1
|
Yang P, Chai Y, Wei M, Ge Y, Xu F. Mechanism of salidroside in the treatment of endometrial cancer based on network pharmacology and molecular docking. Sci Rep 2023; 13:14114. [PMID: 37644107 PMCID: PMC10465614 DOI: 10.1038/s41598-023-41157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Salidroside is a natural product of phenols, which has a wide scape of pharmacological effects, but its pharmacological effects and molecular mechanism on endometrial cancer are not clear. To systematically explore the pharmacological effects and molecular mechanisms of salidroside on endometrial cancer through the method of network pharmacology. The possible target genes of salidroside were obtained through different pharmacological databases and analysis platforms, and then the relevant target genes of endometrial cancer were obtained through the GeneCards website, and the target genes were uniformly converted into standardized gene names with Uniprot. The collected data were then processed to obtain common target genes and further analyzed through the String website to construct a protein-protein interaction (PPI) network, followed by gene ontology (GO) functional annotation and Kyoto Gene and Genome Encyclopedia (KEGG) pathway analysis. We further interpreted the molecular mechanism of salidroside for the treatment of endometrial cancer by constructing a "drug component-target gene-disease" network. Finally, we performed molecular docking to validate the binding conformation between salidroside and the candidate target genes. There were 175 target genes of salidroside after normalization, among which 113 target genes interacted with endometrial cancer. GO analysis indicated that the anti-endometrial cancer effect of salidroside may be strongly related to biological processes such as apoptosis and response to drug. KEGG analysis indicated that its mechanism may be related to pathway in cancer and PI3K-AKT signaling pathway. Molecular docking showed that salidroside had high affinity with five key genes. Based on the novel network pharmacology and molecular docking validation research methods, we have revealed for the first time the potential mechanism of salidroside in the therapy of endometrial cancer.
Collapse
Affiliation(s)
- Panpan Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Min Wei
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yan Ge
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Feixue Xu
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
2
|
Drafi F, Bauerova K, Chrastina M, Taghdisiesfejír M, Rocha J, Direito R, Figueira ME, Sepodes B, Ponist S. Rhodiola rosea L. Extract, a Known Adaptogen, Evaluated in Experimental Arthritis. Molecules 2023; 28:5053. [PMID: 37446715 DOI: 10.3390/molecules28135053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Rhodiola rosea L. extract (RSE) is mostly known for its adaptogen properties, but not for its antiarthritic activities, therefore monotherapy and combination with low-dose methotrexate (MTX) was studied. The collagen-induced arthritis (CIA) model was used to measure the functional score, and the change in hind paw volume (HPV). Both parameters had significant antiarthritic effects. Based on these preliminary results, an adjuvant arthritis (AA) model was further applied to assess another parameters. The experiment included these animal groups: healthy controls, untreated AA, AA administered with RSE (150 mg/kg b.w. daily, p.o.), AA administered by MTX (0.3 mg/kg b.w. twice a week, p.o.), and AA treated with the combination of RSE+MTX. The combination of RSE+MTX significantly reduced the HPV and increased the body weight. The combination significantly decreased HPV when compared to MTX monotherapy. The plasmatic levels of inflammatory markers (IL-6, IL-17A, MMP-9 and CRP) were significantly decreased by MTX+RSE treatment. The RSE monotherapy didn't influence any of the inflammatory parameters studied. In CIA, the RSE monotherapy significantly decreased the arthritic parameters studied. In summary, the combination of RSE and sub-therapeutic MTX was significantly effective in AA by improving inflammatory and arthritic parameters.
Collapse
Affiliation(s)
- Frantisek Drafi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
| | - Katarina Bauerova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
| | - Martin Chrastina
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 10701/4A, 036 01 Martin, Slovakia
| | - Mohsen Taghdisiesfejír
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - João Rocha
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rosa Direito
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Eduardo Figueira
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Bruno Sepodes
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Silvester Ponist
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
| |
Collapse
|
3
|
Qu B, Liu X, Liang Y, Zheng K, Zhang C, Lu L. Salidroside in the Treatment of NAFLD/NASH. Chem Biodivers 2022; 19:e202200401. [PMID: 36210339 DOI: 10.1002/cbdv.202200401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the commonest reason for chronic liver diseases in the world and is commonly related to the hepatic manifestation of the metabolic syndrome. Non-alcoholic steatohepatitis (NASH) is a deteriorating form of NAFLD, which can eventually develop into fibrosis, cirrhosis, and liver cancer. The reason for NAFLD/NASH development is complicated, such as liver lipid metabolism, oxidative stress, inflammatory response, apoptosis and autophagy, liver fibrosis and gut microbiota. Apart from bariatric surgery and lifestyle changes, officially approved drug therapy for NAFLD/NASH treatment is lacking. Salidroside (SDS) is a phenolic compound extensively distributed in the tubers of Rhodiola plants, which possesses many significant biological activities. This review summarized the related targets regulated by SDS in treating NAFLD/NASH. It is indicated that SDS could improve the status of NAFLD/NASH by ameliorating abnormal lipid metabolism, inhibiting oxidative stress, regulating apoptosis and autophagy, reducing inflammatory response, alleviating fibrosis and regulating gut microbiota. In conclusion, although the multiple bioactivities of SDS have been confirmed, the clinical data are inadequate and need to become the focus of attention in the later study.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Xuemao Liu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Yanjiao Liang
- Department of Oncology Center, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Keke Zheng
- Department of Oncology Center, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Chunling Zhang
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| |
Collapse
|
4
|
Wang X, Luan Y, Hou J, Jiang T, Zhao Y, Song W, Wang L, Kong X, Guan J, Song D, Wang B, Li M. The protection effect of rhodionin against methicillin-resistant Staphylococcus aureus-induced pneumonia through sortase A inhibition. World J Microbiol Biotechnol 2022; 39:18. [PMID: 36409383 DOI: 10.1007/s11274-022-03457-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a zoonotic antibiotic-resistant pathogen that negatively impacts society from medical, veterinary, and societal standpoints. The search for alternative therapeutic strategies and innovative anti-infective agents is urgently needed. Among the pathogenic mechanisms of Staphylococcus aureus (S. aureus), sortase A is a virulence factor of great concern because it is highly linked with the ability of MRSA to invade the host. In this study, we identified that rhodionin, a natural compound of flavonoid glucosides, effectively inhibited the activity of SrtA without affecting the survival and growth of bacteria, and its half maximal inhibitory concentration (IC50) value was 22.85 μg/mL. In vitro, rhodionin prominently attenuated the virulence-related phenotype of SrtA by reducing the adhesion of S. aureus to fibrinogen, reducing the capacity of protein A (SpA) on the bacterial surface and biofilm formation. Subsequently, fluorescence quenching and molecular docking were performed to verify that rhodionin directly bonded to SrtA molecule with KA value of 6.22 × 105 L/mol. More importantly, rhodionin showed a significant protective effect on mice pneumonia model and improved the survival rate of mice. According to the above findings, rhodionin achieved efficacy in the treatment of MRSA-induced infections, which holds promising potential to be developed into a candidate used for MRSA-related infections.
Collapse
Affiliation(s)
- Xingye Wang
- Changchun University of Chinese Medicine, Changchun, China.,The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yanhe Luan
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Juan Hou
- Changchun University of Chinese Medicine, Changchun, China
| | - Tao Jiang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Xiangri Kong
- Changchun University of Chinese Medicine, Changchun, China.,The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Danning Song
- Changchun University of Chinese Medicine, Changchun, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, China.
| | - Mingquan Li
- Changchun University of Chinese Medicine, Changchun, China. .,The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China. .,The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
5
|
Tang Y, Yang S, Lin L, Zheng Z, Sun S, Zhou C, Hong P, Qian ZJ. Pentapeptide AYP from Isochrysis Zhanjiangensis Exhibits Antiangiogenic Activity in HT1080 Cells and HUVECs by Suppressing Migration and Invasion In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8481-8491. [PMID: 35770804 DOI: 10.1021/acs.jafc.2c02813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microalgae are important biological sources of marine active peptides and renewable biological resources. Isochrysis zhanjiangensis has been widely used in biological ultrafiltration membranes and aquaculture. However, there are relatively few studies on its component structure and diverse activities. In this study, the mechanism of action of previously isolated pentapeptides (AYP, Ala-Tyr-Ala-Pro-Glu) on inflammation and tumor angiogenesis was evaluated. The results showed that AYP could effectively inhibit the invasion and migration of human umbilical vein endothelial cells (HUVECs) and HT1080 cells by downregulating the expression of MMP-2/-9, independent of cytotoxicity. Especially after 100 μM AYP treatment, the ability to inhibit migration was about 67.7% ± 1.9 for HT1080 cells and 63.6% ± 1.3 for HUVECs, respectively. In addition, the activity of iNOS and COX-2 was decreased by inhibiting the oversecretion of VEGF in HT1080 cells induced by CoCl2 and the activation of VEGFR-2 in HUVECs and by regulating PI3K/AKT and Ras/MAPK signaling pathways. It can prevent inflammation and block tumor angiogenesis. Therefore, AYP is expected to become a drug or functional food to prevent and treat tumor angiogenesis.
Collapse
Affiliation(s)
- Yanfei Tang
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shengtao Yang
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Liyuan Lin
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhaowan Zheng
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shengli Sun
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunxia Zhou
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Pengzhi Hong
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| |
Collapse
|
6
|
Abdou MM, O’Neill PM, Amigues E, Matziari M. Unprecedented Convergent Synthesis of Sugar-Functionalization of Phosphinic Acids under Metal-Free Conditions. ACS OMEGA 2022; 7:21444-21453. [PMID: 35785277 PMCID: PMC9244928 DOI: 10.1021/acsomega.2c00712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/30/2022] [Indexed: 06/12/2023]
Abstract
A novel TEA-catalyzed sugar-esterification of phosphinic acids was used as a general and efficient approach for the synthesis of a variety of phosphinates without any transition metal. The high efficiency of the current methodology and a convenient experimental procedure compensate for the moderate yields obtained. Another advantage is that the reaction tolerates different substituents attached to the phosphinic acids and the sugar moieties alongside the ease of isolation of the product.
