1
|
Xiao T, Zhang Y, Wu L, Zhong Q, Li X, Shen S, Xu X, Cao X, Zhou Z, Wong HM, Li QL. Biomimetic mineralization of collagen from fish scale to construct a functionally gradient lamellar bone-like structure for guided bone regeneration. Int J Biol Macromol 2024; 281:136454. [PMID: 39389508 DOI: 10.1016/j.ijbiomac.2024.136454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Wide used guided bone regeneration (GBR) membrane materials, such as collagen, Teflon, and other synthesized polymers, present a great challenge in term of integrating the mechanical property and degradation rate when addressing critical bone defects. Therefore, inspired by the distinctive architecture of fish scales, this study utilized epigallocatechin gallate to modify decellularized fish scales following biomimetic mineralization to fabricate a GBR membrane that mimics the structure of lamellar bone. The structure, physical and chemical properties, and biological functions of the novel GBR membrane were evaluated. Results indicate that the decellularized fish scale with 5 remineralization cycles (5R-E-DCFS) exhibited a composite and structure similar to natural bone and had a special functionally gradient mineral contents character, demonstrating excellent mechanical properties, hydrophilicity, and degradation properties. In vitro, the 5R-E-DCFS membrane exhibited excellent cytocompatibility promoting Sprague-Dawley (SD) rat bone marrow mesenchymal stem cell proliferation and differentiation up-regulating the expression of osteogenic-related genes and proteins. Furthermore, in vivo, the 5R-E-DCFS membrane promoted the critical skull bone defects of SD rats repairment and regeneration. Therefore, this innovative biomimetic membrane holds substantial clinical potential as an ideal GBR membrane with mechanical properties for space-making and suitable degradation rate for bone regeneration to manage bone defects.
Collapse
Affiliation(s)
- Ting Xiao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Shenzhen 518172, China
| | - Yuyuan Zhang
- The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Shenzhen 518172, China
| | - Leping Wu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Qi Zhong
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xiaofeng Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Shengjie Shen
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xiaohua Xu
- The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Shenzhen 518172, China
| | - Xiaoma Cao
- The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Shenzhen 518172, China
| | - Zheng Zhou
- School of Dentistry, University of Detroit Mercy, Detroit, MI 48208-2576, United States
| | - Hai Ming Wong
- Faculty of Dentistry, The Prince Philip Dental Hospital, The University of Hong Kong, 999077, Hong Kong, China
| | - Quan-Li Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Shenzhen 518172, China.
| |
Collapse
|
2
|
Liu Z, Wang T, Zhang L, Luo Y, Zhao J, Chen Y, Wang Y, Cao W, Zhao X, Lu B, Chen F, Zhou Z, Zheng L. Metal-Phenolic Networks-Reinforced Extracellular Matrix Scaffold for Bone Regeneration via Combining Radical-Scavenging and Photo-Responsive Regulation of Microenvironment. Adv Healthc Mater 2024; 13:e2304158. [PMID: 38319101 DOI: 10.1002/adhm.202304158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Indexed: 02/07/2024]
Abstract
The limited regulation strategies of the regeneration microenvironment significantly hinder bone defect repair effectiveness. One potential solution is using biomaterials capable of releasing bioactive ions and biomolecules. However, most existing biomaterials lack real-time control features, failing to meet high regulation requirements. Herein, a new Strontium (Sr) and epigallocatechin-3-gallate (EGCG) based metal-phenolic network with polydopamine (PMPNs) modification is prepared. This material reinforces a biomimetic scaffold made of extracellular matrix (ECM) and hydroxyapatite nanowires (nHAW). The PMPNs@ECM/nHAW scaffold demonstrates exceptional scavenging of free radicals and reactive oxygen species (ROS), promoting HUVECs cell migration and angiogenesis, inducing stem cell osteogenic differentiation, and displaying high biocompatibility. Additionally, the PMPNs exhibit excellent photothermal properties, further enhancing the scaffold's bioactivities. In vivo studies confirm that PMPNs@ECM/nHAW with near-infrared (NIR) stimulation significantly promotes angiogenesis and osteogenesis, effectively regulating the microenvironment and facilitating bone tissue repair. This research not only provides a biomimetic scaffold for bone regeneration but also introduces a novel strategy for designing advanced biomaterials. The combination of real-time photothermal intervention and long-term chemical intervention, achieved through the release of bioactive molecules/ions, represents a promising direction for future biomaterial development.
Collapse
Affiliation(s)
- Zhiqing Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tianlong Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Lei Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yiping Luo
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jinhui Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yixing Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yao Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wentao Cao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xinyu Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Bingqiang Lu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Feng Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zifei Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Longpo Zheng
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Shanghai Trauma Emergency Center, Shanghai, 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis & Treatment Center, Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| |
Collapse
|
3
|
Jing H, Wu Y, Lin Y, Luo T, Liu H, Luo Z. A Zn 2+ cross-linked sodium alginate/epigallocatechin gallate hydrogel scaffold for promoting skull repair. Colloids Surf B Biointerfaces 2024; 239:113971. [PMID: 38759296 DOI: 10.1016/j.colsurfb.2024.113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
The optimal material for repairing skull defects should exhibit outstanding biocompatibility and mechanical properties. Specifically, hydrogel scaffolds that emulate the microenvironment of the native bone extracellular matrix play a vital role in promoting osteoblast adhesion, proliferation, and differentiation, thereby yielding superior outcomes in skull reconstruction. In this study, a composite network hydrogel comprising sodium alginate (SA), epigallocatechin gallate (EGCG), and zinc ions (Zn2+) was developed to establish an ideal osteogenic microenvironment for bone regeneration. Initially, physical entanglement and hydrogen bonding between SA and EGCG resulted in the formation of a primary network hydrogel known as SA-EGCG. Subsequently, the inclusion of Zn2+ facilitated the creation of a composite network hydrogels named SA-EGCG-Zn2+ via dynamic coordination bonds with SA and EGCG. The engineered SA-EGCG2 %-Zn2+ hydrogels offered an environment mimicking the native extracellular matrix (ECM). Moreover, the sustained release of Zn2+ from the hydrogel effectively enhanced cell adhesion, promoted proliferation, and stimulated osteoblast differentiation. In vitro experiments have shown that SA-EGCG2 %-Zn2+ hydrogels greatly enhance the attachment and growth of osteoblast precursor cells (MC3T3-E1), while also increasing the expression of genes related to osteogenesis in these cells. Additionally, in vivo studies have confirmed that SA-EGCG2 %-Zn2+ hydrogels promote new bone formation and accelerate the regeneration of bone in situ, indicating promising applications in the realm of bone tissue engineering.
