1
|
Chen Z, Xun L, Lu Y, Yang X, Chen M, Yang T, Mei Z, Yang Y, Yang X, Yang Y. The chromosome-scale genomes of two Tinospora species reveal differential regulation of the MEP pathway in terpenoid biosynthesis. BMC Biol 2025; 23:84. [PMID: 40114206 PMCID: PMC11927234 DOI: 10.1186/s12915-025-02185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The relationship between gene family expansion and the resulting changes in plant phenotypes has shown remarkable complexity during the evolution. The gene family expansion has contributed to the diversity in plant phenotypes, specifically metabolites through neo-functionalization and sub-functionalization. However, the negative regulatory effects associated with the gene family expansion remain poorly understood. RESULTS Here, we present the chromosome-scale genomes of Tinospora crispa and Tinospora sinensis. Comparative genomic analyses demonstrated conserved chromosomal evolution within the Menispermaceae family. KEGG analysis revealed a significant enrichment of genes related to terpenoid biosynthesis in T. sinensis. However, T. crispa exhibited a higher abundance of terpenoids compared to T. sinensis. Detailed analysis revealed the expansion of genes encoding 1-hydroxy-2-methyl 2-(E)-butenyl 4-diphosphate synthase (HDS), a key enzyme in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway of terpenoid biosynthesis in T. sinensis. TsiHDS4 retained the ancestral function of converting methylerythritol cyclic diphosphate (MEcPP) to (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP). However, the noncanonical CDS-derived small peptide TsiHDS5 was shown to interact with TsiHDS4, inhibiting its catalytic activity. This interaction reduced the levels of HMBPP and isopentenyl pyrophosphate (IPP), which represent key substrates for downstream terpenoid biosynthesis. CONCLUSIONS These findings offer clues to decipher the variations in the MEP pathway of terpenoid biosynthesis between T. crispa and T. sinensis and form a basis for further detailed research on the negative regulation of expanded genes.
Collapse
Affiliation(s)
- Zhiyu Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lan Xun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yunyan Lu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xingyu Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Chen
- Yunnan International Joint Laboratory for the Conservation and Utilization of Tropical Timber Tree Species, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Tianyu Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhinan Mei
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunqiang Yang
- Yunnan International Joint Laboratory for the Conservation and Utilization of Tropical Timber Tree Species, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- Yunnan International Joint Laboratory for the Conservation and Utilization of Tropical Timber Tree Species, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Van Quoc N, Huu Tai B, Hai Yen P, Huy Hoang N, Thuy Hang DT, Thanh Huong PT, Anh Bang N, Thi Dung D, Thi Trang D, Giang LD, Van Kiem P. Three Undescribed Furanoditerpenoids from the Tinospora crispa that Inhibit NO Production. Chem Biodivers 2024; 21:e202401679. [PMID: 39136410 DOI: 10.1002/cbdv.202401679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 10/13/2024]
Abstract
Phytochemical study on the methanol extract of the stems of Tinospora crispa (L.) Hook.f. & Thomson led to the isolation of thirteen compounds including three undescribed cis-clerodane-type furanoditerpenoids (1-3) and ten known ones (4-13). Their chemical structures were determined by IR, HR-ESI-MS, 1D-, and 2D-NMR spectra. Compounds 2-4, 6 and 8 inhibited moderately NO production in LPS activated RAW 264.7 cells with the IC50 values of 83.5, 57.6, 75.3, 78.1, and 74.7 μM, respectively.
Collapse
Affiliation(s)
- Nguyen Van Quoc
- School of Chemistry, Biology and Environment, Vinh University, 182 Le Duan, Ben Thuy, Vinh City, Nghe An, 461010, Vietnam
| | - Bui Huu Tai
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| | - Pham Hai Yen
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| | - Nguyen Huy Hoang
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| | - Dan Thi Thuy Hang
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| | - Phan Thi Thanh Huong
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| | - Ngo Anh Bang
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| | - Duong Thi Dung
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| | - Do Thi Trang
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| | - Le Duc Giang
- Department of Chemistry, Vinh University, 182 Le Duan, Ben Thuy, Vinh City, Nghe An, 461010, Vietnam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10072, Vietnam
| |
Collapse
|
3
|
Yang QQ, He SB, Zhang YL, Li M, You XH, Xiao BW, Yang L, Yang ZQ, Deng HH, Chen W. A colorimetric sensing strategy based on chitosan-stabilized platinum nanoparticles for quick detection of α-glucosidase activity and inhibitor screening. Anal Bioanal Chem 2024; 416:6001-6010. [PMID: 38358531 DOI: 10.1007/s00216-024-05198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
α-Glucosidase (α-Glu) is implicated in the progression and pathogenesis of type II diabetes (T2D). In this study, we developed a rapid colorimetric technique using platinum nanoparticles stabilized by chitosan (Ch-PtNPs) to detect α-Glu activity and its inhibitor. The Ch-PtNPs facilitate the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized TMB (oxTMB) in the presence of dissolved O2. The catalytic hydrolysis of 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G) by α-Glu produces ascorbic acid (AA), which reduces oxTMB to TMB, leading to the fading of the blue color. However, the presence of α-Glu inhibitors (AGIs) hinders the generation of AA, allowing Ch-PtNPs to re-oxidize colorless TMB back to blue oxTMB. This unique phenomenon enables the colorimetric detection of α-Glu activity and AGIs. The linear range for α-Glu was found to be 0.1-1.0 U mL-1 and the detection limit was 0.026 U mL-1. Additionally, the half-maximal inhibition value (IC50) for acarbose, an α-Glu inhibitor, was calculated to be 0.4769 mM. Excitingly, this sensing platform successfully detected α-Glu activity in human serum samples and effectively screened AGIs. These promising findings highlight the potential application of the proposed strategy in clinical diabetes diagnosis and drug discovery.
