosa, respectively. The cytotoxic effect of CuO NPs was also evaluated on MCF7 as a breast cancer cell line. Finally, the data were analyzed by one-way analysis of variance and Tukey's tests. The size of CuO NPs was in the range of 17-26 nm and showed antibacterial effect at <1000 μg/mL concentrations. Our evidence noted that the antibacterial effects of the CuO NPs occurred through the downregulation of mexAB-oprM and upregulation of mexR. The interesting point was that CuO NPs had an inhibitory effect on MCF7 cell lines with the optimal inhibition concentration at IC50 = 25.73 µg/mL. Therefore, CuO NPs can be considered as a promising medical candidate in the pharmaceutical industry.
Collapse
Affiliation(s)
- Hossein Azizi
- Department of Microbiology, Arak Branch, Islamic Azad University, Arak, Iran
| | - Neda Akbari
- Department of Microbiology, Arak Branch, Islamic Azad University, Arak, Iran
| | - Farnaz Kheirandish
- Department of Microbiology, Arak Branch, Islamic Azad University, Arak, Iran
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Khorramabad, Iran
| | - Asghar Sepahvand
- Department of Microbiology, Arak Branch, Islamic Azad University, Arak, Iran
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
7
|
Dai Y, Zhang X, Ou Y, Zou L, Zhang D, Yang Q, Qin Y, Du X, Li W, Yuan Z, Xiao Z, Wen Q. Anoikis resistance--protagonists of breast cancer cells survive and metastasize after ECM detachment. Cell Commun Signal 2023; 21:190. [PMID: 37537585 PMCID: PMC10399053 DOI: 10.1186/s12964-023-01183-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/04/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer exhibits the highest global incidence among all tumor types. Regardless of the type of breast cancer, metastasis is a crucial cause of poor prognosis. Anoikis, a form of apoptosis initiated by cell detachment from the native environment, is an outside-in process commencing with the disruption of cytosolic connectors such as integrin-ECM and cadherin-cell. This disruption subsequently leads to intracellular cytoskeletal and signaling pathway alterations, ultimately activating caspases and initiating programmed cell death. Development of an anoikis-resistant phenotype is a critical initial step in tumor metastasis. Breast cancer employs a series of stromal alterations to suppress anoikis in cancer cells. Comprehensive investigation of anoikis resistance mechanisms can inform strategies for preventing and regressing metastatic breast cancer. The present review first outlines the physiological mechanisms of anoikis, elucidating the alterations in signaling pathways, cytoskeleton, and protein targets that transpire from the outside in upon adhesion loss in normal breast cells. The specific anoikis resistance mechanisms induced by pathological changes in various spatial structures during breast cancer development are also discussed. Additionally, the genetic loci of targets altered in the development of anoikis resistance in breast cancer, are summarized. Finally, the micro-RNAs and targeted drugs reported in the literature concerning anoikis are compiled, with keratocin being the most functionally comprehensive. Video Abstract.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Xinyi Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yingjun Ou
- Clinical Medicine School, Southwest Medicial Univercity, Luzhou, China
- Orthopaedics, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuju Du
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Li
- Southwest Medical University, Luzhou, China
| | | | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
8
|
A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin. Int J Mol Sci 2023; 24:ijms24043266. [PMID: 36834673 PMCID: PMC9959544 DOI: 10.3390/ijms24043266] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Natural products are compounds produced by living organisms and can be divided into two main categories: primary (PMs) and secondary metabolites (SMs). Plant PMs are crucial for plant growth and reproduction since they are directly involved in living cell processes, whereas plant SMs are organic substances directly involved in plant defense and resistance. SMs are divided into three main groups: terpenoids, phenolics and nitrogen-containing compounds. The SMs contain a variety of biological capabilities that can be used as flavoring agents, food additives, plant-disease control, strengthen plant defenses against herbivores and, additionally, it can help plant cells to be better adapted to the physiological stress response. The current review is mainly focusing on certain key elements related to the significance, biosynthesis, classification, biochemical characterization and medical/pharmaceutical uses of the major categories of plant SMs. In addition, the usefulness of SMs in controlling plant diseases, boosting plant resistance and as potential natural, safe, eco-friendly substitutes for chemosynthetic pesticides were also reported in this review.
Collapse
|
9
|
Yuan R, Tan Y, Sun PH, Qin B, Liang Z. Emerging trends and research foci of berberine on tumor from 2002 to 2021: A bibliometric article of the literature from WoSCC. Front Pharmacol 2023; 14:1122890. [PMID: 36937842 PMCID: PMC10021304 DOI: 10.3389/fphar.2023.1122890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Cancer, also known as a malignant tumor, is caused by the activation of oncogenes, which leads to the uncontrolled proliferation of cells that results in swelling. According to the World Health Organization (WHO), cancer is one of the main causes of death worldwide. The main variables limiting the efficacy of anti-tumor treatments are side effects and drug resistance. The search for natural, safe, low toxicity, and efficient chemical compounds in tumor research is essential. Berberine is a pentacyclic isoquinoline quaternary ammonium alkaloid isolated from Berberis and Coptis that has long been used in clinical settings. Studies in recent years have reported the use of berberine in cancer treatment. In this study, we performed a bibliometric analysis of berberine- and tumor-related research. Materials and methods: Relevant articles from January 1, 2002, to December 31, 2021, were identified from the Web of Science Core Collection (WOSCC) of Clarivate Analytics. Microsoft Excel, CiteSpace, VOSviewer, and an online platform were used for the literary metrology analysis. Results: A total of 1368 publications had unique characteristics. Publications from China were the most common (783 articles), and Y. B. Feng (from China) was the most productive author, with the highest total citations. China Medical University (Taiwan) and Sun Yat-sen University (China) were the two organizations with the largest numbers of publications (36 each). Frontiers in Pharmacology was the most commonly occurring journal (29 articles). The present body of research is focused on the mechanism, molecular docking, and oxidative stress of berberine in tumors. Conclusion: Research on berberine and tumors was thoroughly reviewed using knowledge map and bibliometric methods. The results of this study reveal the dynamic evolution of berberine and tumor research and provide a basis for strategic planning in cancer research.
Collapse
Affiliation(s)
- Runzhu Yuan
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Ping-Hui Sun
- Department of Thoracic Surgery, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
- *Correspondence: Bo Qin, ; Zhen Liang,
| | - Zhen Liang
- Department of Geriatrics, The Second Clinical Medical College, Jinan University, Shenzhen People’s Hospital, Shenzhen, China
- *Correspondence: Bo Qin, ; Zhen Liang,
| |
Collapse
|
10
|
Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185889. [PMID: 36144625 PMCID: PMC9505063 DOI: 10.3390/molecules27185889] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022]
Abstract
Cancer is the most commonly diagnosed type of disease and a major cause of death worldwide. Despite advancement in various treatment modules, there has been little improvement in survival rates and side effects associated with this disease. Medicinal plants or their bioactive compounds have been extensively studied for their anticancer potential. Novel drugs based on natural products are urgently needed to manage cancer through attenuation of different cell signaling pathways. In this regard, berberine is a bioactive alkaloid that is found in variety of plants, and an inverse association has been revealed between its consumption and cancer. Berberine exhibits an anticancer role through scavenging free radicals, induction of apoptosis, cell cycle arrest, inhibition of angiogenesis, inflammation, PI3K/AKT/mammalian target of rapamycin (mTOR), Wnt/β-catenin, and the MAPK/ERK signaling pathway. In addition, synergistic effects of berberine with anticancer drugs or natural compounds have been proven in several cancers. This review outlines the anticancer effects and mechanisms of action of berberine in different cancers through modulation of various cell signaling pathways. Moreover, the recent developments in the drug delivery systems and synergistic effect of berberine are explained.
Collapse
|
11
|
Benot-Dominguez R, Cimini A, Barone D, Giordano A, Pentimalli F. The Emerging Role of Cyclin-Dependent Kinase Inhibitors in Treating Diet-Induced Obesity: New Opportunities for Breast and Ovarian Cancers? Cancers (Basel) 2022; 14:2709. [PMID: 35681689 PMCID: PMC9179653 DOI: 10.3390/cancers14112709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Overweight and obesity constitute the most impactful lifestyle-dependent risk factors for cancer and have been tightly linked to a higher number of tumor-related deaths nowadays. The excessive accumulation of energy can lead to an imbalance in the level of essential cellular biomolecules that may result in inflammation and cell-cycle dysregulation. Nutritional strategies and phytochemicals are gaining interest in the management of obesity-related cancers, with several ongoing and completed clinical studies that support their effectiveness. At the same time, cyclin-dependent kinases (CDKs) are becoming an important target in breast and ovarian cancer treatment, with various FDA-approved CDK4/6 inhibitors that have recently received more attention for their potential role in diet-induced obesity (DIO). Here we provide an overview of the most recent studies involving nutraceuticals and other dietary strategies affecting cell-cycle pathways, which might impact the management of breast and ovarian cancers, as well as the repurposing of already commercialized chemotherapeutic options to treat DIO.