Collapse
Affiliation(s)
- Moaz M. Abdou
- Egyptian
Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Paul M. O’Neill
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Eric Amigues
- Department
of Chemistry, Xi’an Jiaotong Liverpool
University, Suzhou, Jiangsu 215123, P. R. China
| | - Magdalini Matziari
- Department
of Chemistry, Xi’an Jiaotong Liverpool
University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
7
|
Wang W, Gu W, He C, Zhang T, Shen Y, Pu Y. Bioactive components of Banxia Xiexin Decoction for the treatment of gastrointestinal diseases based on flavor-oriented analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115085. [PMID: 35150814 DOI: 10.1016/j.jep.2022.115085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin Decoction (BXD) was first recorded in a Chinese medical classic, Treatise on Febrile Diseases and Miscellaneous Diseases, which was written in the Eastern Han dynasty of China. This ancient prescription consists of seven kinds of Chinese herbal medicine, namely, Pinellia ternata, Rhizoma Coptidis, Radix scutellariae, Rhizoma Zingiberis, Ginseng, Jujube, and Radix Glycyrrhizaepreparata. In clinic practice, its original application in China mainly has focused on the treatment of chronic gastritis for several hundred years. BXD is also effective in treating other gastrointestinal diseases (GIDs) in modern medical application. Despite available literature support and clinical experience, the treatment mechanisms or their relationships with the bioactive compounds in BXD responsible for its pharmacological actions, still need further explorations in more diversified channels. According to the analysis based on the five-flavor theory of TCM, BXD is traditionally viewed as the most representative prescription for pungent-dispersion, bitter-purgation and sweet-tonification. Consequently, based on the flavor-oriented analysis, the compositive herbs in BXD can be divided into three flavor groups, namely, the pungent, bitter, and sweet groups, each of which has specific active ingredients that are possibly relevant to GID treatment. AIM OF THE REVIEW This paper summarized recent literatures on BXD and its bioactive components used in GID treatment, and provided the pharmacological or chemical basis for the further exploration of the ancient prescription and the relative components. METHOD ology: Relevant literature was collected from various electronic databases such as Pubmed, Web of Science, and China National Knowledge Infrastructure (CNKI). Citations were based on peer-reviewed articles published in English or Chinese during the last decade. RESULTS Multiple components were found in the pungent, bitter, and sweet groups in BXD. The corresponding bioactive components include gingerol, shogaol, stigmasterol, and β-sitosterol in the pungent group; berberine, palmatine, coptisine, baicalein, and baicalin in the bitter group; and ginsenosides, polysaccharides, liquiritin, and glycyrrhetinic acid in the sweet group. These components have been found directly or indirectly responsible for the remarkable effects of BXD on GID. CONCLUSION This review provided some valuable reference to further clarify BXD treatment for GID and their possible material basis, based on the perspective of the flavor-oriented analysis.
Collapse
Affiliation(s)
- Weiwei Wang
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weiliang Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao He
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yao Shen
- Shanghai Center of Biomedicine Development, Shanghai, 201203, China.
| | - Yiqiong Pu
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
8
|
Salidroside, 8( E)-Nuezhenide, and Ligustroside from Ligustrum japonicum Fructus Inhibit Expressions of MMP-2 and -9 in HT 1080 Fibrosarcoma. Int J Mol Sci 2022; 23:ijms23052660. [PMID: 35269801 PMCID: PMC8910403 DOI: 10.3390/ijms23052660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/19/2022] Open
Abstract
A phenyl ethanoid, salidroside (SAL), and two secoiridoids, 8(E)-nuezhenide (NZD) and ligustroside (LIG), were isolated from fruits of Ligustrumjaponicum, used as traditional folk medicine, and their chemical structures were elucidated by the comparison of spectral data with published literature. Matrix metalloproteinases (MMPs) are major enzymes that play crucial roles in the metastasis and invasive behavior of tumors. In particular, MMP-2 and MMP-9, regulated by the MAPK signaling pathways, including p38, ERK and JNK, are known to play a key role in the degradation of the basement membrane. In the present study, the effects of SAL, NZD and LIG on the expression of MMP-2 and -9 were examined in phorbol 12-myristate 13-acetate (PMA)-induced HT 1080 cells. All the compounds significantly lowered the amount of MMP-2 and MMP-9 released, as determined by gelatin zymography and ELISA. In addition, the mRNA and protein expression levels of MMP-2 and MMP-9 were significantly suppressed, as measured by RT-PCR and Western blotting. According to the Western blotting assay, SAL and LIG effectively reduced the expression of MMP-2 in a dose-dependent manner. NZD lowered the expression of MMP-9 in a similar way. The phosphorylation of p38, ERK and JNK was also significantly suppressed by these compounds. These findings suggest that all the compounds regulate the release and expression of MMP-2 and MMP-9 via MAPK signaling pathways.
Collapse
|
9
|
Hollá V, Karkeszová K, Antošová M, Polakovič M. Transglycosylation properties of a Kluyveromyces lactis enzyme preparation: Production of tyrosol β-fructoside using free and immobilized enzyme. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Chamkhi I, Benali T, Aanniz T, El Menyiy N, Guaouguaou FE, El Omari N, El-Shazly M, Zengin G, Bouyahya A. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:269-295. [PMID: 34391201 DOI: 10.1016/j.plaphy.2021.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plants and microbes interact with each other via different chemical signaling pathways. At the risophere level, the microbes can secrete molecules, called elicitors, which act on their receptors located in plant cells. The so-called elicitor molecules as well as their actions differ according to the mcirobes and induce different bilogical responses in plants such as the synthesis of secondary metabolites. Microbial compounds induced phenotype changes in plants are known as elicitors and signaling pathways which integrate elicitor's signals in plants are called elicitation. In this review, the impact of microbial elicitors on the synthesis and the secretion of secondary metabolites in plants was highlighted. Moreover, biological properties of these bioactive compounds were also highlighted and discussed. Indeed, several bacteria, fungi, and viruses release elicitors which bind to plant cell receptors and mediate signaling pathways involved in secondary metabolites synthesis. Different phytochemical classes such as terpenoids, phenolic acids and flavonoids were synthesized and/or increased in medicinal plants via the action of microbial elicitors. Moreover, these compounds compounds exhibit numerous biological activities and can therefore be explored in drugs discovery.
Collapse
Affiliation(s)
- Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel, Université Mohammed V de, Institut Scientifique Rabat, Maroc; University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203 Rabat, Morocco
| | - Naoual El Menyiy
- Department of Biology, Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Fatima-Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
11
|
Abstract
Objective We investigated the antitumor effects of salidroside and preliminarily
examined its underlying mechanisms by establishing a nude mouse model
bearing MCF-7 breast cancer cell xenografts. Methods The mice were grouped and intraperitoneally injected with salidroside,
paclitaxel, or physiological saline. Tumor samples were weighed, and
immunohistochemical staining with hematoxylin and eosin and anti-CD34
antibody was performed. Tumor cell apoptosis was observed using the terminal
deoxynucleotidyl transferase deoxyuridine dUTP nick end labeling assay.
Bcl-1, p53, Bax, and caspase 3 expression in tumor tissues was determined
via western blotting. Results The tumor inhibition rate of high-dose salidroside was 75.16%, which was
significantly higher than the rates for paclitaxel and saline. A tumor
tissue pathology analysis revealed that high-dose salidroside inhibited
tumor cell proliferation and promoted tumor cell apoptosis. Western blotting
revealed that Bcl-2 and p53 expression were significantly lower in the
salidroside group than in the other groups, whereas Bax and caspase 3
(17 kDa) expression were increased. Conclusions Salidroside was more effective than paclitaxel in inhibiting tumor growth in
MCF-7 breast cancer cell-bearing nude mice. The mechanism of action may
involve Bcl-2 and p53 downregulation and Bax and caspase 3 upregulation,
thereby increasing proapoptotic factor expression and inducing tumor cell
apoptosis.
Collapse
Affiliation(s)
- An-Qi Sun
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, 34756Wuhan Institute of Technology, Wuhan, People's Republic of China.,The College of Post and Telecommunication, 34756Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Xiu-Lian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, 34756Wuhan Institute of Technology, Wuhan, People's Republic of China
| |
Collapse
|
12
|
Salidroside: A review of its recent advances in synthetic pathways and pharmacological properties. Chem Biol Interact 2021; 339:109268. [PMID: 33617801 DOI: 10.1016/j.cbi.2020.109268] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Salidroside has been identified as one of the most potent compounds isolated from various Rhodiola plants, which have been used for a long time as adaptogens in traditional Chinese medicine. However, due to the severe growing environment of herbal medicine and large-scale excavation, the content of natural salidroside is extremely small. Most of the previous studies focused on herbal medicine, and there were few reviews on the synthesis of its main active ingredient salidroside. This paper presents different synthetic routes of salidroside to resolve the contradiction between supply and demand and lays the foundation for new drug research and development. Furthermore, emerging evidence indicates that salidroside, a promising environmentally-adapted drug with low toxicity and few side effects, possesses a wide spectrum of pharmacological properties, including activities on the cardiovascular system and central nervous system, anti-hypoxia, anti-fatigue and anti-aging activities, anticancer activity, anti-inflammatory activity, antioxidant activity, antivirus and immune stimulation activities, antidiabetic activity, anti-osteoporotic activity, and so on. Although the former researches have summarized the pharmacological effects of salidroside, focusing on the central nervous system, diabetes, and cancer, the overall pharmacological aspects of it have not been analyzed. This review highlights biological characteristics and mechanisms of action from 2009 to now as well as toxicological and pharmacokinetic data of the analyzed compound reported so far, with a view to providing a reference for further development and utilization of salidroside.