Collapse
Affiliation(s)
- Qin-Qin Yang
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Shao-Bin He
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yi-Lin Zhang
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Min Li
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Xiu-Hua You
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Bo-Wen Xiao
- Experimental Teaching Center, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Liu Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Zhi-Qiang Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China.
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
4
|
Zuhri UM, Yuliana ND, Fadilah F, Erlina L, Purwaningsih EH, Khatib A. Exploration of the main active metabolites from Tinospora crispa (L.) Hook. f. & Thomson stem as insulin sensitizer in L6.C11 skeletal muscle cell by integrating in vitro, metabolomics, and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117296. [PMID: 37820996 DOI: 10.1016/j.jep.2023.117296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora crispa (L.) Hook. f. & Thomson stem (TCS) has long been used as folk medicine for the treatment of diabetes mellitus. Previous study revealed that TCS possesses multi-ingredients and multi-targets characteristic potential as insulin sensitizer activity. However, its mechanisms of action and molecular targets are still obscure. AIM OF THE STUDY In the present study, we investigated the effects of TCS against insulin resistance in muscle cells through integrating in vitro experiment and identifying its active biomarker using metabolomics and in molecular docking validation. MATERIALS AND METHODS We used centrifugal partition chromatography (CPC) to isolate 33 fractions from methanolic extract of TCS, and then used UHPLC-Orbitrap-HRMS to identify the detectable metabolites in each fraction. We assessed the insulin sensitization activity of each fraction using enzyme-linked immunosorbent assay (ELISA), and then used confocal immunocytochemistry microscopy to measure the translocation of glucose transporter 4 (GLUT4) to the cell membrane. The identified active metabolites were further simulated for its molecular docking interaction using Autodock Tools. RESULTS The polar fractions of TCS significantly increased insulin sensitivity, as measured by the inhibition of phosphorylated insulin receptor substrate-1 (pIRS1) at serine-312 residue (ser312) also the increasing number of translocated GLUT4 and glycogen content. We identified 58 metabolites of TCS, including glycosides, flavonoids, alkaloids, coumarins, and nucleotides groups. The metabolomics and molecular docking simulations showed the presence of minor metabolites consisting of tinoscorside D, higenamine, and tinoscorside A as the active compounds. CONCLUSIONS Our findings suggest that TCS is a promising new treatment for insulin resistance and the identification of the active metabolites in TCS could lead to the development of new drugs therapies for diabetes that target these pathways.