Collapse
Affiliation(s)
- Huan Jing
- Department of Endodontics, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China.
| | - Yun Wu
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Yuntao Lin
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Tingting Luo
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Hongsheng Liu
- Guangdong Huayan Biomedical Science and Technology Center, Guangzhou, Guangdong 511441, PR China
| | - Zhen Luo
- Pingshan General Hospital, Southern Medical University, Shenzhen, Guangdong 518118, PR China; Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong 518118, PR China.
| |
Collapse
|
4
|
Bai Z, Zhao Y, Cui C, Yan J, Qin D, Tong J, Peng H, Liu Y, Sun L, Wu X, Li B, Li X. Multifaceted Materials for Enhanced Osteogenesis and Antimicrobial Properties on Bioplastic Polyetheretherketone Surfaces: A Review. ACS OMEGA 2024; 9:17784-17807. [PMID: 38680314 PMCID: PMC11044237 DOI: 10.1021/acsomega.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
Implant-associated infections and the increasing number of bone implants loosening and falling off after implantation have become urgent global challenges, hence the need for intelligent alternative solutions to combat implant loosening and falling off. The application of polyetheretherketone (PEEK) in biomedical and medical therapy has aroused great interest, especially because its elastic modulus close to bone provides an effective alternative to titanium implants, thereby preventing the possibility of bone implants loosening and falling off due to the mismatch of elastic modulus. In this Review, we provide a comprehensive overview of recent advances in surface modifications to prevent bone binding deficiency and bacterial infection after implantation of bone implants, starting with inorganics for surface modification, followed by organics that can effectively promote bone integration and antimicrobial action. In addition, surface modifications derived from cells and related products of biological activity have been proposed, and there is increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies against medical associated poor osseointegration and infection are discussed, with promising prospects for developing novel osseointegration and antimicrobial PEEK materials.
Collapse
Affiliation(s)
- Ziyang Bai
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Yifan Zhao
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Chenying Cui
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Jingyu Yan
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Danlei Qin
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Jiahui Tong
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Hongyi Peng
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Yingyu Liu
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Lingxiang Sun
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xiuping Wu
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Bing Li
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xia Li
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| |
Collapse
|
5
|
Alsmael MA, Al-Khafaji AM. Evaluation of High-Performance Polyether Ether Ketone Polymer Treated with Piranha Solution and Epigallocatechin-3-Gallate Coating. BIOMED RESEARCH INTERNATIONAL 2024; 2024:1741539. [PMID: 38628498 PMCID: PMC11019569 DOI: 10.1155/2024/1741539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 03/23/2024] [Indexed: 04/19/2024]
Abstract
Background Dental implantation has become a standard procedure with high success rates, relying on achieving osseointegration between the implant surface and surrounding bone tissue. Polyether ether ketone (PEEK) is a promising alternative to traditional dental implant materials like titanium, but its osseointegration capabilities are limited due to its hydrophobic nature and reduced surface roughness. Objective The aim of the study is to increase the surface roughness and hydrophilicity of PEEK by treating the surface with piranha solution and then coating the surface with epigallocatechin-3-gallate (EGCG) by electrospraying technique. Materials and Methods The study includes four groups intended to investigate the effect of piranha treatment and EGCG coating: a control group of PEEK discs with no treatment (C), PEEK samples treated with piranha solution (P), a group of PEEK samples coated with EGCG (E), and a group of PEEK samples treated with piranha solution and coated with EGCG (PE). Surface roughness, wettability, and microhardness were assessed through statistical analysis. Results Piranha treatment increased surface roughness, while EGCG coating moderated it, resulting in an intermediate roughness in the PE group. EGCG significantly improved wettability, as indicated by the reduced contact angle. Microhardness increased by about 20% in EGCG-coated groups compared to noncoated groups. Statistical analysis confirmed significant differences between groups in all tests. Conclusion This study demonstrates the potential of EGCG coating to enhance the surface properties of PEEK as dental implants. The combined piranha and EGCG modification approach shows promise for improved osseointegration, although further vivo research is necessary. Surface modification techniques hold the key to optimizing biomaterial performance, bridging the gap between laboratory findings and clinical implementation in dental implantology.
Collapse
Affiliation(s)
- Mohammed A. Alsmael
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
6
|
Hammal F, Chiu C, Kung JY, Bradley N, Dillane D. Pain management for hospitalized patients with rib fractures: A systematic review of randomized clinical trials. J Clin Anesth 2024; 92:111276. [PMID: 37883901 DOI: 10.1016/j.jclinane.2023.111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
STUDY OBJECTIVE Rib fractures (RF) are common injuries. Multiple analgesia strategies are available for treatment of pain associated with RF. However, the optimal multimodal technique for pain management is not known. The primary aim of this review was to evaluate the status of evidence derived from randomized clinical trials (RCTs) on the effectiveness of pain management modalities for rib fracture pain. Other patient-centered outcomes were secondary objectives. METHODS Searches were conducted in MEDLINE, Embase, Scopus, and Cochrane Library. The screening process involved two phases, two researchers independently screened the title and abstract and subsequently screened full text. RCT data were extracted independently by two research team members. Consensus was achieved by comparison and discussion when needed. Risk of bias assessment was performed using the Cochrane Risk of Bias 2 tool. RESULTS A total of 1344 citations were identified. Title and abstract screening excluded 1128 citations, and full text review excluded 177 articles. A total of 32 RCTs were included in the full review. Multiple analgesia techniques and medications were identified and their effect on pain score and need for rescue opioid analgesia. None of the included studies were judged to have a high risk of bias, while only 10 studies were assessed as having a low risk of bias. CONCLUSIONS This systematic review found that studies are of low quality with diverse methodologies and outcomes. A reduction in pain scores was found for epidural analgesia when compared with other modalities. However, the low quality of the evidence necessitates cautious interpretation of this finding. PROSPERO registration: CRD42022376298 (Nov, 16, 2022).
