1
|
Raza Ishaq A, A S El-Nashar H, M Al-Qaane A, Asfandyar, Bashir A, Younis T. Orientin: a natural glycoside with versatile pharmacological activities. Nat Prod Res 2025:1-23. [PMID: 39757367 DOI: 10.1080/14786419.2024.2436119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
Orientin is one of the flavonoid glycosides with diverse biological properties such as anticancer, antioxidant, neuroprotective, cardioprotective, antiallergic, and anti-inflammatory. It is found in several plants like rooibos tea, Ocimum sanctum, Trollius, Passiflora, and Phyllostachys species. This review aimed to summarise the various medicinal properties of the orientin focusing on its underlying molecular mechanism reported based on in-vitro and in-vivo studies. The data were collected using various search engines, incorporating PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings showed that orientin exhibited promising anticancer, neuroprotective, anti-inflammatory, and antioxidant activities. Hopefully, this information could assist drug researchers and pharmaceutical entities in finding an effective herbal drug for the treatment of different disorders with potential mechanisms of action. Meanwhile, further investigations are warranted such as oral bioavailability, pharmacokinetics and pharmacodynamic characteristics of orientin to establish fully drug profiling suitable for clinical trials.
Collapse
Affiliation(s)
- Ali Raza Ishaq
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, College of Life Science, Hubei University, Wuhan, China
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Egypt
| | - Ayman M Al-Qaane
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt, Jordan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Asfandyar
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, College of Life Science, Hubei University, Wuhan, China
| | - Aneela Bashir
- School of Life Sciences, Chongqing UniversityShazheng, Chongqing, China
| | - Tahira Younis
- Department of Biochemistry and Biotechnology, Faculty of Life Sciences, The Women University Multan, Multan, Pakistan
| |
Collapse
|
2
|
Brinza I, Boiangiu RS, Mihasan M, Gorgan DL, Stache AB, Abd-Alkhalek A, El-Nashar H, Ayoub I, Mostafa N, Eldahshan O, Singab AN, Hritcu L. Rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone prevent amnesia induced in scopolamine zebrafish (Danio rerio) model by increasing the mRNA expression of bdnf, npy, egr-1, nfr2α, and creb1 genes. Eur J Pharmacol 2024; 984:177013. [PMID: 39378928 DOI: 10.1016/j.ejphar.2024.177013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The increasing attention towards age-related diseases has generated significant interest in the concept of cognitive dysfunction associated with Alzheimer's disease (AD). Certain limitations are associated with the current therapies, and flavonoids have been reported to exhibit multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this study, we performed an initial in silico predictions of the pharmacokinetic properties of three flavonoids (rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone). Subsequently, we evaluated the antiamnesic and antioxidant potential of flavonoids in concentrations of 1, 3, and 5 μg/L in scopolamine (100 μM)-induced amnesic zebrafish (Danio rerio) model. Zebrafish behavior was analyzed by novel tank diving test (NTT), Y-maze, and novel object recognition test (NOR). Acetylcholinesterase (AChE) activity, brain antioxidant status and the expression of bdnf, npy, egr1, nrf2α, creb1 genes, and CREB-1 protein level was measured to elucidate the underlying mechanism of action. Our flavonoids improved memory and decreased anxiety-like behavior of scopolamine-induced amnesia in zebrafish. Also, the studied flavonoids reduced AChE activity and brain oxidative stress and upregulated the gene expression, collectively contributing to neuroprotective properties. The results of our study add new perspectives on the properties of flavonoids to regulate the evolution of neurodegenerative diseases, especially AD, by modulating the expression of genes involved in the regulation of synaptic plasticity, axonal growth, and guidance, sympathetic and vagal transmission, the antioxidant response and cell proliferation and growth.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Alexandru Bogdan Stache
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; Department of Molecular Genetics, Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | | | - Heba El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Iriny Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nada Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania.
| |
Collapse
|
3
|
Hernández M, Castañeta G, Simirgiotis MJ, Sepulveda B, Areche C. Comprehensive Phytochemical Profile of Leaves, Stems and Fruits from Orthopterygium huaucui (A. Gray) Hemsl. and their Antioxidant Activities. Chem Biodivers 2024; 21:e202400746. [PMID: 39075724 DOI: 10.1002/cbdv.202400746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Orthopterygium huaucui, commonly known as "Pate", is a medicinal shrub belonging to the Anacardiaceae family used locally to treat burns and stomach pains. Endemic to Peru, chemical studies on O. huaucui are limited. In this study, Ultra-High Performance Liquid Chromatography Quadrupole/Orbitrap Electrospray Ionization Tandem Mass Spectrometry (UHPLC Q/Orbitrap/ESI/MS/MS) was used to identify secondary metabolites in leaves, stems and fruits, and the antioxidant capacities of the different parts were compared. In addition, several compounds such as methyl gallate, gallic acid, kaempferol, quercetin, and quercetin 3-O-β-glucuronide were successfully isolated from the methanolic extract of the leaves of this species for the first time. Untargeted UHPLC Q/Orbitrap/ESI/MS/MS analysis tentatively identified seventy-six compounds in the different parts of the plant, showing that this species as an interesting source of flavonoids, procyanidins and tannins. The phenolic content in leaves and stems was 334.31±4.34 and 295.18±6.38 gallic acid equivalents/100 g dry plant, respectively, while that of fruits was lower (99.92±5.45 mg/100 g). Leaves had twice the flavonoid content than fruits (210.38±3.85 versus 87.42±3.85 quercetin equivalents/100 g). 2,2-Diphenyl-1-picrylhydrazyl (DPPH) results indicated high antioxidant activity in all parts, with stems and leaves showing IC50 of 12.8 μg/mL, and fruits showing less activity (IC50=38.6 μg/mL). The Oxygen Radical Absorbance Capacity (ORAC) test showed higher antioxidant values in the stems (467.82±21.17 μmol Trolox equivalents/100 g). This study provides valuable information on the chemistry of O. huaucui and highlights its antioxidant potential, especially in leaves and stems.
Collapse
Affiliation(s)
- Marcos Hernández
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, 7800024, Santiago, Chile
| | - Grover Castañeta
- Instituto de Investigaciones Químicas (IIQ), Universidad Mayor de San Andrés, (UMSA), Av. Villazón N°1995, La Paz, 0201-0220, Bolivia
| | - Mario J Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Beatriz Sepulveda
- Departamento de Ciencias Químicas, Universidad Andrés Bello, Campus Viña del Mar, Quillota 980, Viña del Mar, Chile
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, 7800024, Santiago, Chile
| |
Collapse
|
4
|
Rokonuzzman M, Bhuia MS, Al-Qaaneh AM, El-Nashar HAS, Islam T, Chowdhury R, Hasan Shanto H, Al Hasan MS, El-Shazly M, Torequl Islam M. Biomedical Perspectives of Citronellal: Biological Activities, Toxicological Profile and Molecular Mechanisms. Chem Biodivers 2024:e202401973. [PMID: 39252577 DOI: 10.1002/cbdv.202401973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Citronellal, known as rhodinal, is a naturally occurring monoterpenoid aldehyde distinctly found in the distilled oils of Cymbopogon species including C. marginatus, C. citratus, C. validus and C. winterianus family Gramineae. It is also obtained from eucalyptus, mentha, melissa, cinnamomum and allium. It is traditionally used in air freshener, cleaner, floor polishing, deodorants, moisturizing hand/body lotion, perfumes, and adhesives due to its lemon characteristic fragrance and therapeutic benefits. This study aimed to summarize the pharmacological activities and underlying mechanisms of citronellal against different diseases, as well as its toxicological profile. The data was collected from various reliable and authentic literatures by searching different academic search engines, including PubMed, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. The findings imply that citronellal demonstrated several pharmacological effects in various preclinical and pharmacological experimental systems. The results indicated that citronellal demonstrated antioxidant, anti-inflammatory, antibacterial, antifungal, anthelminthic, and anticancer effects with beneficial effects in neurological and cardiovascular diseases. Our findings also indicated the toxic level of the phytochemical. In conclusion, it has been proposed that citronellal has the capability to serve as a hopeful therapeutic agent, so further extensive clinical research is necessary to develop it as a reliable drug.
Collapse
Affiliation(s)
- Md Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj Dhaka, 8100, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj Dhaka, 8100, Bangladesh
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt, 19117, Jordan
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt E-mai
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Hasibul Hasan Shanto
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt E-mai
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj Dhaka, 8100, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
5
|
Kolesnikova TO, Demin KA, Costa FV, de Abreu MS, Kalueff AV. Zebrafish models for studying cognitive enhancers. Neurosci Biobehav Rev 2024; 164:105797. [PMID: 38971515 DOI: 10.1016/j.neubiorev.2024.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Cognitive decline is commonly seen both in normal aging and in neurodegenerative and neuropsychiatric diseases. Various experimental animal models represent a valuable tool to study brain cognitive processes and their deficits. Equally important is the search for novel drugs to treat cognitive deficits and improve cognitions. Complementing rodent and clinical findings, studies utilizing zebrafish (Danio rerio) are rapidly gaining popularity in translational cognitive research and neuroactive drug screening. Here, we discuss the value of zebrafish models and assays for screening nootropic (cognitive enhancer) drugs and the discovery of novel nootropics. We also discuss the existing challenges, and outline future directions of research in this field.
Collapse
Affiliation(s)
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Fabiano V Costa
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; West Caspian University, Baku, Azerbaijan.
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Suzhou Key Laboratory on Neurobiology and Cell Signaling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
6
|
Lima Bezerra JJ, Lucena RB. Poisonings in ruminants by Cenostigma pyramidale (Tul.) Gagnon & G.P.Lewis (Fabaceae): A mini-review of teratogenic potential and phytochemical evidence. Toxicon 2024; 246:107794. [PMID: 38851021 DOI: 10.1016/j.toxicon.2024.107794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Teratogenic plants can be found in pastures in different parts of the world and represent a threat to the reproduction of ruminants. In the northeast region of Brazil, several studies have indicated that Cenostigma pyramidale (Tul.) Gagnon & G.P.Lewis is one of the main poisonous plants that causes reproductive problems in sheep and goats. In this context, the present study reviewed spontaneous and experimental poisonings reports by C. pyramidale in sheep and goats, as well as analyzing the phytochemical evidence related to this species. The scientific documents were retrieved from different databases and, after applying the selection criteria, a total of 16 articles published between 2000 and 2024 were included in this review. Cenostigma pyramidale causes embryonic loss, abortion, and congenital malformations in pregnant sheep and goats in the Brazilian semi-arid region. The main malformations observed in newborn animals are arthrogryposis, scoliosis, micrognathia, multiple skull deformities, cleft palate, and brachygnathism. Many secondary metabolites have already been isolated from C. pyramidale, however, to date, no evidence has been found regarding the possible teratogenic compounds that occur in this plant. From this perspective, new phytochemical studies are necessary to help unravel the mechanisms of action of embryotoxic agents from C. pyramidale.