Collapse
Affiliation(s)
- Ummu Mastna Zuhri
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nancy Dewi Yuliana
- Department of Food Science and Technology, Bogor Agricultural University, Bogor, Indonesia
| | - Fadilah Fadilah
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Linda Erlina
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Erni Hernawati Purwaningsih
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Department of Medical Pharmacy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| |
Collapse
|
5
|
Zhu YL, Deng L, Dai XY, Song JQ, Zhu Y, Liu T, Kong XQ, Zhang LJ, Liao HB. Tinopanoids K-T, clerodane diterpenoids with anti-inflammatory activity from Tinospora crispa. Bioorg Chem 2023; 140:106812. [PMID: 37651894 DOI: 10.1016/j.bioorg.2023.106812] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
A total of 17 structurally diverse clerodane diterpenoids, including ten undescribed clerodane diterpenoids (tinopanoids K-T, 1-10) and seven known compounds (11-17), were isolated from the vines and leaves of Tinospora crispa. Compound 3 has not only bear the dominant substituents of γ-hydroxy-α, β-unsaturated-γ-lactone with anti-inflammatory activity, but also a ternary epoxy structure at C-3/C-4. The planar structures and relative configurations of the clerodane diterpenoids were elucidated by spectroscopic data interpretation. The absolute configurations of compounds 1, 4, 8 and 13 were determined by single-crystal X-ray crystallographic, while that of compound 3 was determined using computed ECD data and single crystal X-ray diffraction of related p-bromobenzoate ester (3a). Subsequently, all compounds were evaluated for their inhibitory effect on nitric oxide (NO) production of LPS-activated BV-2 cells, and compounds 3 and 8 exhibited better NO inhibitory potency, with IC50 values of 5.6 and 13.8 μM than the positive control minocycline (Mino, IC50 = 22.9 μM). The corresponding results of western blot analysis and qRT-PCR revealed that compound 3 can significantly inhibit the inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expressions, mRNA levels of pro-inflammatory cytokins of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6) and interleukin 1β (IL-1β). The underlying mechanism by which compound 3 exerted anti-neuroinflammatory effects was investigated by western blot and immunofluorescence assay, which suggested compound 3 inhibited LPS induced neuroinflammation via the suppression of toll-like receptor 4 (TLR4) dependent Signal Transducer and Activator of Transcription 3 (Stat3) and mitogen-activated protein kinase (MAPK) signaling pathways, and the activation of Heme Oxygenase-1 (HO-1) mediated signals.
Collapse
Affiliation(s)
- Yang-Li Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Li Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xin-Yan Dai
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jia-Qi Song
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yan Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ting Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiang-Qian Kong
- GuangZhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China
| | - Li-Jun Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Hai-Bing Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
6
|
Lam SH, Liu HK, Chung SY, Chang JL, Hong MX, Kuo SC, Liaw CC. Diterpenoids and Their Glycosides from the Stems of Tinospora crispa with Beta-Cell Protective Activity. JOURNAL OF NATURAL PRODUCTS 2023; 86:1437-1448. [PMID: 37200063 DOI: 10.1021/acs.jnatprod.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Seven previously undescribed diterpenoids, tinocrisposides A-D (1-4) and borapetic acids A (5), B (6), and C (7), together with 16 known compounds, were isolated from the stem of Tinospora crispa (Menispermaceae). The structures of the new isolates were elucidated by spectroscopic and chemical methods. The β-cell protective effect of the tested compounds was examined on insulin-secreting BRIN-BD11 cells under dexamethasone treatment. Diterpene glycosides 12, 14-16, and 18 presented a substantial protective effect on BRIN-BD11 cells treated with dexamethasone in a dose-dependent manner. Compounds 4 and 17 with two sugar moieties exhibited clear protective effects on β-cells.
Collapse
Affiliation(s)
- Sio-Hong Lam
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hui-Kang Liu
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shih-Yuan Chung
- Department of Marine Biotechnology and Resource, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung 404, Taiwan
| | - Jia-Ling Chang
- Department of Science Application and Dissemination, National Taichung University of Education, Taichung 403, Taiwan
| | - Mao-Xuan Hong
- Department of Marine Biotechnology and Resource, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Sheng-Chu Kuo
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung 404, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resource, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
7
|
Network pharmacology integrated molecular dynamics reveals the bioactive compounds and potential targets of Tinospora crispa Linn. as insulin sensitizer. PLoS One 2022; 17:e0251837. [PMID: 35737707 PMCID: PMC9223613 DOI: 10.1371/journal.pone.0251837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Insulin resistance is a metabolic disorder characterized by the decreased response to insulin in muscle, liver, and adipose cells. This condition remains a complex phenomenon that involves several genetic defects and environmental stresses. In the present study, we investigated the mechanism of known phytochemical constituents of Tinospora crispa and its interaction with insulin-resistant target proteins by using network pharmacology, molecular docking, and molecular dynamics (MD) simulation. Tinoscorside A, Makisterone C, Borapetoside A and B, and β sitosterol consider the main phytoconstituents of Tinospora crispa by its binding with active sites of main protein targets of insulin resistance potential therapy. Moreover, Tinoscorside A was revealed from the docking analysis as the ligand that binds most strongly to the target protein, PI3K. This finding was strengthened by the results of MD simulation, which stated that the conformational stability of the ligand-protein complex was achieved at 15 ns and the formation of hydrogen bonds at the active site. In conclusion, Tinospora crispa is one of the promising therapeutic agent in type 2 diabetes mellitus management. Regulation in glucose homeostasis, adipolysis, cell proliferation, and antiapoptosis are predicted to be the critical mechanism of Tinospora crispa as an insulin sensitizer.
