1
|
Chen Y, Wang X, Ye D, Yang Z, Shen Q, Liu X, Chen C, Chen X. Research progress of sophoridine's pharmacological activities and its molecular mechanism: an updated review. Front Pharmacol 2023; 14:1126636. [PMID: 37397472 PMCID: PMC10311568 DOI: 10.3389/fphar.2023.1126636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Sophoridine, the major active constituent of Sophora alopecuroides and its roots, is a bioactive alkaloid with a wide range of pharmacological effects, including antitumor, anti-inflammatory, antiviral, antibacterial, analgesic, cardioprotective, and immunoprotective activities. Sophora flavescens Aiton is a traditional Chinese medicine that is bitter and cold. Additionally, it also exhibits the effects of clearing heat, eliminating dampness, and expelling insects. Aims of the study: To summarize the pharmacological research and associated mechanisms of sophoridine, we compiled this review by combining a huge body of relevant literature. Materials and methods: The information related to this article was systematically collected from the scientific literature databases including PubMed, Google Scholar, Web of Science, Science Direct, Springer, China National Knowledge Infrastructure, published books, PhD and MS dissertations. Results: Its antitumor activity is particularly remarkable, as it can inhibit cancer cell proliferation, invasion, and metastasis while inducing cell cycle arrest and apoptosis. Additionally, sophoridine also holds therapeutic potential for myocardial ischemia, osteoporosis, arrhythmias, and neurological disorders, primarily through the suppression of related inflammatory factors and cell apoptosis. However, sophoridine has also exhibited adverse effects such as hepatotoxicity and neurotoxicity. The antidisease effect and mechanism of sophoridine are diverse, so it has high research value. Conclusion: As an important traditional Chinese medicine alkaloid, modern pharmacological studies have demonstrated that sophoridine has prominent bioactivities, especially on anti-tumor anti-inflammation activities, and cardiovascular system protection. These activities provide prospects for novel drug development for cancer and some chronic diseases. Nevertheless, the understanding of the multitarget network pharmacology, long-term in vivo toxicity, and clinical efficacy of sophoridine require further detailed research.
Collapse
Affiliation(s)
- Yiwei Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Xiang Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongmei Ye
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Zhousheng Yang
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Qingrong Shen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Xiaoxia Liu
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Chunxia Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Xiaoyu Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| |
Collapse
|
2
|
Multifaceted Pharmacological Potentials of Curcumin, Genistein, and Tanshinone IIA through Proteomic Approaches: An In-Depth Review. Cancers (Basel) 2022; 15:cancers15010249. [PMID: 36612248 PMCID: PMC9818426 DOI: 10.3390/cancers15010249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023] Open
Abstract
Phytochemicals possess various intriguing pharmacological properties against diverse pathological conditions. Extensive studies are on-going to understand the structural/functional properties of phytochemicals as well as the molecular mechanisms of their therapeutic function against various disease conditions. Phytochemicals such as curcumin (Cur), genistein (Gen), and tanshinone-IIA (Tan IIA) have multifaceted therapeutic potentials and various efforts are in progress to understand the molecular dynamics of their function with different tools and technologies. Cur is an active lipophilic polyphenol with pleiotropic function, and it has been shown to possess various intriguing properties including antioxidant, anti-inflammatory, anti-microbial, anticancer, and anti-genotoxic properties besides others beneficial properties. Similarly, Gen (an isoflavone) exhibits a wide range of vital functions including antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-angiogenic activities etc. In addition, Tan IIA, a lipophilic compound, possesses antioxidant, anti-angiogenic, anti-inflammatory, anticancer activities, and so on. Over the last few decades, the field of proteomics has garnered great momentum mainly attributed to the recent advancement in mass spectrometry (MS) techniques. It is envisaged that the proteomics technology has considerably contributed to the biomedical research endeavors lately. Interestingly, they have also been explored as a reliable approach to understand the molecular intricacies related to phytochemical-based therapeutic interventions. The present review provides an overview of the proteomics studies performed to unravel the underlying molecular intricacies of various phytochemicals such as Cur, Gen, and Tan IIA. This in-depth study will help the researchers in better understanding of the pharmacological potential of the phytochemicals at the proteomics level. Certainly, this review will be highly instrumental in catalyzing the translational shift from phytochemical-based biomedical research to clinical practice in the near future.
Collapse
|
3
|
Pouliquen DL, Malloci M, Boissard A, Henry C, Guette C. Proteomes of Residual Tumors in Curcumin-Treated Rats Reveal Changes in Microenvironment/Malignant Cell Crosstalk in a Highly Invasive Model of Mesothelioma. Int J Mol Sci 2022; 23:ijms232213732. [PMID: 36430209 PMCID: PMC9691155 DOI: 10.3390/ijms232213732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Curcumin exhibits both immunomodulatory properties and anticarcinogenic effects which have been investigated in different experimental tumor models and cancer types. Its interactions with multiple signaling pathways have been documented through proteomic studies on malignant cells in culture; however, in vivo approaches are scarce. In this study, we used a rat model of highly invasive peritoneal mesothelioma to analyze the residual tumor proteomes of curcumin-treated rats in comparison with untreated tumor-bearing rats (G1) and provide insights into the modifications in the tumor microenvironment/malignant cell crosstalk. The cross-comparing analyses of the histological sections of residual tumors from two groups of rats given curcumin twice on days 21 and 26 after the tumor challenge (G2) or four times on days 7, 9, 11 and 14 (G3), in comparison with G1, identified a common increase in caveolin-1 which linked with significant abundance changes affecting 115 other proteins. The comparison of G3 vs. G2 revealed additional features for 65 main proteins, including an increase in histidine-rich glycoprotein and highly significant abundance changes for 22 other proteins regulating the tumor microenvironment, linked with the presence of numerous activated T cells. These results highlight new features in the multiple actions of curcumin on tumor microenvironment components and cancer cell invasiveness.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Université d’Angers, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
- Correspondence: ; Tel.: +33-2-41352854
| | - Marine Malloci
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, F-44000 Nantes, France
| | - Alice Boissard
- Université d’Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Cécile Henry
- Université d’Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Catherine Guette
- Université d’Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| |
Collapse
|
4
|
Sivani BM, Azzeh M, Patnaik R, Pantea Stoian A, Rizzo M, Banerjee Y. Reconnoitering the Therapeutic Role of Curcumin in Disease Prevention and Treatment: Lessons Learnt and Future Directions. Metabolites 2022; 12:metabo12070639. [PMID: 35888763 PMCID: PMC9320502 DOI: 10.3390/metabo12070639] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Turmeric is a plant with a very long history of medicinal use across different cultures. Curcumin is the active part of turmeric, which has exhibited various beneficial physiological and pharmacological effects. This review aims to critically appraise the corpus of literature associated with the above pharmacological properties of curcumin, with a specific focus on antioxidant, anti-inflammatory, anticancer and antimicrobial properties. We have also reviewed the different extraction strategies currently in practice, highlighting the strengths and drawbacks of each technique. Further, our review also summarizes the clinical trials that have been conducted with curcumin, which will allow the reader to get a quick insight into the disease/patient population of interest with the outcome that was investigated. Lastly, we have also highlighted the research areas that need to be further scrutinized to better grasp curcumin’s beneficial physiological and medicinal properties, which can then be translated to facilitate the design of better bioactive therapeutic leads.