Collapse
Affiliation(s)
- José Jailson Lima Bezerra
- Universidade Federal de Pernambuco, Departamento de Botânica, Av. da Engenharia, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | - Ricardo Barbosa Lucena
- Universidade Federal da Paraíba, Centro de Ciências Agrárias, Rodovia PB 079 - Km 12, 58397-000, Areia, PB, Brazil.
| |
Collapse
|
7
|
Lu H, Tan A, Zhang Y, Chen Y, Ran S, Wang P. Neuroprotective effects of Shenghui decoction via inhibition of the JNK/p38 MAPK signaling pathway in an AlCl 3-induced zebrafish (Danio rerio) model of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117993. [PMID: 38423408 DOI: 10.1016/j.jep.2024.117993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is a multi-factorial degenerative disease, and multi-targeted therapies targeting multiple pathogenic mechanisms should be explored. Shenghui decoction (SHD) is an ancient traditional Chinese medicine (TCM) formula used clinically to alleviate AD. However, the precise mechanism of action of SHD as a therapeutic agent for AD remains unclear. AIM OF THE STUDY This study investigated the neuroprotective properties and potential mechanisms of action of SHD in mitigating AD-like symptoms induced by AlCl3 in a zebrafish model. MATERIALS AND METHODS Active components of SHD were detected using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Zebrafish were exposed to AlCl3 (200 μg/L) for 30 days to establish an AD zebrafish model. AlCl3-exposed zebrafish were treated with SHD or donepezil. Behavioral tests were used to assess learning and memory, locomotor activity, and AD-related anxiety and aggression in AlCl3-exposed zebrafish. Nissl staining and transmission electron microscopy were used to evaluate histological alterations in brain neurons. The concentrations of pro-inflammatory cytokines (tumor necrosis factor-α, TNF-α; interleukin-1β, IL-1β) were quantified using Enzyme-linked immunosorbent assay (ELISA). Markers of oxidative stress and cholinergic activity (acetylcholinesterase, AChE) were detected using biochemical assays. Western blotting and immunofluorescence were used to detect the protein expression levels of Aβ, p-tau, PSD-95, synaptophysin, TLR4, phosphorylation of NF-κB p65, p38, and JNK. RESULTS Fifteen SHD compounds were identified by UPLC-MS/MS analysis. SHD improved AlCl3-induced dyskinesia, learning and memory impairment, anxiety-like behavior, and aggressive behavior in zebrafish. AlCl3-exposed zebrafish showed AD-like pathology, overexpression of Aβ, hyperphosphorylated tau protein, marked neuronal damage, decreased expression of synaptic proteins, synaptophysin, and PSD-95, and impairment of synaptic structural plasticity. These effects were reversed by the SHD treatment. We also observed that SHD ameliorated oxidative stress and decreased AChE activity and inflammatory cytokine levels. These effects are similar to those observed for donepezil. Meanwhile, SHD could decrease the protein expression of TLR4 and inhibit phosphorylation of NF-κB, JNK, and p38 MAPK. These results demonstrate that SHD has the potential to exert neuroprotective effects, which may be partly mediated via inhibition of the JNK/p38 MAPK signaling pathway. CONCLUSIONS Our findings revealed the therapeutic mechanism of SHD in mitigating AD progression and suggested that SHD is a potent neuroprotectant that contributes to the future development of TCM modernization and broader clinical applications.
Collapse
Affiliation(s)
- Haifei Lu
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Aihua Tan
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China; Huanggang Hospital of Chinese Medicine, Affiliated to Hubei University of Chinese Medicine, Huanggang, 438000, China.
| | - Yini Zhang
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Yumeng Chen
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Simiao Ran
- Guangxi Medical University, Nanning 530200, China.
| | - Ping Wang
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
8
|
Bouabdallah S, Brinza I, Boiangiu RS, Ibrahim MH, Honceriu I, Al-Maktoum A, Cioanca O, Hancianu M, Amin A, Ben-Attia M, Hritcu L. The Effect of a Tribulus-Based Formulation in Alleviating Cholinergic System Impairment and Scopolamine-Induced Memory Loss in Zebrafish ( Danio rerio): Insights from Molecular Docking and In Vitro/In Vivo Approaches. Pharmaceuticals (Basel) 2024; 17:200. [PMID: 38399415 PMCID: PMC10891926 DOI: 10.3390/ph17020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Tribulus terrestris L. (Tt) has been recently gaining attention for its pharmacological value, including its neuroprotective activities. In this study, we explore the neuroprotective effects of a Tribulus terrestris extract in a zebrafish (Danio rerio) model of scopolamine (SCOP)-induced memory impairment and brain oxidative stress. SCOP, an anticholinergic drug, was employed to replicate fundamental aspects of Alzheimer's disease (AD) in animal models. The fish were treated with ethanolic leaf extract (ELE) from Tt (1, 3, and 6 mg/L) for 15 days. SCOP (100 µM) was administered 30 min before behavioral tests were conducted. Molecular interactions of the major compounds identified via UPLC-PDA/MS in Tt fractions with the active site of acetylcholinesterase (AChE) were explored via molecular docking analyses. Terrestrosin C, protodioscin, rutin, and saponin C exhibited the most stable binding. The spatial memory performance was assessed using the Y-maze test, and memory recognition was examined using a novel object recognition (NOR) test. Tt extract treatment reversed the altered locomotion patterns that were caused by SCOP administration. Biochemical analyses also verified Tt's role in inhibiting AChE, improving antioxidant enzyme activities, and reducing oxidative stress markers. The present findings pave the way for future application of Tt as a natural alternative to treat cognitive disorders.
Collapse
Affiliation(s)
- Salwa Bouabdallah
- Laboratoire de Biosurveillance de l’Environnement (LR01/ES14), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia;
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (L.H.)
| | - Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (L.H.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (L.H.)
| | - Mona H. Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azha University, Cairo 11884, Egypt
| | - Iasmina Honceriu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (L.H.)
| | - Amna Al-Maktoum
- Biology Department, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Oana Cioanca
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Monica Hancianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mossadok Ben-Attia
- Laboratoire de Biosurveillance de l’Environnement (LR01/ES14), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia;
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (L.H.)
| |
Collapse
|
9
|
Al-Khazaleh AK, Zhou X, Bhuyan DJ, Münch GW, Al-Dalabeeh EA, Jaye K, Chang D. The Neurotherapeutic Arsenal in Cannabis sativa: Insights into Anti-Neuroinflammatory and Neuroprotective Activity and Potential Entourage Effects. Molecules 2024; 29:410. [PMID: 38257323 PMCID: PMC10821245 DOI: 10.3390/molecules29020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Cannabis, renowned for its historical medicinal use, harbours various bioactive compounds-cannabinoids, terpenes, and flavonoids. While major cannabinoids like delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have received extensive scrutiny for their pharmacological properties, emerging evidence underscores the collaborative interactions among these constituents, suggesting a collective therapeutic potential. This comprehensive review explores the intricate relationships and synergies between cannabinoids, terpenes, and flavonoids in cannabis. Cannabinoids, pivotal in cannabis's bioactivity, exhibit well-documented analgesic, anti-inflammatory, and neuroprotective effects. Terpenes, aromatic compounds imbuing distinct flavours, not only contribute to cannabis's sensory profile but also modulate cannabinoid effects through diverse molecular mechanisms. Flavonoids, another cannabis component, demonstrate anti-inflammatory, antioxidant, and neuroprotective properties, particularly relevant to neuroinflammation. The entourage hypothesis posits that combined cannabinoid, terpene, and flavonoid action yields synergistic or additive effects, surpassing individual compound efficacy. Recognizing the nuanced interactions is crucial for unravelling cannabis's complete therapeutic potential. Tailoring treatments based on the holistic composition of cannabis strains allows optimization of therapeutic outcomes while minimizing potential side effects. This review underscores the imperative to delve into the intricate roles of cannabinoids, terpenes, and flavonoids, offering promising prospects for innovative therapeutic interventions and advocating continued research to unlock cannabis's full therapeutic potential within the realm of natural plant-based medicine.
Collapse
Affiliation(s)
- Ahmad K. Al-Khazaleh
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| | - Elaf Adel Al-Dalabeeh
- Department of Biological Sciences, School of Science, University of Jordan, Amman 11942, Jordan;
| | - Kayla Jaye
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| |
Collapse
|
10
|
Jeyakumar M, Jaya Balan D, Kiruthiga C, Jafni S, Pandima Devi K. α-bisabolol β-d-fucopyranoside (ABFP) ameliorates scopolamine-induced memory deficits through cholinesterase inhibition and attenuation of oxidative stress in zebrafish (Danio rerio). J Biochem Mol Toxicol 2024; 38:e23580. [PMID: 37961937 DOI: 10.1002/jbt.23580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023]
Abstract
Alzheimer's disease (AD) is one of the major devastating neurodegenerative disorders associated with the gradual decline of an individual's memory, cognition, and ability to carry out day-to-day activities. In the present study, the neuroprotective ability of α-bisabolol β-d-fucopyranoside (ABFP) was assessed via measurement of antioxidant parameters like lipid peroxidation, glutathione peroxidation, glutathione, protein carbonyl content assays, and caspase-3 activity estimation. Moreover, the acute toxicity of ABFP was estimated in the zebrafish larval model. The results showed that ABFP exhibits little to no toxicity at lower concentrations in the acute toxicity test. ABFP-pretreated and scopolamine-exposed fish exhibited more exploratory behavior in the behavior assay than scopolamine-only induced groups. Additionally, the results of antioxidant enzyme assays revealed reduced oxidative stress and damage in ABFP-treated fish, while enzyme activity experiments carried out with brain homogenate from ABFP-treated fish showed decreased acetylcholinesterase enzyme activity. Overall, it can be concluded that ABFP has the potential to be a promising agent for the treatment of AD in the future.