Collapse
|
8
|
A fluorescence turn-on biosensor utilizing silicon-containing nanoparticles: Ultra-sensitive sensing for α-glucosidase activity and screening for its potential inhibitors. Biosens Bioelectron 2022; 214:114504. [DOI: 10.1016/j.bios.2022.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
|
9
|
Potential of Diterpenes as Antidiabetic Agents: Evidence from Clinical and Pre-Clinical Studies. Pharmacol Res 2022; 179:106158. [PMID: 35272043 DOI: 10.1016/j.phrs.2022.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/20/2022]
Abstract
Diterpenes are a diverse group of structurally complex natural products with a wide spectrum of biological activities, including antidiabetic potential. In the last 25 years, numerous diterpenes have been investigated for antidiabetic activity, with some of them reaching the stage of clinical trials. However, these studies have not been comprehensively reviewed in any previous publication. Herein, we critically discussed the literature on the potential of diterpenes as antidiabetic agents, published from 1995 to September, 2021. In the period under review, 427 diterpenes were reported to have varying degrees of antidiabetic activity. Steviol glycosides, stevioside (1) and rebaudioside A (2), were the most investigated diterpenes with promising antidiabetic property using in vitro and in vivo models, as well as human subjects. All the tested pimaranes consistently showed good activity in preclinical evaluations against diabetes. Inhibitions of α-glucosidase and protein tyrosine phosphatase 1B (PTP 1B) activities and peroxisome proliferator-activated receptors gamma (PPAR-γ) agonistic property, were the most frequently used assays for studying the antidiabetic activity of diterpenes. The molecular mechanisms of action of the diterpenes include increased GLUT4 translocation, and activation of phosphoinositide 3-kinase (PI3K) and AMP-activated protein kinase (AMPK)-dependent signaling pathways. Our data revealed that diterpenes hold promising antidiabetic potential. Stevioside (1) and rebaudioside A (2) are the only diterpenes that were advanced to the clinical trial stage of the drug discovery pipeline. Diterpenes belonging to the abietane, labdane, pimarane and kaurane class have shown promising activity in in vitro and in vivo models of diabetes and should be further investigated.
Collapse
|
10
|
Rangelov Kozhuharov V, Ivanov K, Ivanova S. Higenamine in Plants as a Source of Unintentional Doping. PLANTS (BASEL, SWITZERLAND) 2022; 11:354. [PMID: 35161335 PMCID: PMC8838985 DOI: 10.3390/plants11030354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Higenamine is a β2 agonist of plant origin. The compound has been included in WADA's prohibited list since 2017. Higenamine may be detected in different plants and many food supplements of natural origin. METHODS Our literature search was conducted through PubMed, Science Direct, Google Scholar, and Web of Science studies investigating the presence of higenamine in plants that are used in traditional folk medicine or included in food supplements. Our study aimed to assess the risk of adverse analytical findings caused by higenamine-containing plants. RESULTS Based on our literature search, Nelumbo nucifera, Tinospora crispa, Nandina domestica, Gnetum parvifolium, Asarum siebodii,Asarum heterotropoides, Aconitum carmichaelii, and Aristolochia brasiliensis are higenamine-containing plants. Based on data from Eastern folk medicine, these plants can provide numerous health benefits. Professional athletes likely ingest these plants without knowing that they contain higenamine; these herbs are used in treatments for different conditions and various foods/food supplements in addition to folk medicine. CONCLUSION Athletes and their teams must be aware of the issues associated with the use of plant-based products. They should avoid consuming higenamine-containing plants during and outside of competition periods.
Collapse
Affiliation(s)
- Vanya Rangelov Kozhuharov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (K.I.); (S.I.)
| | | | | |
Collapse
|
11
|
Singh B, Nathawat S, Sharma RA. Ethnopharmacological and phytochemical attributes of Indian Tinospora species: A comprehensive review. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
12
|
Andrade C, Gomes NGM, Duangsrisai S, Andrade PB, Pereira DM, Valentão P. Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: Ethnobotanical surveys, scientific evidence and phytochemicals. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113177. [PMID: 32768637 DOI: 10.1016/j.jep.2020.113177] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/23/2020] [Accepted: 07/09/2020] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes mellitus remains the most lethal metabolic disease of contemporaneous times and despite the therapeutic arsenal currently available, research on new antidiabetic agents remains a priority. In recent years, the revitalization of Thai Traditional Medicine (TTM) became a clear priority for the Thai government, and many efforts have been undertaken to accelerate research on herbal medicines and their use in medical services in various hospitals. Additionally, and particularly in rural areas, treatment of diabetes and associated symptomatology frequently relies on herbal preparations recommended by practitioners of TTM. In the current work, medicinal plants used in Thailand for treating diabetes, as well as their hypoglycaemic pharmacological evidences and potential therapeutic use for diabetes-related complications were reviewed. MATERIALS AND METHODS Ethnopharmacological information on the plant materials used in TTM for diabetes treatment was collected through literature search in a range of scientific databases using the search terms: diabetes, folk medicine, Thailand medicinal plants, traditional medicine. Information regarding scientific evidence on the antidiabetic effects of surveyed species was obtained considering not only the most common taxonomic designation, but also taxonomic synonyms, and including the keywords 'diabetes' and 'hypoglycaemic effect'. RESULTS A total of 183 species known to be used for diabetes management in TTM were reviewed, with 30% of them still lacking experimental evidences to support claims regarding the mechanisms and phytochemicals underlying their antidiabetic properties. Moreover, a total of 46 bioactives displaying effective antidiabetic effects have been isolated from 24 species, their underlying mechanism(s) of action being fully or partially disclosed. CONCLUSIONS We deliver the most extensive survey dealing with the ethnomedicinal knowledge of Thai medicinal plants utilized on diabetes management. We are certain that the current review will spark further research on Thai plants for the development of new standardized phytomedicines through drug discovery programmes.