Collapse
Affiliation(s)
- Fadi Hammal
- Department of Anesthesiology and Pain Medicine, University of Alberta Hospital, Edmonton, AB, Canada
| | - Christine Chiu
- Department of Anesthesiology and Pain Medicine, University of Alberta Hospital, Edmonton, AB, Canada
| | - Janice Y Kung
- John W. Scott Health Sciences Library, University of Alberta Hospital, Edmonton, AB, Canada
| | - Nori Bradley
- Department of Surgery, University of Alberta Hospital, Edmonton, AB, Canada
| | - Derek Dillane
- Department of Anesthesiology and Pain Medicine, University of Alberta Hospital, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Cai J, Qiao Y, Chen L, Lu Y, Zheng D. Regulation of the Notch signaling pathway by natural products for cancer therapy. J Nutr Biochem 2024; 123:109483. [PMID: 37848105 DOI: 10.1016/j.jnutbio.2023.109483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The Notch signaling pathway is an evolutionarily conserved pathway that modulates normal biological processes involved in cellular differentiation, apoptosis, and stem cell self-renewal in a context-dependent fashion. Attributed to its pleiotropic physiological roles, both overexpression and silencing of the pathway are associated with the emergence, progression, and poorer prognosis in various types of cancer. To decrease disease incidence and promote survival, targeting Notch may have chemopreventive and anti-cancer effects. Natural products with profound historical origins have distinguished themselves from other therapies due to their easy access, high biological compatibility, low toxicity, and reliable effects at specific physiological sites in vivo. This review describes the Notch signaling pathway, particularly its normal activation process, and some main illnesses related to Notch signaling pathway dysregulation. Emphasis is placed on the effects and mechanisms of natural products targeting the Notch signaling pathway in diverse cancer types, including curcumin, ellagic acid (EA), resveratrol, genistein, epigallocatechin-3-gallate (EGCG), quercetin, and xanthohumol and so on. Existing evidence indicates that natural products are feasible solution to fight against cancer by targeting Notch signaling, either alone or in combination with current therapeutic agents.
Collapse
Affiliation(s)
- Jiayi Cai
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Yajie Qiao
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Lingbin Chen
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
8
|
Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative Stress and Natural Antioxidants in Osteoporosis: Novel Preventive and Therapeutic Approaches. Antioxidants (Basel) 2023; 12:antiox12020373. [PMID: 36829932 PMCID: PMC9952369 DOI: 10.3390/antiox12020373] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
This review reports in detail the cellular and molecular mechanisms which regulate the bone remodeling process in relation to oxidative stress (OS), inflammatory factors, and estrogen deficiency. OS is considered an important pathogenic factor of osteoporosis, inducing osteocyte apoptosis and varying levels of specific factors, such as receptor activator κB ligand (RANKL), sclerostin, and, according to recent evidence, fibroblast growth factor 23, with consequent impairment of bone remodeling and high bone resorption. Bone loss increases the risk of fragility fractures, and the most commonly used treatments are antiresorptive drugs, followed by anabolic drugs or those with a double effect. In addition, recent data show that natural antioxidants contained in the diet are efficient in preventing and reducing the negative effects of OS on bone remodeling and osteocytes through the involvement of sirtuin type 1 enzyme. Indeed, osteocytes and some of their molecular factors are considered potential biological targets on which antioxidants can act to prevent and reduce bone loss, as well as to promote bone anabolic and regenerative processes by restoring physiological bone remodeling. Several data suggest including antioxidants in novel therapeutic approaches to develop better management strategies for the prevention and treatment of osteoporosis and OS-related bone diseases. In particular, anthocyanins, as well as resveratrol, lycopene, oleuropein, some vitamins, and thiol antioxidants, could have protective and therapeutic anti-osteoporotic effects.
Collapse
Affiliation(s)
- Gemma Marcucci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Vladana Domazetovic
- Department of Paediatric Haematology-Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
- Correspondence:
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Claudio Favre
- Department of Paediatric Haematology-Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | | |
Collapse
|
9
|
Li Y, Li L, Li X, Luo B, Ye Q, Wang H, Yang L, Zhu X, Han L, Zhang R, Tian H, Wang P. A mechanistic review of chinese medicine polyphenols on bone formation and resorption. Front Pharmacol 2022; 13:1017538. [PMID: 36313339 PMCID: PMC9597080 DOI: 10.3389/fphar.2022.1017538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Bone reconstruction includes a steady state system of bone formation and bone absorption. This tight coupling requires subtle coordination between osteoblasts and osteoclasts. If this balance is broken, it will lead to bone mass loss, bone density reduction, and bone metabolic diseases, such as osteoporosis. Polyphenols in Chinese herbal medicines are active ingredients in plant extracts with high safety and few side effects, and they can play a role in affecting bone formation and bone resorption. Some of these have estrogen-like effects and can better target bone health in postmenopausal women. The purpose of this review is to provide comprehensive information on the mechanisms underlying the relationship between traditional Chinese medicine polyphenols and bone formation or bone resorption.
Collapse
Affiliation(s)
- Yan Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lingyu Li
- Cancer Research Institute, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaoyun Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Bingjie Luo
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Qianyun Ye
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Haoyu Wang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Li Yang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaofeng Zhu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
| | - Li Han
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ronghua Zhang
- Cancer Research Institute, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
- *Correspondence: Ronghua Zhang, ; Huaqin Tian, ; Panpan Wang,
| | - Huaqin Tian
- Foshan Hospital of Traditional Chinese Medicine, Foshan, China
- *Correspondence: Ronghua Zhang, ; Huaqin Tian, ; Panpan Wang,
| | - Panpan Wang
- Cancer Research Institute, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Ronghua Zhang, ; Huaqin Tian, ; Panpan Wang,
| |
Collapse
|
10
|
Chou HC, Lin SY, Chou LY, Ho ML, Chuang SC, Cheng TL, Kang L, Lin YS, Wang YH, Wei CW, Chen CH, Wang CZ. Ablation of Discoidin Domain Receptor 1 Provokes an Osteopenic Phenotype by Regulating Osteoblast/Osteocyte Autophagy and Apoptosis. Biomedicines 2022; 10:biomedicines10092173. [PMID: 36140274 PMCID: PMC9496360 DOI: 10.3390/biomedicines10092173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Discoidin domain receptor 1 (DDR1) is a collagen receptor that belongs to the receptor tyrosine kinase family. We have previously shown that DDR1 plays a crucial role during bone development, resulting in dwarfism and a short stature in osteoblast-specific knockout mice (OKO mice). However, the detailed pathophysiological effects of DDR1 on bone development throughout adulthood have remained unclear. This study aims to identify how DDR1 regulates osteoblast and osteocyte functions in vivo and in vitro during bone development in adulthood. The metabolic changes in bone tissues were analyzed using Micro-CT and immunohistochemistry staining (IHC) in vivo; the role of DDR1 in regulating osteoblasts was examined in MC3T3-E1 cells in vitro. The Micro-CT analysis results demonstrated that OKO mice showed a 10% reduction in bone-related parameters from 10 to 14 weeks old and a significant reduction in cortical thickness and diameter compared with flox/flox control mice (FF) mice. These results indicated that DDR1 knockout in OKO mice exhibiting significant bone loss provokes an osteopenic phenotype. The IHC staining revealed a significant decrease in osteogenesis-related genes, including RUNX2, osteocalcin, and osterix. We noted that DDR1 knockout significantly induced osteoblast/osteocyte apoptosis and markedly decreased autophagy activity in vivo. Additionally, the results of the gain- and loss-of-function of the DDR1 assay in MC3T3-E1 cells indicated that DDR1 can regulate the osteoblast differentiation through activating autophagy by regulating the phosphorylation of the mechanistic target of rapamycin (p-mTOR), light chain 3 (LC3), and beclin-1. In conclusion, our study highlights that the ablation of DDR1 results in cancellous bone loss by regulating osteoblast/osteocyte autophagy. These results suggest that DDR1 can act as a potential therapeutic target for managing cancellous bone loss.