Collapse
Affiliation(s)
| | | | | | - Sakthivel Jafni
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
11
|
Boopathi S, Haridevamuthu B, Gandhi A, Nayak SPRR, Sudhakaran G, Rajagopal R, Arokiyaraj S, Arockiaraj J. Neurobehavioral impairments from chromium exposure: Insights from a zebrafish model and drug validation. Comp Biochem Physiol C Toxicol Pharmacol 2024; 275:109780. [PMID: 37884255 DOI: 10.1016/j.cbpc.2023.109780] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
We have developed a zebrafish model to explore the alterations in neurobehaviors resulting from both acute and chronic exposure to chromium (Cr). Zebrafish exposed to half (HC group: 19.7 mg/L) and a quarter (LC group: 9.85 mg/L) of the LD50 concentration of Cr for a span of 2 weeks exhibited aberrant locomotion, heightened anxiety, cognitive impairment, and reduced aggression - hallmark traits reminiscent of an Alzheimer's Disease (AD)-like syndrome. Furthermore, zebrafish exposed to an environmentally relevant concentration of Cr (EC group: 100 μg/L) for an extended period of 9 weeks exhibited behaviors comparable to those observed in the HC group. Moreover, the study investigated the neuroprotective effects of donepezil (Don), galantamine (Gal) and resveratrol (Res) drugs in response to neurobehavioral impairments induced by Cr (VI) exposure in zebrafish. Don and Res effectively protect the zebrafish from Cr (VI)-induced anxiety, and memory impairment. Furthermore, Cr (VI) exposure induced heightened oxidative stress while simultaneously diminishing antioxidant enzyme levels. Remarkably, these effects were counteracted in the drug-treated groups. Likewise, exposure to Cr (VI) led to an increase in the expression of genes linked to AD and neuroinflammation. Nevertheless, drug treatment reversed this effect in Cr (VI)-exposed fish. The results of our study highlight the potentials of zebrafish model in demonstrating neurobehavioral impairments induced by Cr (VI), thereby paving the way for its utilization in vivo neurobehaviors investigations and pharmaceutical screening.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India. https://twitter.com/@iamboopathi
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Akash Gandhi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
12
|
Brinza I, Boiangiu RS, Cioanca O, Hancianu M, Dumitru G, Hritcu L, Birsan GC, Todirascu-Ciornea E. Direct Evidence for Using Coriandrum sativum var. microcarpum Essential Oil to Ameliorate Scopolamine-Induced Memory Impairment and Brain Oxidative Stress in the Zebrafish Model. Antioxidants (Basel) 2023; 12:1534. [PMID: 37627529 PMCID: PMC10451280 DOI: 10.3390/antiox12081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Essential oil from Coriandrum sativum has been demonstrated to provide various pharmacological properties, such as antioxidant, antimicrobial, antibacterial, antifungal, antidiabetic, anticonvulsive, anxiolytic-antidepressant, and anti-aging properties. This study investigated the mechanism of Coriandrum sativum var. microcarpum essential oil (CSEO, 25, 150, and 300 μL/L) and cognitive impairment and brain oxidative stress in a scopolamine (SCOP, 100 μM) zebrafish model (Danio rerio) of cognitive impairment. Spatial memory, response to novelty, and recognition memory were assessed using the Y-maze test and the novel object recognition test (NOR), while anxiety-like behavior was investigated using the novel tank diving test (NTT). The cholinergic system activity and brain oxidative stress were also evaluated. CSEO was administered to zebrafish once a day for 21 days, while SCOP and galantamine (GAL, 1 mg/L) were delivered 30 min before behavioral testing and euthanasia. Our data revealed that SCOP induced memory dysfunction and anxiety-like behavior, while CSEO improved memory performance, as evidenced by behavioral tasks. Moreover, CSEO attenuated SCOP-induced brain oxidative stress and decreased acetylcholinesterase (AChE) activity. The results demonstrated the potential use of the CSEO in providing beneficial effects by reducing memory deficits and brain oxidative stress involved in the genesis of a dementia state.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| | - Oana Cioanca
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| | - Gheorghe-Ciprian Birsan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| |
Collapse
|
13
|
Rebe RN, Lembe JT, Nyayi SDG, Ngatanko HHA, Wado EK, Ketcha Wanda GJM, Ndinteh DT, Njamen D, Zingue S, Foyet HS. Estrogenic and anti-amnesic potential of Millettia griffoniana Baill. (Fabaceae) ethanolic extract on scopolamine-induced memory impairment in ovariectomized Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116325. [PMID: 36906157 DOI: 10.1016/j.jep.2023.116325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dementias including Alzheimer disease (AD) are three times higher in menopausal women than in men. Phytoestrogens, a group of plant-derived compounds are known to alleviate menopausal complaints including dementia. Millettia griffoniana Baill is a phytoestrogen-rich plant used to treat menopausal complaints and dementia. AIM Evaluating the estrogenic and neuroprotective potential of Millettia griffoniana on ovariectomized (OVX) rats. MATERIALS AND METHODS The in vitro safety of M. griffoniana ethanolic extract was assayed by MTT in human mammary epithelial (HMEC) and mouse neuronal (HT-22) cells and its lethal dose 50 (LD50) was estimated following OECD 423 guidelines. For estrogenicity, in vitro the well known E-screen assay on MCF-7 cells was performed and in vivo four groups of OVX rats were treated either with 75, 150 and 300 mg/kg M. griffoniana extract doses or estradiol (1 mg/kg BW) for three days; and changes in uterine and vagina were analyzed. Then, for neuroprotective effect, Alzheimer-type dementia induction was achieved by scopolamine (1.5 mg/kg B.W., i.p.) injection four days/week and M. griffoniana extract as well as piracetam (standard) were administered daily for 2 weeks to evaluate the extract's neuroprotective potential. The endpoints were the assessment of learning and working memory, oxidative stress state (SOD, CAT, and MDA) in brain, acetylcholine esterase (AChE) activity and the histopathological changes in hippocampus. RESULTS No toxic effect was observed when incubating mammary (HMEC) and neuronal (HT-22) cells with M. griffoniana ethanol extract for 24 h and its LD50 was found >2000 mg/kg. The extract also exhibited both in vitro and in vivo estrogenic activities, displayed by a significant (p < 0.01) increment in MCF-7 cells population in vitro and an increase in the epithelium height of the vagina and the wet weight of the uterus mainly with the 150 mg/kg BW extract dose compared to untreated OVX rats. The extract also reversed scopolamine-induced memory impairment in rat by improving learning, working and reference memory. This was associated with an increment in CAT and SOD expression, alongside a decrement in MDA content and AChE activity in hippocampus. Further, the extract reduced neuronal cell loss in hippocampal structures (CA1, CA3 and dentate gyrus). High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-MS) spectra, revealed the presence of numerous phytoestrogens in M. griffoniana extract. CONCLUSION M. griffoniana ethanolic extract has estrogenic, anticholinesterase and antioxidant activities that could account for its anti-amnesic effects. These findings therefore sheds light on why this plant is commonly used in the therapy of menopausal complaints and dementia.
Collapse
Affiliation(s)
- Roland Nhouma Rebe
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon.
| | - Jordan Tonga Lembe
- Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa.
| | - Simon Désiré Guedang Nyayi
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon.
| | | | - Eglantine Keugong Wado
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon.
| | | | - Derek Tantoh Ndinteh
- Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa.
| | - Dieudonné Njamen
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon.
| | - Stéphane Zingue
- Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa; Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, P.O. Box 1364 Yaoundé, Cameroon.
| | - Harquin Simplice Foyet
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon.
| |
Collapse
|
14
|
Otero C, Klagges C, Morales B, Sotomayor P, Escobar J, Fuentes JA, Moreno AA, Llancalahuen FM, Arratia-Perez R, Gordillo-Fuenzalida F, Herrera M, Martínez JL, Rodríguez-Díaz M. Anti-Inflammatory Chilean Endemic Plants. Pharmaceutics 2023; 15:pharmaceutics15030897. [PMID: 36986757 PMCID: PMC10051824 DOI: 10.3390/pharmaceutics15030897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 03/12/2023] Open
Abstract
Medicinal plants have been used since prehistoric times and continue to treat several diseases as a fundamental part of the healing process. Inflammation is a condition characterized by redness, pain, and swelling. This process is a hard response by living tissue to any injury. Furthermore, inflammation is produced by various diseases such as rheumatic and immune-mediated conditions, cancer, cardiovascular diseases, obesity, and diabetes. Hence, anti-inflammatory-based treatments could emerge as a novel and exciting approach to treating these diseases. Medicinal plants and their secondary metabolites are known for their anti-inflammatory properties, and this review introduces various native Chilean plants whose anti-inflammatory effects have been evaluated in experimental studies. Fragaria chiloensis, Ugni molinae, Buddleja globosa, Aristotelia chilensis, Berberis microphylla, and Quillaja saponaria are some native species analyzed in this review. Since inflammation treatment is not a one-dimensional solution, this review seeks a multidimensional therapeutic approach to inflammation with plant extracts based on scientific and ancestral knowledge.
Collapse
Affiliation(s)
- Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Carolina Klagges
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas SEK, Facultad de Ciencias de la Salud, Universidad SEK, Santiago 8320000, Chile
| | - Bernardo Morales
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Paula Sotomayor
- Departamento de Urología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Jorge Escobar
- Laboratorio de Química Biológica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
- Correspondence: (J.E.); (J.L.M.); (M.R.-D.)
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Adrian A. Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Felipe M. Llancalahuen
- Laboratorio de Fisiopatología Integrativa, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Ramiro Arratia-Perez
- Center for Applied Nanoscience, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Felipe Gordillo-Fuenzalida
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile
| | - Michelle Herrera
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Jose L. Martínez
- Vicerrectoria de Investigación, Desarrollo e Innovación, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Trujillo 13001, Peru
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13001, Peru
- Correspondence: (J.E.); (J.L.M.); (M.R.-D.)
| | - Maité Rodríguez-Díaz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago 8320000, Chile
- Correspondence: (J.E.); (J.L.M.); (M.R.-D.)
| |
Collapse
|
15
|
Boiangiu RS, Bagci E, Dumitru G, Hritcu L, Todirascu-Ciornea E. Promnesic, Anxiolytic and Antioxidant Effects of Glaucosciadium cordifolium (Boiss.) Burtt & Davis Essential Oil in a Zebrafish Model of Cognitive Impairment. PLANTS (BASEL, SWITZERLAND) 2023; 12:784. [PMID: 36840131 PMCID: PMC9960976 DOI: 10.3390/plants12040784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The purpose of this study was to investigate the effect of Glaucosciadium cordifolium essential oil (GCEO, 25 and 150 µL/L) on anxiety and learning and memory impairment induced by scopolamine (SCOP) in zebrafish. The chemical composition was analyzed by GC-MS, and the results showed that the highest content was limonene followed by α- and β-pinene, p-cymene and α-phellandrene. The dementia model was induced by SCOP (100 µM), whereas GCEO and galantamine (GAL, 1 mg/L) were delivered to the SCOP-induced model. It was found that GCEO significantly improved memory impairment and anxiety-like response induced by SCOP through the Y-maze, novel object recognition (NOR) test, and novel tank diving tests (NTT). Biochemical analyses showed that GCEO reduced SCOP-induced oxidative damage. Additionally, the cholinergic system activity was improved in the SCOP-induced model by decreasing the acetylcholinesterase (AChE) activity following the exposure to GCEO. It was clear that as a mixture, GCEO displays positive action in improving memory impairment through restoring cholinergic dysfunction and brain antioxidant status.