Collapse
|
13
|
Wang S, Ge F, Cai T, Qi S, Qi Z. [Dihydromyricetin inhibits proliferation and migration of gastric cancer cells through regulating Akt/STAT3 signaling pathways and HMGB1 expression]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:87-92. [PMID: 33509758 DOI: 10.12122/j.issn.1673-4254.2021.01.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To investigate the inhibitory effects of dihydromyricetin on the proliferation and migration of gastric cancer BGC-823 cells and explore the molecular mechanisms. METHODS BGC-823 cells in routine culture were treated with different concentrations of dihydromyricetin (0, 40, 60, 80, 100, and 120 μg/mL) for 24 h, and the changes in cell viability were detected using CCK-8 assay; colony forming assay and Transwell assay were performed to assess the changes in colonyforming and migration abilities of the cells, respectively. The levels of MMP-2 and MMP-9 in the treated cells were determined using ELISA, and Western blotting was used to detect the expressions of E-cadherin, N-cadherin, cyclin D1, cyclin E1, HSP70 and HMGB1 and the phosphorylation levels of Akt and Stat3. RESULTS CCK-8 assay showed that dihydromyricetin treatment dose-dependently inhibited the viability of BGC-823 cells (P < 0.05). Treatment with dihydromyricetin obviously suppressed the proliferation and migration of BGC-823 cells, significantly reduced the expression levels of cyclin D1, cyclin E1 and Ncadherin, enhanced E-cadherin expression, inhibited the phosphorylation of Akt and stat3, and downregulated HMGB1 expression in the cells. The results of ELISA demonstrated significantly lowered levels of MMP-2 and MMP-9 in dihydromyricetin-treated cells. CONCLUSIONS Dihydromyricetin inhibits the proliferation and migration of BGC-823 cells through suppressing the activation of Akt/stat3 signaling pathways and HMGB1 expression.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, China.,Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, China
| | - Fei Ge
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Tianyu Cai
- Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, China.,School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - Shimei Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, China.,Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, China
| | - Zhilin Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, China.,Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
14
|
Magani SKJ, Mupparthi SD, Gollapalli BP, Shukla D, Tiwari AK, Gorantala J, Yarla NS, Tantravahi S. Salidroside - Can it be a Multifunctional Drug? Curr Drug Metab 2020; 21:512-524. [PMID: 32520682 DOI: 10.2174/1389200221666200610172105] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 03/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Salidroside is a glucoside of tyrosol found mostly in the roots of Rhodiola spp. It exhibits diverse biological and pharmacological properties. In the last decade, enormous research is conducted to explore the medicinal properties of salidroside; this research reported many activities like anti-cancer, anti-oxidant, anti-aging, anti-diabetic, anti-depressant, anti-hyperlipidemic, anti-inflammatory, immunomodulatory, etc. Objective: Despite its multiple pharmacological effects, a comprehensive review detailing its metabolism and therapeutic activities is still missing. This review aims to provide an overview of the metabolism of salidroside, its role in alleviating different metabolic disorders, diseases and its molecular interaction with the target molecules in different conditions. This review mostly concentrates on the metabolism, biological activities and molecular pathways related to various pharmacological activities of salidroside. CONCLUSION Salidroside is produced by a three-step pathway in the plants with tyrosol as an intermediate molecule. The molecule is biotransformed into many metabolites through phase I and II pathways. These metabolites, together with a certain amount of salidroside may be responsible for various pharmacological functions. The salidroside based inhibition of PI3k/AKT, JAK/ STAT, and MEK/ERK pathways and activation of apoptosis and autophagy are the major reasons for its anti-cancer activity. AMPK pathway modulation plays a significant role in its anti-diabetic activity. The neuroprotective activity was linked with decreased oxidative stress and increased antioxidant enzymes, Nrf2/HO-1 pathways, decreased inflammation through suppression of NF-κB pathway and PI3K/AKT pathways. These scientific findings will pave the way to clinically translate the use of salidroside as a multi-functional drug for various diseases and disorders in the near future.
Collapse
Affiliation(s)
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - A K Tiwari
- Department of Zoology, Dr. Bhanvar Singh Porte Government College, Pendra Bilaspur, India
| | | | | | | |
Collapse
|
15
|
Karnišová Potocká E, Mastihubová M, Mastihuba V. Transrutinosylation of tyrosol by flower buds of Sophora japonica. Food Chem 2020; 336:127674. [PMID: 32781353 DOI: 10.1016/j.foodchem.2020.127674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022]
Abstract
Dried flower buds of Japanese sophora (Sophora japonica) comprising rutinosidase activity were tested in rutinosylation of tyrosol via transglycosylation process from rutin. Optimal conditions for transrutinosylation of tyrosol were 49 mM rutin and 290 mM tyrosol, giving maximum conversion up to 66.4% and 24% yield of isolated and purified rutinoside. The rutinosylation proceeded exclusively on the primary hydroxyl of tyrosol, thus forming rhamnosylated derivative of salidroside. This strict regioselectivity differentiates the sophora biocatalyst from microbial rutinosidases.
Collapse
Affiliation(s)
- Elena Karnišová Potocká
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Vladimír Mastihuba
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia.
| |
Collapse
|
16
|
Fu K, Xu M, Zhou Y, Li X, Wang Z, Liu X, Meng X, Zeng Y, Zhang H. The Status quo and way forwards on the development of Tibetan medicine and the pharmacological research of tibetan materia Medica. Pharmacol Res 2020; 155:104688. [DOI: 10.1016/j.phrs.2020.104688] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 01/14/2020] [Accepted: 02/07/2020] [Indexed: 12/21/2022]
|
17
|
Abstract
Salidroside is a phenolic secondary metabolite present in plants of the genus Rhodiola, and studies investigating its extensive pharmacological activities and mechanisms have recently attracted increasing attention. This review summarizes the progress of recent research on the antiproliferative activities of salidroside and its effects on breast, ovarian, cervical, colorectal, lung, liver, gastric, bladder, renal, and skin cancer as well as gliomas and fibrosarcomas. Thus, it provides a reference for the further development and utilization of salidroside.
Collapse
|
18
|
Wang Z, Tang T, Wang S, Cai T, Tao H, Zhang Q, Qi S, Qi Z. Aloin Inhibits the Proliferation and Migration of Gastric Cancer Cells by Regulating NOX2-ROS-Mediated Pro-Survival Signal Pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:145-155. [PMID: 32021099 PMCID: PMC6969686 DOI: 10.2147/dddt.s219247] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/17/2019] [Indexed: 01/25/2023]
Abstract
Background Aloin has been reported to have many pharmacological effects including anti-inflammatory, anti-oxidant and anti-tumour activities. However, the precise molecular mechanisms underlying the anti-tumour properties of aloin are yet to be elucidated. Methods HGC-27 and BGC-823 gastric cancer cells were treated with aloin. EdU and colony formation assays were used to detect the proliferation ability of cells. The migration of cells was detected using wound healing and transwell assays. Western blotting was used to detect the levels of cyclinD1, cyclin E1, MMPs, N-cadherin, E-cadherin and NOX2. The phosphorylation of Akt, mTOR, P70S6K, S6, Src, stat3 and IκBα were also detected by Western blotting. Flow cytometry was used to detect the cell cycle distribution.The location of p65 in cells was determined by using a confocal microscopy assay. The total amounts of ROS present in cells were measured using an ROS assay kit. Results Here, we found that aloin inhibited the proliferation and migration of HGC-27 and BGC-823 gastric cancer cells using a combination of EdU, colony formation, wound healing and transwell assays. Further investigations revealed that aloin decreased the protein expression levels of cyclin D1, N-cadherin, and the matrix metalloproteinases (MMP)-2 and MMP-9; increased E-cadherin expression in a dose-dependent manner; inhibited reactive oxygen species (ROS) generation; and mediated the activation of Akt-mTOR, signal transducer and activator of transcription-3 (Stat3), and NF-κB signalling pathways. Our results also indicated that aloin is able to attenuate the expression levels of the two regulatory proteins of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), p47phox and p22phox, but had no effect on the level of gp91phox. N-acetylcysteine treatment of gastric cancer cells inhibited ROS production and Akt-mTOR, Stat3, and IκBα phosphorylation. Taken together, our data suggest that aloin inhibits the proliferation and migration of gastric cancer cells by downregulating NOX2–ROS-mediated activation of the Akt-mTOR, Stat3, and NF-κB signalling pathways. Conclusion Our findings suggest a potential role for aloin in the prevention of gastric cancer cell proliferation and migration and provide novel insights into the anti-cancer properties of aloin.
Collapse
Affiliation(s)
- Ziqian Wang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Tuo Tang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Shengnan Wang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Tianyu Cai
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Hong Tao
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Shimei Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Zhilin Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| |
Collapse
|
19
|
Xie H, Shen CY, Jiang JG. The sources of salidroside and its targeting for multiple chronic diseases. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
20
|
Song XD, Wang YN, Zhang AL, Liu B. Advances in research on the interaction between inflammation and cancer. J Int Med Res 2019; 48:300060519895347. [PMID: 31885347 PMCID: PMC7686609 DOI: 10.1177/0300060519895347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Inflammation is the body's response to cell damage. Cancer is a general
term that describes all malignant tumours. There are no confirmed data
on cancer-related inflammation, but some research suggests that up to
50% of cancers may be linked to inflammation, which has led to the
concept of ‘cancer-associated inflammation’. Although some cancer
patients do not appear to have a chronic inflammatory background,
there might be inflammatory cell infiltration in their cancer tissues.
The continuation of the inflammatory response plays an important role
in the initiation, promotion, malignant transformation, invasion and
metastasis of cancer. Anti-inflammatory therapy has been shown to have
some effects on the prevention and treatment of cancer, which supports
a pathogenic relationship between inflammation and cancer. This review
describes the interaction between inflammation and tumour development
and the main mechanism of regulation of the inflammatory response
during tumour development.