Collapse
Affiliation(s)
- Hsin-Chiao Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
| | - Liang-Yin Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mei-Ling Ho
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yan-Hsiung Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chun-Wang Wei
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Correspondence: (C.-H.C.); (C.-Z.W.); Tel.: +886-7-3209209 (C.-H.C.); +886-7-3121101 (ext. 2140) (C.-Z.W.)
| | - Chau-Zen Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Correspondence: (C.-H.C.); (C.-Z.W.); Tel.: +886-7-3209209 (C.-H.C.); +886-7-3121101 (ext. 2140) (C.-Z.W.)
| |
Collapse
|
11
|
Zou X, Xiao M, Zhang B, Li B. Epigallocatechin Gallate Prevents Burn Wound Progression Through Inhibiting Mitochondrial DNA-Induced Inflammation. Indian J Surg 2022. [DOI: 10.1007/s12262-021-03101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
Zhang J, Liu Z, Luo Y, Li X, Huang G, Chen H, Li A, Qin S. The Role of Flavonoids in the Osteogenic Differentiation of Mesenchymal Stem Cells. Front Pharmacol 2022; 13:849513. [PMID: 35462886 PMCID: PMC9019748 DOI: 10.3389/fphar.2022.849513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 01/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in developing bone tissue engineered constructs due to their osteogenic and chondrogenic differentiation potential. MSC-based tissue engineered constructs are generally considered a safe procedure, however, the long-term results obtained up to now are far from satisfactory. The main causes of these therapeutic limitations are inefficient homing, engraftment, and directional differentiation. Flavonoids are a secondary metabolite, widely existed in nature and have many biological activities. For a long time, researchers have confirmed the anti-osteoporosis effect of flavonoids through in vitro cell experiments, animal studies. In recent years the regulatory effects of flavonoids on mesenchymal stem cells (MSCs) differentiation have been received increasingly attention. Recent studies revealed flavonoids possess the ability to modulate self-renewal and differentiation potential of MSCs. In order to facilitate further research on MSCs osteogenic differentiation of flavonoids, we surveyed the literature published on the use of flavonoids in osteogenic differentiation of MSCs, and summarized their pharmacological activities as well as the underlying mechanisms, aimed to explore their promising therapeutic application in bone disorders and bone tissue engineered constructs.
Collapse
Affiliation(s)
- Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Yang Luo
- School of Physical Education, Southwest University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Guowei Huang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Huan Chen
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Shengnan Qin
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Rodríguez V, Rivoira M, Picotto G, de Barboza GD, Collin A, de Talamoni NT. Analysis of the molecular mechanisms by flavonoids with potential use for osteoporosis prevention or therapy. Curr Med Chem 2021; 29:2913-2936. [PMID: 34547992 DOI: 10.2174/0929867328666210921143644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoporosis is the most common skeletal disorder worldwide. Flavonoids have the potential to alleviate bone alterations in osteoporotic patients with the advantage of being safer and less expensive than the conventional therapies. OBJECTIVE The main objective is to analyze the molecular mechanisms triggered in bone by different subclasses of flavonoids. In addition, this review provides an up-to-date overview on the cellular and molecular aspects of osteoporotic bones versus healthy bones, and a brief description of some epidemiological studies indicating that flavonoids could be useful for osteoporosis treatment. METHODS The PubMed database was searched in the range of years 2001- 2021 using the keywords osteoporosis, flavonoids, and their subclasses such as flavones, flavonols, flavanols, isoflavones, flavanones and anthocyanins, focusing the data on the molecular mechanisms triggered in bone. RESULTS Although flavonoids comprise many compounds that differ in structure, their effects on bone loss in postmenopausal women or in ovariectomized-induced osteoporotic animals are quite similar. Most of them increase bone mineral density and bone strength, which occur through enhancement of osteoblastogenesis and osteoclast apoptosis, decrease in osteoclastogenesis as well as increase in neovascularization on the site of the osteoporotic fracture. CONCLUSION Several molecules of signaling pathways are involved in the effect of flavonoids on osteoporotic bone. Whether all flavonoids have a common mechanism or they act as ligands of estrogen receptors remain to be established. More clinical trials are necessary to know better their safety, efficacy, delivery and bioavailability in humans, as well as comparative studies with conventional therapies.
