1
|
Saifi S, Ashraf A, Hasan GM, Shamsi A, Hassan MI. Insights into the preventive actions of natural compounds against Klebsiella pneumoniae infections and drug resistance. Fitoterapia 2024; 173:105811. [PMID: 38168570 DOI: 10.1016/j.fitote.2023.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Klebsiella pneumoniae is a type of Gram-negative bacteria that causes a variety of infections, including pneumonia, bloodstream infections, wound infections, and meningitis. The treatment of K. pneumoniae infection depends on the type of infection and the severity of the symptoms. Antibiotics are generally used to treat K. pneumoniae infections. However, some strains of K. pneumoniae have become resistant to antibiotics. This comprehensive review examines the potential of natural compounds as effective strategies against K. pneumonia infections. The alarming rise in antibiotic resistance underscores the urgent need for alternative therapies. This article represents current research on the effects of diverse natural compounds, highlighting their anti-microbial and antibiofilm properties against K. pneumonia. Notably, compounds such as andrographolide, artemisinin, baicalin, berberine, curcumin, epigallocatechin gallate, eugenol, mangiferin, piperine, quercetin, resveratrol, and thymol have been extensively investigated. These compounds exhibit multifaceted mechanisms, including disruption of bacterial biofilms, interference with virulence factors, and augmentation of antibiotic effectiveness. Mechanistic insights into their actions include membrane perturbation, oxidative stress induction, and altered gene expression. While promising, challenges such as limited bioavailability and varied efficacy across bacterial strains are addressed. This review further discusses the potential of natural compounds as better alternatives in combating K. pneumonia infection and emphasizes the need for continued research to harness their full therapeutic potential. As antibiotic resistance persists, these natural compounds offer a promising avenue in the fight against K. pneumonia and other multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Sana Saifi
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
2
|
Manzoor, Ma L, Ni K, Ruan J. Influence of Organic and Inorganic Fertilizers on Tea Growth and Quality and Soil Properties of Tea Orchards' Top Rhizosphere Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:207. [PMID: 38256759 PMCID: PMC10820999 DOI: 10.3390/plants13020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Organic-based fertilizers have been ratified to be effective in ameliorating tea growth and the fertility of soil. However, the effect of integrated fertilization on tea growth and quality and the chemical properties of the soil in tea gardens are unclear. To address this, from 2020 to 2021, five different treatments were carried out in the greenhouse of the Tea Research Institute, Hangzhou, CAAS, including CK (control), NPK (chemical fertilizers), RC (rapeseed cake), NPK+B (chemical fertilizer + biochar), and NPK+RC, to investigate the effects of different fertilizations on soil chemistry and tea growth and quality. The results indicated that NPK+B and NPK+RC significantly improved the different amino acid and catechin concentrations in the young shoots, stems, and roots of the tea compared to the CK. The plant growth parameters, e.g., the plant height, no. of leaves, mid-stem girth, and fresh weights of stems and leaves, were significantly increased with integrated fertilization (NPK+B and NPK+RC) compared to the CK and solo organic and inorganic fertilizers. The chlorophyll contents (Chl a, Chl b, and Chl a+b) were generally higher with NPK+RC than with the CK (37%, 35%, and 36%), RC (14%, 26%, and 18%), and NPK (9%, 13%, and 11%) treatments. Integrated fertilization buffered the acidic soil of the tea garden and decreased the soil C:N ratio. NPK+RC also significantly increased the soil's total C (31% and 16%), N (43% and 31%), P (65% and 40%), available P (31% and 58%), K (70% and 25%), nitrate (504% and 188%), and ammonium (267% and 146%) concentrations compared to the CK and RC. The soil macro- (Mg and Ca) and micronutrients (Mn, Fe, Zn, and Cu) were significantly improved by the RC (100% and 72%) (49%, 161%, 112%, and 40%) and NPK+RC (88% and 48%) (47%, 75%, 45%, and 14%) compared to the CK. The chlorophyll contents and soil macro- and micronutrients were all significantly positively correlated with tea quality (amino acids and catechin contents) and growth. These results indicated that integrated fertilization improved the soil nutrient status, which is associated with the improvement of tea growth and quality. Thus, integrated nutrient management is a feasible tool for improving tea growth, quality, and low nutrient levels in the soil.