Collapse
Affiliation(s)
- Bala Mohan Sivani
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Mahmoud Azzeh
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Rajashree Patnaik
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, 90128 Palermo, Italy;
| | - Yajnavalka Banerjee
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
- Correspondence: or ; Tel.: +971-527-873-636
| |
Collapse
|
5
|
Chen F, Pan Y, Xu J, Liu B, Song H. Research progress of matrine's anticancer activity and its molecular mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114914. [PMID: 34919987 DOI: 10.1016/j.jep.2021.114914] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND and ethnopharmacological relevance: Matrine (MT), a type of alkaloid extracted from the Sophora family of traditional Chinese medicine, has been documented to exert a variety of pharmacological effects, including anti-inflammatory, anti-allergic, anti-viral, anti-fibrosis, and cardiovascular protection. Sophora flavescens Aiton is a traditional Chinese medicine that is bitter and cold. Additionally, it also exhibits the effects of clearing heat, eliminating dampness, expelling insects, and promoting urination. Malignant tumors are the most important medical issue and are also the second leading cause of death worldwide. Numerous natural substances have recently been revealed to have potent anticancer properties, and several have been used in clinical trials. AIMS OF THE STUDY To summarize the antitumor effects and associated mechanisms of MT, we compiled this review by combining a huge body of relevant literature and our previous research. MATERIALS AND METHODS As demonstrated, we grouped the pharmacological effects of MT via a PubMed search. Further, we described the mechanism and current pharmacological research on MT's antitumor activity. RESULTS Additionally, extensive research has demonstrated that MT possesses superior antitumor properties, including accelerating cell apoptosis, inhibiting tumor cell growth and proliferation, inducing cell cycle arrest, inhibiting cancer metastasis and invasion, inhibiting angiogenesis, inducing autophagy, reversing multidrug resistance and inhibiting cell differentiation, thus indicating its significant potential for cancer treatment and prognosis. CONCLUSION This article summarizes current advances in research on the anticancer properties of MT and its molecular mechanism, to provide references for future research.
Collapse
Affiliation(s)
- Fengyuan Chen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Yunxia Pan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing Xu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Bin Liu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| |
Collapse
|
6
|
Zhang W, Cui N, Ye J, Yang B, Sun Y, Kuang H. Curcumin's prevention of inflammation-driven early gastric cancer and its molecular mechanism. CHINESE HERBAL MEDICINES 2022; 14:244-253. [PMID: 36117672 PMCID: PMC9476644 DOI: 10.1016/j.chmed.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/29/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
|
7
|
Dai R, Liu M, Xiang X, Li Y, Xi Z, Xu H. OMICS Applications for Medicinal Plants in Gastrointestinal Cancers: Current Advancements and Future Perspectives. Front Pharmacol 2022; 13:842203. [PMID: 35185591 PMCID: PMC8855055 DOI: 10.3389/fphar.2022.842203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal cancers refer to a group of deadly malignancies of the gastrointestinal tract and organs of the digestive system. Over the past decades, considerable amounts of medicinal plants have exhibited potent anticancer effects on different types of gastrointestinal cancers. OMICS, systems biology approaches covering genomics, transcriptomics, proteomics and metabolomics, are broadly applied to comprehensively reflect the molecular profiles in mechanistic studies of medicinal plants. Single- and multi-OMICS approaches facilitate the unravelling of signalling interaction networks and key molecular targets of medicinal plants with anti-gastrointestinal cancer potential. Hence, this review summarizes the applications of various OMICS and advanced bioinformatics approaches in examining therapeutic targets, signalling pathways, and the tumour microenvironment in response to anticancer medicinal plants. Advances and prospects in this field are also discussed.
Collapse
Affiliation(s)
- Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Xincheng Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
- *Correspondence: Zhichao Xi, ; Hongxi Xu,
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhichao Xi, ; Hongxi Xu,
| |
Collapse
|
8
|
Chen W, Zhou Y, Wu G, Sun P. CCNI2 promotes the progression of human gastric cancer through HDGF. Cancer Cell Int 2021; 21:661. [PMID: 34895232 PMCID: PMC8665640 DOI: 10.1186/s12935-021-02352-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastric cancer is a highly aggressive malignant tumor with heterogeneity and is still a global health problem. The present study aimed to investigate the role of Cyclin I-like (CCNI2) in the regulation of phenotype and tumorigenesis, as well as its underlying mechanisms. METHOD The expression profile of CCNI2 in gastric cancer was determined based on The Cancer Genome Atlas (TCGA) database and immunohistochemical staining. The effects of altered CCNI2 expression on the biological phenotypes such as proliferation, clone formation, apoptosis and migration of gastric cancer cell lines BGC-823 and SGC-7901 were investigated. Mice xenograft models were established to reveal the role of CCNI2 knockdown on tumorigenesis. The potential mechanism of CCNI2 regulating gastric cancer was preliminarily determined by RNA sequencing. RESULT CCNI2 was abundantly expressed in gastric cancer and was positively correlated with pathological stage. Knockdown of CCNI2 slowed down the malignant progression of gastric cancer by inhibiting tumor cell proliferation, increasing the susceptibility to apoptosis and suppressing migration. Moreover, downregulation of CCNI2 attenuated the ability of gastric cancer cells to form tumors in mice. Additionally, there was an interaction between CCNI2 and transcription factor hepatoma-derived growth factor (HDGF) in SGC-7901 cells. Knockdown of CCNI2 alleviated the promoting effects of HDGF overexpression in gastric cancer cells. CONCLUSIONS CCNI2 promoted the progression of human gastric cancer through HDGF, which drew further interest regarding its clinical application as a potential therapeutic target.
Collapse
Affiliation(s)
- Wenchao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yang Zhou
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Peichun Sun
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
9
|
Morshedi K, Borran S, Ebrahimi MS, Masoud Khooy MJ, Seyedi ZS, Amiri A, Abbasi-Kolli M, Fallah M, Khan H, Sahebkar A, Mirzaei H. Therapeutic effect of curcumin in gastrointestinal cancers: A comprehensive review. Phytother Res 2021; 35:4834-4897. [PMID: 34173992 DOI: 10.1002/ptr.7119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Gastrointestinal (GI) cancers with a high global prevalence are a leading cause of morbidity and mortality. Accordingly, there is a great need to develop efficient therapeutic approaches. Curcumin, a naturally occurring agent, is a promising compound with documented safety and anticancer activities. Recent studies have demonstrated the activity of curcumin in the prevention and treatment of different cancers. According to systematic studies on curcumin use in various diseases, it can be particularly effective in GI cancers because of its high bioavailability in the gastrointestinal tract. Nevertheless, the clinical applications of curcumin are largely limited because of its low solubility and low chemical stability in water. These limitations may be addressed by the use of relevant analogues or novel delivery systems. Herein, we summarize the pharmacological effects of curcumin against GI cancers. Moreover, we highlight the application of curcumin's analogues and novel delivery systems in the treatment of GI cancers.