Collapse
Affiliation(s)
- Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Eyup Bagci
- Department of Biology, Faculty of Science, Firat University, 23119 Elazig, Turkey
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| |
Collapse
|
16
|
Tan JK, Nazar FH, Makpol S, Teoh SL. Zebrafish: A Pharmacological Model for Learning and Memory Research. Molecules 2022; 27:7374. [PMID: 36364200 PMCID: PMC9657833 DOI: 10.3390/molecules27217374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/25/2023] Open
Abstract
Learning and memory are essential to organism survival and are conserved across various species, especially vertebrates. Cognitive studies involving learning and memory require using appropriate model organisms to translate relevant findings to humans. Zebrafish are becoming increasingly popular as one of the animal models for neurodegenerative diseases due to their low maintenance cost, prolific nature and amenability to genetic manipulation. More importantly, zebrafish exhibit a repertoire of neurobehaviors comparable to humans. In this review, we discuss the forms of learning and memory abilities in zebrafish and the tests used to evaluate the neurobehaviors in this species. In addition, the pharmacological studies that used zebrafish as models to screen for the effects of neuroprotective and neurotoxic compounds on cognitive performance will be summarized here. Lastly, we discuss the challenges and perspectives in establishing zebrafish as a robust model for cognitive research involving learning and memory. Zebrafish are becoming an indispensable model in learning and memory research for screening neuroprotective agents against cognitive impairment.
Collapse
Affiliation(s)
- Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), UKM Medical Center, Kuala Lumpur 56000, Malaysia
| | - Faris Hazwan Nazar
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), UKM Medical Center, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), UKM Medical Center, Kuala Lumpur 56000, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), UKM Medical Center, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
17
|
Evaluation of DDGS as a Low-Cost Feed Ingredient for Common Carp ( Cyprinus carpio Linneus) Cultivated in a Semi-Intensive System. Life (Basel) 2022; 12:life12101609. [PMID: 36295044 PMCID: PMC9604809 DOI: 10.3390/life12101609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Distillers dried grains with solubles (DDGS), a coproduct from the ethanol production industry, is successfully used as an ingredient in feeding cattle and pigs due to its relatively high protein and nutrient content and low price compared to cereals. The aim of this study was to establish the optimal DDGS concentration that can be included in the diet of common carp. A seven-week experiment was performed on common carp with an initial weight of 86 g feed with three experimental diets D0 (DDGS 0%), D1 (DDGS 25%) and D2 (DDGS 35%). The chemical composition of DDGS analyzed by Fourier Transform Near-Infrared (FT-NIR) spectroscopy showed a protein content of 27.56% and oil at 6.75%. Diets with DDGS did not produce significant changes in growth parameters, flesh quality, and blood biochemical profile. Regarding the oxidative status in the muscle tissue, D1 and D2 significantly reduced, in a dose-dependent manner, the specific activity of SOD and GSH, while CAT and GPX were left unaffected. In the liver tissue, CAT, GSH, MDA and carbonylated proteins were reduced in the DDGS diets. The microbiological analysis of the intestinal contents revealed a variation in microbial density depending on the diet used. The total number of aerobic germs was between 224.2 × 104 and 69.84 × 106 (D2 > D1 > D0) and the total number of anaerobic germs was between 15.2 × 102 and 28.2 × 102 (D2 > D0 > D1).
Collapse
|
18
|
ElNashar H, Adel M, Elshazly M, Yehia IS, El-Sheshtawy HS, Almalki AA, Ibrahim N. Chemical Composition, Antiaging Activities and Molecular Docking Studies of Essential Oils from Acca sellowiana (Feijoa). Chem Biodivers 2022; 19:e202200272. [PMID: 35938449 DOI: 10.1002/cbdv.202200272] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/04/2022] [Indexed: 11/11/2022]
Abstract
This study aimed to investigate the chemical composition of essential oils isolated from Acca sellowiana (feijoa) leaves and stems and elaborate on their relevance as natural anti-aging, coupled with molecular-docking studies. The isolated oils were analysed using gas chromatography-mass spectrometry analysis and investigated for inhibitory effects against acetylcholinesterase, β -secretase, collagenase, elastase and tyrosinase. Molecular-modelling study was performed using MOE-Dock program to evaluate binding interactions of major components with the above-mentioned targets. The leaf oil revealed the predominance of caryophyllene oxide (24.3%), linalool (7.9%), and spathulenol (6.6%), while the stem oil was presented by caryophyllene oxide (38.1%), α-zingiberene (10.1%) and humulene oxide II (6.0%). The stem oil expressed superior inhibitory activities against acetylcholinesterase (IC 50 =0.15±0.01µg/mL), β -secretase (IC 50 =3.99±0.23µg/mL), collagenase (IC 50 =408.10±20.80 µg/mL), elastase (IC 50 =0.17±0.01 μg/mL) and tyrosinase (IC 50 =8.45 ± 0.40µg/mL). The valuable binding interactions and docking scores were observed for caryophyllene oxide and α-zingiberene with acetylcholinesterase. Besides, α-zingibirene followed by linalool and τ-cadinol revealed tight fitting with collagenase and elastase. Additionally, linalool, spathulenol and τ-cadinol showed the best binding energy to tyrosinase. This study provides valuable scientific data on A. sellowiana as potential candidates for the development of natural antiaging formulations.
Collapse
Affiliation(s)
- Heba ElNashar
- Ain Shams University Faculty of Pharmacy, pharmacognosy, Cairo, 16559, Cairo, EGYPT
| | - Mai Adel
- Ain Shams University Faculty of Pharmacy, medicinal chemistry, Cairo, Cairo, EGYPT
| | - Mohammed Elshazly
- Ain Shams University Faculty of Pharmacy, pharmacognosy, Cairo, Cairo, EGYPT
| | - Ibrahim S Yehia
- Ain Shams University Faculty of Pharmacy, pharmacognosy, Cairo, Cairo, EGYPT
| | | | - Adel A Almalki
- Ain Shams University Faculty of Pharmacy, pharmacognosy, Cairo, Cairo, EGYPT
| | - Nehal Ibrahim
- Ain Shams University Faculty of Pharmacy, pharmacognosy, Cairo, Cairo, EGYPT
| |
Collapse
|
19
|
Kim H, Lee HJ, Zuo G, Hwang SH, Park JS, Hong JS, Kim KH, Soto Montero S, Yi D, Lee JT, Suh H, Lim SS. Antinociceptive activity of the Caesalpinia eriostachys Benth. ethanolic extract, fractions, and isolated compounds in mice. Food Sci Nutr 2022; 10:2381-2389. [PMID: 35844922 PMCID: PMC9281943 DOI: 10.1002/fsn3.2846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
Caesalpinia eriostachys Benth. (CE) is native to the Mexico and multiple effects have been observed from several plants belonging to the same family. CE was subjected to extraction with 95% ethanol, and the components were isolated through column chromatography. The structure of the compound was elucidated based on nuclear magnetic resonance (NMR) spectral data, electron ionization-mass (EI-MS) spectroscopy, and liquid chromatography-mass (LC-MS) spectroscopy. In vivo antinociceptive studies were conducted using writhing, 5% formalin, tail-flick, hot-plate, and von Frey filament tests. The ethanolic extract showed a significant effect in the acetic acid-induced pain model and nociceptive behavior in the formalin model (second phase). In hot-plate test and tail-flick test, the results showed no difference compared to the control group. The results suggest that the ethanolic extract may act peripherally to reduce pain. In the streptozotocin (STZ)-induced pain model, the ethanolic extract showed significant effect in the von Frey test model. The n-Hex (Hexane) and MC (Methylene chloride) fractions and isolated compounds, ellagic acid and agathisflavone, showed increased effect. Based on these results, we confirmed that the CE ethanolic extract and their compounds, ellagic acid and agathisflavone, have antinociceptive effect on diabetes mellitus-induced pain. Furthermore, the results of this study might be valuable for identifying compounds with antinociceptive activity from natural products.
Collapse
Affiliation(s)
- Hyun‐Yong Kim
- Department of Food Science and NutritionCollege of Natural SciencesHallym UniversityChuncheonKorea
| | - Hee Jung Lee
- Department of PharmacologyCollege of MedicineHallym UniversityChuncheonKorea
| | - Guanglei Zuo
- Department of Food Science and NutritionCollege of Natural SciencesHallym UniversityChuncheonKorea
| | - Seung Hwan Hwang
- Department of Food Science and NutritionCollege of Natural SciencesHallym UniversityChuncheonKorea
| | - Jeong Seok Park
- Department of Physical EducationCollege of Natural SciencesHallym UniversityChuncheonKorea
| | - Jae Seung Hong
- Department of Physical EducationCollege of Natural SciencesHallym UniversityChuncheonKorea
| | - Kang Hyuk Kim
- Department of Food Science and NutritionCollege of Natural SciencesHallym UniversityChuncheonKorea
| | - Silvia Soto Montero
- Bioprospecting Research UnitNational Biodiversity InstituteHerediaCosta Rica
| | - Dong‐Keun Yi
- International Biological Material Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Jeong Tae Lee
- Department of Chemistry and Institute of Applied ChemistryHallym UniversityChuncheonRepublic of Korea
| | - Hong‐Won Suh
- Department of PharmacologyCollege of MedicineHallym UniversityChuncheonKorea
| | - Soon Sung Lim
- Department of Food Science and NutritionCollege of Natural SciencesHallym UniversityChuncheonKorea
- Institute of Korean NutritionHallym UniversityChuncheonRepublic of Korea
| |
Collapse
|
20
|
Shenoy A, Banerjee M, Upadhya A, Bagwe-Parab S, Kaur G. The Brilliance of the Zebrafish Model: Perception on Behavior and Alzheimer's Disease. Front Behav Neurosci 2022; 16:861155. [PMID: 35769627 PMCID: PMC9234549 DOI: 10.3389/fnbeh.2022.861155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) has become increasingly prevalent in the elderly population across the world. It's pathophysiological markers such as overproduction along with the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFT) are posing a serious challenge to novel drug development processes. A model which simulates the human neurodegenerative mechanism will be beneficial for rapid screening of potential drug candidates. Due to the comparable neurological network with humans, zebrafish has emerged as a promising AD model. This model has been thoroughly validated through research in aspects of neuronal pathways analogous to the human brain. The cholinergic, glutamatergic, and GABAergic pathways, which play a role in the manifested behavior of the zebrafish, are well defined. There are several behavioral models in both adult zebrafish and larvae to establish various aspects of cognitive impairment including spatial memory, associative memory, anxiety, and other such features that are manifested in AD. The zebrafish model eliminates the shortcomings of previously recognized mammalian models, in terms of expense, extensive assessment durations, and the complexity of imaging the brain to test the efficacy of therapeutic interventions. This review highlights the various models that analyze the changes in the normal behavioral patterns of the zebrafish when exposed to AD inducing agents. The mechanistic pathway adopted by drugs and novel therapeutic strategies can be explored via these behavioral models and their efficacy to slow the progression of AD can be evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies, Mumbai, India
| |
Collapse
|
21
|
Damo JLK, Boiangiu RS, Brinza I, Kenko Djoumessi LB, Rebe RN, Kamleu BN, Guedang SDN, Camdi GW, Bouvourné P, Keugong EW, Ngatanko HHA, Cioanca O, Hancianu M, Foyet HS, Hritcu L. Neuroprotective Potential of Guiera senegalensis (Combretaceae) Leaf Hydroethanolic Extract against Cholinergic System Dysfunctions and Oxidative Stress in Scopolamine-Induced Cognitive Impairment in Zebrafish ( Danio rerio). PLANTS (BASEL, SWITZERLAND) 2022; 11:1149. [PMID: 35567150 PMCID: PMC9100236 DOI: 10.3390/plants11091149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Guiera senegalensis JF Gmel. (Combretaceae) (GS) is a plant used in traditional medicine in West Africa for the treatment of several diseases, such as epilepsy and depression. However, its potential benefits in improving scopolamine (Sco)-induced memory impairment and brain oxidative stress in zebrafish have been investigated. In the present study, zebrafish (Danio rerio) were treated with GS (1, 4, and 8 μg/L) for 19 days as well as Sco (100 µM) 30 min before behavioral tests. Behavioral performance was assessed by the Y-maze test and novel object recognition test (NOR), whereas anxiety response was evaluated in the novel tank diving test (NTT). Subsequently, high-performance liquid chromatography (HPLC) was used to evaluate the GS chemical composition. Sco promoted oxidative stress and acetylcholinesterase (AChE) activity. Moreover, both oxidative stress parameters and AChE activity were ameliorated by GS treatment. Accordingly, the present findings further provided the potential use of GS as a natural, alternative treatment against cognitive disorders associated to Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Jorelle Linda Kamda Damo
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon; (J.L.K.D.); (L.B.K.D.); (R.N.R.); (B.N.K.); (S.D.N.G.); (G.W.C.); (P.B.); (E.W.K.); (H.H.A.N.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.)
| | - Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.)
| | - Léa Blondelle Kenko Djoumessi
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon; (J.L.K.D.); (L.B.K.D.); (R.N.R.); (B.N.K.); (S.D.N.G.); (G.W.C.); (P.B.); (E.W.K.); (H.H.A.N.)
| | - Roland Nhouma Rebe
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon; (J.L.K.D.); (L.B.K.D.); (R.N.R.); (B.N.K.); (S.D.N.G.); (G.W.C.); (P.B.); (E.W.K.); (H.H.A.N.)
| | - Balbine Nkwingwa Kamleu
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon; (J.L.K.D.); (L.B.K.D.); (R.N.R.); (B.N.K.); (S.D.N.G.); (G.W.C.); (P.B.); (E.W.K.); (H.H.A.N.)
| | - Simon Désiré Nyayi Guedang
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon; (J.L.K.D.); (L.B.K.D.); (R.N.R.); (B.N.K.); (S.D.N.G.); (G.W.C.); (P.B.); (E.W.K.); (H.H.A.N.)
| | - Guillaume Woumitna Camdi
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon; (J.L.K.D.); (L.B.K.D.); (R.N.R.); (B.N.K.); (S.D.N.G.); (G.W.C.); (P.B.); (E.W.K.); (H.H.A.N.)
| | - Parfait Bouvourné
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon; (J.L.K.D.); (L.B.K.D.); (R.N.R.); (B.N.K.); (S.D.N.G.); (G.W.C.); (P.B.); (E.W.K.); (H.H.A.N.)
| | - Eglantine Wado Keugong
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon; (J.L.K.D.); (L.B.K.D.); (R.N.R.); (B.N.K.); (S.D.N.G.); (G.W.C.); (P.B.); (E.W.K.); (H.H.A.N.)
| | - Hervé Hervé Abaïssou Ngatanko
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon; (J.L.K.D.); (L.B.K.D.); (R.N.R.); (B.N.K.); (S.D.N.G.); (G.W.C.); (P.B.); (E.W.K.); (H.H.A.N.)
| | - Oana Cioanca
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.C.); (M.H.)
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.C.); (M.H.)
| | - Harquin Simplice Foyet
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon; (J.L.K.D.); (L.B.K.D.); (R.N.R.); (B.N.K.); (S.D.N.G.); (G.W.C.); (P.B.); (E.W.K.); (H.H.A.N.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.)
| |
Collapse
|
22
|
Cueto-Escobedo J, German-Ponciano LJ, Guillén-Ruiz G, Soria-Fregozo C, Herrera-Huerta EV. Zebrafish as a Useful Tool in the Research of Natural Products With Potential Anxiolytic Effects. Front Behav Neurosci 2022; 15:795285. [PMID: 35095438 PMCID: PMC8789748 DOI: 10.3389/fnbeh.2021.795285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Zebrafish (Danio rerio) is a popular and valuable species used in many different biomedical research areas. The complex behavior that fish exhibit in response to different stimuli allows researchers to explore the biological and pharmacological basis of affective and mood disorders. In this sense, anxiety is commonly studied in preclinical research with animal models in rodents. During the last decade, those models have been successfully adapted to zebrafish. Stressful stimuli, such as novel environments, chemical substances, light conditions, and predator images, can trigger defensive behaviors considered indicators of an anxiety-like state. In the first stage, models were adapted and validated with different stressors and anxiolytic drugs with promising results and are now successfully used to generate scientific knowledge. In that sense, zebrafish allows several routes of administration and other methodological advantages to explore the anxiolytic effects of natural products in behavioral tests as novel tank, light-dark chamber, and black/white maze, among others. The present work will review the main findings on preclinical research using adult zebrafish to explore anxiolytics effects of natural products as plant secondary metabolites such as flavonoids, alkaloids and terpenes or standardized extracts of plants, among others. Scientific literature confirms the utility of zebrafish tests to explore anxiety-like states and anxiolytic-like effects of plant secondary metabolites, which represent a useful and ethical tool in the first stages of behavioral.
Collapse
Affiliation(s)
- Jonathan Cueto-Escobedo
- Departamento de Investigación Clínica y Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | | | - Gabriel Guillén-Ruiz
- Investigador por México, Consejo Nacional de Ciencia y Tecnología (CONACyT) – Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Cesar Soria-Fregozo
- Laboratorio Ciencias Biomédicas/Área Histología y Psicobiología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno, Mexico
| | | |
Collapse
|
23
|
El-Nashar HAS, Mostafa NM, Abd El-Ghffar EA, Eldahshan OA, Singab ANB. The genus Schinus (Anacardiaceae): a review on phytochemicals and biological aspects. Nat Prod Res 2021; 36:4839-4857. [PMID: 34886735 DOI: 10.1080/14786419.2021.2012772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The genus Schinus belongs to family 'Anacardiaceae' and includes about 29 species originating from South America, distributed to Peru, Chile, Argentina, Brazil and Paraguay and cultivated in Egypt. Traditionally, Schinus plants are used to alleviate several and diverse diseases including rheumatism, hypertension, ulcers, gastric distress, menstrual disorders, gonorrhea, bronchitis, gingivitis, conjunctivitis, dysentery, wounds, urinary tract, and eye infections. Several phytochemical studies on the Schinus plants revealed presence of diverse bioactive compounds such as flavonoids, bioflavonoids, phenolic acids, tannins, catechins, terpenoids and essential oils. Besides, some Schinus species and their isolated active compounds showed important biological activities such as antibacterial, antifungal, insecticidal, antiparasitic, analgesic, cytotoxic, antitumor, antioxidant, antihypertensive, anti-inflammatory, antimycobacterial, anti-Parkinson, anti-allergic, antiviral, wound healing, chemoprotective, anthelmintic and hepatoprotective. This review attempts to summarize the phytochemical profile and biological activities of Schinus species that could guide researchers to undertake further investigation.
Collapse
Affiliation(s)
- Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt.,Center of Drug Discovery Research and Development, Ain Shams University, Abbassia, Cairo, Egypt
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Eman A Abd El-Ghffar
- Department of Biology, Collage of Science, Taibah University, Saudi Arabia.,Department of Zoology, Faculty of Sciences, Ain Shams University, Abbassia, Cairo, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt.,Center of Drug Discovery Research and Development, Ain Shams University, Abbassia, Cairo, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt.,Center of Drug Discovery Research and Development, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
24
|
Effects of the Hydroethanolic Extract of Lycopodium selago L. on Scopolamine-Induced Memory Deficits in Zebrafish. Pharmaceuticals (Basel) 2021; 14:ph14060568. [PMID: 34198639 PMCID: PMC8232138 DOI: 10.3390/ph14060568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
This scientific research focused on the production of hydroethanolic extract of the plant species Lycopodium selago L. (L. selago) by the ultrasound-assisted extraction (USAE) and the identification of biocompounds with high antioxidant activity is of interest for possible phytotherapeutic treatment against Alzheimer's disease (AD). The extract was phytochemically analyzed to investigate polyphenols, flavonoids, and identify the sesquiterpenoid alkaloid huperzine A (HupA), which is known in the literature for its great relevance in AD. Evaluation and comparison of the antioxidant activity of the extract were performed by four complementary spectrophotometric methods (DPPH, FRAP, ABTS, ORAC). In vitro tests of the extract showed an excellent reciprocal link between the concentration of polyphenols and the measurement of the antioxidant activity of the extract with the sesquiterpenoid HupA. To confirm the antioxidant activity, L. selago hydroethanolic extract was administered in vivo to zebrafish (Danio rerio) with a pattern of scopolamine-induced cognitive impairment. Moreover, this study explored a possible correlation between the expression of oxidative stress markers in the brain tissue with the behavior of the scopolamine zebrafish model. In vivo tests showed that this fern could be used as a nutritional supply and as a phytotherapeutic method to prevent or treat various neurodegenerative diseases that call for high-nutritive-value medications.
Collapse
|
25
|
Hericium erinaceus (Bull.) Pers. Ethanolic Extract with Antioxidant Properties on Scopolamine-Induced Memory Deficits in a Zebrafish Model of Cognitive Impairment. J Fungi (Basel) 2021; 7:jof7060477. [PMID: 34204787 PMCID: PMC8231562 DOI: 10.3390/jof7060477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 01/16/2023] Open
Abstract
Hericium erinaceus (H. erinaceus) is a rare and appreciated fungal species belonging to the division Basidiomycota used for centuries in traditional Chinese medicine for its medicinal value. This species of mushrooms brings the most diverse benefits for the human body, and can have beneficial effects for treating Alzheimer’s disease (AD). This study investigated whether ethanolic extract from the fungal biomass of H. erinaceus enhances cognitive function via the action on cholinergic neurons using the scopolamine (SCOP)-induced zebrafish (Danio rerio) model of memory impairment. The ethanolic extract from the fungal biomass of H. erinaceus was previously obtained using an ultrasonic extraction method (UE). The administration of H. erinaceus extract to zebrafish, with a pattern of AD induced by scopolamine, showed an improvement in memory evaluated by behavioral and biochemical tests on brain tissue. These results suggest that H. erinaceus has preventive and therapeutic potentials in managing memory deficits and brain oxidative stress in zebrafish with AD.