Collapse
Affiliation(s)
- Manzoor
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Key Laboratory of Tea Biology and Resource Utilization of Tea, Tea Research Institute, Chinese Academy of Agriculture Sciences, The Ministry of Agriculture, Hangzhou 310008, China
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China
| | - Lifeng Ma
- Key Laboratory of Tea Biology and Resource Utilization of Tea, Tea Research Institute, Chinese Academy of Agriculture Sciences, The Ministry of Agriculture, Hangzhou 310008, China
| | - Kang Ni
- Key Laboratory of Tea Biology and Resource Utilization of Tea, Tea Research Institute, Chinese Academy of Agriculture Sciences, The Ministry of Agriculture, Hangzhou 310008, China
| | - Jianyun Ruan
- Key Laboratory of Tea Biology and Resource Utilization of Tea, Tea Research Institute, Chinese Academy of Agriculture Sciences, The Ministry of Agriculture, Hangzhou 310008, China
| |
Collapse
|
3
|
Buchmann D, Schultze N, Borchardt J, Böttcher I, Schaufler K, Guenther S. Synergistic antimicrobial activities of epigallocatechin gallate, myricetin, daidzein, gallic acid, epicatechin, 3-hydroxy-6-methoxyflavone and genistein combined with antibiotics against ESKAPE pathogens. J Appl Microbiol 2021; 132:949-963. [PMID: 34365707 DOI: 10.1111/jam.15253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
AIM To verify synergistic effects, we investigated the antimicrobial activity of seven phenolic phytochemicals (gallic acid; epicatechin; epigallocatechin gallate; daidzein; genistein; myricetin; 3-hydroxy-6-methoxyflavone) in combination with six antibiotics against multidrug-resistant isolates from the ESKAPE group. METHODS AND RESULTS To investigate single phytochemicals and combinations, initial microdilution and checkerboard assays were used, followed by time-kill assays to evaluate the obtained results. The research revealed that phenolic compounds on their own resulted in little or no inhibitory effects. During preliminary tests, most of the combinations resulted in indifference (134 [71.3%]). In all, 30 combinations led to antagonism (15.9%); however, 24 showed synergistic effects (12.8%). The main tests resulted in nine synergistic combinations for the treatment of four different bacteria strains, including two substances (3-hydroxy-6-methoxyflavone, genistein) never tested before in such setup. Time-kill curves for combinations with possible synergistic effects confirmed the results against Acinetobacter baumannii as the one with the greatest need for research. CONCLUSIONS The results highlight the potential use of antibiotic-phytocompound combinations for combating infections with multi-resistant pathogens. Synergistic combinations could downregulate the resistance mechanisms of bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY The aim of this study is to demonstrate the potential use of phenolic natural compounds in combination with conventional antibiotics against multidrug-resistant bacteria of the ESKAPE group. Due to synergistic effects of natural phenolic compounds combined with antibiotics, pathogens that are already resistant to antibiotics could be resensitized as we were able to reduce their MICs back to sensitive. In addition, combination therapies could prevent the development of resistance by reducing the dose of antibiotics. This approach opens up the basis for future development of antimicrobial therapy strategies, which are so urgently needed in the age of multidrug-resistant pathogens.
Collapse
|
4
|
Malawong S, Thammawithan S, Sirithongsuk P, Daduang S, Klaynongsruang S, Wong PT, Patramanon R. Silver Nanoparticles Enhance Antimicrobial Efficacy of Antibiotics and Restore That Efficacy against the Melioidosis Pathogen. Antibiotics (Basel) 2021; 10:839. [PMID: 34356761 PMCID: PMC8300767 DOI: 10.3390/antibiotics10070839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei. Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime (CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent issue. Here, we demonstrated an ability to synergistically increase the efficiency of antibiotics through their combination with silver nanoparticles (AgNPs). Combinations of four conventional antibiotics including CAZ, imipenem (IMI), meropenem (MER), and gentamicin sulfate (GENT) with starch-stabilized AgNPs were tested for their antibacterial effects against three isolates of B. pseudomallei. The combination of each antibiotic with AgNPs featured fractional inhibitory concentration (FIC) index values and fractional bactericidal concentration (FBC) index values ranging from 0.312 to 0.75 µg/mL and 0.252 to 0.625 µg/mL, respectively, against the three isolates of B. pseudomallei. The study clearly showed that most of the combinatorial treatments exhibited synergistic antimicrobial effects against all three isolates of B. pseudomallei. The highest enhancing effect was observed for GENT with AgNPs. These results confirmed the combination of each antibiotic with AgNPs restored their bactericidal potency in the bacterial strains that had previously been shown to be resistant to the antibiotics. In addition, morphological changes examined by SEM confirmed that the bacterial cells were severely damaged by combinations at the FBC level. Although bacteria produce fibers to protect themselves, ultimately the bacteria were killed by the antibiotic-AgNPs combinations. Overall, these results suggest the study of antibiotic-AgNPs combinations as an alternative design strategy for potential therapeutics to more effectively combat the melioidosis pathogen.
Collapse
Affiliation(s)
- Sathit Malawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.T.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.T.); (P.S.); (S.K.)
| | - Pawinee Sirithongsuk
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.T.); (P.S.); (S.K.)
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.T.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Pamela T. Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.T.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| |
Collapse
|
5
|
Combination Therapy Involving Lavandula angustifolia and Its Derivatives in Exhibiting Antimicrobial Properties and Combatting Antimicrobial Resistance: Current Challenges and Future Prospects. Processes (Basel) 2021. [DOI: 10.3390/pr9040609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance (AMR) has been identified as one of the biggest health threats in the world. Current therapeutic options for common infections are markedly limited due to the emergence of multidrug resistant pathogens in the community and the hospitals. The role of different essential oils (EOs) and their derivatives in exhibiting antimicrobial properties has been widely elucidated with their respective mechanisms of action. Recently, there has been a heightened emphasis on lavender essential oil (LEO)’s antimicrobial properties and wound healing effects. However, to date, there has been no review published examining the antimicrobial benefits of lavender essential oil, specifically. Previous literature has shown that LEO and its constituents act synergistically with different antimicrobial agents to potentiate the antimicrobial activity. For the past decade, encapsulation of EOs with nanoparticles has been widely practiced due to increased antimicrobial effects and greater bioavailability as compared to non-encapsulated oils. Therefore, this review intends to provide an insight into the different aspects of antimicrobial activity exhibited by LEO and its constituents, discuss the synergistic effects displayed by combinatory therapy involving LEO, as well as to explore the significance of nano-encapsulation in boosting the antimicrobial effects of LEO; it is aimed that from the integration of these knowledge areas, combating AMR will be more than just a possibility.