Collapse
Affiliation(s)
- Xin-Da Song
- Department of Urinary Surgery, Graduate School of Peking Union Medical College, Beijing Hospital, National Centre of Gerontology, Beijing, China
| | - Ya-Ni Wang
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ai-Li Zhang
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Bin Liu
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
21
|
Rong L, Li Z, Leng X, Li H, Ma Y, Chen Y, Song F. Salidroside induces apoptosis and protective autophagy in human gastric cancer AGS cells through the PI3K/Akt/mTOR pathway. Biomed Pharmacother 2019; 122:109726. [PMID: 31918283 DOI: 10.1016/j.biopha.2019.109726] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/19/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Salidroside, a natural active ingredient extracted from Rhodiola rosea, has been shown to exert antitumor activity against breast cancer Dong Young et al. [1], colon cancer Sun et al. [2] and bladder cancer Tian et al. [3]. However, the effect of salidroside on apoptosis and autophagy in gastric cancer remains unclear. In our research, we observed the biological effect of salidroside on human gastric cancer AGS cells. Our results demonstrated that salidroside inhibited the growth of AGS cells both in vivo and in vitro and exerted a proapoptotic effect on AGS cells as confirmed by flow cytometry, Hoechst staining and western blot analysis. Additionally, we found that salidroside decreased the phosphorylation of PI3K and Akt and that pretreatment with the PI3K/Akt agonist IGF-1 could weaken the proapoptotic effect of salidroside. Interestingly, the exposure of AGS cells to salidroside induced autophagy as indicated by transmission electron microscopy, mRFP-GFP-LC3 transfection and western blot analysis, suggesting that salidroside promoted autophagy in gastric cancer AGS cells. Furthermore, treatment with the autophagy inhibitor chloroquine enhanced salidroside-induced cell apoptosis, indicating that the autophagy mediated by salidroside may protect AGS cells from death. Additionally, we found that salidroside decreased the level of p-mTOR protein in a concentration-dependent manner and that pretreatment with IGF-1 decreased the expression of autophagy proteins, suggesting that salidroside induced autophagy through the PI3K/Akt/mTOR pathway. The above findings indicate that salidroside inhibited the growth of gastric cancer and induced apoptosis and protective autophagy through the PI3K/Akt/mTOR pathway. In summary, our study provides novel insights regarding the activity of salidroside against gastric cancer and contributes to the clinical application of salidroside combined with autophagy inhibitors as a chemotherapeutic strategy for human gastric cancer.
Collapse
Affiliation(s)
- Li Rong
- Basic Medicine College, Chongqing Medical University, Chongqing City, 400016 PR China; Chongqing Public Health Medical Center, Chongqing City, 400036 PR China.
| | - Zhaodong Li
- Basic Medicine College, Chongqing Medical University, Chongqing City, 400016 PR China.
| | - Xue Leng
- Basic Medicine College, Chongqing Medical University, Chongqing City, 400016 PR China.
| | - Haiyu Li
- Basic Medicine College, Chongqing Medical University, Chongqing City, 400016 PR China; Chongqing Public Health Medical Center, Chongqing City, 400036 PR China.
| | - Yongping Ma
- Basic Medicine College, Chongqing Medical University, Chongqing City, 400016 PR China.
| | - Yaokai Chen
- Chongqing Public Health Medical Center, Chongqing City, 400036 PR China.
| | - Fangzhou Song
- Basic Medicine College, Chongqing Medical University, Chongqing City, 400016 PR China.
| |
Collapse
|
22
|
Yang L, Yu Y, Zhang Q, Li X, Zhang C, Mao T, Liu S, Tian Z. Anti-gastric cancer effect of Salidroside through elevating miR-99a expression. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2019; 47:3500-3510. [PMID: 31432697 DOI: 10.1080/21691401.2019.1652626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Salidroside is an active ingredient extracted from Rhodiola rosea that has anti-tumor activities. The current paper attempted to assess the impact of Salidroside on gastric cancer (GC) and explore the potential mechanism. GC cell lines (SNU-216 and MGC803) and gastric epithelial cell line GES-1 were treated with Salidroside. CCK-8 assay, colony formation assay, flow cytometry and Transwell assay were respectively performed to evaluate GC cells phenotype. qRT-PCR and western blot were conducted to reveal the downstream genes and signaling of Salidroside. We found that 800 μM Salidroside was capable of reducing GC cells viability, while has no such impacts on GES-1 cells. Salidroside inhibited GC cells proliferation, migration, invasion and promoted apoptosis, which coupled with the down-regulation of p21, Bcl-2, MMP2, RhoA, p-ROCK1, Vimentin and the up-regulations of CyclinD1, Bax, cleaved caspases. miR-99a was found to be highly expressed in response to Salidroside treatment. Besides, the inhibition of MAPK/ERK and PI3K/AKT signaling induced by Salidroside was attenuated by miR-99a silence and in this process, IGF1R worked as a target of miR-99a. The anti-GC effect of Salidroside was also confirmed in a mouse model of GC. The promoting effect of Salidroside on miR-99a expression was also verified in vivo. Furthermore, Salidroside promoted the cisplatin-sensitivity of SGC7901/DDP cells. In conclusion, this study demonstrated that Salidroside possessed anti-GC effects through regulating miR-99a/IGF1R axis and inhibiting MAPK/ERK and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Lin Yang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Yanan Yu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Qi Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Cuiping Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Tao Mao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Siliang Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University , Qingdao , China
| |
Collapse
|
23
|
Horvathova E, Mastihubova M, Karnisova Potocka E, Kis P, Galova E, Sevcovicova A, Klapakova M, Hunakova L, Mastihuba V. Comparative study of relationship between structure of phenylethanoid glycopyranosides and their activities using cell-free assays and human cells cultured in vitro. Toxicol In Vitro 2019; 61:104646. [PMID: 31518671 DOI: 10.1016/j.tiv.2019.104646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 01/19/2023]
Abstract
The study focused on protective potential of phytochemicals applicable in prevention and health protection is of great importance. Various structures of these compounds and a wide range of their biological activities have inspired organic chemists to sythesize their effective analogues in order to further increase their efficacy. The aims of our study were (i) to synthesize phenylethanoid glycopyranosides: salidroside (SALI - tyrosol β-d-glucopyranoside), tyrosol β-d-galactopyranoside (TYBGAL), tyrosol α-d-galactopyranoside (TYAGAL), tyrosol α-d-mannopyranoside (TYAMAN), hydroxytyrosol α-d-mannopyranoside (HOTAMA), homosyringyl β-d-glucopyranoside (HSYGLU), hydroxytyrosol β-d-xylopyranoside (HOTXYL) and hydroxysalidroside (HOSALI); (ii) to determine their antioxidant capacities (cell-free approaches); (iii) to evaluate their cytotoxicity (MTT test), protectivity against hydrogen peroxide (H2O2; comet assay) and effect on the intracellular glutathione level (iGSH; flow cytometry) in experimental system utilizing human hepatoma HepG2 cells. HOSALI, HOTAMA, HOTXYL and HSYGLU manifested the highest antioxidant capacity in cell-free assays and they were most active in protection of HepG2 cells against H2O2. On the other hand, pre-treatment of HepG2 cells with SALI had protective effects even though SALI displayed almost no activity in cell-free assays. Differences in the efficacy of the analogues revealed that structures of their molecules in terms of aglycone combined with sugar moiety affect their activities.
Collapse
Affiliation(s)
- Eva Horvathova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak Republic.
| | - Maria Mastihubova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Elena Karnisova Potocka
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Peter Kis
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Eliska Galova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, 842 15 Bratislava, Slovak Republic
| | - Andrea Sevcovicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, 842 15 Bratislava, Slovak Republic
| | - Martina Klapakova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, 842 15 Bratislava, Slovak Republic
| | - Luba Hunakova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak Republic
| | - Vladimir Mastihuba
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| |
Collapse
|
24
|
Ren M, Xu W, Xu T. Salidroside represses proliferation, migration and invasion of human lung cancer cells through AKT and MEK/ERK signal pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1014-1021. [PMID: 30880481 DOI: 10.1080/21691401.2019.1584566] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Salidroside, a glycoside of tyrosol, is isolated from Rhodiola rosea and shows anti-cancer functions in several cancers. However, the potentials of salidroside in the migration and invasion of lung cancer cells and its underlying mechanisms remain unknown. We aimed to investigate the functions and mechanisms of salidroside in non-small cell lung cancer (NSCLC). Human NSCLC cell line A549 was treated with different doses of salidroside. Cell viability, colony formation, apoptosis, migration and invasion were detected by CCK-8, crystal violet-staining assay, flow cytometry and transwell assay, respectively. qRT-PCR and western blot analysis were performed to assess the regulatory effects of salidroside on miR-195 expression and the activation of AKT and the MEK/ERK signal pathway. We found that, salidroside remarkably reduced cell viability, colony formation and Cyclin D1 expression, but increased p21 expression and apoptosis in A549 cells. Additionally, salidroside inhibited the migration and invasion of A549 cells by regulating expressions of migration- and invasion-related proteins. Finally, salidroside inhibited phosphorylation of AKT, MEK and ERK by upregulating miR-195 expression in A549 cells. In conclusion, salidroside inhibited the survival, migration and invasion of NSCLC cells. Salidroside blocked AKT and the MEK/ERK signal pathway by upregulating miR-195 expression in A549 cells.