Collapse
Affiliation(s)
- Reyes Benot-Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
12
|
Ustürk S, Altundag EM, Yilmaz E. Pullulan/
polyHEMA
cryogels: Synthesis, physicochemical properties, and cell viability. J Appl Polym Sci 2022. [DOI: 10.1002/app.51822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Selma Ustürk
- Department of Chemistry, Faculty of Arts and Sciences Eastern Mediterranean University Mersin10 Turkey
| | - Ergul Mutlu Altundag
- Department of Medical Biochemistry, Faculty of Medicine Eastern Mediterranean University Mersin10 Turkey
| | - Elvan Yilmaz
- Department of Chemistry, Faculty of Arts and Sciences Eastern Mediterranean University Mersin10 Turkey
| |
Collapse
|
13
|
Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13010003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Plants are the source of various photochemicals; metabolites are used in medicinal and environmental sectors as well as being widely used in commercial and pharmaceutical products. Although they produce a number of medicinal products, either already on the market or under trial, the amounts obtained from plant sources are very minute or difficult to synthesize at an industrial level due to the complex chemical composition and chirality exhibited by these compounds. However, plant cell cultures offer a good alternative for the consistent production of desired secondary metabolites under the influence of precursors and elicitors. In this review, we discuss the various aspects of secondary metabolites, production synthesis, and sources of medical products from plant sources.
Collapse
|
14
|
Gao W, Wang J, Zhao J. Describing a modern chemotherapeutic drug prepared by Au nanoparticles to treat the human oral squamous cell carcinoma: A pre-clinical trial study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Chaudhry GES, Jan R, Akim A, Zafar MN, Sung YY, Muhammad TST. Breast Cancer: A Global Concern, Diagnostic and Therapeutic Perspectives, Mechanistic Targets in Drug Development. Adv Pharm Bull 2021; 11:580-594. [PMID: 34888205 PMCID: PMC8642807 DOI: 10.34172/apb.2021.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/10/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is a complex multifactorial process, unchecked and abrupt division, and cell growth—conventional chemotherapy, along with radiotherapy, is used to treat breast cancer. Due to reduce efficacy and less survival rate, there is a particular need for the discovery of new active anticancer agents. Natural resources such as terrestrial/marine plants or organisms are a promising source for the generation of new therapeutics with improving efficacy. The screening of natural plant extracts and fractions, isolations of phytochemicals, and mechanistic study of those potential compounds play a remarkable role in the development of new therapeutic drugs with increased efficacy. Cancer is a multistage disease with complex signaling cascades. The initial study of screening whole extracts or fractions and later the isolation of secondary compounds and their mechanism of action study gives a clue of potential therapeutic agents for future drug development. The phytochemicals present in extracts/fractions produce remarkable effects due to synergistically targeting multiple signals. In this review, the molecular targets of extracts/ fractions and isolated compounds highlighted. The therapeutic agent's mechanistic targets in drug development focused involves; i) Induction of Apoptosis, ii) modulating cell cycle arrest, iii) Inhibition or suppression of invasion and metastasis and iv) various other pro-survival signaling pathways. The phytochemicals and their modified analogs identified as future potential candidates for anticancer chemotherapy.
Collapse
Affiliation(s)
- Gul-E-Saba Chaudhry
- Institute of Marine Biotechnology, University Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | - Rehmat Jan
- Department of Environmental Sciences, Fatima Jinnah University, Rawalpindi, Pakistan
| | - Abdah Akim
- Department of Biomedical Sciences, Universiti Putra Malaysia, Seri Kembangan, Selangor, Malaysia
| | | | - Yeong Yik Sung
- Institute of Marine Biotechnology, University Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | | |
Collapse
|
16
|
Chiu CF, Fu RH, Hsu SH, Yu YH(A, Yang SF, Tsao TCY, Chang KB, Yeh CA, Tang CM, Huang SC, Hung HS. Delivery Capacity and Anticancer Ability of the Berberine-Loaded Gold Nanoparticles to Promote the Apoptosis Effect in Breast Cancer. Cancers (Basel) 2021; 13:cancers13215317. [PMID: 34771481 PMCID: PMC8582582 DOI: 10.3390/cancers13215317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary In this research, we aimed to evaluate the biological effects of physically gold nanoparticle-collagen nanocarrier incorporated with alkaloid berberine (Au-Col-BB) on non-transformed bovine aortic endothelial cells (BAEC) and Her-2 breast cancer cell lines through in vitro and in vivo assessments. Au-Col-BB showed better cytotoxicity, as well as significantly induced cell apoptosis in Her-2 cancer cells compared with normal cells (non-transformed BAEC). Further, Au-Col-BB also demonstrated better anti-cancer capacity for inhibiting cell growth in Her-2 tumor-bearing mice. In brief, we confirmed that the Au-Col-BB nanocarrier could be a potential nanodrug for increasing the efficiency of specific therapeutic effects in breast cancer disease. Abstract Gold nanoparticles (AuNPs) were fabricated with biocompatible collagen (Col) and then conjugated with berberine (BB), denoted as Au-Col-BB, to investigate the endocytic mechanisms in Her-2 breast cancer cell line and in bovine aortic endothelial cells (BAEC). Owing to the superior biocompatibility, tunable physicochemical properties, and potential functionalization with biomolecules, AuNPs have been well studied as carriers of biomolecules for diseases and cancer therapeutics. Composites of AuNPs with biopolymer, such as fibronectin or Col, have been revealed to increase cell proliferation, migration, and differentiation. BB is a natural compound with impressive health benefits, such as lowering blood sugar and reducing weight. In addition, BB can inhibit cell proliferation by modulating cell cycle progress and autophagy, and induce cell apoptosis in vivo and in vitro. In the current research, BB was conjugated on the Col-AuNP composite (“Au-Col”). The UV-Visible spectroscopy and infrared spectroscopy confirmed the conjugation of BB on Au-Col. The particle size of the Au-Col-BB conjugate was about 227 nm, determined by dynamic light scattering. Furthermore, Au-Col-BB was less cytotoxic to BAEC vs. Her-2 cell line in terms of MTT assay and cell cycle behavior. Au-Col-BB, compared to Au-Col, showed greater cell uptake capacity and potential cellular transportation by BAEC and Her-2 using the fluorescence-conjugated Au-Col-BB. In addition, the clathrin-mediated endocytosis and cell autophagy seemed to be the favorite endocytic mechanism for the internalization of Au-Col-BB by BAEC and Her-2. Au-Col-BB significantly inhibited cell migration in Her-2, but not in BAEC. Moreover, apoptotic cascade proteins, such as Bax and p21, were expressed in Her-2 after the treatment of Au-Col-BB. The tumor suppression was examined in a model of xenograft mice treated with Au-Col-BB nanovehicles. Results demonstrated that the tumor weight was remarkably reduced by the treatment of Au-Col-BB. Altogether, the promising findings of Au-Col-BB nanocarrier on Her-2 breast cancer cell line suggest that Au-Col-BB may be a good candidate of anticancer drug for the treatment of human breast cancer.
Collapse
Affiliation(s)
- Chen-Feng Chiu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-F.C.); (S.-F.Y.)
- Division of Chest, Department of Internal Medicine, Feng Yuan Hospital, Ministry of Health and Welfare, Taichung 42055, Taiwan
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (R.-H.F.); (K.-B.C.); (C.-A.Y.); (S.-C.H.)
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Yang-Hao (Alex) Yu
- Changhua Hospital, Ministry of Health & Welfare, Changhua 51341, Taiwan;
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-F.C.); (S.-F.Y.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Thomas Chang-Yao Tsao
- Division of Chest, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (R.-H.F.); (K.-B.C.); (C.-A.Y.); (S.-C.H.)
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (R.-H.F.); (K.-B.C.); (C.-A.Y.); (S.-C.H.)
| | - Cheng-Ming Tang
- Collage of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Sheng-Chu Huang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (R.-H.F.); (K.-B.C.); (C.-A.Y.); (S.-C.H.)