Collapse
|
6
|
Wang Y, Lam ATW. Epigallocatechin gallate and gallic acid affect colonization of abiotic surfaces by oral bacteria. Arch Oral Biol 2020; 120:104922. [PMID: 33045616 DOI: 10.1016/j.archoralbio.2020.104922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES epigallocatechin gallate and gallic acid are known antimicrobial agents. Their roles in controlling microbial colonization, such as bacterial attachment and biofilm formation, are however not completely clear. This study aims to investigate their effects on the colonization of abiotic surfaces by oral bacteria and study the mechanism of their activities. DESIGN the effects of epigallocatechin gallate and gallic acid on cell surface physicochemical properties (hydrophobicity and charge) of a range of oral bacteria and their auto-aggregation, attachment and biofilm formation on different abiotic surfaces (glass, stainless steel and hydroxyapatite) were studied. RESULTS results show that epigallocatechin gallate inhibited bacterial attachment to the hard surfaces (except hydroxyapatite) by 0.2-1.4 log CFU cm-2 by affecting cell surface hydrophobicity and charge. In addition, epigallocatechin gallate induced notches on cell surfaces of Streptococcus mutans without affecting their viability and biofilm formation. Gallic acid enhanced auto-aggregation (by 7.9-30.6 %) and biofilm formation by Actinomyces naeslundii (by 0.9-1.2 log CFU cm-2) by causing calcium efflux from the cells. CONCLUSIONS the tested phytochemicals influenced the colonization of abiotic surfaces by oral bacteria through different mechanisms, most notably via affecting cell surface physicochemical properties, inducing changes in the shape of cell envelopes and causing calcium efflux.
Collapse
Affiliation(s)
- Yi Wang
- School of Dentistry, the University of Queensland, 288, Herston Road, Herston, Brisbane, Queensland 4006, Australia.
| | - Antonia T W Lam
- School of Dentistry, the University of Queensland, 288, Herston Road, Herston, Brisbane, Queensland 4006, Australia
| |
Collapse
|
7
|
Zhang Y, Wei K, Li H, Wang L, Ruan L, Pang D, Cheng H. Identification of key genes involved in catechin metabolism in tea seedlings based on transcriptomic and HPLC analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 133:107-115. [PMID: 30399544 DOI: 10.1016/j.plaphy.2018.10.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 05/18/2023]
Abstract
Tea is a non-alcoholic beverage with many benefits to human health and thereby widely consumed in the world. It contains plenty of secondary metabolites and tea catechins are the characteristic compounds. To further elucidate the biosynthetic and regulatory mechanisms of catechins in tea, high performance liquid chromatography (HPLC) and transcriptome analysis were performed in tea seedlings of different growth stages. A combined method of differential expression and correlation analysis was then conducted. The results showed that the order of total catechin (TC) contents was leaves > stems > roots, irrespective of growth stages. For transcriptome analysis, a total of 355.81 million clean reads were generated and mapped to the referencing tea genome. Further real time PCR analysis of 18 selected genes confirmed RNA-Seq results. A total of 7 structural genes and 35 transcription factors (TFs) were identified to be significantly correlated with TC changes. Among them, three TFs homologous to ANL2, WRKY44 and AtMYB113 might play key roles in catechin regulation. The de novo transcriptome data of different organs in tea seedlings provided new insights into the biosynthetic and metabolic pathways of catechins.
Collapse
Affiliation(s)
- Yazhen Zhang
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang, 310008, China
| | - Kang Wei
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang, 310008, China.
| | - Hailin Li
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang, 310008, China
| | - Liyuan Wang
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang, 310008, China
| | - Li Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang, 310008, China
| | - Dandan Pang
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang, 310008, China
| | - Hao Cheng
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang, 310008, China.
| |
Collapse
|
8
|
Epigallocatechin Gallate Remodelling of Hfq Amyloid-Like Region Affects Escherichia coli Survival. Pathogens 2018; 7:pathogens7040095. [PMID: 30513780 PMCID: PMC6313410 DOI: 10.3390/pathogens7040095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022] Open
Abstract
Hfq is a pleiotropic regulator that has key roles in the control of genetic expression. The protein noticeably regulates translation efficiency and RNA decay in Gram-negative bacteria, due to the Hfq-mediated interaction between small regulatory noncoding RNA and mRNA. This property is of primary importance for bacterial adaptation and virulence. We have previously shown that the Hfq E. coli protein, and more precisely its C-terminal region (CTR), self-assembles into an amyloid-like structure. In the present work, we demonstrate that epigallocatechin gallate (EGCG), a major green tea polyphenol compound, targets the Hfq amyloid region and can be used as a potential antibacterial agent. We analysed the effect of this compound on Hfq amyloid fibril stability and show that EGCG both disrupts Hfq-CTR fibrils and inhibits their formation. We show that, even if EGCG affects other bacterial amyloids, it also specifically targets Hfq-CTR in vivo. Our results provide an alternative approach for the utilisation of EGCG that may be used synergistically with conventional antibiotics to block bacterial adaptation and treat infections.