Collapse
Affiliation(s)
- Valeria Rodríguez
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - María Rivoira
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Gabriela Picotto
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Gabriela Díaz de Barboza
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Alejandro Collin
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| |
Collapse
|
14
|
Chen CH, Kang L, Chang LH, Cheng TL, Lin SY, Wu SC, Lin YS, Chuang SC, Lee TC, Chang JK, Ho ML. Intra-articular low-dose parathyroid hormone (1-34) improves mobility and articular cartilage quality in a preclinical age-related knee osteoarthritis model. Bone Joint Res 2021; 10:514-525. [PMID: 34387115 PMCID: PMC8414442 DOI: 10.1302/2046-3758.108.bjr-2020-0165.r2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aims Osteoarthritis (OA) is prevalent among the elderly and incurable. Intra-articular parathyroid hormone (PTH) ameliorated OA in papain-induced and anterior cruciate ligament transection-induced OA models; therefore, we hypothesized that PTH improved OA in a preclinical age-related OA model. Methods Guinea pigs aged between six and seven months of age were randomized into control or treatment groups. Three- or four-month-old guinea pigs served as the young control group. The knees were administered 40 μl intra-articular injections of 10 nM PTH or vehicle once a week for three months. Their endurance as determined from time on the treadmill was evaluated before kill. Their tibial plateaus were analyzed using microcalculated tomography (μCT) and histological studies. Results PTH increased the endurance on the treadmill test, preserved glycosaminoglycans, and reduced Osteoarthritis Research Society International score and chondrocyte apoptosis rate. No difference was observed in the subchondral plate bone density or metaphyseal trabecular bone volume and bone morphogenetic 2 protein staining. Conclusion Subchondral bone is crucial in the initiation and progression of OA. Although previous studies have shown that subcutaneous PTH alleviates knee OA by improving subchondral and metaphyseal bone mass, we demonstrated that intra-articular PTH injections improved spontaneous OA by directly affecting the cartilage rather than the subchondral or metaphyseal bone in a preclinical age-related OA model. Cite this article: Bone Joint Res 2021;10(8):514–525.
Collapse
Affiliation(s)
- Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Hua Chang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shun-Cheng Wu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tien-Ching Lee
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Je-Ken Chang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Shah NA, Ren Y, Lan R, Lv J, Gul RM, Tan P, Huang S, Tan L, Xu J, Li Z. Ultrahigh molecular weight polyethylene with improved crosslink density, oxidation stability, and microbial inhibition by chemical crosslinking and tea polyphenols for total joint replacements. J Appl Polym Sci 2021. [DOI: 10.1002/app.51261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Nouman Ali Shah
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Yue Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Ri‐Tong Lan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Jia‐Cheng Lv
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Rizwan M. Gul
- Department of Mechanical Engineering University of Engineering and Technology Peshawar Pakistan
| | - Peng‐Fei Tan
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital and West China School of Medicine Sichuan University Chengdu China
| | - Lin Tan
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Jia‐Zhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Zhong‐Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| |
Collapse
|
16
|
Mohammadi B, Esmaeilizade Z, Omrani MD, Ghaderian SMH, Rajabibazl M, Fazeli Z. The Effect of Co-treating Human Mesenchymal Stem Cells with Epigallocatechin Gallate and Hypoxia-Inducible Factor-1 on the Expression of RANKL/RANK/OPG Signaling Pathway, Osteogenesis, and Angiogenesis Genes. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Huang HT, Cheng TL, Yang CD, Chang CF, Ho CJ, Chuang SC, Li JY, Huang SH, Lin YS, Shen HY, Yu TH, Kang L, Lin SY, Chen CH. Intra-Articular Injection of (-)-Epigallocatechin 3-Gallate (EGCG) Ameliorates Cartilage Degeneration in Guinea Pigs with Spontaneous Osteoarthritis. Antioxidants (Basel) 2021; 10:178. [PMID: 33530594 PMCID: PMC7910837 DOI: 10.3390/antiox10020178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease that causes an enormous burden of disease worldwide. (-)-Epigallocatechin 3-gallate (EGCG) has been reported to reduce post-traumatic OA progression through its anti-inflammatory property. Aging is the most crucial risk factor of OA, and the majority of OA incidences are related to age and not trauma. In this study, we assess whether EGCG can ameliorate cartilage degradation in primary OA. In an in-vitro study, real-time PCR was performed to assess the expression of genes associated with human articular chondrocyte homeostasis. A spontaneously occurring OA model in guinea pigs was used to investigate the effect of EGCG in vivo. OA severity was evaluated using Safranin O staining and Osteoarthritis Research Society International (OARSI) scores, as well as by immunohistochemical (IHC) analysis to determine the protein level of type II collagen (Col II), matrix metalloproteinase 13 (MMP-13), and p16 ink4a in articular cartilage. In the in-vitro study, EGCG increased the gene expression of aggrecan and Col II and decreased the expression of interleukin-1, cyclooxygenase 2, MMP-13, alkaline phosphatase, Col X, and p16 Ink4a; EGCG treatment also attenuated the degraded cartilage with a lower OARSI score. Meanwhile, IHC results showed that EGCG exerted an anti-OA effect by reducing ECM degradation, cartilage inflammation, and cell senescence with a less-immunostained Col II, MMP-13, and p16 Ink4a. In conclusion, these findings suggest that EGCG may be a potential disease-modifying OA drug for the treatment of primary OA.
Collapse
Affiliation(s)
- Hsuan-Ti Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Chung-Da Yang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Cheng-Jung Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Jhong-You Li
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Shih-Hao Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Hsin-Yi Shen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
| | - Tsung-Han Yu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
18
|
Intra-Articular Injection of (-)-Epigallocatechin 3-Gallate to Attenuate Articular Cartilage Degeneration by Enhancing Autophagy in a Post-Traumatic Osteoarthritis Rat Model. Antioxidants (Basel) 2020; 10:antiox10010008. [PMID: 33374730 PMCID: PMC7824012 DOI: 10.3390/antiox10010008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
(-)-Epigallocatechin 3-gallate (EGCG) is the main active green tea catechin and has a wide variety of benefits for health. Post-traumatic osteoarthritis (PTOA) occurs as a consequence of joint injuries that commonly happen in the young population. In this study, we investigated the effects of EGCG on PTOA prevention by using the anterior cruciate ligament transection (ACLT)–OA model and further investigated the roles of autophagy in OA treatment. Our results showed that intra-articular injection of EGCG significantly improved the functional performances and decreased cartilage degradation. EGCG treatment attenuated the inflammation on synovial tissue and cartilage through less immunostained cyclooxygenase-2 and matrix metalloproteinase-13. We further noted EGCG may modulate the chondrocyte apoptosis by activation of the cytoprotective autophagy through reducing the expression of the mTOR and enhancing the expression of microtubule-associated protein light chain 3, beclin-1, and p62. In conclusion, intra-articular injection of EGCG after ACL injury inhibited the joint inflammation and cartilage degradation, thereby increasing joint function. EGCG treatment also reduced the chondrocyte apoptosis, possibly by activating autophagy. These findings suggested that EGCG may be a potential disease-modifying drug for preventing OA progression.