Collapse
Affiliation(s)
- Catarina Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Sutsawat Duangsrisai
- Department of Botany, Faculty of Science, Kasetsart University, Ngam Wong Wang Road, Chatuchak, Bangkok, 10900, Thailand.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| |
Collapse
|
13
|
Liu DM, Dong C, Ma RT. A colorimetric method for screening α-glucosidase inhibitors from flavonoids using 3,3',5,5'-tetramethylbenzidine as a chromogenic probe. Colloids Surf B Biointerfaces 2020; 197:111400. [PMID: 33113490 DOI: 10.1016/j.colsurfb.2020.111400] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/17/2020] [Accepted: 10/04/2020] [Indexed: 01/14/2023]
Abstract
A facile and novel colorimetric method for screening of α-glucosidase inhibitors (AGIs) from flavonoids using 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic probe is proposed. This method is based on the colorimetric detection of ascorbic acid (AA) through the TMB oxidation reaction catalyzed by horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2). In the TMB/H2O2/HRP system, HRP catalyzes the oxidation of H2O2 to ‧OH radical which oxidizes TMB to blue-colored oxidized TMB (oxTMB). In the presence of AA, the production of ‧OH radical is suppressed and causes the decrease of oxTMB, resulting in the fading of the blue color and the decrease of absorbance at 652 nm. Based on this, the existence of AA can be facilely identified. In the 2-O-α-d-glucopyranosyl-l-ascorbic acid (AA-2 G)/α-glucosidase (α-Glu) system, the produced AA inhibits the oxidation of TMB to blue-colored oxTMB. In the presence of AGIs, the production of AA is inhibited, which inhibits the reduction of oxTMB, resulting in a blue color recovery and an increase of the absorbance at 652 nm. Based on this, the colorimetric method is developed for screening of AGIs from 7 flavonoids.
Collapse
Affiliation(s)
- Dong-Mei Liu
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, PR China
| | - Chen Dong
- Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, PR China.
| | - Run-Tian Ma
- College of Science, Gansu Agricultural University, Lanzhou, 730000, Gansu Province, PR China.
| |
Collapse
|
14
|
Apaya MK, Kuo TF, Yang MT, Yang G, Hsiao CL, Chang SB, Lin Y, Yang WC. Phytochemicals as modulators of β-cells and immunity for the therapy of type 1 diabetes: Recent discoveries in pharmacological mechanisms and clinical potential. Pharmacol Res 2020; 156:104754. [DOI: 10.1016/j.phrs.2020.104754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
|
15
|
Lam SH, Jian SD, Hwang TL, Chen PJ, Hung HY, Kuo PC, Wu TS. A new dimeric protoberberine alkaloid and other compounds from the tubers of Tinospora dentata. Nat Prod Res 2019; 35:17-24. [PMID: 31135226 DOI: 10.1080/14786419.2019.1611809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new dimeric quaternary protoberberine alkaloid, bispalmatrubine (1), and thirteen known compounds (2-14) were purified from the tubers of Tinospora dentata. Their structures were determined by spectroscopic and spectrometric analytical methods. Among the isolates, eight compounds were examined for their in vitro anti-inflammatory potential and several tested alkaloids displayed moderate inhibitory effects of N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced superoxide anion generation and elastase release.