Collapse
|
9
|
Hacioglu M, Dosler S, Birteksoz Tan AS, Otuk G. Antimicrobial activities of widely consumed herbal teas, alone or in combination with antibiotics: an in vitro study. PeerJ 2017; 5:e3467. [PMID: 28761777 PMCID: PMC5533155 DOI: 10.7717/peerj.3467] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/25/2017] [Indexed: 02/02/2023] Open
Abstract
Background Because of increasing antibiotic resistance, herbal teas are the most popular natural alternatives for the treatment of infectious diseases, and are currently gaining more importance. We examined the antimicrobial activities of 31 herbal teas both alone and in combination with antibiotics or antifungals against some standard and clinical isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, methicillin susceptible/resistant Staphylococcus aureus and Candida albicans. Methods The antimicrobial activities of the teas were determined by using the disk diffusion and microbroth dilution methods, and the combination studies were examined by using the microbroth checkerboard and the time killing curve methods. Results Rosehip, rosehip bag, pomegranate blossom, thyme, wormwood, mint, echinacea bag, cinnamon, black, and green teas were active against most of the studied microorganisms. In the combination studies, we characterized all the expected effects (synergistic, additive, and antagonistic) between the teas and the antimicrobials. While synergy was observed more frequently between ampicillin, ampicillin-sulbactam, or nystatine, and the various tea combinations, most of the effects between the ciprofloxacin, erythromycin, cefuroxime, or amikacin and various tea combinations, particularly rosehip, rosehip bag, and pomegranate blossom teas, were antagonistic. The results of the time kill curve analyses showed that none of the herbal teas were bactericidal in their usage concentrations; however, in combination with antibiotics they showed some bactericidal effect. Discussion Some herbal teas, particularly rosehip and pomegranate blossom should be avoided because of their antagonistic interactions with some antibiotics during the course of antibiotic treatment or they should be consumed alone for their antimicrobial activities.
Collapse
Affiliation(s)
- Mayram Hacioglu
- Department of Pharmaceutical Microbiology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey
| | - Sibel Dosler
- Department of Pharmaceutical Microbiology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey
| | - Ayse Seher Birteksoz Tan
- Department of Pharmaceutical Microbiology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey
| | - Gulten Otuk
- Department of Pharmaceutical Microbiology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey
| |
Collapse
|
10
|
Blainski A, Gionco B, Oliveira AG, Andrade G, Scarminio IS, Silva DB, Lopes NP, Mello JCP. Antibacterial activity of Limonium brasiliense (Baicuru) against multidrug-resistant bacteria using a statistical mixture design. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:313-323. [PMID: 28089736 DOI: 10.1016/j.jep.2017.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/27/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Limonium brasiliense (Boiss.) Kuntze (Plumbaginaceae) is commonly known as "baicuru" or "guaicuru" and preparations of its dried rhizomes have been popularly used in the treatment of premenstrual syndrome and menstrual disorder, and as an antiseptic in genito-urinary infections. This study evaluated the potential antibacterial activity of rhizome extracts against multidrug-resistant bacterial strains using statistical mixture design. MATERIALS AND METHODS The statistical design of four components (water, methanol, acetone, and ethanol) produced 15 different extracts and also a confirmatory experiment, which was performed using water:acetone (3:7, v/v). The crude extracts and their ethyl-acetate fractions were tested against vancomycin-resistant Enterococcus faecium (VREfm), methicillin-resistant Staphylococcus aureus (MRSA) and Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae, all of which have been implicated in hospital and community-acquired infections. The dry residue, total polyphenol, gallocatechin and epigallocatechin contents of the extracts were also tested and statistical analysis was applied in order to define the fit models to predict the result of each parameter for any mixture of components. The principal component and hierarchical clustering analyses (PCA and HCA) of chromatographic data, as well as mass spectrometry (MS) analysis were performanced to determine the main compounds present in the extracts. RESULTS The Gram-positive bacteria were susceptible to inhibition of bacterial growth, in special the ethyl-acetate fraction of ternary extracts from water:acetone:ethanol and methanol:acetone:ethanol against, respectively, VREfm (MIC=19µg/mL) and MRSA (MIC=39µg/mL). On the other hand, moderate activity of the ethyl-acetate fractions from primary (except water), secondary and ternary extracts (MIC=625µg/mL) was noted against KPC. The quadratic and special cubic models were significant for polyphenols and gallocatechin contents, respectively. Fit models to dry residue and epigallocatechin contents were not possible. PCA and HCA of the chromatographic fingerprints were disturbed by displacement retention time of some peaks, but the ultraviolet spectra indicated the homogeneous presence of flavan-3-ols characteristic of tannins. The MS confirmed the presence of gallic acid, gallocatechin, and epigallocatechin in extracts, and suggested the presence of monomers and dimers of B- and A-type prodelphinidins gallate, as well as a methyl gallate. CONCLUSION Our results showed the antibacterial potential of L. brasiliense extracts against multidrug-resistant Gram-positive bacteria, such as VREfm and MRSA. The statistical design was a important tool to evaluate the biological activity by optimized form. The presence of some phenolic compounds was also demonstrated in extracts.