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (R.-H.F.); (K.-B.C.); (C.-A.Y.); (S.-C.H.)
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-4-22052121 (ext. 7827); Fax: +886-4-22333641
| |
Collapse
|
17
|
Kutbi HI, Asfour HZ, Kammoun AK, Sirwi A, Cavalu S, Gad HA. Optimization of Hyaluronate-Based Liposomes to Augment the Oral Delivery and the Bioavailability of Berberine. MATERIALS 2021; 14:ma14195759. [PMID: 34640154 PMCID: PMC8510464 DOI: 10.3390/ma14195759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
Various perspectives had been utilized to enhance the poor intestinal permeability and bioavailability of drugs with low water solubility. Berberine (Brb) is a unique molecule that possesses multiple therapeutic activities such as antimicrobial, anti-inflammatory, antioxidant and anti-hyperglycemic effects. To improve Brb permeability and bioavailability, this study presents a newly developed formulation, namely Brb hyaluronate-based liposomes, prepared by using film hydration method and characterized by dynamic light scattering measurements, entrapment efficiency percentage (EE%), transmission electron microscope (TEM), in vitro drug release and physical stability. The bioavailability of the selected formulations was assessed in vivo after oral administration to rats. The results revealed an enhanced effect of hyaluronic acid on the entrapment efficiency, reaching 78.1 ± 0.1% with mean size 520.7 ± 19.9 nm. Sustained release of Brb was recorded up to 24 h in comparison to Brb solution. Physical stability was maintained for three months at refrigeration temperature. Results of pharmacokinetics studies indicated the potential of the liposomal formulation to increase the oral bioavailability of Brb and to accelerate its entry into the bloodstream. The obtained results are accredited to the lipophilic nature of the prepared system, resembling the structural features of bio-membrane, in addition to their small size that enhances intestinal penetration.
Collapse
Affiliation(s)
- Hussam I. Kutbi
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahmed K. Kammoun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Alaa Sirwi
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (S.C.); (H.A.G.); Tel.: +20-100-022-6421 (H.A.G.)
| | - Heba A. Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (S.C.); (H.A.G.); Tel.: +20-100-022-6421 (H.A.G.)
| |
Collapse
|
18
|
Nandi S, Dey R, Dey S, Samadder A, Saxena A. Naturally Sourced CDK Inhibitors and Current Trends in Structure-Based Synthetic Anticancer Drug Design by Crystallography. Anticancer Agents Med Chem 2021; 22:485-498. [PMID: 34503422 DOI: 10.2174/1871520621666210908101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 06/12/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
Cyclin-dependent kinases (CDKs) are the chief regulators in cell proliferation; the kinase activities are largely regulated by their interactions with CDK inhibitors (CKIs) and Cyclins. The association of different CDKs with CDKIs and Cyclins at the cell-cycle checkpoints of different stages of mitotic cell cycle function act more likely as the molecular switches that regulate different transcriptional events required for progression through the cell cycle. A fine balance in response to extracellular and intracellular signals is highly maintained in the orchestrated function of CDKs along with Cyclins and CDKIs for normal cell proliferation. This fine-tuning in mitotic cell cycle progression sometimes gets lost due to dysregulation of CDKs. The aberrant functioning of the CDKIs is therefore studied for its contributions as a vital hallmark of cancers. It has attracted our focus to maneuver cancer therapy. Hence, several synthetic CDKIs and their crystallography-based drug design have been explained to understand their mode of action with CDKs. Since most of the synthetic drugs function by inhibiting the CDK4/6 kinases by competitively binding to their ATP binding cleft, these synthetic drugs are reported to attack the normal, healthy growing cells adjacent to the cancer cells leading to the decrease in the life span of the cancer patients. The quest for traditional natural medicines may have a great impact on the treatment of cancer. Therefore, in the present studies, a search for naturally sourced CDK inhibitors has been briefly focused. Additionally, some synthetic crystallography-based drug design has been explained to elucidate different avenues to develop better anticancer chemotherapeutics, converting natural scaffolds into inhibitors of the CDK mediated abnormal signal transduction with lesser side effects.
Collapse
Affiliation(s)
- Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713. India
| | - Rishita Dey
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713. India
| | - Sudatta Dey
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235. India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235. India
| | - Anil Saxena
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713. India
| |
Collapse
|
19
|
Li D, Cao M, Li Y, Qu C. Regulatory Effects of Berberine on Adipogenic Differentiation in Porcine Intramuscular Preadipocytes Through the Multi-Gene Pattern. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.103.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Tzeng TRJ, Liu TY, Lin CW, Chang PE, Liao PX, Yang WY, Cheng CY, Liao PC, Chiang WD, Ding ST, Lin YY. Effects of Dietary Inclusion of Dry Hydrastis canadensis on Laying Performance, Egg Quality, Serum Biochemical Parameters and Cecal Microbiota in Laying Hens. Animals (Basel) 2021; 11:ani11051381. [PMID: 34067964 PMCID: PMC8152295 DOI: 10.3390/ani11051381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Extensive studies on alternative sources of feed additives to replace antibiotics are required. Plants of the Ranunculaceae family have been used as medicines or dyes. The representative plant is goldenseal (Hydrastis canadensis), which has a long history of use in North America, with berberine considered the most effective ingredient in goldenseal. Some natural compounds in Hydrastis canadensis function as efflux pump inhibitors and thus may have bactericidal effects against pathogens with antibiotic resistance. However, no conclusive beneficial effects of goldenseal on the livestock industry have been reported. The objective of this study was to examine whether the alternative use of goldenseal roots or leaves has potential health benefits in chickens. Our data demonstrate that Hydrastis canadensis can improve the egg quality and modulate the microbiota composition of laying hens. Abstract Alternative growth promoters are able to not only effectively replace the traditional use of antibiotics but also provide additional health benefits for livestock and reduce food safety concerns. This study investigated the effects of dry Hydrastis canadensis on the laying performance and fecal microbial community of laying hens. Twenty-four Lohmann (LSL, white layer strain) hens were reared from 40 to 48 weeks of age and randomly allotted to four dietary treatments (six birds/treatment). The dietary treatments comprised a basal diet with no treatment as control, a basal diet plus 0.6% powder of dry Hydrastis canadensis roots (R) or leaves (L), and a basal diet plus 0.6% powder of a mixture of dry Hydrastis canadensis roots and leaves (1:1, LR). No mortality was observed in the whole experimental period. The results indicated that albumen height in the LR group was significantly greater than that in the control group. The diet supplemented with Hydrastis canadensis had no significant effects on egg production rate, egg weight, eggshell strength, eggshell thickness, Haugh unit, or yolk height during the whole experimental phase. However, principal coordinate analysis, comparative heat map analysis, and cluster dendrogram analysis of cecal microbiota showed distinct clusters among the groups treated with Hydrastis canadensis and the control group. Regarding blood biochemical parameters, serum cholesterol levels were significantly lower in all Hydrastis canadensis-treated groups compared with those in the control group. Moreover, serum low-density lipoprotein levels were lower in hens supplemented with the leaf of Hydrastis canadensis. The abundances of the phyla Fusobacteria and Kiritimatiellaeota were increased (p < 0.05) in laying hens fed with 0.6% Hydrastis canadensis leaves, whereas the abundance of the phylum Firmicutes in cecum digesta decreased in response to treatment with Hydrastis canadensis roots and leaves. The relative abundance of the Fusobacterium genus was higher in the LR group compared with that in the control. On the contrary, we found a different trend in the Synergistes genus. The potential influences of these microbiota on the performance of laying hens were discussed. The results demonstrate that Hydrastis canadensis can improve the egg albumen height and modulate the cecum digesta microbiota composition of laying hens.
Collapse
Affiliation(s)
- Tzuen-Rong J Tzeng
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Tzu-Yu Liu
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (T.-Y.L.); (C.-Y.C.)
| | - Chiao-Wei Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan; (C.-W.L.); (P.-X.L.); (W.-Y.Y.); (S.-T.D.)
| | - Pei-En Chang
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan;
| | - Pei-Xin Liao
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan; (C.-W.L.); (P.-X.L.); (W.-Y.Y.); (S.-T.D.)
| | - Wen-Yuan Yang
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan; (C.-W.L.); (P.-X.L.); (W.-Y.Y.); (S.-T.D.)
| | - Chih-Yuan Cheng
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (T.-Y.L.); (C.-Y.C.)
| | - Pei-Chun Liao
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan;
| | - Wen-Dee Chiang
- Department of Food Science, Tunghai University, Taichung 407, Taiwan;
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan; (C.-W.L.); (P.-X.L.); (W.-Y.Y.); (S.-T.D.)