Collapse
|
19
|
Zhang L, Liu W, You H, Chen Z, Xu L, He H. Assessing the analgesic efficacy of oral epigallocatechin-3-gallate on epidural catheter analgesia in patients after surgical stabilisation of multiple rib fractures: a prospective double-blind, placebo-controlled clinical trial. PHARMACEUTICAL BIOLOGY 2020; 58:741-744. [PMID: 32749173 PMCID: PMC7470119 DOI: 10.1080/13880209.2020.1797123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/25/2020] [Accepted: 06/15/2020] [Indexed: 05/24/2023]
Abstract
CONTEXT Thoracic trauma results in multiple rib fractures (MRF), and surgical stabilisation of rib fractures (SSRF) can relieve fracture pain. Epigallocatechin-3-gallate (EGCG) is reported to exhibit beneficial effects in bone-related metabolic and differentiation processes. OBJECTIVE To study the clinical effect of EGCG on regional analgesia for pain relief in MRF patients after SSRF. MATERIALS AND METHODS Ninety-seven MRF patients (61 males, 36 females) who were on epidural catheter analgesia after SSRF were recruited. They were randomly divided into: oral EGCG 100 mg (oral grade) twice daily for 10 days and placebo groups. Pain scores, incentive spirometry (IS) volumes, respiratory rate and oxygen saturation (SpO2) were assessed day 10 after SSRF. RESULTS Comparing results from the placebo and EGCG group, in the 10-day intervention course, oral EGCG reduced pain score (8 at base line vs. 4 at end of intervention in EGCG group, p < 0.05; 4 in EGCG group vs. 6 in placebo group at end of intervention, p < 0.05), improved IS volume (713 at base line vs. 1072 at end of intervention in EGCG group, p < 0.05; 1072 in EGCG group vs. 953 in placebo group at end of intervention, p < 0.05) and respiratory rate (24 at base line vs. 15 at end of intervention in EGCG group, p < 0.05; 15 in EGCG group vs. 19 in placebo group at end of intervention, p < 0.05). However, no further enhancing effect on SpO2 was observed in the EGCG group (0.98 in EGCG group vs. 0.98 in placebo group at end of intervention, p > 0.05). DISCUSSION AND CONCLUSIONS Although the study is limited by a relatively small sample size and lack of serum factor analysis, the key results and the study design, for the first time, nevertheless pave the way for trials with larger number of patients to understand the effect of EGCG in MRF patients that are undergoing SSRF.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Anesthesiology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Weifeng Liu
- Department of Anesthesiology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Haiping You
- Department of Anesthesiology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Zhiyuan Chen
- Department of Anesthesiology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Liming Xu
- Department of Anesthesiology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Hefan He
- Department of Anesthesiology, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| |
Collapse
|
20
|
Huang HT, Cheng TL, Lin SY, Ho CJ, Chyu JY, Yang RS, Chen CH, Shen CL. Osteoprotective Roles of Green Tea Catechins. Antioxidants (Basel) 2020; 9:E1136. [PMID: 33207822 PMCID: PMC7696448 DOI: 10.3390/antiox9111136] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is the second most common disease only secondary to cardiovascular disease, with the risk of fracture increasing with age. Osteoporosis is caused by an imbalance between osteoblastogenesis and osteoclastogenesis processes. Osteoclastogenesis may be enhanced, osteoblastogenesis may be reduced, or both may be evident. Inflammation and high reactive oxygen enhance osteoclastogenesis while reducing osteoblastogenesis by inducing osteoblast apoptosis and suppressing osteoblastic proliferation and differentiation. Catechins, the main polyphenols found in green tea with potent anti-oxidant and anti-inflammatory properties, can counteract the deleterious effects of the imbalance of osteoblastogenesis and osteoclastogenesis caused by osteoporosis. Green tea catechins can attenuate osteoclastogenesis by enhancing apoptosis of osteoclasts, hampering osteoclastogenesis, and prohibiting bone resorption in vitro. Catechin effects can be directly exerted on pre-osteoclasts/osteoclasts or indirectly exerted via the modulation of mesenchymal stem cells (MSCs)/stromal cell regulation of pre-osteoclasts through activation of the nuclear factor kB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Catechins also can enhance osteoblastogenesis by enhancing osteogenic differentiation of MSCs and increasing osteoblastic survival, proliferation, differentiation, and mineralization. The in vitro effects of catechins on osteogenesis have been confirmed in several animal models, as well as in epidemiological observational studies on human subjects. Even though randomized control trials have not shown that catechins provide anti-fracture efficacy, safety data in the trials are promising. A large-scale, placebo-controlled, long-term randomized trial with a tea regimen intervention of optimal duration is required to determine anti-fracture efficacy.
Collapse
Affiliation(s)
- Hsuan-Ti Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (S.-Y.L.); (C.-J.H.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (S.-Y.L.); (C.-J.H.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (S.-Y.L.); (C.-J.H.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Cheng-Jung Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (S.-Y.L.); (C.-J.H.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Joanna Y. Chyu
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Rong-Sen Yang
- Department of Orthopedics, National Taiwan University Hospital, Taipei 100229, Taiwan;
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (S.-Y.L.); (C.-J.H.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
21
|
Chen CH, Lai CH, Hong YK, Lu JM, Lin SY, Lee TC, Chang LY, Ho ML, Conway EM, Wu HL, Cheng TL. Thrombomodulin Functional Domains Support Osteoblast Differentiation and Bone Healing in Diabetes in Mice. J Bone Miner Res 2020; 35:1812-1823. [PMID: 32329910 DOI: 10.1002/jbmr.4036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/07/2020] [Accepted: 04/18/2020] [Indexed: 11/05/2022]
Abstract