Collapse
Affiliation(s)
- Andressa Blainski
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Avenida Colombo, 5790, BR-87020-900 Maringá, PR, Brazil
| | - Barbara Gionco
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de Londrina, PR, Brazil
| | - Admilton G Oliveira
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de Londrina, PR, Brazil
| | - Galdino Andrade
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de Londrina, PR, Brazil
| | - Ieda S Scarminio
- Laboratório de Quimiometria em Ciências Naturais, Departamento de Química, Universidade Estadual de Londrina, PR, Brazil
| | - Denise B Silva
- Laboratórios de Produtos Naturais e Espectrometria de Massas (LAPNEM), Universidade Federal de Mato Grosso do Sul, MS, Brazil
| | - Norberto P Lopes
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - João C P Mello
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Avenida Colombo, 5790, BR-87020-900 Maringá, PR, Brazil.
| |
Collapse
|
11
|
Lee S, Razqan GSA, Kwon DH. Antibacterial activity of epigallocatechin-3-gallate (EGCG) and its synergism with β-lactam antibiotics sensitizing carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 24:49-55. [PMID: 28160861 DOI: 10.1016/j.phymed.2016.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Infections caused by Acinetobacter baumannii were responsive to conventional antibiotic therapy. However, recently, carbapenem-associated multidrug resistant isolates have been reported worldwide and present a major therapeutic challenge. Epigallocatechin-3-Gallate (EGCG) extracted from green tea exhibits antibacterial activity. PURPOSE We evaluated the antibacterial activity of EGCG and possible synergism with antibiotics in carbapenem-associated multidrug resistant A. baumannii. A potential mechanism for synergism was also explored. MATERIALS AND METHODS Seventy clinical isolates of A. baumannii collected from geographically different areas were analyzed by minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of EGCG. Checkerboard and time-killing assays were performed to exam the synergism between EGCG and antibiotics. The effects of EGCG on a multidrug efflux pump inhibitor (1-[1-naphthylmethyl] piperazine; NMP) and β-lactamase production were also examined in A. baumannii. RESULTS Sixty-three of 70 clinical isolates of A. baumannii carried carbapenemase-encoding genes with carbapenem-associated multidrug resistance. Levels of MIC and MBC of EGCG ranged from 64 to 512µg/ml and from 128 to ≥1024µg/ml, respectively among the clinical isolates. MIC90 and MBC86 levels were 256µg/ml and 512µg/ml of EGCG, respectively. Subinhibitory concentration of EGCG in combination with all antibiotics tested, including carbapenem, sensitized (MICs fall≤1.0µg/ml) all carbapenem-associated multidrug resistant isolates. Checkerboard and time-killing assays showed synergism between EGCG and meropenem (or carbenicillin) counted as fractional inhibitory concentration of < 0.5 and cell numbers' decrease per ml of >2log10 within 12h, respectively. EGCG significantly increased the effect of NMP but was unrelated to β-lactamase production in A. baumannii, suggesting EGCG may be associated with inhibition of efflux pumps. CONCLUSION Overall we suggest that EGCG-antibiotic combinations might provide an alternative approach to treat infections with A. baumannii regardless of antibiotic resistance.
Collapse
Affiliation(s)
- Spencer Lee
- Jericho Senior High School, Jericho, New York 11753, United States
| | | | - Dong H Kwon
- Department of Biology, Long Island University, Brooklyn, New York, 11201, United States ; Department of Medicine, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas, 77030, United States.
| |
Collapse
|
12
|
Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol Res 2016; 196:44-68. [PMID: 28164790 DOI: 10.1016/j.micres.2016.12.003] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022]
Abstract
In recent years, many studies have shown that phytochemicals exert their antibacterial activity through different mechanisms of action, such as damage to the bacterial membrane and suppression of virulence factors, including inhibition of the activity of enzymes and toxins, and bacterial biofilm formation. In this review, we summarise data from the available literature regarding the antibacterial effects of the main phytochemicals belonging to different chemical classes, alkaloids, sulfur-containing phytochemicals, terpenoids, and polyphenols. Some phytochemicals, besides having direct antimicrobial activity, showed an in vitro synergistic effect when tested in combination with conventional antibiotics, modifying antibiotic resistance. Review of the literature showed that phytochemicals represent a possible source of effective, cheap and safe antimicrobial agents, though much work must still be carried out, especially in in vivo conditions to ensure the selection of effective antimicrobial substances with low side and adverse effects.
Collapse
Affiliation(s)
| | - Erika Coppo
- Sezione di Microbiologia DISC University of Genoa, Italy
| | - Anna Marchese
- Sezione di Microbiologia DISC-IRCCS San Martino-IST University of Genoa, Italy.