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan;
| | - Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan; (C.-W.L.); (P.-X.L.); (W.-Y.Y.); (S.-T.D.)
- Correspondence:
| |
Collapse
|
21
|
Jagetia GC. Anticancer Potential of Natural Isoquinoline Alkaloid Berberine. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2021; 000:000-000. [DOI: 10.14218/jerp.2021.00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Lakshmi S, Renjitha J, B Sasidhar S, Priya S. Epoxyazadiradione induced apoptosis/anoikis in triple-negative breast cancer cells, MDA-MB-231, by modulating diverse cellular effects. J Biochem Mol Toxicol 2021; 35:1-17. [PMID: 33684251 DOI: 10.1002/jbt.22756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 01/03/2023]
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive forms of its kind, which accounts for 15-20% of all breast cancers. As this cancer form lacks hormone receptors, targeted chemotherapy remains the best treatment option. Apoptosis and anoikis (detachment-induced cell death) induction by small molecules can prevent TNBC metastasis to a greater extent. Epoxyazadiradione (EAD) is a limonoid from the neem plant with an anticancer property. Here, we demonstrate that EAD induced mitochondria-mediated apoptosis and anoikis in TNBC cells (MDA-MB-231). Apart from this, it promotes antimigration, inhibition of colony formation, downregulation of MMP-9 and fibronectin, induction of G2/M phase arrest with downregulation of cyclin A2/cdk2, interference in cellular metabolism, and inhibition of nuclear factor kappa-B (NF-kB) nuclear translocation. Moreover, a significant reduction is observed in the expression of EGFR on the plasma membrane and nucleus upon treatment with EAD. Among the diverse cellular effects, anoikis induction, metabolic interference, and downregulation of membrane/nuclear EGFR expression by EAD are reported here for the first time. To summarize, EAD targets multiple cellular events to induce growth arrest in TNBC, and hence can be developed into the best antineoplastic agent in the future.
Collapse
Affiliation(s)
- Sreerenjini Lakshmi
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jalaja Renjitha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Somappa B Sasidhar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Sulochana Priya
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
23
|
Devarajan N, Jayaraman S, Mahendra J, Venkatratnam P, Rajagopal P, Palaniappan H, Ganesan SK. Berberine-A potent chemosensitizer and chemoprotector to conventional cancer therapies. Phytother Res 2021; 35:3059-3077. [PMID: 33559280 DOI: 10.1002/ptr.7032] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Chemotherapy and radiotherapy are mainstay treatments for cancer patients. However, their clinical outcomes are highly limited by the resistance of malignant tumors to these therapies and the incurrence of serious damages in vital organs. This in turn necessitates the development of adjunct drugs that overcomes chemo/radioresistance in refractory cancers and protects vital organs from the cytotoxic effects of cancer therapies. In recent years, Berberine (BBR), a natural isoquinoline alkaloid has garnered more attention due to its potent chemosensitizing and chemoprotective properties. BBR effectively sensitizes refractory cancers to chemotherapy and radiotherapy by ameliorating the diverse events underlying therapy resistance. Furthermore, it protects the heart, liver, lungs, and kidneys from severe damages caused by these therapies. In this review, we discuss the molecular mechanisms underlying the chemo/radiosensitizing and chemo/radioprotective potential of BBR during cancer treatment. Also, we highlight the limitations that hamper the clinical application of BBR as an adjunct drug and how novel innovations have been made in recent years to circumvent these challenges.
Collapse
Affiliation(s)
- Nalini Devarajan
- Central Research Laboratory, Meenakshi Ammal Dental College, Meenakshi Academy of Higher Education and Research, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Jaideep Mahendra
- Department of Periodontology, Meenakshi Ammal Dental College, and Hospital, Chennai, India
| | - Purushothaman Venkatratnam
- Central Research laboratory, Meenakshi Ammal Dental College, Meenakshi Academy of Higher Education and Research, Chennai, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Ammal Dental College, Meenakshi Academy of Higher Education and Research, Chennai, India
| | - Hema Palaniappan
- Department of Pharmacology, Coimbatore Medical College, Coimbatore, India
| | - Senthil Kumar Ganesan
- Laboratory of Functional Genomics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
24
|
Berberine inhibits proliferation and migration of colorectal cancer cells by downregulation of GRP78. Anticancer Drugs 2021; 31:141-149. [PMID: 31743135 DOI: 10.1097/cad.0000000000000835] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human colorectal cancer (CRC), a highly malignant and metastatic carcinoma, is resistant to many present anticancer therapies. The inhibition of tumor survival and growth through receptor suppression is a promising way to treat CRC. The study aimed to investigate the effect of a natural plant triterpenoid, berberine (BBR), on SW480 cells and whether its role is mediated by Glucose-regulated protein 78 (GRP78). MTT assay, wound healing assay, and Annexin V-FITC assay were used to measure the effect of BBR on the proliferation, migration, and apoptosis of SW480 cells, respectively. Immunofluorescence and western blotting were used to evaluate both the downregulation of BBR on GRP78 and the role of GRP78 in the effect of BBR on SW480 cells. Our results revealed that BBR inhibited the proliferation and migration, as well as induced the apoptosis of SW480 cells, in a dose-dependent manner. BBR induced the dose-dependent inhibition of cell proliferation in HT-29 cells. BBR inhibited the expression of GRP78 and its localization on the cell surface. Moreover, BBR inhibited the expression of Bax, Bcl-2, c-Myc, and Vimentin and up-regulated the cytokeratin expression in SW480 cells. In addition, we found that the effects of BBR on cell proliferation, migration, and apoptosis in SW480 cells were reversed by the overexpression of GRP78. Our findings demonstrated that BBR inhibited the proliferation and migration and induced the apoptosis of SW480 cells by downregulating the expression of GRP78, and targeting GRP78 might be a potential way to develop the effective anticancer therapy.
Collapse
|
25
|
Huang WY, Hibino T, Suye SI, Fujita S. Electrospun collagen core/poly-l-lactic acid shell nanofibers for prolonged release of hydrophilic drug. RSC Adv 2021; 11:5703-5711. [PMID: 35423091 PMCID: PMC8694765 DOI: 10.1039/d0ra08353d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
The development of sustained control drug release for delivering hydrophilic drugs has been challenging due to a burst release. Nanofibers are used as materials that enable efficient drug delivery systems. In this study, we designed drug-encapsulated core-shell nanofibers comprising a hydrophilic core of collagen (Col) incorporated with berberine chloride (BC), an anti-inflammatory and anti-cancer agent used as a model drug, and a hydrophobic shell of poly-l-lactic acid (PLLA). Long-term drug release profiles under both the physiological and hydrolysis-accelerated conditions were measured and analyzed using a Korsmeyer-Peppas kinetics model. We found that the Col/PLLA core-shell fiber achieved a controllable long-term release of the hydrophilic drug incorporated inside the core by the slow degradation of the PLLA shell to prevent the burst release while PLLA monolithic fibers showed early release due to the dissolution of drug and the following rapid hydrolysis of fibers. As shown by the results of Col/PLLA core-shell fiber under a hydrolysis-accelerated condition to promote the release of drugs test, it would provide sustained release over 16 days under physiological conditions. Here, the development of the nanomaterial for the long-term drug release of hydrophilic drugs was achieved, leading to its potential medical application including cancer treatment.
