1
|
Zhou Q, He M, Jin Q, Gao S, Yang Z, Zhu P, Tan W, Liu L. Mechanism of action of Taohong Siwu decoction in the alleviation of primary dysmenorrhea. Front Med (Lausanne) 2024; 11:1343179. [PMID: 38751973 PMCID: PMC11095111 DOI: 10.3389/fmed.2024.1343179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Background As one of the most common gynecological disorders, PD significantly impacts the quality of life for women. TSD, a well-known traditional Chinese medical prescription, has gained popularity for its use in treating gynecological cold coagulation and blood stasis syndromes such as PD. However, the lack of comprehensive data hinders our understanding of its molecular mechanism. Purpose The objective of the present study is to investigate the therapeutic effects of TSD on PD and elucidate its plausible mechanism. Methods HPLC was employed to confirm the presence of the principal metabolites of TSD. The rat model of PD was induced by OT exposure following IWM and EB pretreatment, and subsequently treated with TSD via gastric gavage. The effects and potential mechanisms of TSD on PD rats were explored, encompassing general behavior, morphological alterations in the uterus and ovaries, biochemical indicators in the uterus and serum, and levels of proteins related to the PI3K/AKT signaling pathway. Results Gallic acid, hydroxysafflower yellow A, albiflorin, paeoniflorin, and ferulic acid were determined to be the primary active metabolites of TSD. The pharmacological studies yielded results indicating the successful establishment of the PD model in rats. Additionally, TSD demonstrated its ability to protect PD rats by ameliorating general behavior, mitigating pathological damage to uterine and ovarian tissues, and modulating the expression levels of correlated factors (PGE2, PGF2α, Ca2+, TXB2, IL-6, TNF-α, NO, and COX-2) as well as p-PI3K/PI3K and p-AKT/AKT proteins. Conclusion TSD exhibited protective effects against PD in rats through its interaction with multiple targets including P13K/AKT signaling pathway, indicating that TSD holds therapeutic potential for PD treatment and providing evidence supporting the rational utilization of TSD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenhong Tan
- Yunnan Yunzhong Institute of Nutrition and health, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Lu Liu
- Yunnan Yunzhong Institute of Nutrition and health, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
2
|
Zhou Q, Ma J, Liu Q, Wu C, Yang Z, Yang T, Chen Q, Yue Y, Shang J. Traditional Chinese Medicine formula, Sanwujiao granule, attenuates ischemic stroke by promoting angiogenesis through early administration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117418. [PMID: 37979814 DOI: 10.1016/j.jep.2023.117418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke (IS) is one of the most lethal diseases with the insufficient pharmacology therapeutic approach. Sanwujiao granule (SW) is widely used for IS in China with little known about its underlying mechanism. AIM OF THE STUDY To investigate the characteristics of therapeutic effects and potential mechanisms of SW against IS. MATERIALS AND METHODS The fingerprint of SW was applied by high-performance liquid chromatography-mass spectrometry (HPLC-MS). Three different drug treatment strategies, including prophylactic administration, early administration and delayed administration, were applied in rats' permanent middle cerebral occlusion (pMCAO) model. The Garcia neurological deficit test, adhesive removal test, rotarod test, TTC and TUNEL staining were performed to evaluate the pathological changes. The transcriptomic analysis was used to predict the potential mechanism of SW. The vascular deficiency model of Tg(kdrl:eGFP) zebrafish larvae and oxygen-glucose deprivation model on bEnd.3 cells were used to verify SW's pharmacological effect. qRT-PCR, immunofluorescent staining and Western Blot were applied to detect the expression of genes and proteins. The network pharmacology approach was applied to discover the potential bioactive compounds in SW that contribute to its pharmacological effect. RESULTS SW early and delayed administration attenuated cerebral infarction, neurological deficit and cell apoptosis. The transcriptomic analysis revealed that SW activated angiogenesis-associated biological processes specifically by early administration. CD31 immunofluorescent staining further confirmed the microvessel intensity in peri-infarct regions was significantly elevated after SW early treatment. Additionally, on the vascular deficiency model of zebrafish larvae, SW showed the angiogenesis effect. Next, the cell migration and tube formation were also observed in the bEnd.3 cells with the oxygen-glucose deprivation induced cell injury. It's worth noting that both mRNA and protein levels of angiogenesis factor, insulin-like growth factor 1, were significantly elevated in the pMCAO rats' brains treated with SW. The network pharmacology approach was applied and chasmanine, karacoline, talatisamine, etc. were probably the main active compounds of SW in IS treatment as they affected the angiogenesis-associated targets. CONCLUSIONS These results demonstrate that SW plays a critical role in anti-IS via promoting angiogenesis through early administration, indicating that SW is a candidate herbal complex for further investigation in treating IS in the clinical.