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain; Dirección de Investigación, Universidad Central de Chile, Santiago, Chile
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Dey D, Ghosh S, Ray R, Hazra B. Polyphenolic Secondary Metabolites Synergize the Activity of Commercial Antibiotics against Clinical Isolates of β-Lactamase-producing Klebsiella pneumoniae. Phytother Res 2015; 30:272-82. [PMID: 26668123 DOI: 10.1002/ptr.5527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/17/2022]
Abstract
Emergence of worldwide antimicrobial resistance prompted us to study the resistance modifying potential of plant-derived dietary polyphenols, mainly caffeic acid, ellagic acid, epigallocatechin-3-gallate (EGCG) and quercetin. These compounds were studied in logical combination with clinically significant antibiotics (ciprofloxacin/gentamicin/tetracycline) against Klebsiella pneumoniae, after conducting phenotypic screening of a large number of clinical isolates and selecting the relevant strains possessing extended-spectrum β-lactamase (ESBL) and K. pneumoniae carbapenemase (KPC)-type carbapenemase enzymes only. The study demonstrated that EGCG and caffeic acid could synergize the activity of tested antibiotics within a major population of β-lactamase-producing K. pneumoniae. In spectrofluorimetric assay, ~17-fold greater ciprofloxacin accumulation was observed within K. pneumoniae cells pre-treated with EGCG in comparison with the untreated control, indicating its ability to synergize ciprofloxacin to restrain active drug-efflux. Further, electron micrograph of ESBL-producing K. pneumoniae clearly demonstrated the prospective efficacy of EGCG towards biofilm degradation.
Collapse
Affiliation(s)
- Diganta Dey
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
- Department of Microbiology, Ashok Laboratory Clinical Testing Centre Private Limited, Kolkata, 700068, India
| | - Subhalakshmi Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Ratnamala Ray
- Department of Microbiology, Ashok Laboratory Clinical Testing Centre Private Limited, Kolkata, 700068, India
| | - Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
14
|
Zhao L, Li W, Zhu S, Tsai S, Li J, Tracey KJ, Wang P, Fan S, Sama AE, Wang H. Green tea catechins quench the fluorescence of bacteria-conjugated Alexa fluor dyes. ACTA ACUST UNITED AC 2014; 12:308-14. [PMID: 24011199 PMCID: PMC3796893 DOI: 10.2174/18715281113129990057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 01/06/2023]
Abstract
Accumulating evidence suggests that Green tea polyphenolic catechins, especially the (-)-epigallocatechin gallate (EGCG), can be cross-linked to many proteins, and confer a wide range of anti-bacterial activities possibly by damaging microbial cytoplasmic lipids and proteins. At the doses that conferred protection against lethal polymicrobial infection (induced by cecal ligation and puncture), EGCG significantly reduced bacterial loads particularly in the liver and lung. To elucidate its bactericidal mechanisms, we determined whether EGCG affected the fluorescence intensities of bacteria-conjugated Alexa Fluor 488 or 594 dyes. When mixed with unconjugated Alexa Fluor 488 or 594 dyes, EGCG or analogs did not affect the fluorescence intensity of these dyes. In a sharp contrast, EGCG and some analogs (e.g., Catechin Gallate, CG), markedly reduced the fluorescence intensity of Gram-positive Staphylococcus aureus-conjugated Alexa 594 and Gram-negative Escherichia coli-conjugated Alexa 488. Interestingly, co-treatment with ethanol impaired the EGCG-mediated fluorescence quenching of the G(+) S. aureus, but not of the G(-) E. coli-conjugated Alexa Flour dyes. In light of the notion that Alexa Fluor dyes can be quenched by aromatic amino acids, it is plausible that EGCG exerts antimicrobial activities possibly by altering microbial protein conformations and functions. This possibility can now be explored by screening other fluorescence-quenching agents for possible antimicrobial activities.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Emergency Medicine, North Shore University Hospital, 350 Community Drive, Manhasset, NY 11030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yap PSX, Krishnan T, Yiap BC, Hu CP, Chan KG, Lim SHE. Membrane disruption and anti-quorum sensing effects of synergistic interaction between Lavandula angustifolia (lavender oil) in combination with antibiotic against plasmid-conferred multi-drug-resistant Escherichia coli. J Appl Microbiol 2014; 116:1119-28. [PMID: 24779580 DOI: 10.1111/jam.12444] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 12/16/2022]
Abstract
AIM The aim of this study was to investigate the mode of action of the lavender essential oil (LV) on antimicrobial activity against multi-drug-resistant Escherichia coli J53 R1 when used singly and in combination with piperacillin. METHOD AND RESULTS In the time-kill analysis, a complete killing of bacteria was observed based on colony counts within 4 h when LV was combined with piperacillin during exposure at determined FIC concentrations. Analysis of the membrane permeabilizing effects of LV on treated cultures through their stability against sodium dodecyl sulphate revealed that the LV played a role in disrupting the bacterial cell membrane. The finding is further supported by scanning electron microscopy analysis and zeta potential measurement. In addition, reduction in light production expression of E. coli [pSB1075] by the LV showed the presence of potential quorum sensing (QS) inhibitors. CONCLUSIONS These results indicated that the LV has the potential to reverse bacterial resistance to piperacillin in E. coli J53 R1. It may operate via two mechanisms: alteration of outer membrane permeability and inhibition of bacterial QS. SIGNIFICANCE AND IMPACT OF THE STUDY These findings offer a novel approach to develop a new option of phytopharmaceuticals against multi-drug-resistant E. coli.