Thrombomodulin (TM) is a transmembrane glycoprotein that contains five functional domains. Soluble TM (sTM), comprising extracellular domains TMD1 (lectin-like), TMD2 (epidermal growth factor [EGF]-like repeat containing), and TMD3 (serine-threonine rich), can be shed from cells by the intramembrane protease rhomboid-like-2 (RHBDL2). TM is expressed by osteoblasts, yet its role there has not been determined. Herein we aimed to investigate the properties of TM and its domains in osteoblast function and bone repair following injury in diabetes. In response to a scratch injury of cultured osteoblast-like MG63 cells, expression of TM and RHBDL2 was enhanced, with increased release of sTM. Conditioned media from the injured cells promoted osteoblast migration, an effect that was lacking with conditioned media from MG63 cells in which TM was silenced by shRNA. Exogenous recombinant TMD1 had no effect on osteoblast activities or on bone repair in vivo. However, TM domains 2 and 3 (TMD2/3), induced MG63 cell migration, proliferation and mineralization in vitro, and when locally administered in mice, improved in vivo healing of injured calvarium. This beneficial effect of TMD2/3, mediated via fibroblast growth factor receptor (FGFR)/ERK signaling pathways, was also observed in vitro under high glucose conditions where endogenous TM expression was reduced, and in vivo in diabetic mice following tibia fracture or calvarium injury, where the osteoblastic response and healing were otherwise dampened. Taken together, osteoblast TM participates in bone healing, and recombinant TMD2/3 holds promise as a novel therapy for diabetic bone defect healing. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chao-Han Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Kai Hong
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Ming Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tien-Ching Lee
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lan-Yun Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Ling Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Edward M Conway
- Centre for Blood Research, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Liao S, Tang Y, Chu C, Lu W, Baligen B, Man Y, Qu Y. Application of green tea extracts epigallocatechin‐3‐gallate in dental materials: Recent progress and perspectives. J Biomed Mater Res A 2020; 108:2395-2408. [PMID: 32379385 DOI: 10.1002/jbm.a.36991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shengnan Liao
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yu Tang
- Stomatology College & the Affiliated Stomatology Hospital of Southwest Medical University Luzhou Sichuan China
| | - Chenyu Chu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Weitong Lu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Bolatihan Baligen
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yi Man
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yili Qu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| |
Collapse
|
23
|
Lin SY, Kan JY, Lu CC, Huang HH, Cheng TL, Huang HT, Ho CJ, Lee TC, Chuang SC, Lin YS, Kang L, Chen CH. Green Tea Catechin (-)-Epigallocatechin-3-Gallate (EGCG) Facilitates Fracture Healing. Biomolecules 2020; 10:biom10040620. [PMID: 32316306 PMCID: PMC7226345 DOI: 10.3390/biom10040620] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/04/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Green tea drinking can ameliorate postmenopausal osteoporosis by increasing the bone mineral density. (-)-Epigallocatechin-3-gallate (EGCG), the abundant and active compound of tea catechin, was proven to be able to reduce bone loss and ameliorate microarchitecture in female ovariectomized rats. EGCG can also enhance the osteogenic differentiation of murine bone marrow mesenchymal stem cells and inhibit the osteoclastogenesis in RAW264.7 cells by modulation of the receptor activator of nuclear factor-kB (RANK)/RANK ligand (RANKL)/osteoprotegrin (OPG) (RANK/RANKL/OPG) pathway. Our previous study also found that EGCG can promote bone defect healing in the distal femur partially via bone morphogenetic protein-2 (BMP-2). Considering the osteoinduction property of BMP-2, we hypothesized that EGCG could accelerate the bone healing process with an increased expression of BMP-2. In this manuscript, we studied whether the local use of EGCG can facilitate tibial fracture healing. Fifty-six 4-month-old rats were randomly assigned to two groups after being weight-matched: a control group with vehicle treatment (Ctrl) and a study group with 10 µmol/L, 40 µL, EGCG treatment (EGCG). Two days after the operation, the rats were treated daily with EGCG or vehicle by percutaneous local injection for 2 weeks. The application of EGCG enhanced callus formation by increasing the bone volume and subsequently improved the mechanical properties of the tibial bone, including the maximal load, break load, stiffness, and Young’s modulus. The results of the histology and BMP-2 immunohistochemistry staining showed that EGCG treatment accelerated the bone matrix formation and produced a stronger expression of BMP-2. Taken together, this study for the first time demonstrated that local treatment of EGCG can accelerate the fracture healing process at least partly via BMP-2.
Collapse
Affiliation(s)
- Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jung Yu Kan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Cheng-Chang Lu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Han Hsiang Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City 60054, Taiwan;
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsuan-Ti Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
| | - Cheng-Jung Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tien-Ching Lee
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (L.K.); (C.-H.C.); Tel.: +886-7-3209209 (C.-H.C.)
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Correspondence: (L.K.); (C.-H.C.); Tel.: +886-7-3209209 (C.-H.C.)
| |
Collapse
|
24
|
Qie X, Chen Y, Quan W, Wang Z, Zeng M, Qin F, Chen J, He Z. Analysis of β-lactoglobulin–epigallocatechin gallate interactions: the antioxidant capacity and effects of polyphenols under different heating conditions in polyphenolic–protein interactions. Food Funct 2020; 11:3867-3878. [DOI: 10.1039/d0fo00627k] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A β-Lg-EGCG covalent conjugate is formed by linking the amino group of a lysine residue and EGCG; the antioxidant capacity of EGCG induced by β-Lg–EGCG covalent conjugates causes a significant decrease.