Collapse
Affiliation(s)
- Wan-Ying Huang
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui 3-9-1 Bunkyo Fukui 910-8507 Japan
| | - Toshiya Hibino
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui 3-9-1 Bunkyo Fukui 910-8507 Japan
| | - Shin-Ichiro Suye
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui 3-9-1 Bunkyo Fukui 910-8507 Japan
- Life Science Innovation Center, University of Fukui Fukui 910-8507 Japan
| | - Satoshi Fujita
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui 3-9-1 Bunkyo Fukui 910-8507 Japan
- Life Science Innovation Center, University of Fukui Fukui 910-8507 Japan
| |
Collapse
|
26
|
Pandey Y, Ambwani S. Nano Metal based Herbal theranostics for Cancer management: coalescing nature's boon with nanotechnological advancement. Curr Pharm Biotechnol 2021; 23:30-46. [PMID: 33480341 DOI: 10.2174/1389201022666210122141724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/22/2022]
Abstract
Cancer is amongst the leading public health problems globally with continuously increasing prevalence rate that demands for extensive and expensive treatment. Despite availability of number of potential cancer therapies, inadequate success has been achieved due to complexity and heterogeneity of tumors. Moreover, late/ terminal stage cancer leads to multidrug resistance, excruciating side effects, recurrence, etc. This is because of low penetrability and deleterious effects of drug on non-target cells/ tissues. This requires for cost effective, efficacious, alternative/ adjunct, complementary medicines with targeted drug delivery approach. A potential strategy to resolve this difficulty is to use theranostics i.e., formulations having both a therapeutic element and an imaging agent. Phytotherapeutics have been extensively used since times immemorial, having wide acceptability, easy availability, minimal side effects and comparatively inexpensive. These herbal formulations are mostly orally administered and thus subjected to adverse pH, enzymatic degradation, poor gut absorption, low bioavailability and non-targeted delivery that ultimately lead to their poor effectiveness. Constraints associated with conventional phyto-pharmaceuticals can be improved by designing and using "Nano Delivery Systems" (NDS). The foremost aim of metal based NDS is to provide sustained drug release, site-specific action, improved patient's compliance and enhanced efficacy. Metal Nanocarriers carrying herbal drugs will avoid these obstructions, so the drug can circulate into the blood for a longer period of time and provide optimal amount of the drug to the site of action. Besides, Herbal drugs with NDS thus would be efficacious as alternative/ complementary cancer theranostics. Present review describes about novel theranostic systems employing metal nanocarriers with diagnostic and therapeutic properties as are an effective strategy for cancer treatment. These systems when conjugated with herbal drugs provide an efficient management strategy for cancer.
Collapse
Affiliation(s)
- Yogesh Pandey
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., G.B. Pant University of Agriculture &Technology, Pantnagar, 263145, Uttarakhand. India
| | - Sonu Ambwani
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., G.B. Pant University of Agriculture &Technology, Pantnagar, 263145, Uttarakhand. India
| |
Collapse
|
27
|
Berberine Inhibits the Expression of SCT through miR-214-3p Stimulation in Breast Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2817147. [PMID: 33312221 PMCID: PMC7719527 DOI: 10.1155/2020/2817147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/21/2020] [Accepted: 10/24/2020] [Indexed: 12/21/2022]
Abstract
In this study, we aimed to evaluate the suppressive abilities of berberine (BBR) on MCF-7 and MDA-MB-231 cells and confirm its underlying mechanisms on miR-214-3p. We first built a panel of 18 miRNAs and 9 lncRNAs that were reported to participate in the mechanism of breast cancer. The RT-qPCR results suggested that BBR illustrated a dosage-dependent pattern in the stimulation to miR-214-3p in both MCF-7 and MDA-MB-231 cells. Then, we performed gain-and-lose function tests to validate the role of miR-214-3p contributing to the anticancer effects of BBR. Both BBR and miR-214-3p mimic reduced the cell viability, repressed migration and invasion capacities, increased rates of total apoptotic cells and ratio of Bax/Bcl-2, and increased the percentage of G2/M cells of MCF-7 and MDA-MB-231 cells by colony formation and CKK8 assay, scratch wound healing and gelatin-based 3D conformation assay, transwell invasion assay, and cell cycle analysis, respectively. However, miR-214-3p inhibitor counteracted all these effects of BBR. Based on the bioinformatics analysis and dual-luciferase reporter test, we identified binding sites between SCT and miR-214-3p. We further confirmed that BBR massively and dose-dependently reduced the mRNA expression and protein levels of SCT in both MCF-7 and MDA-231 cells. We testified that both miR-214-3p mimic and BBR could decrease the mRNA expression and protein levels of SCT, while miR-214-3p inhibitor weakened these reductions. In conclusion, BBR suppressed MCF-7 and MDA-MB-231 breast cancer cells by upregulating miR-214-3p and increasing its inhibition to SCT.
Collapse
|
28
|
Albogami S. Proanthocyanidins reduce cellular function in the most globally diagnosed cancers in vitro. PeerJ 2020; 8:e9910. [PMID: 32983646 PMCID: PMC7500326 DOI: 10.7717/peerj.9910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Growing evidence indicates that proanthocyanidins (PACs) may be effective in treating and preventing various cancers. The fundamental mechanism of PACs inhibiting the proliferation at cellular and molecular levels in most of the cancer types remains unclear. OBJECTIVE The anticancer efficacy of PACs was investigated in vitro using three human cancer cell lines: human colorectal adenocarcinoma (HT-29), human breast carcinoma (MCF-7), and human prostatic adenocarcinoma (PC-3). METHODS Cytotoxicity was evaluated by MTT assay, while cell proliferation was measured by trypan blue exclusion method. Cell migration was measured by wound healing assay, and DAPI staining was used to evaluate apoptotic nucleus morphology. RT-PCR was used to analyze the expression of Bax and Bcl-2, and caspase enzyme activity assay was measured by caspase colorimetric assay. RESULTS PACs could inhibit both cellular viability and proliferation in a concentration- and time-dependent fashion in all investigated cells. Further, all tested cells showed similarly decreased migration after 24- and 48-h PAC treatment. We observed increased apoptotic nucleus morphology in treated cells (p ≤ 0.01). BAX expression significantly increased in HT-29 (p < 0.01), PC-3(p < 0.01), and MCF-7 (p < 0.05) cells, while BCL-2 expression significantly declined (p < 0.05). Caspase activities were significantly increased in all tested cancer cell lines after 24-h PAC treatment. CONCLUSION PACs may have potential therapeutic properties against colorectal, breast, and prostate cancer.
Collapse
Affiliation(s)
- Sarah Albogami
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
29
|
Encapsulation of berberine into liquid crystalline nanoparticles to enhance its solubility and anticancer activity in MCF7 human breast cancer cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Palma TV, Lenz LS, Bottari NB, Pereira A, Schetinger MRC, Morsch VM, Ulrich H, Pillat MM, de Andrade CM. Berberine induces apoptosis in glioblastoma multiforme U87MG cells via oxidative stress and independent of AMPK activity. Mol Biol Rep 2020; 47:4393-4400. [PMID: 32410137 DOI: 10.1007/s11033-020-05500-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GM) is the most prevalent tumor among gliomas and presents the highest mortality rate among brain tumors. Berberine (BBR) is an alkaloid isoquinoline found in medicinal plants such as Coptis chinensis. Studies have been showed that BBR presents protective activity in mesenchymal cells and neurons, and antitumor properties in breast cancer and hepatocarcinoma. The aim of this study was to investigate the antitumor effects of BBR in GM U87MG cells, as well as to identify, whether such effects are mediated by oxidative stress and canonical apoptotic pathways. After treatment with several concentrations of BBR (10, 25, 100 and 250 µM) for 24, 48 and 72 h of exposure, BBR reduce cell viability of U87MG cells in a concentration- and time-dependent manner. Afterwards, it was observed that BBR, starting at a concentration of 25 µM of 24 h exposure, significantly suppressed proliferation and increased early apoptosis (53.5% ± 11.15 of annexin V+ propidium iodide- cells) compared to untreated cells (7.5% ± 4.6). BBR-induced apoptosis was independent from AMPK activity and did not change total caspase-3 and p-p53 levels. Moreover, BBR (25 μM/24 h) increased oxidative stress in U87MG cells, evidenced by high levels of reactive oxygen species, thiobarbituric acid reactive substance and protein carbonylation. Considering the antitumor effects of BBR in U87MG cells, this compound may be a potential candidate for adjuvant GM treatment.