Collapse
Affiliation(s)
- Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Naji M, Soroudi S, Akaberi M, Sahebkar A, Emami SA. Updated Review on the Role of Curcumin in Gastrointestinal Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:55-89. [PMID: 33861437 DOI: 10.1007/978-3-030-64872-5_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Malignant conditions of the gastrointestinal tract and accessory organs of digestion, including the oral cavity, esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus, are referred to as gastrointestinal cancers. Curcumin is a natural compound derived from turmeric with a wide range of biological activities. Several in vitro and in vivo studies have investigated the effects of curcumin on gastrointestinal cancers. In the current review, we aimed to provide an updated summary on the recent findings regarding the beneficial effects of curcumin on different gastrointestinal cancers in the recent decade. For this purpose, ScienceDirect," "Google Scholar," "PubMed," "ISI Web of Knowledge," and "Wiley Online Library" databases were searched using "curcumin", "cancer", and "gastrointestinal organs" as keywords. In vitro studies performed on different gastrointestinal cancerous cell lines have shown that curcumin can inhibit cell growth through cycle arrest at the G2/M and G1 phases, as well as stimulated apoptosis and autophagy by interacting with multiple molecular targets. In vivo studies performed in various animal models have confirmed mainly the chemopreventive effects of curcumin. Several nano-formulations have been proposed to improve the bioavailability of curcumin and increase its absorption. Moreover, curcumin has been used in combinations with many anti-tumor drugs to increase their anticarcinogenic properties. Taken together, curcumin falls within the category of plant-derived substances capable of preventing or treating gastrointestinal cancers. Further studies, particularly clinical trials, on the efficacy and safety of curcumin are suggested in this regard.
Collapse
Affiliation(s)
- Melika Naji
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Soroudi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Bahrami A, A Ferns G. Effect of Curcumin and Its Derivates on Gastric Cancer: Molecular Mechanisms. Nutr Cancer 2020; 73:1553-1569. [PMID: 32814463 DOI: 10.1080/01635581.2020.1808232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gastric carcinoma is one of the most prevalent malignancies and is associated with a high mortality. Chemotherapy is the principal therapeutic option in the treatment of gastric cancer, but its success rate is restricted by severe side effects and the prevalence of chemo-resistance. Curcumin is a polyphenolic compound derived from turmeric that has potent antioxidant, anti-inflammatory and anti-tumor effects. There is accumulating evidence that curcumin may prevent gastric cancer through regulation of oncogenic pathways. Furthermore some curcumin analogues and novel formulation of curcumin appear to have anti-tumor activity. The aim of this review was to give an overview of the therapeutic potential of curcumin and its derivatives against gastric cancer in preclinical and clinical studies.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, Sussex, UK
| |
Collapse
|
12
|
Jakubek M, Kejík Z, Kaplánek R, Hromádka R, Šandriková V, Sýkora D, Antonyová V, Urban M, Dytrych P, Mikula I, Martásek P, Král V. Strategy for improved therapeutic efficiency of curcumin in the treatment of gastric cancer. Biomed Pharmacother 2019; 118:109278. [PMID: 31387004 DOI: 10.1016/j.biopha.2019.109278] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer is a common oncological disease. Although enormous efforts have been expended, possible therapeutic modalities are still limited. For this reason, new therapeutic approaches and agents are highly requested and intensively developed. One strategy is the application of natural agents, such as curcumin, with proven anticancer effects and low toxicity for patients. Therefore, this review discusses the potential application of curcumin in the therapy of gastric cancer and its potential incorporation in therapeutic regimens. Because one of the largest impediments for widespread curcumin application is its limited bioavailability (caused mainly by its very low water solubility), studied strategies (drug delivery systems and curcumin derivatization) aimed to solve this obstacle are discussed in more detail.
Collapse
Affiliation(s)
- Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Róbert Hromádka
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Research and Development Center C2P s.r.o., Jungmannova 101, 503 51 Chlumec nad Cidlinou, Czech Republic
| | - Viera Šandriková
- Research and Development Center C2P s.r.o., Jungmannova 101, 503 51 Chlumec nad Cidlinou, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Veronika Antonyová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic
| | - Marian Urban
- Food Research Institute Prague, Radiová 1285/7, 1285/7, Prague 10, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague 2, Czech Republic
| | - Ivan Mikula
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic
| | - Vladimír Král
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
13
|
Samuels TL, Pearson ACS, Wells CW, Stoner GD, Johnston N. Curcumin and Anthocyanin Inhibit Pepsin-Mediated Cell Damage and Carcinogenic Changes in Airway Epithelial Cells. Ann Otol Rhinol Laryngol 2019. [DOI: 10.1177/000348941312201006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tina L. Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amy C. S. Pearson
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Clive W. Wells
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gary D. Stoner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
14
|
Hassanalilou T, Ghavamzadeh S, Khalili L. Curcumin and Gastric Cancer: a Review on Mechanisms of Action. J Gastrointest Cancer 2019; 50:185-192. [DOI: 10.1007/s12029-018-00186-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Barati N, Momtazi-Borojeni AA, Majeed M, Sahebkar A. Potential therapeutic effects of curcumin in gastric cancer. J Cell Physiol 2018; 234:2317-2328. [PMID: 30191991 DOI: 10.1002/jcp.27229] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Despite recent advancements in understanding of the biology of gastric cancer, treatment of patients with advanced gastric cancer remains a major problem. Among different type of phytochemicals, curcumin, a welltable -known phytochemical, has been shown to be a promising cancer chemopreventive agent. Pharmacokinetics, safety, and efficacy of curcumin have been evaluated in several clinical trials against numerous diseases, and for the treatment of human cancer. In the present review, we have collected in vitro and in vivo investigations and studied the chemosensitizing and anticancer effects of curcumin against the gastric cancer cells. In summary, curcumin has been found to have efficient chemosensitizing effect and also inhibits viability, proliferation, and migration of gastric cancer cells mainly via cell cycle arrest and induction of apoptosis by both mitochondrial-dependent and -independent pathways.
Collapse
Affiliation(s)
- Nastaran Barati
- Deputy of Research and Technology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir A Momtazi-Borojeni
- Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Irantab
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Kreutz D, Sinthuvanich C, Bileck A, Janker L, Muqaku B, Slany A, Gerner C. Curcumin exerts its antitumor effects in a context dependent fashion. J Proteomics 2018; 182:65-72. [PMID: 29751106 DOI: 10.1016/j.jprot.2018.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/29/2018] [Accepted: 05/04/2018] [Indexed: 02/08/2023]
Abstract
Proteome profiling profoundly contributes to the understanding of cell response mechanisms to drug actions. Such knowledge may become a key to improve personalized medicine. In the present study, the effects of the natural remedy curcumin on breast cancer model systems were investigated. MCF-7, ZR-75-1 and TGF-β1 pretreated fibroblasts, mimicking cancer-associated fibroblasts (CAFs), were treated independently as well as in tumor cell/CAF co-cultures. Remarkably, co-culturing with CAF-like cells (CLCs) induced different proteome alterations in MCF-7 and ZR-75-1 cells, respectively. Curcumin significantly induced HMOX1 in single cell type models and co-cultures. However, other curcumin effects differed. In the MCF-7/CLC co-culture, curcumin significantly down-regulated RC3H1, a repressor of inflammatory signaling. In the ZR-75-1/CLC co-culture, curcumin significantly down-regulated PEG10, an anti-apoptotic protein, and induced RRAGA, a pro-apoptotic protein involved in TNF-alpha signaling. Furthermore, curcumin induced AKR1C2, an important enzyme for progesterone metabolism. None of these specific curcumin effects were observed in single cell type cultures. All high-resolution mass spectrometry data are available via ProteomeXchange with the identifier PXD008719. The present data demonstrate that curcumin induces proteome alterations, potentially accounting for its known antitumor effects, in a strongly context-dependent fashion. BIOLOGICAL SIGNIFICANCE Better means to understand and potentially predict individual variations of drug effects are urgently required. The present proteome profiling study of curcumin effects demonstrates the massive impact of the cell microenvironment on cell responses to drug action. Co-culture models apparently provide more biologically relevant information regarding curcumin effects than single cell type cultures.