Collapse
Affiliation(s)
- Xuejiao Qie
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Yao Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Wei Quan
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| |
Collapse
|
25
|
Pedro AC, Maciel GM, Rampazzo Ribeiro V, Haminiuk CWI. Fundamental and applied aspects of catechins from different sources: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alessandra Cristina Pedro
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL) Universidade Federal do Paraná Curitiba CEP (81531‐980) PR Brasil
| | - Giselle Maria Maciel
- Departamento de Química e Biologia (DAQBi) Programa de Pós‐Graduação em Ciência e Tecnologia Ambiental (PPGCTA) Universidade Tecnológica Federal do Paraná Câmpus Curitiba CEP (81280‐340) PR Brasil
| | - Valéria Rampazzo Ribeiro
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL) Universidade Federal do Paraná Curitiba CEP (81531‐980) PR Brasil
| | - Charles Windson Isidoro Haminiuk
- Departamento de Química e Biologia (DAQBi) Programa de Pós‐Graduação em Ciência e Tecnologia Ambiental (PPGCTA) Universidade Tecnológica Federal do Paraná Câmpus Curitiba CEP (81280‐340) PR Brasil
| |
Collapse
|
26
|
Gou M, Huang YZ, Hu JG, Jiang YL, Zhang XZ, Su NC, Lei Y, Zhang H, Wang H, Xie HQ. Epigallocatechin-3-gallate Cross-Linked Small Intestinal Submucosa for Guided Bone Regeneration. ACS Biomater Sci Eng 2019; 5:5024-5035. [PMID: 33455250 DOI: 10.1021/acsbiomaterials.9b00920] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Min Gou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of prosthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Ren Min Nan Rd., Chengdu 610041, China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Jun-Gen Hu
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Nai-Chuan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of prosthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Ren Min Nan Rd., Chengdu 610041, China
| | - Yi Lei
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Hai Zhang
- Department of Restorative Dentistry, School of Dentistry, University of Washington, 1959 NE Pacific St., B-307, Seattle, Washington 98195, United States
| | - Hang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of prosthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Ren Min Nan Rd., Chengdu 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| |
Collapse
|
27
|
Chen ST, Kang L, Wang CZ, Huang PJ, Huang HT, Lin SY, Chou SH, Lu CC, Shen PC, Lin YS, Chen CH. (-)-Epigallocatechin-3-Gallate Decreases Osteoclastogenesis via Modulation of RANKL and Osteoprotegrin. Molecules 2019; 24:E156. [PMID: 30609798 PMCID: PMC6337469 DOI: 10.3390/molecules24010156] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/20/2023] Open
Abstract
Osteoporosis is the second most common epidemiologic disease in the aging population worldwide. Previous studies have found that frequent tea drinkers have higher bone mineral density and less hip fracture. We previously found that (-)-epigallocatechin gallate (EGCG) (20⁻100 µmol/L) significantly suppressed receptor activator of nuclear factor-kB ligand (RANKL)-induced osteoclastogenesis and pit formation via inhibiting NF-κB transcriptional activity and nuclear transport of NF-κB in RAW 264.7 cells and murine primary bone marrow macrophage cells. The most important regulation in osteoclastogenesis is the receptor activator of nuclear factor-kB/RANKL/osteoprotegrin (RANK/RANKL/OPG) pathway. In this study, we used the coculture of RAW 264.7 cells and the feeder cells, ST2, to evaluate how EGCG regulated the RANK/RANKL/OPG pathway in RAW 264.7 cells and ST2 cells. We found EGCG decreased the RANKL/OPG ratio in both mRNA expression and secretory protein levels and eventually decreased osteoclastogenesis by TRAP (+) stain osteoclasts and TRAP activity at low concentrations-1 and 10 µmol/L-via the RANK/RANKL/OPG pathway. The effective concentration can be easily achieved in daily tea consumption. Taken together, our results implicate that EGCG could be an important nutrient in modulating bone resorption.
Collapse
Affiliation(s)
- Shih-Tse Chen
- Department of Psychiatry, National Taiwan University Hospital Hsin-Chu Branch, Hsin Chu 30059, Taiwan.
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Chau-Zen Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80701, Taiwan.
| | - Peng-Ju Huang
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Hsuan-Ti Huang
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, No.68, Zhonghua 3rd Rd., Qianjin Dist., Kaohsiung City 80145, Taiwan.
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Shih-Hsiang Chou
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Cheng-Chang Lu
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Po-Chih Shen
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, No.68, Zhonghua 3rd Rd., Qianjin Dist., Kaohsiung City 80145, Taiwan.
| |
Collapse
|
28
|
Wong MS, Poon CCW, Zhou LP, Xiao HH. Natural Products as Potential Bone Therapies. Handb Exp Pharmacol 2019; 262:499-518. [PMID: 31792676 DOI: 10.1007/164_2019_322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Demands for natural products, in the form of botanicals, dietary supplements, and herbal medicine, for management of chronic diseases are increasing globally. Natural products might be an alternative for the management of bone health to meet the demands of a growing aging population. Different types of natural products, including Chinese herbal medicine decoctions, herbs, and isolated phytochemicals, have been demonstrated to exert bone protective effects. The most common types of bone protective bioactives are flavonoids, stilbene, triterpenoids, coumestans, lignans, and phenolic acid. The actions of natural products can be mediated by acting systemically on the hormonal axis or locally via their direct or indirect effects on osteogenesis, osteoclastogenesis, as well as adipogenesis. Furthermore, with the use of metabolomic and microbiome approaches to understand the actions of natural products, novel mechanisms that involve gut-brain-bone axis are also revealed. These studies provide evidence to support the use of natural products as bone therapeutics as well as identify new biological targets for novel drug development.
Collapse
Affiliation(s)
- Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China. .,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, People's Republic of China.
| | - Christina Chui-Wa Poon
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Li-Ping Zhou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, People's Republic of China
| |
Collapse
|
29
|
Lin SY, Kang L, Wang CZ, Huang HH, Cheng TL, Huang HT, Lee MJ, Lin YS, Ho ML, Wang GJ, Chen CH. (-)-Epigallocatechin-3-Gallate (EGCG) Enhances Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. Molecules 2018; 23:E3221. [PMID: 30563251 PMCID: PMC6321548 DOI: 10.3390/molecules23123221] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023] Open
Abstract
Osteoporosis is the second most-prevalent epidemiologic disease in the aging population worldwide. Cross-sectional and retrospective evidence indicates that tea consumption can mitigate bone loss and reduce risk of osteoporotic fractures. Tea polyphenols enhance osteoblastogenesis and suppress osteoclastogenesis in vitro. Previously, we showed that (-)-epigallocatechin-3-gallate (EGCG), one of the green tea polyphenols, increased osteogenic differentiation of murine bone marrow mesenchymal stem cells (BMSCs) by increasing the mRNA expression of osteogenesis-related genes, alkaline phosphatase activity and, eventually, mineralization. We also found that EGCG could mitigate bone loss and improve bone microarchitecture in ovariectomy-induced osteopenic rats, as well as enhancing bone defect healing partially via bone morphogenetic protein 2 (BMP2). The present study investigated the effects of EGCG in human BMSCs. We found that EGCG, at concentrations of both 1 and 10 µmol/L, can increase mRNA expression of BMP2, Runx2, alkaline phosphatase (ALP), osteonectin and osteocalcin 48 h after treatment. EGCG increased ALP activity both 7 and 14 days after treatment. Furthermore, EGCG can also enhance mineralization two weeks after treatment. EGCG without antioxidants also can enhance mineralization. In conclusion, EGCG can increase mRNA expression of BMP2 and subsequent osteogenic-related genes including Runx2, ALP, osteonectin and osteocalcin. EGCG further increased ALP activity and mineralization. Loss of antioxidant activity can still enhance mineralization of human BMSCs (hBMSCs).
Collapse
Affiliation(s)
- Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80415, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan.
| | - Chau-Zen Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80701, Taiwan.
| | - Han Hsiang Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi 60054, Taiwan.
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Hsuan-Ti Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80415, Taiwan.
| | - Mon-Juan Lee
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan.
- Innovative Research Center of Medicine, Chang Jung Christian University, Tainan 71101, Taiwan.
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Mei-Ling Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80701, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Gwo-Jaw Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80415, Taiwan.
| |
Collapse
|