Collapse
Affiliation(s)
- Taís Vidal Palma
- Postgraduate Program in Biological Sciences: Biochemistry Toxicology, Biochemistry and Oxidative Stress Section of the Therapy Laboratory Cellular, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Luana Suéling Lenz
- Postgraduate Program in Biological Sciences: Biochemistry Toxicology, Biochemistry and Oxidative Stress Section of the Therapy Laboratory Cellular, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Nathiele Bianchin Bottari
- Postgraduate Program in Biological Sciences: Biochemistry Toxicological, Department of Chemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Aline Pereira
- Postgraduate Program in Biological Sciences: Biochemistry Toxicological, Department of Chemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Postgraduate Program in Biological Sciences: Biochemistry Toxicological, Department of Chemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Postgraduate Program in Biological Sciences: Biochemistry Toxicological, Department of Chemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Micheli Mainardi Pillat
- Department of Microbiology and Parasitology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Cinthia Melazzo de Andrade
- Department of Small Animal Clinic, Center of Rural Sciences, Federal University of Santa Maria-RS, Room 121, Veterinary Hospital Building, Avenue Roraima No. 1000, Santa Maria, RS, 97105900, Brazil.
| |
Collapse
|
31
|
Yousefi M, Narmani A, Jafari SM. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv Colloid Interface Sci 2020; 278:102125. [PMID: 32109595 DOI: 10.1016/j.cis.2020.102125] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/09/2023]
Abstract
The genesis of dendrimers can be considered as a revolution in nano-scaled bioactive delivery systems. These structures possess a unique potential in encapsulating/entrapping bioactive ingredients due to their tree-like nature. Therefore, they could swiftly obtain a valuable statue in nutraceutical, pharmaceutical and medical sciences. Phytochemicals, as a large proportion of bioactives, have been studied and used by scholars in several fields of pharmacology, medical, food, and cosmetic for many years. But, the solubility, stability, and bioavailability issues have always been recognized as limiting factors in their application. Therefore, the main aim of this study is representing the use of dendrimers as novel nanocarriers for phytochemical bioactive compounds to deal with these problems. Hence, after a brief review of phytochemical ingredients, the text is commenced with a detailed explanation of dendrimers, including definitions, types, generations, synthesizing methods, and safety issues; then is continued with demonstration of their applications in encapsulation of phytochemical bioactive compounds and their active/passive delivery by dendrimers. Dendrimers provide a vast and appropriate surface to entrap the targeted phytochemical bioactive ingredients. Several parameters can affect the yield of nanoencapsulation by dendrimers, including their generation, type of end groups, surface charge, core structure, pH, and ambient factors. Another important issue of dendrimers is related to their toxicity. Cationic dendrimers, particularly PAMAM can be toxic to body cells through attaching to the cell membranes and disturbing their functions. However, a number of solutions have been suggested to decrease their toxicity.
Collapse
|
32
|
Pirouzpanah S, Asemani S, Shayanfar A, Baradaran B, Montazeri V. The effects of Berberis vulgaris consumption on plasma levels of IGF-1, IGFBPs, PPAR-γ and the expression of angiogenic genes in women with benign breast disease: a randomized controlled clinical trial. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:324. [PMID: 31752829 PMCID: PMC6868871 DOI: 10.1186/s12906-019-2715-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 10/14/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND The present study was designed to investigate the effects of Berberis vulgaris (BV) juice consumption on plasma levels of insulin-like growth factor (IGF-1), IGF-binding proteins (IGFBPs), and the expression of PPAR-γ, VEGF and HIF in women with benign breast disease. METHODS This parallel design randomized, double-blind controlled clinical trial was conducted on 85 eligible patients diagnosed with benign breast disease. They were assigned randomly into either BV juice group (n = 44, BV juice: 480 ml/day) or placebo group (n = 41, BV placebo juice: 480 ml/day) for 8 weeks intervention. Participants, caregivers and those who assessed laboratory analyses were blinded to the assignments. Plasma levels of biomarkers were measured at baseline and after 8 weeks by ELISA. Quantitative real-time PCR was used to measure the fold change in the expression of each interested gene. RESULTS The compliance of participants was 95.2% and 40 available subjects analyzed in each group at last. Relative treatment (RT) effects for BV juice caused 16% fall in IGF-1 concentration and 37% reduction in the ratio of IGF-1/1GFBP1. Absolute treatment effect expressed 111 ng/ml increased mean differences of IGFBP-3 between BV group and placebo. Plasma level of PPAR-γ increased in both groups but it was not significant. Fold changes in the expressions of PPAR-γ, VEGF and HIF showed down-regulation in the intervention group compared to placebos (P < 0.05). CONCLUSIONS The BV juice intervention over 8 weeks was accompanied by acceptable efficacy and decreased plasma IGF-1, and IGF-1/IGFBP-1 ratio partly could be assigned to enhanced IGFBP-1 level in women with BBD. The intervention caused reductions in the expression levels of PPAR, VEGF, and HIF which are remarkable genomic changes to potentially prevent breast tumorigenesis. TRIAL REGISTRATION IRCT2012110511335N2. Registered 10 July 2013 (retrospectively registered).
Collapse
|
33
|
Tajbakhsh A, Rivandi M, Abedini S, Pasdar A, Sahebkar A. Regulators and mechanisms of anoikis in triple-negative breast cancer (TNBC): A review. Crit Rev Oncol Hematol 2019; 140:17-27. [DOI: 10.1016/j.critrevonc.2019.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/13/2018] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
|
34
|
Chemical Composition and Antiproliferative Effects of a Methanol Extract of Aspongopus chinensis Dallas. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2607086. [PMID: 31275405 PMCID: PMC6582901 DOI: 10.1155/2019/2607086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022]
Abstract
Natural products from insects can be potent sources for developing a variety of pharmaceutical products. Aspongopus chinensis Dallas has been used as a traditional Chinese medicine and there are several clinical evidences to support its anticancer activity. However, the anticancer active ingredients present in A. chinensis remain unidentified. In the present study, we investigated the anticancer effects of a methanol extract of A. chinensis (AME). Gas chromatography mass spectrometry was used to analyse the chemical composition of AME. The cell viability of MDA-MB-453 and HCC-1937 cells treated with different concentrations of AME was detected by MTT assay and the ratio of cells in different cell cycle phases was analysed by flow cytometry. The expression of genes associated with cell cycle was analysed by real-time PCR assay. The results showed that oleic acid (25.39%) and palmitic acid (21.798%) are the main anticancer compounds present in AME. There was a concentration-dependent decrease in the proliferation of MDA-MB-453 and HCC-1937 cells. Moreover, treatment with AME induced a S-phase arrest in the cells. Real-time PCR assay demonstrated that AME could significantly downregulate the expression of CDC20, AURKB, PLK1, CCNB2, and TOP2A mRNAs and upregulate the expression of GADD45A mRNA. We demonstrate that the methanol extract of A. chinensis could be a potential natural alternative or complementary therapy for breast cancer.
Collapse
|
35
|
Berberine enhances posttranslational protein stability of p21/cip1 in breast cancer cells via down-regulation of Akt. Mol Cell Biochem 2019; 458:49-59. [DOI: 10.1007/s11010-019-03529-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/16/2019] [Indexed: 12/26/2022]
|
36
|
Setzer WN. The Phytochemistry of Cherokee Aromatic Medicinal Plants. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E121. [PMID: 30424560 PMCID: PMC6313439 DOI: 10.3390/medicines5040121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines.
Collapse
Affiliation(s)
- William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| |
Collapse
|
37
|
Zhou Y, Hu J. Evodiamine Induces Apoptosis, G2/M Cell Cycle Arrest, and Inhibition of Cell Migration and Invasion in Human Osteosarcoma Cells via Raf/MEK/ERK Signalling Pathway. Med Sci Monit 2018; 24:5874-5880. [PMID: 30135419 PMCID: PMC6118161 DOI: 10.12659/msm.909682] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Osteosarcoma is a prevalent type of bone tumor mainly reported in children and adolescents. The treatments for osteosarcoma are limited and are associated with serious adverse effects. In this study we evaluated the anticancer activity of Evodiamine, a plant-derived natural product, against a panel of osteosarcoma cells and explored the underlying mechanisms. Material/Methods The viability of osteosarcoma cell lines was investigated by MTT assay. Apoptosis was detected by DAPI and annexin V/PI staining and cell cycle analysis was performed by flow cytometry. The expression of the proteins was examined by Western blotting. Results The results of the present study indicated that Evodiamine inhibited the proliferation of U2OS osteosarcoma cells with an IC50 of 6 μM. Further investigations indicated the antiproliferative effects of Evodiamine are due to induction of apoptosis and G2/M cell cycle arrest. The results of Western blotting revealed that the expression of several apoptosis (Cytochrome c, Bax, Bid, Caspase 3, 9, 8, and PARP) and cell cycle-related proteins (cyclin B1, Cdc25c, and Cdc2) was significantly altered. Evodiamine also suppressed the migration and invasion of U2OS osteosarcoma cells. Moreover, Evodiamine downregulated the expression of important regulatory proteins such as p-MEK and p-ERK, leading to the inhibition of Raf/MEK/ERK signalling pathways. Conclusions We found that Evodiamine exerts anticancer effects on osteosarcoma cells and has potential in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yuelai Zhou
- Department of Orthopedic, College of Clinical Medicine, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China (mainland)
| | - Jinlong Hu
- Department of Orthopedics, Taizhou Fourth People's Hospital, Taizhou, Jiangsu, China (mainland)
| |
Collapse
|
38
|
Liu YC, Hsiao YY, Ku KL, Liao HF, Chao WC. Mahonia oiwakensis Extract and Its Bioactive Compounds Exert Anti-Inflammatory Activities and VEGF Production Through M2-Macrophagic Polarization and STAT6 Activation. J Med Food 2018; 21:654-664. [PMID: 29652553 DOI: 10.1089/jmf.2017.4084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macrophages play an indispensable role in the host immune defense. Macrophages can undergo polarization into classically (M1) and alternatively (M2) activated macrophages. M1 macrophages activate immune and inflammatory response, while M2 macrophages are involved in tissue remodeling. Mahonia oiwakensis (Mo) is a herbal medicine in Asia used for its anti-inflammatory and analgesic properties; however, the mechanism is unclear. This study analyzed the effect of Mo extracts and its effects on the polarization of both macrophage RAW264.7 cells and mouse splenic macrophages. Water (Mo-W) and EtOH extracts (Mo-E) did not change the viability of RAW264.7 cells, whereas Mo-E inhibited nitric oxide (NO) production. The major compounds, berberine and palmatine, decreased the viability and NO levels of cells. The secretion of inflammatory cytokines CXCL16, IL-6, L-selectin, MCP1, RANTES, and sTNF-R1 was downregulated, whereas the production of vascular endothelial growth factor (VEGF) was upregulated by Mo-E, berberine, and palmatine treatments. Mo-E, berberine, and palmatine stimulated the expression of macrophage CD68 and M2-type CD204 markers, decreased M1-mediated p-STAT1 and NF-κB, and increased M2-mediated p-STAT6 expression. Similar effects on M2 polarization were also observed in splenic macrophages from mice. In conclusion, Mo-E, berberine, and palmatine modulated macrophages through the suppression of M1-mediated inflammation and the recruitment of M2-mediated VEGF secretion and STAT6 expression.