Collapse
Affiliation(s)
- Sio-Hong Lam
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Duan Jian
- Chuang Song Zong Pharmaceutical Co., LTD, Kaohsiung City, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Po-Jen Chen
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| |
Collapse
|
16
|
Diéguez-Santana K, Rivera-Borroto OM, Puris A, Pham-The H, Le-Thi-Thu H, Rasulev B, Casañola-Martin GM. Beyond model interpretability using LDA and decision trees for α-amylase and α-glucosidase inhibitor classification studies. Chem Biol Drug Des 2019; 94:1414-1421. [PMID: 30908888 DOI: 10.1111/cbdd.13518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/17/2019] [Accepted: 03/03/2019] [Indexed: 12/17/2022]
Abstract
In this report are used two data sets involving the main antidiabetic enzyme targets α-amylase and α-glucosidase. The prediction of α-amylase and α-glucosidase inhibitory activity as antidiabetic is carried out using LDA and classification trees (CT). A large data set of 640 compounds for α-amylase and 1546 compounds in the case of α-glucosidase are selected to develop the tree model. In the case of CT-J48 have the better classification model performances for both targets with values above 80%-90% for the training and prediction sets, correspondingly. The best model shows an accuracy higher than 95% for training set; the model was also validated using 10-fold cross-validation procedure and through a test set achieving accuracy values of 85.32% and 86.80%, correspondingly. Additionally, the obtained model is compared with other approaches previously published in the international literature showing better results. Finally, we can say that the present results provided a double-target approach for increasing the estimation of antidiabetic chemicals identification aimed by double-way workflow in virtual screening pipelines.
Collapse
Affiliation(s)
| | - Oscar M Rivera-Borroto
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Amilkar Puris
- Facultad de Ciencias de La Ingeniería, Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador
| | | | - Huong Le-Thi-Thu
- School of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota
| | | |
Collapse
|
17
|
Jiraungkoorskul W. Efficiency of Tinospora crispa against Culex quinquefasciatus larva. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14712-14716. [PMID: 29869741 DOI: 10.1007/s11356-018-2429-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Tinospora crispa stem aqueous extractions for various time durations were determined regarding their total phenolic content and their larvicidal abilities. The results revealed that the total phenolic content in 1-, 3-, 5-, 10-, and 24-h extracts were 8.26, 8.43, 13.57, 12.52, and 12.43 mg/g gallic acid equivalent, respectively. The 5-h extract of T. crispa was evaluated against Culex quinquefasciatus mosquito larva in concentrations 3.125, 6.25, 12.5, and 25 mg/l, by determining the lethal concentration (LC) within 24 h and by histopathological analysis. The 24-h LC50 and LC90 values were 16.95 and 30.12 mg/l, respectively. The histopathological lesions after exposure to 50% of the 24-h LC50 were observed primarily in the midgut of the larva. The lesions observed were for the example epithelial cells lifting from the basement membrane, cell elongation protruding into the lumen, brush border disrupting with absent microvilli, and vesicle appearance. The present study indicated that the aqueous extract of this herb may have a suitable property for a larvicidal natural product and may replace harmful chemical pesticides.
Collapse
Affiliation(s)
- Wannee Jiraungkoorskul
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
18
|
Chemical Constituents from the Stems of Tinospora sinensis and Their Bioactivity. Molecules 2018; 23:molecules23102541. [PMID: 30301176 PMCID: PMC6222598 DOI: 10.3390/molecules23102541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 11/23/2022] Open
Abstract
Fifty-seven compounds were purified from the stems of Tinospora sinensis, including three new compounds characterized as a lignan (1), a pyrrole alkaloid (11), and a benzenoid (17), respectively. Their structures were elucidated and established by various spectroscopic and spectrometric analytical methods. Among the isolates, fifteen compounds were examined for their anti-inflammatory potential in vitro. The results showed that several compounds displayed moderate inhibition of N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced superoxide anion generation and elastase release.
Collapse
|
19
|
Clerodane furanoditerpenoids as the probable cause of toxic hepatitis induced by Tinospora crispa. Sci Rep 2018; 8:13520. [PMID: 30202067 PMCID: PMC6131512 DOI: 10.1038/s41598-018-31815-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/23/2018] [Indexed: 11/08/2022] Open
Abstract
Tinospora crispa is a popular traditional herbal plant commonly used throughout the world for treatment of various diseases, in particular type 2 diabetes mellitus. We report here a new case of toxic hepatitis in a 57-year old male patient in the French West Indies following the consumption of two aqueous extracts of fresh Tinospora crispa stems. It thus differs from two previously reported cases that concerned the chronic intake of powdered dry stems delivered in solid oral dosage forms (i.e. pellets and tablets). Liquid Chromatography-Diode Array Detection-Mass Spectrometry (LC/DAD/MS) analyses were performed on an aqueous extract of the offending sample that mimics the swallowed preparation. They revealed the presence of species-specific molecular marker borapetoside C (1) and thus enabled an unambiguous phytochemical identification. The exploration of tandem MS/MS data obtained by ultra-high performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-HRMS) allowed the identification of 17 additional cis-clerodane-type furanoditerpenoid lactones, analogues of 1. These results support the hypothesis that the mechanisms underlying hepatotoxicity of Tinospora crispa are the same as those encountered with furanoditerpenoids-containing plants such as Teucrium chamaedrys or Dioscorea bulbifera. In the context of type 2 diabetes treatment, we recommend that Tinospora crispa intake should be more closely monitored for signs of hepatotoxicity.