Collapse
Affiliation(s)
- Dominique Kreutz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Chomdao Sinthuvanich
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Besnik Muqaku
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Astrid Slany
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
The Association Between Index of Nutritional Quality (INQ) and Gastric Cancer and Evaluation of Nutrient Intakes of Gastric Cancer Patients: A Case-Control Study. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2018. [DOI: 10.5812/ijcm.9747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Yang H, Huang S, Wei Y, Cao S, Pi C, Feng T, Liang J, Zhao L, Ren G. Curcumin Enhances the Anticancer Effect Of 5-fluorouracil against Gastric Cancer through Down-Regulation of COX-2 and NF- κB Signaling Pathways. J Cancer 2017; 8:3697-3706. [PMID: 29151957 PMCID: PMC5688923 DOI: 10.7150/jca.20196] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022] Open
Abstract
Background: 5-fluorouracil (5-FU) is one of the most commonly used first-line anticancer drugs to treat gastric cancer in clinical practice. However, severe adverse events such as gastrointestinal toxicity and bone marrow suppression limit its clinical application. Combination chemotherapy to combine two or more anticancer drugs with different mechanistic action is an effective anticancer strategy against gastric cancer. Therefore, we studied the anticancer effect of the combination of 5-FU with curcumin against gastric cancer MKN45 and AGS cells (normal gastric mucosal GES-1 cells as control) and associated molecular mechanisms. Methods: Cytotoxicity of 5-FU and curcumin alone or in combination was evaluated in MKN45, AGS and GES cells by MTT assay. The protein expressions of COX-2 and NF-κB were evaluated in MKN45 cells by Western blotting analysis. In addition, antitumor activity of 5-FU and curcumin alone or in combination was evaluated in nude mice bearing MKN45 tumor xenografts in vivo. Results: The combination of 5-FU and curcumin (2:1, mol/mol) showed 2.2-, 3.5-fold and 2.3-, 3.9-fold enhanced cytotoxic effect compared to 5-FU or curcumin alone and generated synergistic effect at the concentration of 5-FU (>4.09 and >5.71 μmol/l) and curcumin (>2.05 and > 2.86 μmol/l) in MKN45 cells for 48 h and 72 h exposures, respectively. The combination of 5-FU and curcumin also potentiated cytotoxicity in AGS cells compared to 5-FU or curcumin alone but the effect was moderate. However, the cytotoxicity of 5-FU and curcumin alone or in combination was much less in GES-1 cells. Furthermore, the protein expressions of COX-2 and NF-κB in MKN45 cells were decreased by 44.79% and 37.67%, 47.17% and 48.21%, 60.21% and 62.44%, respectively, after treatment of curcumin (25 μmol/l) and 5-FU (50 μmol/l) alone or in combination for 48 h. Curcumin also enhanced the anticancer activity of 5-FU without increasing toxicity in nude mice bearing MKN45 tumor xenografts in vivo. Conclusions: Curcumin enhances the anticancer effect of 5-FU against gastric cancer in vitro and in vivo. The possible molecular mechanism may be, at least in part, related to down-regulation of COX-2 and NF-κB pathways.
Collapse
Affiliation(s)
- Hongru Yang
- The First Affiliated Hospital of Chongqing Medical University, No.1 Yixue Road, Yuzhong District, Chongqing 400016, China.,The Affiliated Hospital of Southwest Medical University, No.5 Taiping Street, Jiangyang District, Luzhou , Sichuan 646099, China
| | - Shaoqiu Huang
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Chao Pi
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Ting Feng
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Jing Liang
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Guosheng Ren
- The First Affiliated Hospital of Chongqing Medical University, No.1 Yixue Road, Yuzhong District, Chongqing 400016, China
| |
Collapse
|
19
|
JUDAKI A, RAHMANI A, FEIZI J, ASADOLLAHI K, HAFEZI AHMADI MR. CURCUMIN IN COMBINATION WITH TRIPLE THERAPY REGIMES AMELIORATES OXIDATIVE STRESS AND HISTOPATHOLOGIC CHANGES IN CHRONIC GASTRITIS-ASSOCIATED HELICOBACTER PYLORI INFECTION. ARQUIVOS DE GASTROENTEROLOGIA 2017; 54:177-182. [DOI: 10.1590/s0004-2803.201700000-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/15/2017] [Indexed: 02/08/2023]
Abstract
ABSTRACT BACKGROUND Helicobacter pylori (H. pylori) gastric infection is a main cause of inflammatory changes and gastric cancers. OBJECTIVE The aim of this study was finding the effects of curcumin on oxidative stress and histological changes in chronic gastritis associated with H. pylori. METHODS In a randomized clinical trial, patients were divided into two groups: a standard triple therapy group and triple therapy with curcumin group. Endoscopic and histological examinations were measured for all patients before and after 8 weeks. RESULTS Triple therapy with curcumin treatment group significantly decreased malondialdehyde markers, glutathione peroxides and increased total antioxidant capacity of the gastric mucosa at the end of study compared to baseline and triple regimen groups. In addition, the oxidative damage to DNA was significantly decreased in triple therapy with curcumin group at the end of study compared to baseline and compared to triple therapy (P<0.05 for both). Triple therapy group in combination with Curcumin significantly decreased all active, chronic and endoscopic inflammation scores of patients compared to the baseline and triple therapy group (P<0.05 for both). The eradication rate by triple therapy + curcumin was significantly increased compared to triple therapy alone (P<0.05). CONCLUSION Curcumin can be a useful supplement to improve chronic inflammation and prevention of carcinogenic changes in patients with chronic gastritis associated by H. pylori.
Collapse
|
20
|
The Use of Omic Technologies Applied to Traditional Chinese Medicine Research. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6359730. [PMID: 28250795 PMCID: PMC5307000 DOI: 10.1155/2017/6359730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 12/28/2022]
Abstract
Natural products represent one of the most important reservoirs of structural and chemical diversity for the generation of leads in the drug development process. A growing number of researchers have shown interest in the development of drugs based on Chinese herbs. In this review, the use and potential of omic technologies as powerful tools in the modernization of traditional Chinese medicine are discussed. The analytical combination from each omic approach is crucial for understanding the working mechanisms of cells, tissues, organs, and organisms as well as the mechanisms of disease. Gradually, omic approaches have been introduced in every stage of the drug development process to generate high-quality Chinese medicine-based drugs. Finally, the future picture of the use of omic technologies is a promising tool and arena for further improvement in the modernization of traditional Chinese medicine.