Collapse
Affiliation(s)
- Mei Ren
- a Department of Oncology , Jining No.1 People's Hospital , Jining , China
| | - Wenjing Xu
- b Department of Chinese Medicine , Jining No.1 People's Hospital , Jining , China
| | - Tao Xu
- c Department of Respiratory Medicine , The Affiliated Hospital of Qingdao University , Qingdao , China
| |
Collapse
|
25
|
Chen X, Kou Y, Lu Y, Pu Y. Salidroside ameliorated hypoxia-induced tumorigenesis of BxPC-3 cells via downregulating hypoxia-inducible factor (HIF)-1α and LOXL2. J Cell Biochem 2019; 121:165-173. [PMID: 31162697 PMCID: PMC6900165 DOI: 10.1002/jcb.29000] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
Herein, we found that salidroside suppressed hypoxia‐inducible factor 1 alpha (HIF‐1α) and lysyl oxidase‐like protein 2 (LOXL2) within human pancreatic cancer BxPC‐3 cells cultured both under normoxia and hypoxia condition. To investigate the effect of salidroside on tumorigenesis of BxPC‐3 cells and whether HIF‐1α and LXCL2 were involved in this process, cells transfected with or without LOXL2 overexpression vector, were treated with 50 μg/mL of salidroside or 50 μM of KC7F2 (a HIF‐1α inhibitor) under hypoxia. Cell viability and invasion were assessed using CCK‐8 and Transwell chamber assay, respectively. Expression of E‐cadherin and matrix metalloproteinase 2/9 (MMP 2/9) was determined, by Western blot analysis, to assess cell mobility at molecular levels. We confirmed that hypoxia increased LOXL2 and induced tumorigenesis of BxPC‐3 cells, as evidenced by promoted cell proliferation and invasion, enhanced MMP2/9 while reduced E‐cadherin. Interestingly, hypoxia‐induced carcinogenesis was significantly retarded by both salidroside and KC7F2, however, enhanced with LOXL2 overexpression. Besides, salidroside and KC7F2 reduced LOXL2, and reversed the tumorigenesis of BxPC‐3 cells induced by LOXL2 overexpression. Given the inhibitory effect of salidroside on HIF‐1α expression, our data suggested that: (1) LOXL2 was the mechanism, whereby salidroside and KC7F2 showed inhibitory effect on cancer progression of BxPC‐3 cells; (2) salidroside exerted its anticancer effect, most likely, by a HIF‐1α/LOXL2 pathway. In conclusion, salidroside was a novel therapeutic drug in pancreatic cancer, and downregulation of HIF‐1α and LXCL2 was the underlying mechanism.
Collapse
Affiliation(s)
- Xiaoping Chen
- Department of Biliary and Pancreatic Surgery of Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yubin Kou
- Department of Biliary and Pancreatic Surgery of Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunsong Lu
- Department of Biliary and Pancreatic Surgery of Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yumei Pu
- Department of Hepatology, Shanghai Skin Disease Hospital, Shanghai, China
| |
Collapse
|
26
|
Viridicatol and viridicatin isolated from a shark-gill-derived fungus Penicilliumpolonicum AP2T1 as MMP-2 and MMP-9 inhibitors in HT1080 cells by MAPKs signaling pathway and docking studies. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02358-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Hollá V, Antošová M, Karkeszová K, Mastihuba V, Polakovič M. Screening of Commercial Enzymes for Transfructosylation of Tyrosol: Effect of Process Conditions and Reaction Network. Biotechnol J 2019; 14:e1800571. [DOI: 10.1002/biot.201800571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/20/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Veronika Hollá
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food TechnologySlovak University of TechnologyRadlinského 9 812 37 Bratislava Slovakia
| | - Monika Antošová
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food TechnologySlovak University of TechnologyRadlinského 9 812 37 Bratislava Slovakia
| | - Klaudia Karkeszová
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food TechnologySlovak University of TechnologyRadlinského 9 812 37 Bratislava Slovakia
| | - Vladimír Mastihuba
- Institute of Chemistry, Slovak Academy of SciencesDúbravská cesta 9 845 38 Bratislava Slovakia
| | - Milan Polakovič
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food TechnologySlovak University of TechnologyRadlinského 9 812 37 Bratislava Slovakia
| |
Collapse
|
28
|
Anti-Invasion and Antimetastatic Effects of Porcine Recombinant NK-lysin on SMMC-7721 Human Hepatocellular Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5318729. [PMID: 31119174 PMCID: PMC6500710 DOI: 10.1155/2019/5318729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/28/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022]
Abstract
The high invasion and metastasizing abilities of hepatocellular carcinoma (HCC) are the primary reasons for the high mortality rate of patients. Therefore, identification of agents to inhibit invasion and metastasis is very important for treatment of HCC. We analyzed the anti-invasion and antimetastatic effects of porcine recombinant NK-lysin, which was designed and expressed in vitro by our research group, on SMMC-7721 hepatocellular carcinoma cells via wound-healing assays, adhesion assays, invasion assays, real-time polymerase chain reaction (PCR), and Western blot analysis. MTT assay results indicated that NK-lysin inhibited the growth of SMMC-7721 cells in a dose- and time-dependent manner. NK-lysin reduced the ability of cell migration, adhesion, and invasion. Based on gene and protein expression analysis, NK-lysin decreased β-catenin and MMP-2 expression. These results suggested that NK-lysin has anti-invasion and antimetastatic effects on hepatocellular carcinoma cells in vitro by reducing the level of the β-catenin and MMP-2.
Collapse
|
29
|
Huang L, Huang Z, Lin W, Wang L, Zhu X, Chen X, Yang S, Lv C. Salidroside suppresses the growth and invasion of human osteosarcoma cell lines MG63 and U2OS in vitro by inhibiting the JAK2/STAT3 signaling pathway. Int J Oncol 2019; 54:1969-1980. [PMID: 31081055 PMCID: PMC6521935 DOI: 10.3892/ijo.2019.4781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Previous research has reported that salidroside exerts antitumor properties on numerous types of tumor cells; however, its effect on osteosarcoma cells remains unknown. The present study aimed to investigate the effects of salidroside on the viability, apoptosis and invasion of osteosarcoma cells in vitro, and determine the underlying mechanism of action. The results of an MTT revealed that salidroside suppressed the viability of osteosarcoma cells (MG63 and U2OS cells) in a time- and concentration-dependent manner. The results of cell morphological analysis (profile observations and Hoechst 33258 staining) and the detection of apoptosis by flow cytometry further indicated that the decrease in osteosarcoma cell viability induced by salidroside was associated with cell apoptosis. Western blot analysis not only confirmed these results but also suggested that salidroside induced the apoptosis of osteosarcoma cells by activating the caspase-9-dependent apoptotic pathway. In addition, we reported that salidroside induced G0/G1 phase arrest and suppressed the invasion of osteosarcoma cells, as measured by flow cytometric cell cycle analysis and a Transwell invasion assay, respectively. Western blot analysis confirmed the aforementioned results. Furthermore, our findings demonstrated that salidroside induced the apoptosis, G0/G1 phase arrest and suppressed the invasion of osteosarcoma cells by inhibiting the janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway, as determined by western blot analysis. In summary, the findings of the present study suggested that salidroside may inhibit the progression of osteosarcoma by suppressing the growth and invasion of osteosarcoma cells. Furthermore, the investigations into the underlying mechanism demonstrated that salidroside exerted notable antitumor activity in osteosarcoma cells by inhibiting the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Lintuo Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhengxiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenjun Lin
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lu Wang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiongbai Zhu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xin Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shengwu Yang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chen Lv
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
30
|
Lu L, Liu S, Dong Q, Xin Y. Salidroside suppresses the metastasis of hepatocellular carcinoma cells by inhibiting the activation of the Notch1 signaling pathway. Mol Med Rep 2019; 19:4964-4972. [PMID: 30942419 DOI: 10.3892/mmr.2019.10115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
Salidroside (SDS) is a phenylpropanoid glycoside isolated from Rhodiola rosea L. It exhibits multiple pharmacological properties in clinical medicine and has been commonly used in traditional Chinese medicine. The present study investigated the inhibitory effects of SDS on tumor invasion and migration, and the expression of metastasis‑related genes in highly metastatic hepatocellular carcinoma (HCC) cells (MHCC97H) in vitro. The underlying mechanisms of SDS on the tumor metastasis were also explored. SDS was found to significantly reduce wound closure areas and inhibit cell migration. In addition, SDS markedly inhibited the invasion of these cells into Matrigel‑coated membranes. SDS markedly downregulated the expression of Notch1, Snail, COX‑2, MMP‑2, MMP‑9 genes and upregulated the expression of E‑cadherin in a dose‑dependent manner. Furthermore, SDS inhibited the expression of the Notch signaling target genes, Hey1, Hes1 and Hes5. On the whole, the findings of this study suggest that SDS inhibits HCC cell metastasis by modulating the activity of the Notch1 signaling pathway.
Collapse
Affiliation(s)
- Linlin Lu
- Department of Clinical Medicine, Qingdao University, Qingdao University Hospital, Qingdao, Shandong 266003, P.R. China
| | - Shousheng Liu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Quanjiang Dong
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Yongning Xin
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
31
|
Zhuang W, Yue L, Dang X, Chen F, Gong Y, Lin X, Luo Y. Rosenroot ( Rhodiola): Potential Applications in Aging-related Diseases. Aging Dis 2019; 10:134-146. [PMID: 30705774 PMCID: PMC6345333 DOI: 10.14336/ad.2018.0511] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
Aging is a progressive accumulation of changes in the body, which increases the susceptibility to diseases such as Alzheimer's disease, Parkinson's disease, cerebrovascular disease, diabetes, and cardiovascular disease. Recently, Chinese medicinal herbs have been investigated for their therapeutic efficacy in the treatment of some aging-related diseases. Rhodiola, known as 'Hongjingtian' in Chinese, has been reported to have anti-aging activity. Here, we provide a comprehensive review about its origin, chemical constituents, and effects on aging-related diseases.
Collapse
Affiliation(s)
- Wei Zhuang
- 1Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Lifeng Yue
- 2Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaofang Dang
- 3Department of Pharmacy, Hospital of T.C.M.S Shijingshan District, Beijing 100043, China
| | - Fei Chen
- 1Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yuewen Gong
- 4College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Manitoba, Canada
| | - Xiaolan Lin
- 1Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yumin Luo
- 5Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| |
Collapse
|
32
|
Li H, Yang T, Wu R, Chen T, Sun Z, Yang L. Salidroside inhibits platelet-derived growth factor-induced proliferation and migration of airway smooth muscle cells. J Cell Biochem 2018; 120:6642-6650. [PMID: 30552692 DOI: 10.1002/jcb.27960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022]
Abstract
Abnormal proliferation and migration of airway smooth muscle cells (ASMCs) have been found to be important for the airway remodeling during the pathogenesis of asthma. Salidroside a bioactive glucoside that exerts antitumor activity via inhibiting the cell proliferation and migration of cancer cells. The aim of the current study was to evaluate the effects of salidroside on the proliferation and migration of ASMCs. Our results showed that salidroside inhibited the proliferation and migration of ASMCs in response to platelet-derived growth factor (PDGF) stimulation. Salidroside markedly attenuated the PDGF-induced production of matrix metalloproteinase 2 (MMP-2) and MMP-9 in ASMCs. The levels of contractile phenotype markers including smooth muscle α-actin and calponin were reduced in response to PDGF stimulation, which was attenuated by salidroside pretreatment. Salidroside diminished the increase in the expression levels of type I collagen and fibronectin in PDGF-stimulated ASMCs. Furthermore, salidroside blocked the PDGF-induced activation of the nuclear factor-κB (NF-κB) pathway in ASMCs. The results suggested that salidroside functionally regulated the proliferation, migration, phenotype plasticity, and extracellular matrix deposition in PDGF-induced ASMCs and the NF-κB pathway might be implicated in the effects of salidroside on ASMCs induced by PDGF.