Collapse
Affiliation(s)
- Yea-Chen Liu
- 1 Department of Biological Resources, National Chiayi University , Chiayi, Taiwan
| | - Yu-Ying Hsiao
- 2 Department of Biochemical Science and Technology, National Chiayi University , Chiayi, Taiwan
| | - Kuo-Lung Ku
- 3 Department of Applied Chemistry, National Chiayi University , Chiayi, Taiwan
| | - Hui-Fen Liao
- 2 Department of Biochemical Science and Technology, National Chiayi University , Chiayi, Taiwan
| | - Wei-Chun Chao
- 4 Department of Forestry and Natural Resources, National Chiayi University , Chiayi, Taiwan
| |
Collapse
|
39
|
Tan Z, Wang C, Li X, Guan F. Bisecting N-Acetylglucosamine Structures Inhibit Hypoxia-Induced Epithelial-Mesenchymal Transition in Breast Cancer Cells. Front Physiol 2018; 9:210. [PMID: 29593568 PMCID: PMC5854678 DOI: 10.3389/fphys.2018.00210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/23/2018] [Indexed: 01/04/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) process plays a key role in many biological processes, including tissue fibrosis, metastatic diseases, and cancer progression. EMT can be induced by certain factors, notably hypoxia, in the tumor microenvironment. Aberrant levels of certain N-glycans is associated with cancer progression. We used an integrated strategy (mass spectrometry in combination with lectin microarray analysis) to elucidate aberrant glycosylation in a hypoxia-induced EMT model using breast cancer cell lines MCF7 and MDA-MB-231. The model showed reduced levels of bisecting GlcNAc structures, and downregulated expression of the corresponding glycosyltransferase MGAT3. MGAT3 overexpression in MCF7 suppressed cell migration, proliferation, colony formation, expression of EMT markers, and AKT signaling pathway, whereas MGAT3 knockdown (shRNA silencing) had opposite effects. Our findings clearly demonstrate the functional role (and effects of dysregulation) of bisecting GlcNAc structures in hypoxia-induced EMT, and provide a useful basis for further detailed studies of physiological functions of these structures in breast cancer.
Collapse
Affiliation(s)
- Zengqi Tan
- College of Life Science, Northwest University, Xi'an, China
| | - Chenxing Wang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiang Li
- College of Life Science, Northwest University, Xi'an, China.,Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Feng Guan
- College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
40
|
Meng FC, Wu ZF, Yin ZQ, Lin LG, Wang R, Zhang QW. Coptidis rhizoma and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin Med 2018. [PMID: 29541156 PMCID: PMC5842587 DOI: 10.1186/s13020-018-0171-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Coptidis rhizoma (CR) is the dried rhizome of Coptis chinensis Franch., C. deltoidea C. Y. Cheng et Hsiao or C. teeta Wall. (Ranunculaceae) and is commonly used in Traditional Chinese Medicine for the treatment of various diseases including bacillary dysentery, typhoid, tuberculosis, epidemic cerebrospinal meningitis, empyrosis, pertussis, and other illnesses. Methods A literature survey was conducted via SciFinder, ScieneDirect, PubMed, Springer, and Wiley databases. A total of 139 selected references were classified on the basis of their research scopes, including chemical investigation, quality evaluation and pharmacological studies. Results Many types of secondary metabolites including alkaloids, lignans, phenylpropanoids, flavonoids, phenolic compounds, saccharides, and steroids have been isolated from CR. Among them, protoberberine-type alkaloids, such as berberine, palmatine, coptisine, epiberberine, jatrorrhizine, columamine, are the main components of CR. Quantitative determination of these alkaloids is a very important aspect in the quality evaluation of CR. In recent years, with the advances in isolation and detection technologies, many new instruments and methods have been developed for the quantitative and qualitative analysis of the main alkaloids from CR. The quality control of CR has provided safety for pharmacological applications. These quality evaluation methods are also frequently employed to screen the active components from CR. Various investigations have shown that CR and its main alkaloids exhibited many powerful pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetic, neuroprotective, cardioprotective, hypoglycemic, anti-Alzheimer and hepatoprotective activities. Conclusion This review summarizes the recent phytochemical investigations, quality evaluation methods, the biological studies focusing on CR as well as its main alkaloids.
Collapse
Affiliation(s)
- Fan-Cheng Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Zheng-Feng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Zhi-Qi Yin
- 2Department of Traditional Chinese Medicines Pharmaceuticals, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| |
Collapse
|
41
|
Tumor suppressor berberine binds VASP to inhibit cell migration in basal-like breast cancer. Oncotarget 2018; 7:45849-45862. [PMID: 27322681 PMCID: PMC5216765 DOI: 10.18632/oncotarget.9968] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/29/2016] [Indexed: 12/18/2022] Open
Abstract
Berberine is a plant-derived compound used in traditional Chinese medicine, which has been shown to inhibit cell proliferation and migration in breast cancer. On the other hand, vasodilator-stimulated phosphoprotein (VASP) promotes actin filament elongation and cell migration. We previously showed that VASP is overexpressed in high-motility breast cancer cells. Here we investigated whether the anti-tumorigenic effects of berberine are mediated by binding VASP in basal-like breast cancer. Our results show that berberine suppresses proliferation and migration of MDA-MB-231 cells as well as tumor growth in MDA-MB-231 nude mouse xenografts. We also show that berberine binds to VASP, inducing changes in its secondary structure and inhibits actin polymerization. Our study reveals the mechanism underlying berberine's inhibition of cell proliferation and migration in basal-like breast cancer, highlighting the use of berberine as a potential adjuvant therapeutic agent.
Collapse
|
42
|
Bharti AC, Rajan P, Jadli M, Pande D, Singh T, Bhat A. Berberine as an Adjuvant and Sensitizer to Current Chemotherapy. ROLE OF NUTRACEUTICALS IN CHEMORESISTANCE TO CANCER 2018:221-240. [DOI: 10.1016/b978-0-12-812373-7.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
43
|
Li J, Ni L, Li B, Wang M, Ding Z, Xiong C, Lu X. Coptis Chinensis affects the function of glioma cells through the down-regulation of phosphorylation of STAT3 by reducing HDAC3. Altern Ther Health Med 2017; 17:524. [PMID: 29212474 PMCID: PMC5719523 DOI: 10.1186/s12906-017-2029-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/24/2017] [Indexed: 01/09/2023]
Abstract
Background Glioma remains the most common cause of brain cancer-related mortality. Glioma accounts for 50–60% of brain cancer. Due to their low toxicity and infrequent side effects, traditional herbs have been increasingly popular. Coptis Chinensis is commonly used in cancer treatment in combination with other Chinese Medicine herbs. However, little is known about its biological functions and mechanisms in glioma cells. Methods In this study, the anti-glioma cell effect of Coptis Chinensis was determined using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) method, plate clone test, scratch tests, flow cytometry, western blotting and a glioma xenograft tumor model. Results The results showed that Coptis Chinensis significantly suppressed glioma cell proliferation, tumor formation, migration and tumor growth, and prolonged the survival time of glioma cell-bearing mice. The flow cytometry result showed that Coptis Chinensis induced cell cycle arrest and apoptosis in glioma cells. Western blotting showed that Coptis Chinensis down-regulated the Signal transducer and activator of transcription 3 (STAT3) phosphorylation levels and reduced the expression of Histone deacetylase 3 (HDAC3) and caspase 3. Conclusions Coptis Chinensis can inhibit various aspects of glioma cell functions. This study provides favorable scientific evidence for the potential use of natural products such as Coptis Chinensis in the clinical treatment of patients with glioma.