Collapse
Affiliation(s)
- P S X Yap
- School of Postgraduate Studies and Research, International Medical University, Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
16
|
Yap PSX, Yiap BC, Ping HC, Lim SHE. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol J 2014; 8:6-14. [PMID: 24627729 PMCID: PMC3950955 DOI: 10.2174/1874285801408010006] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 10/24/2013] [Accepted: 12/26/2013] [Indexed: 02/01/2023] Open
Abstract
For many years, the battle between humans and the multitudes of infection and disease causing pathogens continues. Emerging at the battlefield as some of the most significant challenges to human health are bacterial resistance and its rapid rise. These have become a major concern in global public health invigorating the need for new antimicrobial compounds. A rational approach to deal with antibiotic resistance problems requires detailed knowledge of the different biological and non-biological factors that affect the rate and extent of resistance development. Combination therapy combining conventional antibiotics and essential oils is currently blooming and represents a potential area for future investigations. This new generation of phytopharmaceuticals may shed light on the development of new pharmacological regimes in combating antibiotic resistance. This review consolidated and described the observed synergistic outcome between essential oils and antibiotics, and highlighted the possibilities of essential oils as the potential resistance modifying agent.
Collapse
Affiliation(s)
- Polly Soo Xi Yap
- School of Postgraduate Studies and Research, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Beow Chin Yiap
- School of Pharmacy, Department of Life Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Hu Cai Ping
- School of Health Sciences, Department of Chinese Medicine, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Swee Hua Erin Lim
- School of Pharmacy, Department of Life Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Macedo L, Fernandes T, Silveira L, Mesquita A, Franchitti AA, Ximenes EA. β-Lapachone activity in synergy with conventional antimicrobials against methicillin resistant Staphylococcus aureus strains. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 21:25-29. [PMID: 24035227 DOI: 10.1016/j.phymed.2013.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/21/2013] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to evaluate the antimicrobial activity of lapachol, α-lapachone, β-lapachone and six antimicrobials (ampicillin, amoxicillin/clavulanic acid, cefoxitin, gentamicin, ciprofloxacin and meropenem) against twelve strains of Staphylococcus aureus from which resistance phenotypes were previously determined by the disk diffusion method. Five S. aureus strains (LFBM 01, LFBM 26, LFBM 28, LFBM 31 and LFBM 33) showed resistance to all antimicrobial agents tested and were selected for the study of the interaction between β-lapachone and antimicrobial agents, busing checkerboard method. The criteria used to evaluate the synergistic activity were defined by the Fractional Inhibitory Concentration Index (FICI). Among the naphthoquinones, β-lapachone was the most effective against S. aureus strains. FICI values ranged from 0.07 to 0.5, suggesting a synergistic interaction against multidrug resistant S. aureus (MRSA) strains. An additive effect was observed with the combination β-lapachone/ciprofloxacin against the LFBM 33 strain. The combination of β-lapachone with cefoxitin showed no added benefit against LFBM 31 and LFBM 33 strains. This study demonstrated that, in general, β-lapachone combined with beta lactams antimicrobials, fluoroquinolones and carbapenems acts synergistically inhibiting MRSA strains.
Collapse
Affiliation(s)
- L Macedo
- Laboratório de Fisiologia e Bioquímica de Micro-organismos, Centro de Ciências Biológicas, Departamento de Antibióticos, Universidade Federal de Pernambuco, CEP-50670-901 Recife, Pernambuco, Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Nakayama M, Shimatani K, Ozawa T, Shigemune N, Tsugukuni T, Tomiyama D, Kurahachi M, Nonaka A, Miyamoto T. A study of the antibacterial mechanism of catechins: Isolation and identification of Escherichia coli cell surface proteins that interact with epigallocatechin gallate. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.03.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Bansal S, Choudhary S, Sharma M, Kumar SS, Lohan S, Bhardwaj V, Syan N, Jyoti S. Tea: A native source of antimicrobial agents. Food Res Int 2013. [PMCID: PMC7126541 DOI: 10.1016/j.foodres.2013.01.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tea (Camellia sinensis) is one of the most popular nonalcoholic beverages, consumed by over two-thirds of the world's population because of its refreshing, mild stimulant and medicinal properties. It is processed in different ways in different parts of the world to give green, black, oolong, and pu-erh tea. Among all tea polyphenols, epigallocatechin-3-gallate has been responsible for much of the health promoting abilities of tea including anti-inflammatory, antimicrobial, antitumour, anti-oxidative, protection from cardiovascular disease, anti-obesity, and anti-aging properties. In the present review, the antibacterial, antiviral, and antifungal activities of different types of tea and their polyphenols are reported, highlighting their mechanisms of action and structure–activity relationship. Moreover, considering that the changing patterns of infectious diseases and the emergence of microbial strains resistant to current antibiotics, there is an urgent need to find out new potent antimicrobial agents as adjuvants to antibiotic therapy. The synergistic effect of tea polyphenols in combination with conventional antimicrobial agents against clinical multidrug-resistant microorganisms has also been discussed in this review.