Collapse
|
20
|
Genus Tinospora: Ethnopharmacology, Phytochemistry, and Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9232593. [PMID: 27648105 PMCID: PMC5018348 DOI: 10.1155/2016/9232593] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/10/2016] [Accepted: 07/13/2016] [Indexed: 01/19/2023]
Abstract
The genus Tinospora includes 34 species, in which several herbs were used as traditional medicines by indigenous groups throughout the tropical and subtropical parts of Asia, Africa, and Australia. The extensive literature survey revealed Tinospora species to be a group of important medicinal plants used for the ethnomedical treatment of colds, headaches, pharyngitis, fever, diarrhea, oral ulcer, diabetes, digestive disorder, and rheumatoid arthritis. Indian ethnopharmacological data points to the therapeutic potential of the T. cordifolia for the treatment of diabetic conditions. While Tinospora species are confusing in individual ingredients and their mechanisms of action, the ethnopharmacological history of those plants indicated that they exhibit antidiabetic, antioxidation, antitumor, anti-inflammation, antimicrobial, antiosteoporosis, and immunostimulation activities. While the clinical applications in modern medicine are lacking convincing evidence and support, this review is aimed at summarizing the current knowledge of the traditional uses, phytochemistry, biological activities, and toxicities of the genus Tinospora to reveal its therapeutic potentials and gaps, offering opportunities for future researches.
Collapse
|
21
|
Ahmad W, Jantan I, Bukhari SNA. Tinospora crispa (L.) Hook. f. & Thomson: A Review of Its Ethnobotanical, Phytochemical, and Pharmacological Aspects. Front Pharmacol 2016; 7:59. [PMID: 27047378 PMCID: PMC4800188 DOI: 10.3389/fphar.2016.00059] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/29/2016] [Indexed: 12/30/2022] Open
Abstract
Tinospora crispa (L.) Hook. f. & Thomson (Menispermaceae), found in the rainforests or mixed deciduous forests in Asia and Africa, is used in traditional medicines to treat numerous health conditions. This review summarizes the up-to-date reports about the ethnobotany, phytochemistry, pharmacological activities, toxicology, and clinical trials of the plant. It also provides critical assessment about the present knowledge of the plant which could contribute toward improving its prospect as a source of lead molecules for drug discovery. The plant has been used traditionally in the treatment of jaundice, rheumatism, urinary disorders, fever, malaria, diabetes, internal inflammation, fracture, scabies, hypertension, reducing thirst, increasing appetite, cooling down the body temperature, and maintaining good health. Phytochemical analyses of T. crispa revealed the presence of alkaloids, flavonoids, and flavone glycosides, triterpenes, diterpenes and diterpene glycosides, cis clerodane-type furanoditerpenoids, lactones, sterols, lignans, and nucleosides. Studies showed that the crude extracts and isolated compounds of T. crispa possessed a broad range of pharmacological activities such as anti-inflammatory, antioxidant, immunomodulatory, cytotoxic, antimalarial, cardioprotective, and anti-diabetic activities. Most pharmacological studies were based on crude extracts of the plant and the bioactive compounds responsible for the bioactivities have not been well identified. Further investigations are required to transform the experience-based claims on the use of T. crispa in traditional medicine practices into evidence-based information. The plant extract used in pharmacological and biological studies should be qualitatively and quantitatively analyzed based on its biomarkers. There should be detail in vitro and in vivo studies on the mechanisms of action of the pure bioactive compounds and more elaborate toxicity study to ensure safety of the plant for human use. More clinical trials are encouraged to be carried out if there are sufficient preclinical and safety data.