Collapse
|
44
|
Bhattacharyya R, Saha B, Tyagi M, Bandyopadhyay SK, Patro BS, Chattopadhyay S. Differential modes of photosensitisation in cancer cells by berberine and coralyne. Free Radic Res 2017; 51:723-738. [DOI: 10.1080/10715762.2017.1368506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Bhaskar Saha
- Department of Biochemistry, KPC Medical College, Kolkata, India
| | - Mrityunjaya Tyagi
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | | | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Subrata Chattopadhyay
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
45
|
Gupta L, Sharma AK, Gothwal A, Khan MS, Khinchi MP, Qayum A, Singh SK, Gupta U. Dendrimer encapsulated and conjugated delivery of berberine: A novel approach mitigating toxicity and improving in vivo pharmacokinetics. Int J Pharm 2017; 528:88-99. [DOI: 10.1016/j.ijpharm.2017.04.073] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
|
46
|
Preventive effect of berberine against DMBA-induced breast cancer in female Sprague Dawley rats. Biomed Pharmacother 2017; 92:207-214. [DOI: 10.1016/j.biopha.2017.05.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 02/05/2023] Open
|
47
|
Lefranc F, Tabanca N, Kiss R. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests. Semin Cancer Biol 2017; 46:14-32. [PMID: 28602819 DOI: 10.1016/j.semcancer.2017.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
This review is part of a special issue entitled "Role of dietary pattern, foods, nutrients and nutraceuticals in supporting cancer prevention and treatment" and describes a pharmacological strategy to determine the potential contribution of food-related components as anticancer agents against established cancer. Therefore, this review does not relate to chemoprevention, which is analysed in several other reviews in the current special issue, but rather focuses on the following: i) the biological events that currently represent barriers against the treatment of certain types of cancers, primarily metastatic cancers; ii) the in vitro and in vivo pharmacological pre-clinical tests that can be used to analyse the potential anticancer effects of food-related components; and iii) several examples of food-related components with anticancer effects. This review does not represent a catalogue-based listing of food-related components with more or less anticancer activity. By contrast, this review proposes an original pharmacological strategy that researchers can use to analyse the potential anticancer activity of any food-related component-e.g., by considering the crucial characteristics of cancer biological aggressiveness. This review also highlights that cancer patients undergoing chemotherapy should restrict the use of "food complements" without supervision by a medical nutritionist. By contrast, an equilibrated diet that includes the food-related components listed herein would be beneficial for cancer patients who are not undergoing chemotherapy.
Collapse
Affiliation(s)
- Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium.
| | - Nurhayat Tabanca
- U.S Department of Agriculture-Agricultural Research Service, Subtropical Horticulture Research Station,13601 Old Cutler Rd., Miami, FL 33158, USA.
| | - Robert Kiss
- Retired-formerly at the Fonds National de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium), 5 rue d'Egmont, 1000 Brussels, Belgium.
| |
Collapse
|
48
|
Mari G, Crescentini LD, Favi G, Lombardi P, Fiorillo G, Giorgi G, Mantellini F. Heteroring-Annulated Pyrrolino-Tetrahydroberberine Analogues. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Giacomo Mari
- Biomolecular Science Department; Organic Chemistry and Organic Natural Compounds Section; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Lucia De Crescentini
- Biomolecular Science Department; Organic Chemistry and Organic Natural Compounds Section; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Gianfranco Favi
- Biomolecular Science Department; Organic Chemistry and Organic Natural Compounds Section; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Paolo Lombardi
- Naxospharma; Via Giuseppe Di Vittorio 70 20026 Novate Milanese (MI) Italy
| | - Gaetano Fiorillo
- Naxospharma; Via Giuseppe Di Vittorio 70 20026 Novate Milanese (MI) Italy
| | - Gianluca Giorgi
- Department of Chemistry; University of Siena; Via Aldo Moro 53100 Siena Italy
| | - Fabio Mantellini
- Biomolecular Science Department; Organic Chemistry and Organic Natural Compounds Section; University of Urbino “Carlo Bo”; Via I Maggetti 24 61029 Urbino (PU) Italy
| |
Collapse
|
49
|
Li M, Zhang M, Zhang ZL, Liu N, Han XY, Liu QC, Deng WJ, Liao CX. Induction of Apoptosis by Berberine in Hepatocellular Carcinoma HepG2 Cells via Downregulation of NF-κB. Oncol Res 2017; 25:233-239. [PMID: 28277195 PMCID: PMC7840840 DOI: 10.3727/096504016x14742891049073] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is highly resistant to traditional chemotherapeutic approaches, which causes difficulty in the development of effective drugs for the treatment of HCC. Berberine, a major ingredient of Rhizoma coptidis, is a natural alkaloid used in traditional Chinese medicine. Berberine exhibits potent antitumor activity against HCC due to its high efficiency and low toxicity. In the present study, we found that berberine sensitized HepG cells to NF-κB-mediated apoptosis. Berberine exhibited a significant antiproliferation effect on the HepG2 cells and promoted apoptosis. Both qRT-PCR and immunofluorescence staining revealed that berberine reduced the NF-κB p65 levels in HepG2 cells. Moreover, p65 overexpression rescued berberine-induced cell proliferation and prevented HepG2 cells from undergoing apoptosis. These results suggest that berberine inhibits the growth of HepG2 cells by promoting apoptosis through the NF-κB p65 pathway.
Collapse
Affiliation(s)
- Min Li
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang C, Wang H, Zhang Y, Guo W, Long C, Wang J, Liu L, Sun X. Berberine inhibits the proliferation of human nasopharyngeal carcinoma cells via an Epstein-Barr virus nuclear antigen 1-dependent mechanism. Oncol Rep 2017; 37:2109-2120. [PMID: 28259949 DOI: 10.3892/or.2017.5489] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 11/05/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy derived from the epithelial cells of the nasopharynx cavity, and is closely associated with Epstein-Barr virus (EBV) infection. In addition to NPC, EBV causes various human malignancies, such as gastric cancer, hematological tumors and lymphoepithelioma-like carcinomas. Epstein-Barr nuclear antigen 1 (EBNA1) encoded by EBV is indispensable for replication, partition, transcription and maintenance of viral genomes. Berberine, a naturally occurring isoquinoline alkaloid, shows anti-inflammatory, anticholinergic, antioxidative, and anticancer activities. In the present study, the antitumor effect of berberine was studied. Cell Counting Kit-8 (CCK-8) assays were performed to demonstrate whether the proliferation of EBV-positive NPC cells was inhibited by berberine. Flow cytometric results revealed that berberine induced cell cycle arrest and apoptosis. Quantitative-PCR and western blotting results indicated that berberine decreased the expression of EBNA1 at both the mRNA and protein levels in the EBV-positive NPC cells. The function of EBNA1 promoter Qp which is to drive EBNA1 transcription in type Ⅱ latent infection was strongly suppressed by berberine. Overexpression of EBNA1 attenuated this inhibitory effect. Berberine also suppressed the activity of signal transducer and activator of transcription 3 which is a new therapeutic target in a series of malignancies, including NPC. Viral titer experiments demonstrated that berberine decreased the production of virions in HONE1 and HK1-EBV cells. In a mouse xenograft model of NPC induced by HONE1 cells, berberine significantly inhibited tumor formation. Altogether, these results indicate that berberine decreases the expression of EBNA1 and exhibits an antitumor effect against NPC both in vitro and in vivo.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Huan Wang
- State Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yaqian Zhang
- State Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Guo
- Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Cong Long
- State Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jingchao Wang
- State Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Limei Liu
- Corneal Disease Department of Weifang Eye Hospital, Weifang, Shandong 261041, P.R. China
| | - Xiaoping Sun
- State Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|