Collapse
Affiliation(s)
- Hong Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tian Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianjun Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhongmin Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lan Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Yan R, Xu H, Fu X. Salidroside protects hypoxia-induced injury by up-regulation of miR-210 in rat neural stem cells. Biomed Pharmacother 2018; 103:1490-1497. [PMID: 29864934 DOI: 10.1016/j.biopha.2018.04.184] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022] Open
Abstract
Neonatal brain hypoxia is a disease that affects the nervous system in children. Salidroside is a compound that has an anti-hypoxic effect, but the mechanism of salidroside in neonatal cerebral hypoxia is unclear. Hence, we investigated the regulatory effect and mechanism of salidroside on hypoxic-induced injury of neural stem cells (NSCs). NSCs derived from embryo 14 Sprague-Dawley rats were treated by hypoxia, followed by the treatment of 0.8 mM salidroside. The expression levels of miR-210 and BTG3 in NSCs were altered by transfection. Cell viability and apoptosis were examined by CCK-8 and flow cytometry analysis. qRT-PCR and Western blot were performed to assess the expression changes of miR-210, BTG3, apoptosis-related factors and core factors in PI3K/AKT/mTOR pathway. We found that hypoxia induced an apoptosis-dependent death in NSCs. Salidroside exerted bFGF-like effect, as it alleviated hypoxia-induced viability impairment and apoptosis in NSCs. Further studies showed that hypoxia plus salidroside elevated miR-210 expression, and the protective actions of salidroside on hypoxia-modulated death in NSCs were attenuated by miR-210 suppression, while were enhanced by miR-210 overexpression. Besides, BTG3 was negatively regulated by miR-210. Overexpression of BTG3 inhibited the activation of PI3K/AKT/mTOR signaling pathway; of contrast, suppression of BTG3 promoted it. To conclude, this study provide in vitro evidence that salidroside protected NSCs against hypoxia-induced injury by up-regulation of miR-210, which in turn inhibited the expression of BTG3 and activated PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Rui Yan
- Department of Children Rehabilitation, Women & Children's Health Care Hospital of Linyi, Linyi 276016, Shandong, China
| | - Hua Xu
- Children's Hospital of Kaifeng City, Kaifeng 475000, Henan, China
| | - Xiaoxiang Fu
- Department of Child Health Care, Women & Children's Health Care Hospital of Linyi, Linyi 276016, Shandong, China.
| |
Collapse
|
34
|
Qi Z, Tang T, Sheng L, Ma Y, Liu Y, Yan L, Qi S, Ling L, Zhang Y. Salidroside inhibits the proliferation and migration of gastric cancer cells via suppression of Src‑associated signaling pathway activation and heat shock protein 70 expression. Mol Med Rep 2018; 18:147-156. [PMID: 29749547 PMCID: PMC6059663 DOI: 10.3892/mmr.2018.8958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/09/2018] [Indexed: 12/02/2022] Open
Abstract
Salidroside, an active ingredient extracted from the Rhodiola rosea plant, has potential anti-tumor effects. However, the effects of salidroside on gastric cancer cell proliferation and migration remain unclear. In the present study, the inhibitory effects of salidroside on gastric cancer cell proliferation, migration and invasion and the molecular mechanisms underlying these effects were investigated. The human gastric cancer cell line, BGC-823, was treated with different concentrations of salidroside (200, 400 and 600 µg/ml). Cell proliferation was determined with Cell Counting Kit-8 and colony formation assays, and the migration and invasion of cells was detected by a wound healing and Transwell assay, respectively. Western blotting was performed to detect the levels of N-cadherin, E-cadherin and heat shock protein (HSP)70. In addition, the phosphorylation of proto-oncogene tyrosine-protein kinase Src (Src), protein kinase B (Akt), mitogen activated protein kinase 1 (ERK), signal transducer and activator of transcription (STAT)3 and focal adhesion kinase 1 (FAK) was examined by western blotting. The levels of matrix metalloproteinase (MMP)-2 and MMP-9 were determined by enzyme-linked immunosorbent assay kits. Levels of reactive oxygen species (ROS) in cells were measured by a fluorescence plate reader with dichloro-dihydro-fluorescein diacetate. The results indicated that salidroside significantly suppressed cell proliferation and colony formation, inhibited cell migration and invasion, increased E-cadherin expression and decreased N-cadherin, MMP-2 and MMP-9 expression. Furthermore, salidroside suppressed ROS production and subsequently reduced the phosphorylation of Src, Akt, ERK and FAK. Salidroside also inhibited HSP70 expression, and HSP70 overexpression reversed the inhibitory effects of salidroside on BGC-823 cell proliferation, migration and invasion. In conclusion, the present study revealed that salidroside inhibited the proliferation, migration and invasion of BGC-823 cells by downregulating ROS-mediated Src-associated signaling pathway activation and HSP70 expression.
Collapse
Affiliation(s)
- Zhilin Qi
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Tuo Tang
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Lili Sheng
- Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yunfei Ma
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yinhua Liu
- Department of Pathology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Liang Yan
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Shimei Qi
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Liefeng Ling
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yao Zhang
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
35
|
Yu G, Li N, Zhao Y, Wang W, Feng XL. Salidroside induces apoptosis in human ovarian cancer SKOV3 and A2780 cells through the p53 signaling pathway. Oncol Lett 2018; 15:6513-6518. [PMID: 29616120 DOI: 10.3892/ol.2018.8090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Salidroside is one of the most potent compounds extracted from the plant Rhodiola rosea, and its cardiovascular protective effects have been studied extensively. However, the role of salidroside in human ovarian carcinoma remains unknown. The aim of the current study was to investigate the effects of salidroside on the proliferation and apoptosis of SKOV3 and A2780 cells using MTT assay and acridine orange/ethidium bromide staining. Salidroside activated caspase-3 and upregulated the levels of apoptosis-inducing factor, Bcl-2-associated X and Bcl-2-associated death promoter (Bad) proteins. Furthermore, salidroside downregulated the levels of Bcl-2, p-Bad and X-linked inhibitor of apoptosis proteins. Salidroside activated the caspase-dependent pathway in SKOV3 and A2780 cells, upregulating p53, p21Cip1/Waf1 and p16INK4a. These results suggest that the p53/p21Cip1/Waf1/p16INK4a pathway may serve a key function in salidroside-mediated effects on SKOV3 and A2780 cells. The current findings indicate that salidroside may be a promising novel drug candidate for ovarian cancer therapy.
Collapse
Affiliation(s)
- Ge Yu
- Department of Gynecology of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Na Li
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Yan Zhao
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Wei Wang
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Xiao-Ling Feng
- Department of Gynecology of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China.,Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
36
|
Karnišová Potocká E, Mastihubová M, Mastihuba V. Enzymatic synthesis of tyrosol and hydroxytyrosol β-d-fructofuranosides. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2017.1423060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Vladimír Mastihuba
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
37
|
Alaseem A, Alhazzani K, Dondapati P, Alobid S, Bishayee A, Rathinavelu A. Matrix Metalloproteinases: A challenging paradigm of cancer management. Semin Cancer Biol 2017; 56:100-115. [PMID: 29155240 DOI: 10.1016/j.semcancer.2017.11.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are members of zinc-dependent endopeptidases implicated in a variety of physiological and pathological processes. Over the decades, MMPs have been studied for their role in cancer progression, migration, and metastasis. As a result, accumulated evidence of MMPs incriminating role has made them an attractive therapeutic target. Early generations of broad-spectrum MMP inhibitors exhibited potent inhibitory activities, which subsequently led to clinical trials. Unexpectedly, these trials failed to meet the desired goals, mainly due to the lack of efficacy, poor oral bioavailability, and toxicity. In this review, we discuss the regulatory role of MMPs in cancer progression, current strategies in targeting MMPs for cancer treatment including prodrug design and tumor imaging, and therapeutic value of MMPs as biomarkers in breast, lung, and prostate cancers.
Collapse
Affiliation(s)
- Ali Alaseem
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Priya Dondapati
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Saad Alobid
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Appu Rathinavelu
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
38
|
Cai H, Chen X, Zhang J, Wang J. 18β-glycyrrhetinic acid inhibits migration and invasion of human gastric cancer cells via the ROS/PKC-α/ERK pathway. J Nat Med 2017; 72:252-259. [DOI: 10.1007/s11418-017-1145-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
|
39
|
Rhodiola rosea L.: an herb with anti-stress, anti-aging, and immunostimulating properties for cancer chemoprevention. ACTA ACUST UNITED AC 2017; 3:384-395. [PMID: 30393593 DOI: 10.1007/s40495-017-0106-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose of review Rhodiola rosea extracts have been used as a dietary supplement in healthy populations, including athletes, to non-specifically enhance the natural resistance of the body to both physical and behavior stresses for fighting fatigue and depression. We summarize the information with respect to the new pharmacological activities of Rhodiola rosea extracts and its underlying molecular mechanisms in this review article. Recent findings In addition to its multiplex stress-protective activity, Rhodiola rosea extracts have recently demonstrated its anti-aging, anti-inflammation, immunostimulating, DNA repair and anti-cancer effects in different model systems. Molecular mechanisms of Rhodiola rosea extracts's action have been studied mainly along with one of its bioactive compounds, salidroside. Both Rhodiola rosea extracts and salidroside have contrast molecular mechanisms on cancer and normal physiological functions. For cancer, Rhodiola rosea extracts and salidroside inhibit the mTOR pathway and reduce angiogenesis through down-regulation of the expression of HIF-1α/HIF-2α. For normal physiological functions, Rhodiola rosea extracts and salidroside activate the mTOR pathway, stimulate paracrine function and promote neovascularization by inhibiting PHD3 and stabilizing HIF-1α proteins in skeletal muscles. In contrast to many natural compounds, salidroside is water-soluble and highly bioavailable via oral administration and concentrated in urine by kidney excretion. Summary Rhodiola rosea extracts and salidroside can impose cellular and systemic benefits similar to the effect of positive lifestyle interventions to normal physiological functions and for anti-cancer. The unique pharmacological properties of Rhodiola rosea extracts or salidroside deserve further investigation for cancer chemoprevention, in particular for human urinary bladder cancer.