Collapse
|
21
|
Lin X, Tian L, Wang L, Li W, Xu Q, Xiao X. Antitumor effects and the underlying mechanism of licochalcone A combined with 5-fluorouracil in gastric cancer cells. Oncol Lett 2017; 13:1695-1701. [PMID: 28454311 PMCID: PMC5403170 DOI: 10.3892/ol.2017.5614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/01/2016] [Indexed: 02/04/2023] Open
Abstract
Licochalcone A (LCA) is a flavonoid extracted from licorice root that has antiparasitic, antibacterial and antitumor properties. Previous studies have revealed that LCA may be a novel treatment for gastric cancer. The present study further assessed the potential antitumor effects of LCA alone or in combination with 5-fluorouracil (5-FU), and the underlying mechanisms responsible for those effects in gastric cancer cells. The effects of LCA alone or in combination with 5-FU on SGC7901 and MKN-45 gastric cancer cell lines were studied using Cell Counting Kit-8, cell cycle, apoptosis and western blot analyses of cell check points and apoptosis-associated proteins. The results revealed that LCA inhibited cell proliferation, blocked cell cycle progression at the G2/M transition and induced apoptosis. Western blot analysis demonstrated that LCA treatment increased the levels of tumor proteins 21 and 27, as well as mouse double minute 2 homolog in gastric cancer cells. In addition, LCA treatment increased the expression levels of Bax, cleaved-poly ADP ribose polymerase, tumor protein 53 and caspase 3, and decreased the expression levels of Bcl-2. Therefore, the present study demonstrated that LCA alone or in combination with 5-FU may have significant anticancer effects on gastric cancer cells, and may be a novel therapeutic for the treatment of gastric cancer in the future.
Collapse
Affiliation(s)
- Xiaolin Lin
- Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Lei Tian
- Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Lisha Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Wenyan Li
- Department of Oncology, Shanghai Xuhui Centre Hospital, Shanghai 200031, P.R. China
| | - Qi Xu
- Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Xiuying Xiao
- Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
22
|
Velmurugan BK, Yang HH, Sung PJ, Weng CF. Excavatolide B inhibits nonsmall cell lung cancer proliferation by altering peroxisome proliferator activated receptor gamma expression and PTEN/AKT/NF-Kβ expression. ENVIRONMENTAL TOXICOLOGY 2017; 32:290-301. [PMID: 26790859 DOI: 10.1002/tox.22235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/27/2015] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
Marine organisms are proven to be rich source of secondary metabolites that can be used to treat various diseases. Excavatolide B (Exc.B), the most abundant metabolite was found in the marine coral Briareum excavatum exhibits cytotoxic effects against lung cancer cell. Treatment of the A549 cells with Exc.B significantly reduced its cell viability and induced cell cycle arrest at subG1 phase in a dose- and time-dependent manner, respectively. Apoptosis induction by Exc.B was further confirmed by decreased pro-caspase 3 expressions and increased proteolytic cleavage of poly (ADP-ribose) polymerase (PARP) expression. Furthermore, Exc.B increased reactive oxygen species (ROS) and reactive nitrogen species (RNS) and also decreased the antioxidant enzymes such as, Catalase, GPx, SOD, GST, and GSH. The proteomic analysis data revealed that total thirty six proteins were altered by Exc.B. STRING database showed that most of the altered proteins have no interaction between each other. Based on these data, KSR1, RuVBL2, PPAR-γ, and Tenascin X proteins were chosen to validate the 2DE data by Western blotting. Additional experiments demonstrated that Exc.B induced PTEN expression and inhibited pAKT and NF-kB expression. These results provide a novel insight into mechanisms underlying the inhibition of A549 cells growth by excavatolide B. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 290-301, 2017.
Collapse
Affiliation(s)
- Bharath Kumar Velmurugan
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 974, Taiwan
| | - Hsueh-Hui Yang
- Department of Research, Buddhist Tzu Chi General Hospital, General Education Center, Tzu Chi College of Technology, Hualien, Taiwan
| | - Ping-Jyun Sung
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, 944, Taiwan
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 974, Taiwan
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung, Taiwan
| |
Collapse
|
23
|
Liu G, Xiang T, Wu QF, Wang WX. Curcumin suppresses the proliferation of gastric cancer cells by downregulating H19. Oncol Lett 2016; 12:5156-5162. [PMID: 28105222 PMCID: PMC5228417 DOI: 10.3892/ol.2016.5354] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 10/18/2016] [Indexed: 01/17/2023] Open
Abstract
Curcumin, a major phytochemical in turmeric, inhibits the proliferation of many types of solid cancer cells by enhancing p53 expression. However, the long non-coding RNA H19 directly inhibits p53 activation and thus promotes gastric cancer progression. The aim of this study was to assess the role of H19 in curcumin-induced proliferative inhibition of gastric cancer. The gastric cancer cell line SGC-7901 was treated with curcumin at different concentrations and time points. The effect of curcumin on proliferation was assessed using cell counting kit-8 assays and flow cytometry with Ki67 staining. In addition, H19 expression was quantified by reverse transcription-quantitative polymerase chain reaction, and apoptosis was evaluated by flow cytometric detection of Annexin V and propidium iodide double staining. The protein expression of p53, B-cell lymphoma (Bcl)-2, Bcl-2-associated X protein (Bax) and c-Myc in curcumin-treated cells was detected by western blotting. The present study demonstrated that curcumin inhibited the proliferation of SGC7901 cells and suppressed H19 expression in a concentration-dependent manner, while p53 expression was enhanced. Ectopic expression of H19 in SGC7901 cells reversed curcumin-induced proliferative inhibition and downregulated p53 expression. Furthermore, while curcumin induced cell apoptosis and enhanced the expression ratio of Bax/Bcl-2, which are downstream molecules of p53, ectopic expression of H19 inhibited curcumin-induced cell apoptosis. In addition, curcumin decreased the expression of the c-Myc oncogene, and exogenous c-Myc protein reversed the curcumin-induced downregulation of H19 expression. These results suggested that curcumin inhibits the proliferation of gastric cancer cells by downregulating the c-Myc/H19 pathway. Therefore, curcumin may be considered a novel therapeutic strategy to inhibit gastric cancer cell growth.