Collapse
|
26
|
Benvenutti R, Marcon M, Gallas-Lopes M, de Mello AJ, Herrmann AP, Piato A. Swimming in the maze: An overview of maze apparatuses and protocols to assess zebrafish behavior. Neurosci Biobehav Rev 2021; 127:761-778. [PMID: 34087275 DOI: 10.1016/j.neubiorev.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/12/2021] [Accepted: 05/26/2021] [Indexed: 12/09/2022]
Abstract
Most preclinical behavioral assays use rodents as model animals, leaving room for species-specific biases that could be avoided by an expanded cross-species approach. In this context, zebrafish emerges as an alternative model organism to study neurobiological mechanisms of anxiety, preference, learning, and memory, as well as other phenotypes with relevance to neuropsychiatric disorders. In recent years, several zebrafish studies using different types of mazes have been published. However, the protocols and apparatuses' shapes and dimensions vary widely in the literature. This variation may puzzle researchers attempting to implement maze behavioral assays and challenges the reproducibility across institutions. This review aims to provide an overview of the behavioral paradigms assessed in different types of mazes in zebrafish reported in the last couple of decades. Also, this review aims to contribute to a better characterization of multi-behavioral assessment in zebrafish.
Collapse
Affiliation(s)
- Radharani Benvenutti
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/209, Porto Alegre, RS, 90050-170, Brazil
| | - Matheus Marcon
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/209, Porto Alegre, RS, 90050-170, Brazil
| | - Matheus Gallas-Lopes
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Anna Julie de Mello
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Ana Paula Herrmann
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Angelo Piato
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/209, Porto Alegre, RS, 90050-170, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
27
|
Batir-Marin D, Boev M, Cioanca O, Mircea C, Burlec AF, Beppe GJ, Spac A, Corciova A, Hritcu L, Hancianu M. Neuroprotective and Antioxidant Enhancing Properties of Selective Equisetum Extracts. Molecules 2021; 26:molecules26092565. [PMID: 33924900 PMCID: PMC8124630 DOI: 10.3390/molecules26092565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/31/2023] Open
Abstract
The sterile stems belonging to the Equisetum species are often used in traditional medicine of various nations, including Romanians. They are highly efficient in treating urinary tract infections, cardiovascular diseases, respiratory tract infections, and medical skin conditions due to their content of polyphenolic derivatives that have been isolated. In this regard, this study aimed to provide the chemical composition of the extracts obtained from the Equisetum species (E. pratense, E. sylvaticum, E. telmateia) and to investigate the biological action in vitro and in vivo. For the chemical characterization of the analyzed Equisetum species extracts, studies were performed by using ultra-high-performance liquid chromatography (UHPLC-DAD). In vitro evaluation of the antioxidant activity of the plant extracts obtained from these species of Equisetum genus was determined. The neuroprotective activity of these three ethanolic extracts from the Equisetum species using zebrafish tests was determined in vivo. All obtained results were statistically significant. The results indicate that E. sylvaticum extract has a significant antioxidant activity; whereas, E. pratense extract had anxiolytic and antidepressant effects significantly higher than the other two extracts used. All these determinations indicate promising results for the antioxidant in vitro tests and neuroprotective activity of in vivo tests, particularly mediated by their active principles.
Collapse
Affiliation(s)
- Denisa Batir-Marin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania; (D.B.-M.); (M.B.)
| | - Monica Boev
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania; (D.B.-M.); (M.B.)
| | - Oana Cioanca
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (C.M.); (A.F.B.); (A.S.); (A.C.); (M.H.)
- Correspondence: ; Tel.: +40-232-301-815
| | - Cornelia Mircea
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (C.M.); (A.F.B.); (A.S.); (A.C.); (M.H.)
| | - Ana Flavia Burlec
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (C.M.); (A.F.B.); (A.S.); (A.C.); (M.H.)
| | - Galba Jean Beppe
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon;
| | - Adrian Spac
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (C.M.); (A.F.B.); (A.S.); (A.C.); (M.H.)
| | - Andreia Corciova
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (C.M.); (A.F.B.); (A.S.); (A.C.); (M.H.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania;
| | - Monica Hancianu
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (C.M.); (A.F.B.); (A.S.); (A.C.); (M.H.)
| |
Collapse
|
28
|
Abbate F, Maugeri A, Laurà R, Levanti M, Navarra M, Cirmi S, Germanà A. Zebrafish as a Useful Model to Study Oxidative Stress-Linked Disorders: Focus on Flavonoids. Antioxidants (Basel) 2021; 10:antiox10050668. [PMID: 33922976 PMCID: PMC8147052 DOI: 10.3390/antiox10050668] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022] Open
Abstract
The zebrafish is considered one of the most versatile experimental animal models. The transparency of the embryos, the small size, the rapid development and the homology with higher vertebrates have made the zebrafish a valuable model also for drug screening. Its use is closely related for the determination of bioactivity, toxicity and off-target side effects of novel drug candidates, which also allows a thorough evaluation of new targets; thus, it may represent a suitable model for drug screening and the optimization of novel candidates. Flavonoids are polyphenolic compounds widely present in fruits, vegetables and cereals. Polyphenols are important for both plants and humans, considering their involvement in defense mechanisms, particularly against oxidative stress. They protect plants from biotic and abiotic stressors and prevent or treat oxidative-based human diseases. For these reasons, polyphenols are used as nutraceuticals, functional foods and supplements by the pharmaceutical industry. Therefore, the most relevant findings on zebrafish as a useful experimental model to study oxidative stress-linked disorders, focusing on the biological activities of flavonoids, are here summarized and reviewed.
Collapse
Affiliation(s)
- Francesco Abbate
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.L.); (M.L.); (A.G.)
- Correspondence: (F.A.); (S.C.)
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (A.M.); (M.N.)
| | - Rosaria Laurà
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.L.); (M.L.); (A.G.)
| | - Maria Levanti
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.L.); (M.L.); (A.G.)
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (A.M.); (M.N.)
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (A.M.); (M.N.)
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
- Correspondence: (F.A.); (S.C.)
| | - Antonino Germanà
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.L.); (M.L.); (A.G.)
| |
Collapse
|
29
|
Thawkar BS, Kaur G. Zebrafish as a Promising Tool for Modeling Neurotoxin-Induced Alzheimer's Disease. Neurotox Res 2021; 39:949-965. [PMID: 33687726 DOI: 10.1007/s12640-021-00343-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 12/01/2022]
Abstract
Drug discovery and development for Alzheimer's disease (AD) are complex and challenging due to the higher failure rate in the drug development process. The overproduction and deposition of Aβ senile plaque and intracellular neurofibrillary tangle (NFT) formation are well-recognized diagnostic hallmarks of AD. Numerous transgenic models of Alzheimer's disease have restrictions on cost-effectiveness and time in the preclinical setup. Zebrafish has emerged as an excellent complementary model for neurodegenerative research due to simpler organisms with robust, clearly visible behavior forms. Glutaminergic and cholinergic pathways responsible for learning and memory are present in zebrafish and actively participate in the transmission process. Therefore, it is imperative to study neurotoxic agents' mechanisms that induce dysfunction of memory, learning, and neurons in the zebrafish. This review illustrates the in-depth molecular mechanism of several neurotoxic agents such as okadaic acid, cigarette smoke extract, and metals to produce cognitive deficits or neurodegeneration similar to mammals. These updates would determine an ideal and effective neurotoxic agent for producing AD pathophysiology in the zebrafish brain for preclinical screening.
Collapse
Affiliation(s)
- Baban S Thawkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), 400056, Mumbai, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), 400056, Mumbai, India.
| |
Collapse
|
30
|
Menezes JCJMDS, Diederich MF. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacol Res 2021; 167:105525. [PMID: 33667686 DOI: 10.1016/j.phrs.2021.105525] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 12/17/2022]
Abstract
Natural biflavonoids, such as amentoflavone, bilobetin, ginkgetin, isoginkgetin, taiwaniaflavone, morelloflavone, delicaflavone, hinokiflavone, and other derivatives (~ 40 biflavonoids), are isolated from Selaginella sp., Ginkgo biloba, Garcinia sp., and several other species of plants. They are able to exert therapeutic benefits by regulating several proteins/enzymes (PPAR-γ, CCAAT/enhancer-binding protein α [C/EBPα], STAT5, pancreatic lipase, PTP1B, fatty acid synthase, α-glucosidase [AG]) and insulin signaling pathways (via PI3K-AKT), which are linked to metabolism, cell growth, and cell survival mechanisms. Deregulated insulin signaling can cause complications of obesity and diabetes, which can lead to cognitive disorders such as Alzheimer's, Parkinson's, and dementia; therefore, the therapeutic benefits of these biflavones in these areas are highlighted. Since biflavonoids have shown potential to regulate metabolism, growth- and survival-related protein/enzymes, their relation to tumor growth and metastasis of cancer associated with angiogenesis are highlighted. The translational role of biflavones in cancer with respect to the inhibition of metabolism-related processes/pathways, enzymes, or proteins, such as STAT3/SHP-1/PTEN, kinesins, tissue kallikreins, aromatase, estrogen, protein modifiers, antioxidant, autophagy, and apoptosis induction mechanisms, are discussed. Finally, considering their observed bioactivity potential, oral bioavailability studies of biflavones and related clinical trials are outlined.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Marc F Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
31
|
Boiangiu RS, Mihasan M, Gorgan DL, Stache BA, Hritcu L. Anxiolytic, Promnesic, Anti-Acetylcholinesterase and Antioxidant Effects of Cotinine and 6-Hydroxy-L-Nicotine in Scopolamine-Induced Zebrafish ( Danio rerio) Model of Alzheimer's Disease. Antioxidants (Basel) 2021; 10:212. [PMID: 33535660 PMCID: PMC7912787 DOI: 10.3390/antiox10020212] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Cotinine (COT) and 6-hydroxy-L-nicotine (6HLN) are two nicotinic derivatives that possess cognitive-improving abilities and antioxidant properties in different rodent models of Alzheimer's disease (AD), eluding the side-effects of nicotine (NIC), the parent molecule. In the current study, we evaluated the impact of COT and 6HLN on memory deterioration, anxiety, and oxidative stress in the scopolamine (SCOP)-induced zebrafish model of AD. For this, COT and 6HLN were acutely administered by immersion to zebrafish that were treated with SCOP before testing. The memory performances were assessed in Y-maze and object discrimination (NOR) tasks, while the anxiety-like behavior was evaluated in the novel tank diving test (NTT). The acetylcholinesterase (AChE) activity and oxidative stress were measured from brain samples. The RT-qPCR analysis was used to evaluate the npy, egr1, bdnf, and nrf2a gene expression. Our data indicated that both COT and 6HLN attenuated the SCOP-induced anxiety-like behavior and memory impairment and reduced the oxidative stress and AChE activity in the brain of zebrafish. Finally, RT-qPCR analysis indicated that COT and 6HLN increased the npy, egr1, bdnf, and nrf2a gene expression. Therefore, COT and 6HLN could be used as tools for improving AD conditions.