Collapse
|
40
|
Chen CH, Chang TC, Chen SY, Hsu SJ, Huang HW, Lee CK. Chemical composition and antioxidant, bactericidal, and matrix metalloproteinase inhibition activity of food-related plant. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Bassanini I, Krejzová J, Panzeri W, Monti D, Křen V, Riva S. A Sustainable One-Pot, Two-Enzyme Synthesis of Naturally Occurring Arylalkyl Glucosides. CHEMSUSCHEM 2017; 10:2040-2045. [PMID: 28186391 DOI: 10.1002/cssc.201700136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/07/2017] [Indexed: 06/06/2023]
Abstract
A sustainable, convenient, scalable, one-pot, two-enzyme method for the glucosylation of arylalkyl alcohols was developed. The reaction scheme is based on a transrutinosylation catalyzed by a rutinosidase from A. niger using the cheap commercially available natural flavonoid rutin as glycosyl donor, followed by selective "trimming" of the rutinoside unit catalyzed by a rhamnosidase from A. terreus. The process was validated with the syntheses of several natural bioactive glucosides, which could be isolated in up to 75 % yield without silica-gel chromatography.
Collapse
Affiliation(s)
- Ivan Bassanini
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, Milano, 20131, Italy
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy
| | - Jana Krejzová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Science, Vídeňská 1083, CZ, 142 20, Prague, Czech Republic
| | - Walter Panzeri
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, Milano, 20131, Italy
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica 'Giulio Natta', Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, Milano, 20131, Italy
| | - Vladimir Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Science, Vídeňská 1083, CZ, 142 20, Prague, Czech Republic
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, Milano, 20131, Italy
| |
Collapse
|
42
|
Fan XJ, Wang Y, Wang L, Zhu M. Salidroside induces apoptosis and autophagy in human colorectal cancer cells through inhibition of PI3K/Akt/mTOR pathway. Oncol Rep 2016; 36:3559-3567. [PMID: 27748934 DOI: 10.3892/or.2016.5138] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/16/2016] [Indexed: 11/06/2022] Open
Abstract
The role of salidroside in colon cancer remains unknown. Here we show that salidroside, a phenylpropanoid glycoside extracted from Rhodiola rosea, exhibited potent anti-proliferative properties in human colorectal cancer cells via inducing apoptosis and autophagy. We ascertained that salidroside exerts an inhibitory effect on the proliferation of human colorectal cancer cells in a dose-dependent manner. In addition, salidroside induced cell apoptosis, accompanied by an increase of chromatin condensation and nuclear fragmentation, and a decrease of Bcl-2/Bax protein expression ratio. We also found that salidroside induced autophagy, evidenced by increased LC3+ autophagic vacuoles, positive acridine orange-stained cells, enhanced conversion of LC3-I to LC3-II, and elevation of Beclin-1. Treatment with autophagy-specific inhibitors [3-methyladenine (3-MA) and bafilomycin A1 (BA)] enhanced salidroside-induced apoptosis, indicating that salidroside-mediated autophagy may protect HT29 cells from undergoing apoptotic cell death. Additionally, salidroside decreased the phosphorylation of PI3K, Akt and mTOR. Treatment with PI3K inhibitor LY294002 augmented the effects of salidroside on the expression of Akt and mTOR. These findings indicate that salidroside could suppress the PI3K/Akt/mTOR signaling pathways. This study may provide a rationale for future clinical application using salidroside as a chemotherapeutic agent for human colorectal cancer.
Collapse
Affiliation(s)
- Xiang-Jun Fan
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yao Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Lei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Mingyan Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
43
|
Lv C, Huang Y, Liu ZX, Yu D, Bai ZM. Salidroside reduces renal cell carcinoma proliferation by inhibiting JAK2/STAT3 signaling. Cancer Biomark 2016; 17:41-7. [PMID: 27314291 DOI: 10.3233/cbm-160615] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Cai Lv
- Department of Urology, Haikou Municipal Hospital, Haikou, Hainan, China
- Department of Urology, Haikou Municipal Hospital, Haikou, Hainan, China
| | - Yuan Huang
- Department of Neurology, Haikou Municipal Hospital, Haikou, Hainan, China
- Department of Urology, Haikou Municipal Hospital, Haikou, Hainan, China
| | - Zhen-Xiang Liu
- Department of Urology, Haikou Municipal Hospital, Haikou, Hainan, China
| | - Dan Yu
- Department of Neurology, Haikou Municipal Hospital, Haikou, Hainan, China
| | - Zhi-Ming Bai
- Department of Urology, Haikou Municipal Hospital, Haikou, Hainan, China
| |
Collapse
|
44
|
Huang J, Zheng Y, Wu W, Xie T, Yao H, Pang X, Sun F, Ouyang L, Wang J. CEMTDD: The database for elucidating the relationships among herbs, compounds, targets and related diseases for Chinese ethnic minority traditional drugs. Oncotarget 2016; 6:17675-84. [PMID: 25970778 PMCID: PMC4627337 DOI: 10.18632/oncotarget.3789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/06/2015] [Indexed: 02/05/2023] Open
Abstract
China has different ethnic minorities that establish their own medical systems and practice experience for thousand years, thereafter named Chinese Ethnic Minority Traditional Drugs (CEMTDs) (http://www.cemtdd.com/index.html). Since many compounds from CEMTDs have been reported to perturb human's dysfunction network and restore human normal physiological conditions, the relationships amongst a series of compounds from specific herbs, their targets and relevant diseases have become our main focus in CEMTD modernization. Herein, we have constructed the first Chinese Ethnic Minority Traditional Drug Database (CEMTDD) mainly from Xinjiang Uygur Autonomous Region (XUAR), retrieving CEMTD-related information from different resources. CEMTDD contains about 621 herbs, 4, 060 compounds, 2, 163 targets and 210 diseases, among which most of herbs can be applied into gerontology therapy including inflammation, cardiovascular disease and neurodegenerative disease. Gerontology is highly occurred in XUAR, and has abundant experience in treating such diseases, which may benefit for developing a new gerontology therapeutic strategy. CEMTDD displays networks for intricate relationships between CEMTDs and treated diseases, as well as the interrelations between active compounds and action targets, which may shed new light on the combination therapy of CEMTDs and further understanding of their herb molecular mechanisms for better modernized utilizations of CEMTDs, especially in gerontology.
Collapse
Affiliation(s)
- Jian Huang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yaxin Zheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenxi Wu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Tao Xie
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Yao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaobo Pang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Fuzhou Sun
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhui Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,School of Pharmacy, Shihezi University, Shihezi, China
| |
Collapse
|
45
|
Mastihubová M, Poláková M. A selective and mild glycosylation method of natural phenolic alcohols. Beilstein J Org Chem 2016; 12:524-30. [PMID: 27340444 PMCID: PMC4901888 DOI: 10.3762/bjoc.12.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Several bioactive natural p-hydroxyphenylalkyl β-D-glucopyranosides, such as vanillyl β-D-glucopyranoside, salidroside and isoconiferin, and their glycosyl analogues were prepared by a simple reaction sequence. The highly efficient synthetic approach was achieved by utilizing acetylated glycosyl bromides as well as aromatic moieties and mild glycosylation promoters. The aglycones, p-O-acetylated arylalkyl alcohols, were prepared by the reduction of the corresponding acetylated aldehydes or acids. Various stereoselective 1,2-trans-O-glycosylation methods were studied, including the DDQ-iodine or ZnO-ZnCl2 catalyst combination. Among them, ZnO-iodine has been identified as a new glycosylation promoter and successfully applied to the stereoselective glycoside synthesis. The final products were obtained by conventional Zemplén deacetylation.