Collapse
Affiliation(s)
- Gao Liu
- Department of Gastrointestinal Surgery, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, P.R. China
| | - Tian Xiang
- Department of Clinical Laboratory Center, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, P.R. China
| | - Quan-Feng Wu
- Department of Gastrointestinal Surgery, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, P.R. China
| | - Wei-Xing Wang
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
24
|
Khaghanzadeh N, Nakamura K, Kuramitsu Y, Ghaderi A, Mojtahedi Z. Immune-associated proteins with potential in vivo anti-tumor activities are upregulated in lung cancer cells treated with umbelliprenin: A proteomic approach. Oncol Lett 2016; 12:5295-5302. [PMID: 28105238 DOI: 10.3892/ol.2016.5352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 09/02/2016] [Indexed: 12/30/2022] Open
Abstract
Umbelliprenin (Umb), a natural coumarin, has demonstrated anti-tumor activities, both in vitro and particularly in vivo, in several types of cancer, including lung cancer. The present study aimed to identify molecular targets of Umb using a high-throughput approach. Lung cancer cell lines, QU-DB (large-cell lung carcinoma) and A549 (adenocarcinoma), were treated with Umb. Differentially-expressed proteins were identified using two-dimensional electrophoresis coupled to mass spectrometry. In the QU-DB cells, differential expression of proteins, including downregulation of the tumorigenic protein heat shock protein 90 kDa and upregulation of the potential anti-tumor proteins Nipsnap1 and glycine-tRNA ligase (GRS), suggested that Umb is a strong anti-tumor compound. In the A549 cells, differential expression of proteins indicated possible contradictory effects of Umbregarding tumorigenesis, which included downregulation of the tumorigenic protein cyclophilin and the tumor suppressor MST, and upregulation of stathmin (tumorigenic) and calreticulin. Calreticulun, in addition to GRS in QU-DB cells, stimulates anti-tumor immune responses in vivo. To the best of our knowledge, the present study is the first to use a high-throughput approach to identify targets of Umb in cancer. These molecular targets suggested that Umb may exhibit stronger in vitro anti-tumor activity against the large-cell carcinoma model than the adenocarcinoma model. Furthermore, it has been reported that Umb exhibits higher cytotoxicity against QU-DB cells than A549 cells in vitro, and significant Umb anti-tumor activity against lung cancer in vivo, which is consistent with previously published literature. In each cell type, immune-associated molecules were upregulated, indicating that this naturally occurring compound exhibits marked anti-tumor activity in vivo. However, further studies that investigate the effect of Umb in different in vitro models of cancer are required.
Collapse
Affiliation(s)
- Narges Khaghanzadeh
- Department of Immunology, Hormozgan University of Medical Sciences, Bandar Abbas 79196, Iran; Cancer Biomarkers and Proteomics Lab, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz 71348, Iran
| | - Kazuyuki Nakamura
- Department of Biochemistry and Functional Proteomics, Yamaguchi University, Graduate School of Medicine, Yamaguchi 7538511, Japan
| | - Yasuhiro Kuramitsu
- Department of Biochemistry and Functional Proteomics, Yamaguchi University, Graduate School of Medicine, Yamaguchi 7538511, Japan
| | - Abbas Ghaderi
- Cancer Biomarkers and Proteomics Lab, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz 71348, Iran
| | - Zahra Mojtahedi
- Cancer Biomarkers and Proteomics Lab, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz 71348, Iran
| |
Collapse
|
25
|
Ferguson LR, Barnett MPG. Why Are Omics Technologies Important to Understanding the Role of Nutrition in Inflammatory Bowel Diseases? Int J Mol Sci 2016; 17:E1763. [PMID: 27775675 PMCID: PMC5085787 DOI: 10.3390/ijms17101763] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/29/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022] Open
Abstract
For many years, there has been confusion about the role that nutrition plays in inflammatory bowel diseases (IBD). It is apparent that good dietary advice for one individual may prove inappropriate for another. As with many diseases, genome-wide association studies across large collaborative groups have been important in revealing the role of genetics in IBD, with more than 200 genes associated with susceptibility to the disease. These associations provide clues to explain the differences in nutrient requirements among individuals. In addition to genes directly involved in the control of inflammation, a number of the associated genes play roles in modulating the gut microbiota. Cell line models enable the generation of hypotheses as to how various bioactive dietary components might be especially beneficial for certain genetic groups. Animal models are necessary to mimic aspects of the complex aetiology of IBD, and provide an important link between tissue culture studies and human trials. Once we are sufficiently confident of our hypotheses, we can then take modified diets to an IBD population that is stratified according to genotype. Studies in IBD patients fed a Mediterranean-style diet have been important in validating our hypotheses and as a proof-of-principle for the application of these sensitive omics technologies to aiding in the control of IBD symptoms.
Collapse
Affiliation(s)
- Lynnette R Ferguson
- Discipline of Nutrition and Dietetics and Auckland Cancer Research Society, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Matthew P G Barnett
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Limited, Palmerston North 4442, New Zealand.
| |
Collapse
|
26
|
Kang C, Lee Y, Lee JE. Recent advances in mass spectrometry-based proteomics of gastric cancer. World J Gastroenterol 2016; 22:8283-8293. [PMID: 27729735 PMCID: PMC5055859 DOI: 10.3748/wjg.v22.i37.8283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/28/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
The last decade has witnessed remarkable technological advances in mass spectrometry-based proteomics. The development of proteomics techniques has enabled the reliable analysis of complex proteomes, leading to the identification and quantification of thousands of proteins in gastric cancer cells, tissues, and sera. This quantitative information has been used to profile the anomalies in gastric cancer and provide insights into the pathogenic mechanism of the disease. In this review, we mainly focus on the advances in mass spectrometry and quantitative proteomics that were achieved in the last five years and how these up-and-coming technologies are employed to track biochemical changes in gastric cancer cells. We conclude by presenting a perspective on quantitative proteomics and its future applications in the clinic and translational gastric cancer research.
Collapse
|
27
|
Sathe G, Pinto SM, Syed N, Nanjappa V, Solanki HS, Renuse S, Chavan S, Khan AA, Patil AH, Nirujogi RS, Nair B, Mathur PP, Prasad TSK, Gowda H, Chatterjee A. Phosphotyrosine profiling of curcumin-induced signaling. Clin Proteomics 2016; 13:13. [PMID: 27307780 PMCID: PMC4908701 DOI: 10.1186/s12014-016-9114-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 05/04/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Curcumin, derived from the rhizome Curcuma longa, is a natural anti-cancer agent and has been shown to inhibit proliferation and survival of tumor cells. Although the anti-cancer effects of curcumin are well established, detailed understanding of the signaling pathways altered by curcumin is still lacking. In this study, we carried out SILAC-based quantitative proteomic analysis of a HNSCC cell line (CAL 27) to investigate tyrosine signaling in response to curcumin. RESULTS Using high resolution Orbitrap Fusion Tribrid Fourier transform mass spectrometer, we identified 627 phosphotyrosine sites mapping to 359 proteins. We observed alterations in the level of phosphorylation of 304 sites corresponding to 197 proteins upon curcumin treatment. We report here for the first time, curcumin-induced alterations in the phosphorylation of several kinases including TNK2, FRK, AXL, MAPK12 and phosphatases such as PTPN6, PTPRK, and INPPL1 among others. Pathway analysis revealed that the proteins differentially phosphorylated in response to curcumin are known to be involved in focal adhesion kinase signaling and actin cytoskeleton reorganization. CONCLUSIONS The study indicates that curcumin may regulate cellular processes such as proliferation and migration through perturbation of the focal adhesion kinase pathway. This is the first quantitative phosphoproteomics-based study demonstrating the signaling events that are altered in response to curcumin. Considering the importance of curcumin as an anti-cancer agent, this study will significantly improve the current knowledge of curcumin-mediated signaling in cancer.