Collapse
Affiliation(s)
- Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (M.M.); (D.L.G.); (B.A.S.)
| | | | | | | | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (M.M.); (D.L.G.); (B.A.S.)
| |
Collapse
|
32
|
El-Nashar HAS, Mostafa NM, Eldahshan OA, Singab ANB. A new antidiabetic and anti-inflammatory biflavonoid from Schinus polygama (Cav.) Cabrera leaves. Nat Prod Res 2020; 36:1182-1190. [PMID: 33356557 DOI: 10.1080/14786419.2020.1864365] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A new biflavonoid, luteolin-(6→8'')-apigenin was isolated from 80% methanol extract of Schinus polygama (Cav.) Cabrera leaves (Anacardiaceae). The structure was elucidated by 1D and 2D-NMR spectroscopic data. This compound exhibited in vitro antidiabetic effect via α-amylase assay. Furthermore, it possesses anti-inflammatory activity through membrane stabilization effect on erythrocytes.
Collapse
Affiliation(s)
- Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| |
Collapse
|
33
|
Giacomini AC, Bueno BW, Marcon L, Scolari N, Genario R, Demin KA, Kolesnikova TO, Kalueff AV, de Abreu MS. An acetylcholinesterase inhibitor, donepezil, increases anxiety and cortisol levels in adult zebrafish. J Psychopharmacol 2020; 34:1449-1456. [PMID: 32854587 DOI: 10.1177/0269881120944155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A potent acetylcholinesterase inhibitor, donepezil is a cognitive enhancer clinically used to treat neurodegenerative diseases. However, its complete pharmacological profile beyond cognition remains unclear. The zebrafish (Danio rerio) is rapidly becoming a powerful novel model organism in neuroscience and central nervous system drug screening. AIM Here, we characterize the effects of 24-h donepezil administration on anxiety-like behavioral and endocrine responses in adult zebrafish. METHODS We evaluated zebrafish anxiety-like behaviors in the novel tank, the light-dark and the shoaling tests, paralleled by assessing brain acetylcholinesterase activity and whole-body cortisol levels. RESULTS Overall, donepezil dose-dependently decreased zebrafish locomotor activity in the novel tank test and reduced time in light in the light-dark test, likely representing hypolocomotion and anxiety-like behaviors. Donepezil predictably decreased brain acetylcholinesterase activity, also increasing whole-body cortisol levels, thus further linking acetylcholinesterase inhibition to anxiety-like behavioral and endocrine responses. CONCLUSION Collectively, these findings suggest negative modulation of zebrafish affective behavior by donepezil, support the key role of cholinergic mechanisms in behavioral regulation in zebrafish, and reinforce the growing utility of zebrafish models for studying complex behavioral processess and their neuroendocrine and neurochemical regulation.
Collapse
Affiliation(s)
- Ana Cvv Giacomini
- Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil.,Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Barbara W Bueno
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Leticia Marcon
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Naiara Scolari
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Granov Scientific Research Center for Radiology and Surgical Technologies, St Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China.,Ural Federal University, Ekaterinburg, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,The International Zebrafish Neuroscience Research Consortium, Slidell, USA
| |
Collapse
|
34
|
Aly SH, Elissawy AM, Fayez AM, Eldahshan OA, Elshanawany MA, Singab ANB. Neuroprotective effects of Sophora secundiflora, Sophora tomentosa leaves and formononetin on scopolamine-induced dementia. Nat Prod Res 2020; 35:5848-5852. [PMID: 32696670 DOI: 10.1080/14786419.2020.1795853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Five flavonoids were isolated from the ethyl acetate fraction of leaves of Sophora secundiflora; formononetin (1), 5-hydroxy-4'-methoxyflavone (2), genistein (3), 5-hydroxy-8-(1-hydroxy-1-methyl-ethyl)-2-(4-hydroxyphenyl)-4H-furo-[2, 3-h]-chromen-4-one (4) and ononin (5). Additionally, LC-ESI-MS/MS analysis of the ethyl acetate fraction of S. secundiflora leaves had led to tentative identification of eighteen compounds. Formononetin, S. tomentosa and S. secundiflora leaves methanolic extract were evaluated in vivo for their neuroprotective activity where formononetin and S. tomentosa showed promising neuroprotective activity with reduction in acetylcholine esterase (AchE) enzyme activity and elevation of acetylcholine (Ach) and glutathione(GSH) brain levels and attenuation of dopamine (DA), nor-adrenaline (NA) and malonedialdehyde (MDA) brain level significantly, However S. secundiflora leaves methanolic extract didn't attenuate the AchE enzyme activity, DA and NA brain levels.[Formula: see text].
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.,Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Ahmed M Fayez
- Department of Pharmacology, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.,Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Mohamed A Elshanawany
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.,Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| |
Collapse
|
35
|
Brinza I, Abd-Alkhalek AM, El-Raey MA, Boiangiu RS, Eldahshan OA, Hritcu L. Ameliorative Effects of Rhoifolin in Scopolamine-Induced Amnesic Zebrafish ( Danio rerio) Model. Antioxidants (Basel) 2020; 9:antiox9070580. [PMID: 32635149 PMCID: PMC7401873 DOI: 10.3390/antiox9070580] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Rhoifolin (Rho) exerts many biological activities such as anticancer, antidiabetic, hepatoprotective, antirheumatic, antibacterial, and antiviral properties. The neuroprotective action of this compound has not been studied. The goal of this study was to investigate the improvement impact of Rho on scopolamine (Sco)-induced zebrafish anxiety, amnesia, and brain oxidative stress and to elucidate the underlying mechanisms involved. Zebrafish were treated with Rho (1, 3, and 5 μg/L) for nine consecutive days and were subsequently subjected to Sco (100 μM) 30 min before behavioral tests (novel tank diving test, Y-maze, and novel object recognition tests). Rho was isolated from Chorisia crispiflora (Malvaceae) leaves and identified by different spectroscopic techniques. To further assess the possible mechanisms of Rho in enhancing the memory capacities in zebrafish, the in vivo antioxidant status and acetylcholinesterase (AChE) activity was also evaluated. Rho from Chorisia crispiflora leaves was identified. Rho could alleviate anxiety, memory deficits, and brain oxidative stress in Sco-treated zebrafish and could regulate the cholinergic function by inhibiting the AChE activity. Our results demonstrated that Rho could be a promising candidate compound against anxiety and amnesia by restoring the cholinergic activity and the amelioration of brain oxidative stress.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.)
| | | | - Mohamed A. El-Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.)
| | - Omayma A. Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (L.H.); (O.A.E.); Tel.: +40-232-201-666 (L.H.); +20-101-184-1951 (O.A.E.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.)
- Correspondence: (L.H.); (O.A.E.); Tel.: +40-232-201-666 (L.H.); +20-101-184-1951 (O.A.E.)
| |
Collapse
|
36
|
de Freitas CS, Rocha MEN, Sacramento CQ, Marttorelli A, Ferreira AC, Rocha N, de Oliveira AC, de Oliveira Gomes AM, Dos Santos PS, da Silva EO, da Costa JP, de Lima Moreira D, Bozza PT, Silva JL, Barroso SPC, Souza TML. Agathisflavone, a Biflavonoid from Anacardium occidentale L., Inhibits Influenza Virus Neuraminidase. Curr Top Med Chem 2020; 20:111-120. [PMID: 31854280 DOI: 10.2174/1568026620666191219150738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neuraminidase inhibitors (NAIs) are the only class of antivirals in clinical use against influenza virus approved worldwide. However, approximately 1-3% of circulating strains present resistance mutations to oseltamivir (OST), the most used NAI. Therefore, it is important to catalogue new molecules to inhibit influenza virus, especially OST-resistant strains. Natural products from tropical plants used for human consumption represent a worthy class of substances. Their use could be stimulated in resource-limited setting where the access to expensive antiviral therapies is restricted. METHODS We evaluated the anti-influenza virus activity of agathisflavone derived from Anacardium occidentale L. RESULTS The neuraminidase (NA) activity of wild-type and OST-resistant influenza virus was inhibited by agathisflavone, with IC50 values ranging from 20 to 2.0 µM, respectively. Agathisflavone inhibited influenza virus replication with EC50 of 1.3 µM. Sequential passages of the virus in the presence of agathisflavone revealed the emergence of mutation R249S, A250S and R253Q in the NA gene. These changes are outside the OST binding region, meaning that agathisflavone targets this viral enzyme at a region different than conventional NAIs. CONCLUSION Altogether our data suggest that agathisflavone has a promising chemical structure for the development of anti-influenza drugs.
Collapse
Affiliation(s)
- Caroline S de Freitas
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Marco E N Rocha
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Química de Produtos Naturais 5, Farmanguinhos, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Q Sacramento
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andressa Marttorelli
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - André C Ferreira
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Natasha Rocha
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andrea Cheble de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Andre Marco de Oliveira Gomes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Patrícia Souza Dos Santos
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Edilene Oliveira da Silva
- Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Biologia Estrutural, Belém, Pará, Brazil
| | - Josineide Pantoja da Costa
- Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Biologia Estrutural, Belém, Pará, Brazil
| | - Davyson de Lima Moreira
- Laboratório de Química de Produtos Naturais 5, Farmanguinhos, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Shana Priscila Coutinho Barroso
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Instituto de Pesquisas Biomédicas, Hospital Naval Marcílio Dias, Marinha do Brasil, Brazil
| | - Thiago Moreno L Souza
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
37
|
Abidar S, Boiangiu RS, Dumitru G, Todirascu-Ciornea E, Amakran A, Cioanca O, Hritcu L, Nhiri M. The Aqueous Extract from Ceratonia siliqua Leaves Protects Against 6-hydroxydopamine in Zebrafish: Understanding the Underlying Mechanism. Antioxidants (Basel) 2020; 9:antiox9040304. [PMID: 32276477 PMCID: PMC7222174 DOI: 10.3390/antiox9040304] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ceratonia siliqua L. is a Mediterranean medicinal plant traditionally cultivated for its ethnopharmacological benefits, such as antidiarrheal, antidiabetic, enhance acetylcholine, antioxidant, antiatherosclerotic, and for its possible anti-neurodegenerative potential. The aim of the present study was to evaluate the chemical composition, as well as the cognitive-enhancing, anxiolytic, and antioxidant activities of the aqueous extract from C. siliqua (CsAE) leaves against 6-hydroxydopamine (6-OHDA) zebrafish Parkinson’s disease (PD) model. CsAE (0.1, 0.3, and 1 mg/L) was administered by immersion to zebrafish (Danio rerio) for eight consecutive days and one hour before each behavioral test of each day, while 6-OHDA (250 µM) treatment was supplied one day before the novel tank diving test (NTT). Qualitative and quantitative analyses were performed by the ultra-high-performance liquid chromatography (UHPLC) analysis. The memory performance was evaluated through the NTT and Y-maze tests. Additionally, the in vitro and in vivo antioxidant status and acetylcholinesterase (AChE) activity was also assessed. Our finds demonstrated that CsAE presented positive antioxidant and anti-AChE activities, which contributed to the improvement of cognitive function in the 6-OHDA zebrafish PD model.