Collapse
Affiliation(s)
- Waqas Ahmad
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Syed N A Bukhari
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Thomas A, Rajesh EK, Kumar DS. The Significance of Tinospora crispa
in Treatment of Diabetes Mellitus. Phytother Res 2016; 30:357-66. [DOI: 10.1002/ptr.5559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/22/2015] [Accepted: 12/04/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Alex Thomas
- CARe Keralam Ltd, KINFRA Small Industries Park; KINFRA Park P.O. Koratty 680 309 Kerala India
| | - E. K. Rajesh
- My Holdings Consultancy Pvt Ltd; First Floor, Supriya Tower Chalakudy 680307 Thrissur District, Kerala India
| | - D. Suresh Kumar
- CARe Keralam Ltd, KINFRA Small Industries Park; KINFRA Park P.O. Koratty 680 309 Kerala India
| |
Collapse
|
23
|
Liu B, Ma JM, Chen HW, Li ZL, Sun LH, Zeng Z, Jiang H. α-Glucosidase inhibitory activities of phenolic acid amides with l-amino acid moiety. RSC Adv 2016. [DOI: 10.1039/c6ra08330g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phenolic acid amides with a l-amino acid moiety showed excellent inhibitory activity on α-glucosidase.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemistry
- College of Science
- Huazhong Agricultural University
- Wuhan 430070
- PR China
| | - Ji-Mei Ma
- Department of Chemistry
- College of Science
- Huazhong Agricultural University
- Wuhan 430070
- PR China
| | - Hang-Wei Chen
- Department of Chemistry
- College of Science
- Huazhong Agricultural University
- Wuhan 430070
- PR China
| | - Zi-Long Li
- Department of Chemistry
- College of Science
- Huazhong Agricultural University
- Wuhan 430070
- PR China
| | - Lin-Hao Sun
- Department of Chemistry
- College of Science
- Huazhong Agricultural University
- Wuhan 430070
- PR China
| | - Zhen Zeng
- Department of Chemistry
- College of Science
- Huazhong Agricultural University
- Wuhan 430070
- PR China
| | - Hong Jiang
- Department of Chemistry
- College of Science
- Huazhong Agricultural University
- Wuhan 430070
- PR China
| |
Collapse
|
24
|
Phienwej H, Swasdichira IS, Amnuoypol S, Pavasant P, Sumrejkanchanakij P. Tinospora crispa extract inhibits MMP-13 and migration of head and neck squamous cell carcinoma cell lines. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Chang CC, Ho SL, Lee SS. Acylated glucosylflavones as α-glucosidase inhibitors from Tinospora crispa leaf. Bioorg Med Chem 2015; 23:3388-96. [DOI: 10.1016/j.bmc.2015.04.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 01/07/2023]
|
26
|
Hamid H, Yusoff M, Liu M, Karim M. α-Glucosidase and α-amylase inhibitory constituents of Tinospora crispa: Isolation and chemical profile confirmation by ultra-high performance liquid chromatography-quadrupole time-of-flight/mass spectrometry. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
27
|
Liao D, Ma J, Duan XL. Therapeutic effect of Zhuang herb Hanyitai on duck hepatitis B. Shijie Huaren Xiaohua Zazhi 2015; 23:1395-1401. [DOI: 10.11569/wcjd.v23.i9.1395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the therapeutic effect of Zhuang herb Hanyitai on liver function, viral replication, immune regulation and liver inflammation in a duck model infected by duck hepatitis B virus (DHBV).
METHODS: Duck hepatitis B was induced by intraperitoneal injection of DHBV positive serum into one-day-old Guangxi sheldrakes. On the day before treatment (T0), 7 d (T7) and 14 d (T14) during treatment, and 3 d (P3) after treatment, jugular blood and liver tissue samples were collected to detect aspartate aminotransferase (ALT), alanine aminotransferase (AST), interleukin-2 (IL-2), DHBV DNA, and liver pathology.
RESULTS: In the model group, ALT, AST and IL-2 levels were significantly increased after DHBV infection for one week and two weeks (P = 0.028, 0.036; P = 0.005, 0.04; P = 0.045), the amount of virus was relatively stable, and severe fatty degeneration was observed in liver tissues. In the lamivudine group, ALT and IL-2 levels were significantly decreased after treatment for one week and two weeks (P = 0.001, 0.042; P = 0.023), AST level showed no significant changes, the replication of virus was significantly inhibited (P = 0.034; 0.007), without rebounding after medication withdrawal for three days (P = 0.013), and liver tissue pathology showed moderate liver steatosis. In the high dose Hanyitai group, ALT, AST, and IL-2 levels were significantly reduced after treatment for one week and two weeks (P = 0.047, 0.035; P = 0.007, 0.003; P = 0.026, 0.049), the replication of virus was inhibited significantly as the lamivudine group (P = 0.025; P = 0.012; P = 0.011), and liver tissue pathology displayed moderate liver steatosis. In the usual dose Hanyitai group, ALT, AST, and IL-2 levels were significantly reduced after treatment for one week and two weeks (P = 0.015; P = 0.038; P = 0.024, 0.004), but at T14, ALT and AST level rebounded, the replication of virus was inhibited moderately, and moderate or severe steatosis was noted.
CONCLUSION: Hanyitai can reduce transaminase levels, inhibit DHBV DNA replication, and reduce IL-2 secretion in a dose-dependent manner. Hanyitai could protect liver cells, relieve hepatic steatosis, and reduce acute immunological liver injury.
Collapse
|