Collapse
Affiliation(s)
- Sumit Bansal
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
- Corresponding author. Tel.: + 91 1792 239219; fax: + 91 1792 245362.
| | - Shivani Choudhary
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India
| | - Manu Sharma
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Suthar Sharad Kumar
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Sandeep Lohan
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Varun Bhardwaj
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Navneet Syan
- Department of Pharmaceutical Chemistry, Ganpati Institute of Pharmacy, Bilaspur, Haryana, India
| | - Saras Jyoti
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| |
Collapse
|
20
|
Wu G, Wu P, Xue X, Yan X, Liu S, Zhang C, Shen Z, Xi T. Application of S-thanatin, an antimicrobial peptide derived from thanatin, in mouse model of Klebsiella pneumoniae infection. Peptides 2013; 45:73-7. [PMID: 23643614 DOI: 10.1016/j.peptides.2013.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
Thanatin was first discovered from the hemipteran insect Podisus maculiventris and showed a promising antimicrobial activity. Multidrug-resistant (MDR) clinical isolates of Klebsiella pneumoniae have developed resistance to current therapies. As an attempt to resolve this problem, the efficacy of thanatin and its analogues against clinical isolates of K. pneumoniae was studied in vitro and in vivo. S-thanatin showed an improved antimicrobial activity with the tested MIC values was 2-8-fold lower than those of other thanatin analogs. Antimicrobial assay indicated a high activity of S-thanatin against K. pneumoniae in vitro with MIC between 4 and 8 μg/ml. Its in vivo activity was evaluated using a K. pneumoniae-infected mice model. Adult male ICR mice were randomly grouped and given an intraperitoneal (i.p.) administration of 2 × 10(10)colony-forming units of K. pneumoniae (CI 120204205). Afterwards, mouse groups were subjected to i.p. administration of saline or S-thanatin (5, 10, or 15 mg/kg). After an inspection of 72 h, the mice were finally sacrificed for analysis of in vivo bacterial growth and plasma endotoxin level. The results showed that S-thanatin administration apparently improved the survival rate and reduced the bacterial CFU from intra-abdominal fluid in mice. The plasma endotoxin level was improved as well. All above implied that S-thanatin, as an alternative, may provide a novel strategy for treating K. pneumoniae infection and other infections due to multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Guoqiu Wu
- Center of Clinical Laboratory Medicine of Zhongda Hospital, Southeast University, Nanjing 210009, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Novy P, Rondevaldova J, Kourimska L, Kokoska L. Synergistic interactions of epigallocatechin gallate and oxytetracycline against various drug resistant Staphylococcus aureus strains in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:432-435. [PMID: 23485046 DOI: 10.1016/j.phymed.2012.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/25/2012] [Indexed: 05/28/2023]
Abstract
Epigallocatechin gallate (EGCG), the major catechin contained in tea leaves, is known to possess the synergistic anti-staphylococcal activity in combination with various β-lactam antibiotics and tetracycline. In the present study, we explored the in vitro combinatory effect of EGCG in combination with oxytetracycline against eight standard strains and clinical isolates of Staphylococcus aureus, including erythromycin, methicillin and tetracycline resistant strains. The minimum inhibitory concentrations were determined by the broth microdilution assay and the data were evaluated according to the sum of fractional inhibitory concentrations (∑FIC). Our results showed synergistic and additive interactions against all S. aureus strains tested (∑FIC 0.288-0.631), two of which were multidrug resistant. According to our best knowledge, it is the first report on the EGCG synergy with oxytetracycline. Considering its significant synergistic antimicrobial effect and low toxicity, we suggest EGCG as a promising compound for the development of new anti-staphylococcal formulations.
Collapse
Affiliation(s)
- Pavel Novy
- Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 6, Suchdol, Czech Republic
| | | | | | | |
Collapse
|
22
|
Cui Y, Kim SH, Kim H, Yeom J, Ko K, Park W, Park S. AFM probing the mechanism of synergistic effects of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) with cefotaxime against extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. PLoS One 2012; 7:e48880. [PMID: 23152812 PMCID: PMC3496731 DOI: 10.1371/journal.pone.0048880] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/01/2012] [Indexed: 11/26/2022] Open
Abstract
Background Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae poses serious challenges to clinicians because of its resistance to many classes of antibiotics. Methods and Findings The mechanism of synergistic activity of a combination of (−)-epigallocatechin-3-gallate (EGCG) and β-lactam antibiotics cefotaxime was studied on Extended-spectrum β-lactamase producing Escherichia coli (ESBL-EC), by visualizing the morphological alteration on the cell wall induced by the combination using atomic force microscopy (AFM). Cells at sub-MICs (sub-minimum inhibitory concentrations) of cefotaxime were initially filamentated but recovered to the normal shape later, whereas cells at sub-MICs of EGCG experienced temporal disturbance on the cell wall such as leakage and release of cellular debris and groove formation, but later recovered to the normal shape. In contrast, the combination of cefotaxime and EGCG at their respective sub-MICs induced permanent cellular damages as well as continuous elongation in cells and eventually killed them. Flow cytometry showed that intracellular oxidative stress levels in the cell treated with a combination of EGCG and cefotaxime at sub-MICs were higher than those in the cells treated with either cefotaxime or EGCG at sub-MICs. Conclusions These results suggest that the synergistic effect of EGCG between EGCG and cefotaxime against ESBL-EC is related to cooperative activity of exogenous and endogenous reactive oxygen species (ROS) generated by EGCG and cefotaxime, respectively.
Collapse
Affiliation(s)
- Yidan Cui
- Department of Chemistry and Nano Sciences, Ewha Womans University, Seoul, Korea
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - So Hyun Kim
- Department of Chemistry and Nano Sciences, Ewha Womans University, Seoul, Korea
| | - Hyunseok Kim
- Department of Chemistry and Nano Sciences, Ewha Womans University, Seoul, Korea
| | - Jinki Yeom
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Woojun Park
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Korea
| | - Sungsu Park
- Department of Chemistry and Nano Sciences, Ewha Womans University, Seoul, Korea
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|