Collapse
Affiliation(s)
- Sara Abidar
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger Principal BP 416, Morocco; (S.A.); (A.A.); (M.N.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
- Correspondence: (G.D.); (L.H.); Tel.: +40-232-201-522 (G.D.); +40-232-201-666 (L.H.)
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
| | - Amina Amakran
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger Principal BP 416, Morocco; (S.A.); (A.A.); (M.N.)
| | - Oana Cioanca
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Lucian Hritcu
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger Principal BP 416, Morocco; (S.A.); (A.A.); (M.N.)
- Correspondence: (G.D.); (L.H.); Tel.: +40-232-201-522 (G.D.); +40-232-201-666 (L.H.)
| | - Mohamed Nhiri
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger Principal BP 416, Morocco; (S.A.); (A.A.); (M.N.)
| |
Collapse
|
38
|
Al-Madhagy SA, Mostafa NM, Youssef FS, Awad GEA, Eldahshan OA, Singab ANB. Metabolic profiling of a polyphenolic-rich fraction of Coccinia grandis leaves using LC-ESI-MS/MS and in vivo validation of its antimicrobial and wound healing activities. Food Funct 2020; 10:6267-6275. [PMID: 31584060 DOI: 10.1039/c9fo01532a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polyphenolic-rich fraction (CG50) was obtained from the methanol extract of Coccinia grandis leaves by chromatographic fractionation over a Diaion column using 50% aqueous methanol. LC-ESI-MS/MS analysis of CG50 showed the presence of six flavonoids, namely quercetin-hexoside deoxyhexoside (rutin), quercetin-hexoside deoxyhexoside (quercetin-3-O-neohesperidoside), kaempferol-hexoside deoxyhexoside (kaempferol-3-O-rutinoside), kaempferol-hexoside deoxyhexoside (kaempferol-3-O-neohesperidoside), kaempferol-3-O-glucoside, and kaempferol-hexoside in addition to the presence of two secoiridoids which are oleuropein and ligstroside. CG50 hydrogel showed a pronounced inhibition of the bacterial growth in wounds infected by Bacillus cereus in rats comparable to those treated with hydrogel base only showing 85.08 and 16.50% inhibition for the bacterial growth for the CG50 hydrogel and hydrogel base, respectively. The antimicrobial activity of CG50 hydrogel was close to that of fucidin during all days of treatment. Rats treated with CG50 hydrogel showed remarkable healing ability of the wound compared to other groups and approaching that of fucidin. This was clearly manifested by the clear formation of scars with obvious reduction in the wound size together with the appearance and re-growth of hair. This was further confirmed by the histopathological study of skin tissues as well as by the evaluation of the percentages of collagen fiber deposition. CG50 hydrogel showed 18.71% collagen fiber deposition comparable to the untreated group that showed 6.84% collagen fiber deposition and approaches that of the fucidin group. It was concluded that Coccinia grandis could be used as a natural wound healing agent that further consolidated its traditional use as a wound dressing.
Collapse
Affiliation(s)
- Somaia A Al-Madhagy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.
| | | | | | | | | | | |
Collapse
|
39
|
Sacramento CQ, Jordão AK, Abrantes JL, Alves CM, Marttorelli A, Fintelman-Rodrigues N, de Freitas CS, de Melo GR, Cunha AC, Ferreira VF, Souza TML. Neuraminidase from Influenza A and B Viruses is Susceptible to the Compound 4-(4-Phenyl-1H-1,2,3-Triazol-1-yl)-2,2,6,6-Tetramethylpiperidine-1- Oxyl. Curr Top Med Chem 2020; 20:132-139. [DOI: 10.2174/1568026620666191227142433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022]
Abstract
Background:
Since the influenza virus is the main cause of acute seasonal respiratory infections
and pandemic outbreaks, antiviral drugs are critical to mitigate infections and impair chain of
transmission. Neuraminidase inhibitors (NAIs) are the main class of anti-influenza drugs in clinical use.
Nevertheless, resistance to oseltamivir (OST), the most used NAI, has been detected in circulating
strains of the influenza virus. Therefore, novel compounds with anti-influenza activity are necessary.
Objective:
To verify whether the NA from influenza A and B virus is susceptible to the compound 4-(4-
phenyl-1H-1,2,3-triazol-1-yl)-2,2,6,6-tetramethylpiperidine-1-oxyl (Tritempo).
Methods:
Cell-free neuraminidase inhibition assays were performed with Tritempo, using wild-type
(WT) and OST-resistant influenza strains. Cell-based assays in MDCKs were performed to confirm
Tritempo`s antiviral activity and cytotoxicity. Multiple passages of the influenza virus in increasing concentrations
of our compound, followed by the sequencing of NA gene and molecular docking, were used
to identify our Tritempo’s target.
Results/Discussion:
Indeed, Tritempo inhibited the neuraminidase activity of WT and OSTresistant
strains of influenza A and B, at the nanomolar range. Tritempo bound to WT and OST-resistant
influenza NA isoforms at the sialic acid binding site with low free binding energies. Cell-free assays
were confirmed using a prototypic influenza A infection assay in MDCK cells, in which we found an
EC50 of 0.38 µM, along with very low cytotoxicity, CC50 > 2,000 µM. When we passaged the influenza
A virus in the presence of Tritempo, a mutant virus with the G248P change in the NA was detected. This
mutant was resistant to Tritempo but remained sensitive to OST, indicating no cross-resistance between
the studied and reference drugs.
Conclusion:
Our results suggest that Tritempo’s chemical structure is a promising one for the development
of novel antivirals against influenza.
Collapse
Affiliation(s)
- Carolina Q. Sacramento
- Laboratorio de Vírus Respiratorios, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Kappel Jordão
- Laboratorio de Sintese Organica, Programa de pos-Graduacao em Quimica, Departamento de Quimica Organica, Instituto de Quimica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Juliana L. Abrantes
- Instituto de Ciencias Biomedicas, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane M. Alves
- Laboratorio de Vírus Respiratorios, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andressa Marttorelli
- Laboratorio de Vírus Respiratorios, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratorio de Vírus Respiratorios, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline S. de Freitas
- Laboratorio de Vírus Respiratorios, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabrielle R. de Melo
- Laboratorio de Vírus Respiratorios, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Claudia Cunha
- Laboratorio de Sintese Organica, Programa de pos-Graduacao em Quimica, Departamento de Quimica Organica, Instituto de Quimica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Vitor F. Ferreira
- Laboratorio de Sintese Organica, Programa de pos-Graduacao em Quimica, Departamento de Quimica Organica, Instituto de Quimica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Thiago Moreno L. Souza
- Laboratorio de Vírus Respiratorios, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Capatina L, Boiangiu RS, Dumitru G, Napoli EM, Ruberto G, Hritcu L, Todirascu-Ciornea E. Rosmarinus officinalis Essential Oil Improves Scopolamine-Induced Neurobehavioral Changes via Restoration of Cholinergic Function and Brain Antioxidant Status in Zebrafish ( Danio rerio). Antioxidants (Basel) 2020; 9:antiox9010062. [PMID: 31936730 PMCID: PMC7023291 DOI: 10.3390/antiox9010062] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 11/25/2022] Open
Abstract
Rosmarinus officinalis L. is a traditional herb with various therapeutic applications such as antibacterial, antioxidant, anti-inflammatory, antidepressant, and anticholinesterase activities, and can be used for the prevention or treatment of dementia. In the present study, we tested whether Rosmarinus officinalis L. could counteract scopolamine-induced anxiety, dementia, and brain oxidative stress in the zebrafish model and tried to find the underlying mechanism. Rosmarinus officinalis L. essential oil (REO: 25, 150, and 300 µL/L) was administered by immersion to zebrafish (Danio rerio) once daily for eight days while scopolamine (100 µM) treatment was delivered 30 min before behavioral tests. The antidepressant and cognitive-enhancing actions of the essential oil in the scopolamine zebrafish model was measured in the novel tank diving test (NTT) and Y-maze test. The chemical composition was identified by Gas chromatograph–Mass spectrometry (GC-MS) analysis. The brain oxidative status and acetylcholinesterase (AChE) activity was also determined. REO reversed scopolamine-induced anxiety, memory impairment, and brain oxidative stress. In addition, a reduced brain AChE activity following the administration of REO in scopolamine-treated fish was observed. In conclusion, REO exerted antidepressant-like effect and cognitive-enhancing action and was able to abolish AChE alteration and brain oxidative stress induced by scopolamine.
Collapse
Affiliation(s)
- Luminita Capatina
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| | - Edoardo Marco Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
- Correspondence: ; Tel.: +40-232201666
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| |
Collapse
|
41
|
Schinus terebinthifolius Essential Oil Attenuates Scopolamine-Induced Memory Deficits via Cholinergic Modulation and Antioxidant Properties in a Zebrafish Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5256781. [PMID: 31885652 PMCID: PMC6914997 DOI: 10.1155/2019/5256781] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/23/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
Schinus terebinthifolius is a plant well recognized for its therapeutic profile such as anti-inflammatory and antitumor activities, promoting antibacterial activity and antioxidant and antidiabetic properties. This study aimed at examining whether Schinus terebinthifolius memory-enhancing activities are mediated by cholinergic and brain antioxidant systems in a scopolamine zebrafish model. Schinus terebinthifolius essential oil (10, 25, and 50 μL/L) was delivered to zebrafish by immersion in water for 8 days. Memory deficits were induced by scopolamine (100 μM) administration. Zebrafish were divided into seven groups (n = 15/group): vehicle group, scopolamine (100 μM) group, Schinus terebinthifolius essential oil groups (STF; 10, 25, and 50 μL/L), the imipramine group (IMP; 20 mg/L, as the positive control in the NTT test), and the donepezil group (DP; 10 mg/L, as the positive control in the Y-maze test). Memory status was estimated by the novel tank diving test (NTT) and the Y-maze test and finally was validated by comparison with imipramine (20 mg/L) and donepezil (10 mg/L). Gas chromatography-mass spectrometry (GC-MS) was used to detect oil compounds. Brain levels of acetylcholinesterase (AChE) and antioxidant enzymes were measured. After being exposed to Schinus terebinthifolius essential oil, the scopolamine zebrafish exhibited an improvement of memory processes in the NTT and Y-maze tests. The essential oil attenuated the elevated level of AChE and brain oxidative stress. Schinus terebinthifolius essential oil was found to support memory formation through the inhibition of the AChE activity and decreasing oxidative stress in the scopolamine-treated zebrafish brains.
Collapse
|