Collapse
Affiliation(s)
- Gajanan Sathe
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Manipal University, Madhav Nagar, Manipal, 576104 India
| | - Sneha M Pinto
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India
| | - Nazia Syed
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014 India
| | - Vishalakshi Nanjappa
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Hitendra S Solanki
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Santosh Renuse
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Sandip Chavan
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Manipal University, Madhav Nagar, Manipal, 576104 India
| | - Aafaque Ahmad Khan
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Arun H Patil
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Raja Sekhar Nirujogi
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | | | - T S Keshava Prasad
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | - Harsha Gowda
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India
| | - Aditi Chatterjee
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India
| |
Collapse
|
28
|
Toyoda T, Shi L, Takasu S, Cho YM, Kiriyama Y, Nishikawa A, Ogawa K, Tatematsu M, Tsukamoto T. Anti-Inflammatory Effects of Capsaicin and Piperine on Helicobacter pylori-Induced Chronic Gastritis in Mongolian Gerbils. Helicobacter 2016; 21:131-42. [PMID: 26140520 DOI: 10.1111/hel.12243] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Spices have been used for thousands of years, and recent studies suggest that certain spices confer beneficial effects on gastric disorders. The purpose of this study was to evaluate possible chemopreventive effects of spice-derived compounds on Helicobacter pylori (H. pylori)-induced gastritis. METHODS We examined the inhibitory effects of curcumin, capsaicin, and piperine on H. pylori in vitro by determining the colony-forming units and real-time RT-PCR in H. pylori stimulated AGS gastric cancer cells. For in vivo analysis, 6-week-old SPF male Mongolian gerbils were infected with H. pylori, fed diets containing 5000 ppm curcumin, 100 ppm capsaicin, or 100 ppm piperine, and sacrificed after 13 weeks. RESULTS All three compounds inhibited in vitro proliferation of H. pylori, with curcumin being the most effective. Infiltration of neutrophils and mononuclear cells was suppressed by piperine both in the antrum and corpus of H. pylori-infected gerbils. Capsaicin also decreased neutrophils in the antrum and corpus and mononuclear cell infiltration and heterotopic proliferative glands in the corpus. mRNA expression of Tnf-α and formation of phospho-IκB-α in the antrum were reduced by both capsaicin and piperine. In addition, piperine suppressed expression of Il-1β, Ifn-γ, Il-6, and iNos, while H. pylori UreA and other virulence factors were not significantly attenuated by any compounds. CONCLUSION These results suggest that capsaicin and piperine have anti-inflammatory effects on H. pylori-induced gastritis in gerbils independent of direct antibacterial effects and may thus have potential for use in the chemoprevention of H. pylori-associated gastric carcinogenesis.
Collapse
Affiliation(s)
- Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Tokyo, Japan.,Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Liang Shi
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Chemicals Safety Department, Mitsui Chemicals Inc., Mobara, Japan
| | - Shinji Takasu
- Division of Pathology, National Institute of Health Sciences, Tokyo, Japan.,Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Young-Man Cho
- Division of Pathology, National Institute of Health Sciences, Tokyo, Japan
| | - Yuka Kiriyama
- Department of Diagnostic Pathology I, Fujita Health University School of Medicine, Toyoake, Japan
| | - Akiyoshi Nishikawa
- Biological Safety Research Center, National Institute of Health Sciences, Tokyo, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Tokyo, Japan
| | - Masae Tatematsu
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Japan Bioassay Research Center, Hadano, Japan
| | - Tetsuya Tsukamoto
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Diagnostic Pathology I, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
29
|
Abstract
Alkaloids include a family of naturally occurring chemical compounds containing mostly basic nitrogen atoms. Piperine is an alkaloid present in black pepper (Piper nigrum), one of the most widely used spices, in long pepper (Piper longum), and other Piper species fruits belonging to the family of Piperaceae. Piperine is responsible for the black pepper distinct biting quality. Piperine has many pharmacological effects and several health benefits, especially against chronic diseases, such as reduction of insulin-resistance, anti-inflammatory effects, and improvement of hepatic steatosis. The aim of this chapter is to summarize the effects of piperine, alone or in combination with other drugs and phytochemicals, in chronic diseases.
Collapse
|
30
|
Curcumin suppresses lymphatic vessel density in an in vivo human gastric cancer model. Tumour Biol 2015; 36:5215-23. [DOI: 10.1007/s13277-015-3178-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/27/2015] [Indexed: 01/18/2023] Open
|
31
|
Liang T, Zhang X, Xue W, Zhao S, Zhang X, Pei J. Curcumin induced human gastric cancer BGC-823 cells apoptosis by ROS-mediated ASK1-MKK4-JNK stress signaling pathway. Int J Mol Sci 2014; 15:15754-65. [PMID: 25198898 PMCID: PMC4200840 DOI: 10.3390/ijms150915754] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/26/2014] [Accepted: 09/03/2014] [Indexed: 11/16/2022] Open
Abstract
The signaling mediated by stress-activated MAP kinases (MAPK), c-Jun N-terminal kinase (JNK) has well-established importance in cancer. In the present report, we investigated the effects of curcumin on the signaling pathway in human gastric cancer BGC-823 cells. Curcumin induced reactive oxygen species (ROS) production and BGC-823 cells apoptosis. Inhibition of ROS generation by antioxidant (NAC or Trion) significantly prevented curcumin-mediated apoptosis. Notably, we observed that curcumin activated ASK1, a MAPKKK that is oxidative stress sensitive and responsible to phosphorylation of JNK via triggering cascades, up-regulated an upstream effector of the JNK, MKK4, and phosphorylated JNK protein expression in BGC-823 cells. However, curcumin induced ASK1-MKK4-JNK signaling was attenuated by NAC. All the findings confirm the possibility that oxidative stress-activated ASK1-MKK4-JNK signaling cascade promotes the apoptotic response in curcumin-treated BGC-823 cells.
Collapse
Affiliation(s)
- Tao Liang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiaojian Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Wenhua Xue
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Songfeng Zhao
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiang Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jianying Pei
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
32
|
Asti M, Ferrari E, Croci S, Atti G, Rubagotti S, Iori M, Capponi PC, Zerbini A, Saladini M, Versari A. Synthesis and characterization of (68)Ga-labeled curcumin and curcuminoid complexes as potential radiotracers for imaging of cancer and Alzheimer's disease. Inorg Chem 2014; 53:4922-33. [PMID: 24766626 DOI: 10.1021/ic403113z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Curcumin (CUR) and curcuminoids complexes labeled with fluorine-18 or technetium-99m have recently shown their potential as diagnostic tools for Alzheimer's disease. Gallium-68 is a positron-emitting, generator-produced radionuclide, and its properties can be exploited in situ in medical facilities without a cyclotron. Moreover, CUR showed a higher uptake in tumor cells compared to normal cells, suggesting potential diagnostic applications in this field. In spite of this, no studies using labeled CUR have been performed in this direction, so far. Herein, (68)Ga-labeled complexes with CUR and two curcuminoids, namely diacetyl-curcumin (DAC) and bis(dehydroxy)curcumin (bDHC), were synthesized and characterized by means of experimental and theoretical approaches. Moreover, a first evaluation of their affinity to synthetic β-amyloid fibrils and uptake by A549 lung cancer cells was performed to show the potential application of these new labeled curcuminoids in these diagnostic fields. The radiotracers were prepared by reacting (68)Ga(3+) obtained from a (68)Ge/(68)Ga generator with 1 mg/mL curcuminoids solutions. Reaction parameters (precursor amount, reaction temperature, and pH) were optimized to obtain high and reproducible radiochemical yield and purity. Stoichiometry and formation of the curcuminoid complexes were investigated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, NMR, ultraviolet-visible, and fluorescence spectroscopy on the equivalent (nat)Ga-curcuminoids (nat = natural) complexes, and their structure was computed by theoretical density functional theory calculations. The analyses evidenced that CUR, DAC, and bDHC were predominantly in the keto-enol form and attested to Ga(L)2(+) species formation. Identity of the (68)Ga(L)2(+) complexes was confirmed by coelution with the equivalent (nat)Ga(L)2(+) complexes in ultrahigh-performance liquid chromatography analyses.(68)Ga(CUR)2(+), (68)Ga(DAC)2(+), and (68)Ga(bDHC)2(+) were highly (87 ± 4, 90 ± 1%) and moderately (48 ± 2%), respectively, retained by synthetic β-amyloid fibrils in vitro. All the Ga-curcuminoid complexes showed an uptake in A549 lung cancer cells, at least equivalent to the respective free curcuminoids, confirming potential applications as cancer-detecting radiotracers.