Collapse
Affiliation(s)
- Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Monika Poláková
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| |
Collapse
|
46
|
Qi YJ, Cui S, Lu DX, Yang YZ, Luo Y, Ma L, Ma Y, Wuren T, Chang R, Qi L, Ben BJ, Han J, Ge RL. Effects of the aqueous extract of a Tibetan herb, Rhodiola algida var. tangutica on proliferation and HIF-1α, HIF-2α expression in MCF-7 cells under hypoxic condition in vitro. Cancer Cell Int 2015; 15:81. [PMID: 26279639 PMCID: PMC4536750 DOI: 10.1186/s12935-015-0225-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/11/2015] [Indexed: 11/13/2022] Open
Abstract
Ethnopharmacological relevance Rhodiola algida var. tangutica is a traditional Tibetan herb. Its root and rhizome have been successfully used as an effective clinical remedy for the prevention and treatment of cancer and high-altitude sickness. This study aimed to investigate the effect of Rhodiola algida var. tangutica on hypoxic MCF-7 breast cancer cells and the underlying mechanisms. Materials and methods The antiproliferative effects of R. algida on MCF-7 breast cancer cells were compared in vitro under hypoxic and normal conditions by using MTT analysis. The influence of R. algida on cancer cell apoptosis was determined by flow cytometry. The expression levels of hypoxia-inducible factor (HIF)-1α and HIF-2α were evaluated by western blot analysis. Results R. algida inhibited the proliferation of MCF-7 breast cancer cells in a dose- and time-dependent manner. The results of flow cytometry indicated that the antiproliferative effect of R. algida was mediated by apoptosis induction. Pretreatment with R. algida significantly suppressed the hypoxia-induced proliferation and expression of HIF-1α and HIF-2α in MCF-7 breast cancer cells. Conclusions R. algida might exert an anti-carcinogenic effect on MCF-7 breast cancer cells by decreasing the protein levels of HIF-1α and HIF-2α, which are overexpressed under hypoxic conditions. This effect might be elicited by inhibiting the hypoxia-induced proliferation of MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Yu-Juan Qi
- Qinghai Province people's Hospital, Xining, 810007 Qinghai Peoples' Republic of China ; Research Center for High Altitude Medicine in Qinghai University, 16 Kunlun Road, Xining, 810001 Qinghai Peoples' Republic of China
| | - Sen Cui
- Qinghai University Affiliated Hospital, Xining, 810001 Qinghai Peoples' Republic of China
| | - Dian-Xiang Lu
- Research Center for High Altitude Medicine in Qinghai University, 16 Kunlun Road, Xining, 810001 Qinghai Peoples' Republic of China
| | - Ying-Zhong Yang
- Research Center for High Altitude Medicine in Qinghai University, 16 Kunlun Road, Xining, 810001 Qinghai Peoples' Republic of China
| | - Yushuang Luo
- Research Center for High Altitude Medicine in Qinghai University, 16 Kunlun Road, Xining, 810001 Qinghai Peoples' Republic of China ; Qinghai University Affiliated Hospital, Xining, 810001 Qinghai Peoples' Republic of China
| | - Lan Ma
- Research Center for High Altitude Medicine in Qinghai University, 16 Kunlun Road, Xining, 810001 Qinghai Peoples' Republic of China
| | - Yan Ma
- Research Center for High Altitude Medicine in Qinghai University, 16 Kunlun Road, Xining, 810001 Qinghai Peoples' Republic of China
| | - Tana Wuren
- Research Center for High Altitude Medicine in Qinghai University, 16 Kunlun Road, Xining, 810001 Qinghai Peoples' Republic of China
| | - Rong Chang
- Qinghai Province people's Hospital, Xining, 810007 Qinghai Peoples' Republic of China
| | - Lei Qi
- Research Center for High Altitude Medicine in Qinghai University, 16 Kunlun Road, Xining, 810001 Qinghai Peoples' Republic of China
| | - Ba-Ji Ben
- Qinghai Province people's Hospital, Xining, 810007 Qinghai Peoples' Republic of China
| | - Jun Han
- Qinghai Province people's Hospital, Xining, 810007 Qinghai Peoples' Republic of China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine in Qinghai University, 16 Kunlun Road, Xining, 810001 Qinghai Peoples' Republic of China
| |
Collapse
|
47
|
Bai C, Yang M, Fan Z, Li S, Gao T, Fang Z. Associations of chemo- and radio-resistant phenotypes with the gap junction, adhesion and extracellular matrix in a three-dimensional culture model of soft sarcoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:58. [PMID: 26055407 PMCID: PMC4467058 DOI: 10.1186/s13046-015-0175-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/21/2015] [Indexed: 11/23/2022]
Abstract
Background Three-dimensional (3D) culture models are considered to recapitulate the cell microenvironment in solid tumors, including the extracellular matrix (ECM), cell-cell interactions, and signal transduction. These functions are highly correlated with cellular behaviors and contribute to resistances against chemo- and radio-therapies. However, the biochemical effects and mechanisms remain unknown in soft sarcoma. Therefore, we developed an in vitro 3D model of sarcoma to analyze the reasons of the chemo- and radio-resistance in therapies. Methods Four soft sarcoma cell lines, HT1080, RD, SW872, and human osteosarcoma cell line 1 (HOSS1), a cell line established from a patient-derived xenograft, were applied to 3D culture and treated with growth factors in methylcellulose-containing medium. Spheroids were examined morphologically and by western blotting, RT-qPCR, and immunofluorescence staining to analyze cell adhesion, gap junctions, ECM genes, and related factors. Proliferation and colony formation assays were performed to assess chemo- and radio-resistances between 3D and two-dimensional (2D) cell cultures. Annexin V and Propidium Iodide staining was used to detect early apoptotic sarcoma cells treated with Doxorubicin, Gemcitabine, and Docetaxel in the 3D model. Results The four soft sarcoma cell lines formed spheres in vitro by culture in modified condition medium. Compared with 2D cell culture, expression of ECM genes and proteins, including COL1A1, LOX, SED1, FN1, and LAMA4, was significantly increased in 3D culture. Analysis of cadherin and gap junction molecules showed significant changes in the gene and protein expression profiles under 3D conditions. These changes affected cell–cell communication and were mainly associated with biological processes such as cell proliferation and apoptosis related to chemo- and radio-resistances. Conclusions Our findings revealed significant differences between 3D and 2D cell culture systems, and indicated that cellular responsiveness to external stress such as radiation and chemotherapeutics is influenced by differential expression of genes and proteins involved in regulation of the ECM, cell adhesion, and gap junction signaling. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0175-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chujie Bai
- Department Bone and Soft Tissue Tumor, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Min Yang
- Department of Gerontology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Zhengfu Fan
- Department Bone and Soft Tissue Tumor, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Shu Li
- Department Bone and Soft Tissue Tumor, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Tian Gao
- Department Bone and Soft Tissue Tumor, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Zhiwei Fang
- Department Bone and Soft Tissue Tumor, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| |
Collapse
|
48
|
Luo M, Peng H, Deng Z, Yin Z, Zhao Q, Xiong H. Preparation and Characterization of Genipin-Crosslinked Chitosan Microspheres for the Sustained Release of Salidroside. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2015. [DOI: 10.1515/ijfe-2014-0314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Chitosan microspheres (CsMs) that encapsulate salidroside (Sal) were prepared by the emulsion crosslinking method with naturally occurring genipin (Gp) and then examined for their in vitro release. Sal-loaded CsMs (Sal-CsMs) showed nearly spherical and smooth surfaces with internal voids. The particle size of Sal-CsMs ranged within 0.56–5.01 μm, and their encapsulation efficiency and loading capacity were beyond 77.58% and 23.29%, respectively. The stability of Sal improved after entrapment into the CsMs. The release rate of Sal from CsMs was initially rapid, followed by sustained release. The release behavior depended on the pH of the release medium. The main release mechanisms underlying the release procedure were anomalous behavior and Fickian diffusion. These results indicated that CsMs with a novel crosslinker of Gp was a potential carrier system for producing functional foods containing Sal.
Collapse
|
49
|
Pomari E, Stefanon B, Colitti M. Effects of Two Different Rhodiola rosea Extracts on Primary Human Visceral Adipocytes. Molecules 2015; 20:8409-28. [PMID: 25970041 PMCID: PMC6272273 DOI: 10.3390/molecules20058409] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Rhodiola rosea (Rro) has been reported to have various pharmacological properties, including anti-fatigue, anti-stress and anti-inflammatory activity. It is also known to improve glucose and lipid metabolism, but the effects of Rhodiola rosea on adipocyte differentiation and metabolism are not still elucidated. In this study the anti-adipogenic and lipolytic activity of two extracts of Rhodiola rosea, containing 3% salidroside (RS) or 1% salidroside and 3% rosavines (RR) on primary human visceral adipocytes was investigated. Pre-adipocytes were analyzed after 10 and 20 days of treatment during differentiation and after 7 days of treatment when they reached mature shape. The RS extract significantly induced higher apoptosis and lipolysis in comparison to control cells and to RR extract. In contrast, RR extract significantly reduced triglyceride incorporation during maturation. Differentiation of pre-adipocytes in the presence of RS and RR extracts showed a significant decrease in expression of genes involved in adipocyte function such as SLC2A4 and the adipogenic factor FGF2 and significant increase in expression of genes involved in inhibition of adipogenesis, such as GATA3, WNT3A, WNT10B. Furthermore RR extract, in contrast to RS, significantly down-regulates PPARG, the master regulator of adipogenesis and FABP4. These data support the lipolytic and anti-adipogenetic activity of two different commercial extracts of Rhodiola rosea in primary human visceral pre-adipocytes during differentiation.
Collapse
Affiliation(s)
- Elena Pomari
- Department of Agricultural and Environmental Sciences, University of Udine, via delle Scienze, 206, 33100 Udine, Italy.
| | - Bruno Stefanon
- Department of Agricultural and Environmental Sciences, University of Udine, via delle Scienze, 206, 33100 Udine, Italy.
| | - Monica Colitti
- Department of Agricultural and Environmental Sciences, University of Udine, via delle Scienze, 206, 33100 Udine, Italy.
| |
Collapse
|
50
|
Yokoyama NN, Denmon A, Uchio EM, Jordan M, Mercola D, Zi X. When Anti-Aging Studies Meet Cancer Chemoprevention: Can Anti-Aging Agent Kill Two Birds with One Blow? ACTA ACUST UNITED AC 2015; 1:420-433. [PMID: 26756023 DOI: 10.1007/s40495-015-0039-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent evidence has strongly supported that the rate of aging is controlled, at least to some extent, by evolutionarily conserved nutrient sensing pathways (e.g. the insulin/IGF-1-signaling, mTOR, AMPK, and sirtuins) from worms to humans. These pathways are also commonly involved in carcinogenesis and cancer metabolism. Agents (e.g. metformin, resveratrol, and Rhodiola) that target these nutrient sensing pathways often have both anti-aging and anti-cancer efficacy. These agents not only reprogram energy metabolism of malignant cells, but also target normal postmitotic cells by suppressing their conversion into senescent cells, which confers systematic metabolism benefits. These agents are fundamentally different from chemotherapy (e.g. paclitaxel and doxorubicin) or radiation therapy that causes molecular damage (e.g. DNA and protein damages) and thereby no selection resistance may be expected. By reviewing molecular mechanisms of action, epidemiological evidence, experimental data in tumor models, and early clinical study results, this review provides information supporting the promising use of agents with both anti-aging and anti-cancer efficacy for cancer chemoprevention.
Collapse
Affiliation(s)
- Noriko N Yokoyama
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Andria Denmon
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Edward M Uchio
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Mark Jordan
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Dan Mercola
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Orange, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA; Department of Pharmacology, University of California, Irvine, Orange, CA 92868, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
| |
Collapse
|