Collapse
Affiliation(s)
- Mattia Asti
- Nuclear Medicine Unit, Oncology and Advanced Technologies Department, IRCCS-Arcispedale Santa Maria Nuova , Reggio Emilia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Firouzi Z, Lari P, Rashedinia M, Ramezani M, Iranshahi M, Abnous K. Proteomics screening of molecular targets of curcumin in mouse brain. Life Sci 2014; 98:12-7. [DOI: 10.1016/j.lfs.2013.12.200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/22/2013] [Accepted: 12/23/2013] [Indexed: 01/31/2023]
|
34
|
Gao XP, Feng F, Zhang XQ, Liu XX, Wang YB, She JX, He ZH, He MF. Toxicity assessment of 7 anticancer compounds in zebrafish. Int J Toxicol 2014; 33:98-105. [PMID: 24563414 DOI: 10.1177/1091581814523142] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toxicity is one of the major reasons for failure in drug development. Zebrafish, as an ideal vertebrate model, could also be used to evaluate drug toxicity. In this study, we aimed to show the predictability and highlight novel findings of toxicity in zebrafish model. Seven anticancer compounds, including triptolide (TP), gambogic acid (GA), mycophenolic acid (MPA), curcumin, auranofin, thalidomide, and taxol, were assessed in zebrafish for their toxicity. Three compounds (GA, TP, and taxol) showed highest acute lethality, with 50% lethal concentration ≈ 1 μmol/L. Missing tails, severe pericardial edema, and enlarged yolk sacs were observed in MPA-treated embryos. The development of pectoral fins was severely disturbed in thalidomide-, GA-, and TP-treated embryos. Bradycardia was observed in MPA- and thalidomide-treated groups. Our findings suggested that the zebrafish are a good model for toxicity assessment of anticancer compounds.
Collapse
Affiliation(s)
- Xiao-Ping Gao
- Institute of Translational Medicine, School of Pharmaceutical Sciences, Nanjing University of Technology, Nanjing, Jiangsu Province 210009, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu Y, Xu Y, Ji W, Li X, Sun B, Gao Q, Su C. Anti-tumor activities of matrine and oxymatrine: literature review. Tumour Biol 2014; 35:5111-9. [PMID: 24526416 DOI: 10.1007/s13277-014-1680-z] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 01/22/2014] [Indexed: 12/11/2022] Open
Abstract
Matrine (MT) and oxymatrine (OMT), two kinds of alkaloid components found in the roots of Sophora species, have various pharmacological activities and are demonstrated to have anti-inflammatory, anti-allergic, anti-virus, anti-fibrotic, and cardiovascular protective effects. They are recently proved to have anti-cancer potentials, such as inhibiting cancer cell proliferation, inducing cell cycle arrest, accelerating apoptosis, restraining angiogenesis, inducing cell differentiation, inhibiting cancer metastasis and invasion, reversing multidrug resistance, and preventing or reducing chemotherapy- or radiotherapy-induced toxicity when combined with other chemotherapeutic drugs. In this review, we summarize the recent investigations regarding the anti-cancer activities and possible molecular targets of MT and OMT for cancer prevention and treatment in order to provide clues and references for further study.
Collapse
Affiliation(s)
- Yan Liu
- Department of General Surgery, Wujiang No.1 People's Hospital, Suzhou, 215200, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Basu A, Kumar GS. Biophysical studies on curcumin-deoxyribonucleic acid interaction: spectroscopic and calorimetric approach. Int J Biol Macromol 2013; 62:257-64. [PMID: 24041996 DOI: 10.1016/j.ijbiomac.2013.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 12/21/2022]
Abstract
The interaction of the dietary pigment curcumin with herring testes deoxyribonucleic acid was studied by biophysical and microcalorimetric techniques. Curcumin bound to DNA exhibiting hypochromic effect in absorbance and enhanced intensity of its fluorescence. The binding a affinity value evaluated from spectroscopy data was of the order 10(4) M(-1). The quantum efficiency value testified the occurrence of energy transfer from the DNA base pairs to the curcumin molecules. Displacement studies of DNA bound DAPI, Hoechst and ethidium bromide suggested binding of curcumin to be in the minor groove of the DNA. Moderate conformational perturbations of the B-form structure of DNA occurred on binding. The binding affinity weakened as the DNA GC content enhanced. The binding was characterized by negative enthalpy and positive entropy changes; the binding affinity from calorimetry was in good agreement with that evaluated from the spectral data. The binding was dominated by hydrophobic and other non-polyelectrolytic forces; the polyelectrolytic forces contributing only a quarter to the total Gibbs energy at 50 mM [Na(+)].
Collapse
Affiliation(s)
- Anirban Basu
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | |
Collapse
|
37
|
Kewitz S, Volkmer I, Staege MS. Curcuma Contra Cancer? Curcumin and Hodgkin's Lymphoma. CANCER GROWTH AND METASTASIS 2013; 6:35-52. [PMID: 24665206 PMCID: PMC3941149 DOI: 10.4137/cgm.s11113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Curcumin, a phytochemical isolated from curcuma plants which are used as coloring ingredient for the preparation of curry powder, has several activities which suggest that it might be an interesting drug for the treatment or prevention of cancer. Curcumin targets different pathways which are involved in the malignant phenotype of tumor cells, including the nuclear factor kappa B (NFKB) pathway. This pathway is deregulated in multiple tumor entities, including Hodgkin’s lymphoma (HL). Indeed, curcumin can inhibit growth of HL cell lines and increases the sensitivity of these cells for cisplatin. In this review we summarize curcumin activities with special focus on possible activities against HL cells.
Collapse
Affiliation(s)
- Stefanie Kewitz
- Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, Halle, Germany
| | - Ines Volkmer
- Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, Halle, Germany
| | - Martin S Staege
- Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, Halle, Germany
| |
Collapse
|