Collapse
Affiliation(s)
- Qinyang Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Ji Ma
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Qiuyan Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Changyue Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Ziwei Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Tingting Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Qimeng Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yunyun Yue
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 210009, China; NMPA Key Laboratory for Research and Evaluation of Cosmetics, National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
3
|
Wu Q, Chen C, Liu W, Zhou Y, Weng G, Gu Y. Network-based drug repurposing for potential stroke therapy. Comput Struct Biotechnol J 2023; 21:2809-2823. [PMID: 37206617 PMCID: PMC10189095 DOI: 10.1016/j.csbj.2023.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Stroke is the leading cause of death and disability worldwide, with a growing number of incidences in developing countries. However, there are currently few medical therapies for this disease. Emerged as an effective drug discovery strategy, drug repurposing which owns lower cost and shorter time, is able to identify new indications from existing drugs. In this study, we aimed at identifying potential drug candidates for stroke via computationally repurposing approved drugs from Drugbank database. We first developed a drug-target network of approved drugs, employed network-based approach to repurpose these drugs, and altogether identified 185 drug candidates for stroke. To validate the prediction accuracy of our network-based approach, we next systematically searched for previous literature, and found 68 out of 185 drug candidates (36.8 %) exerted therapeutic effects on stroke. We further selected several potential drug candidates with confirmed neuroprotective effects for testing their anti-stroke activity. Six drugs, including cinnarizine, orphenadrine, phenelzine, ketotifen, diclofenac and omeprazole, have exhibited good activity on oxygen-glucose deprivation/reoxygenation (OGD/R) induced BV2 cells. Finally, we showcased the anti-stroke mechanism of actions of cinnarizine and phenelzine via western blot and Olink inflammation panel. Experimental results revealed that they both played anti-stroke effects in the OGD/R induced BV2 cells via inhibiting the expressions of IL-6 and COX-2. In summary, this study provides efficient network-based methodologies for in silico identification of drug candidates toward stroke.
Collapse
Affiliation(s)
- Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou 571000, China
- Hainan Clinical Center for Encephalopathy of Chinese Medicine, Haikou 571000, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou 571000, China
| | - Cuilan Chen
- Department of Graduate Student, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Weihua Liu
- Hainan Clinical Center for Encephalopathy of Chinese Medicine, Haikou 571000, China
| | - Yuying Zhou
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou 571000, China
| | - Guohu Weng
- Hainan Clinical Center for Encephalopathy of Chinese Medicine, Haikou 571000, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou 571000, China
- Hainan Clinical Center for Encephalopathy of Chinese Medicine, Haikou 571000, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou 571000, China
| |
Collapse
|
4
|
Tian S, Zhang J, Yuan S, Wang Q, Lv C, Wang J, Fang J, Fu L, Yang J, Zu X, Zhao J, Zhang W. Exploring pharmacological active ingredients of traditional Chinese medicine by pharmacotranscriptomic map in ITCM. Brief Bioinform 2023; 24:7017365. [PMID: 36719094 DOI: 10.1093/bib/bbad027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
With the emergence of high-throughput technologies, computational screening based on gene expression profiles has become one of the most effective methods for drug discovery. More importantly, profile-based approaches remarkably enhance novel drug-disease pair discovery without relying on drug- or disease-specific prior knowledge, which has been widely used in modern medicine. However, profile-based systematic screening of active ingredients of traditional Chinese medicine (TCM) has been scarcely performed due to inadequate pharmacotranscriptomic data. Here, we develop the largest-to-date online TCM active ingredients-based pharmacotranscriptomic platform integrated traditional Chinese medicine (ITCM) for the effective screening of active ingredients. First, we performed unified high-throughput experiments and constructed the largest data repository of 496 representative active ingredients, which was five times larger than the previous one built by our team. The transcriptome-based multi-scale analysis was also performed to elucidate their mechanism. Then, we developed six state-of-art signature search methods to screen active ingredients and determine the optimal signature size for all methods. Moreover, we integrated them into a screening strategy, TCM-Query, to identify the potential active ingredients for the special disease. In addition, we also comprehensively collected the TCM-related resource by literature mining. Finally, we applied ITCM to an active ingredient bavachinin, and two diseases, including prostate cancer and COVID-19, to demonstrate the power of drug discovery. ITCM was aimed to comprehensively explore the active ingredients of TCM and boost studies of pharmacological action and drug discovery. ITCM is available at http://itcm.biotcm.net.
Collapse
Affiliation(s)
- Saisai Tian
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jinbo Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department of Pharmacy, Tianjin Rehabilitation Center of Joint Logistics Support Force, Tianjin, 300110, China
| | - Shunling Yuan
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Qun Wang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Lv
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinxing Wang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Fu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jian Yang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xianpeng Zu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jing Zhao
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Liu Z, Zhang Z, Chen X, Ma P, Peng Y, Li X. Citrate and hydroxycinnamate derivatives from Mume Fructus protect LPS-injured intestinal epithelial cells by regulating the FAK/PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115834. [PMID: 36270558 DOI: 10.1016/j.jep.2022.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mume Fructus (MF) is processed from the near-ripe fruit of Prunus mume (Siebold) Siebold & Zucc by drying at low temperature until the color turns black. MF is often used in Chinese medicine for the treatment of chronic diarrhea and dysentery. Previous studies have shown that the active components of MF against Crohn's disease (CD) are mainly citrate and hydroxycinnamate derivatives, which can alleviate the CD-induced inflammatory response and intestinal barrier damage. However, their molecular mechanisms on CD still need further elucidation. AIM OF THE STUDY To investigate the protective effects and underlying mechanisms of citrate and hydroxycinnamate derivatives in MF on intestinal epithelial injury. MATERIALS AND METHODS Network pharmacology technology was used to predict the anti-CD targets and molecular mechanisms of 4 citrate and 11 hydroxycinnamate derivative prototypes and 5 hydroxycinnamate derivative metabolites in the 40% ethanol fraction of MF (MFE40), the active anti-CD ingredient group of MF. Lipopolysaccharide (LPS)-treated IEC-6 cells were used to investigate the effects of the above components on the proliferation of damaged IEC-6 cells and to verify the molecular mechanism of their regulation on the FAK/PI3K/AKT signaling pathways for the promotion of the proliferation of IEC-6 cells. RESULTS A "compound-target-pathway" network was constructed based on network pharmacology analysis, including 20 citrate and hydroxycinnamate derivatives that target 316 core proteins and 36 CD-related pathways, of which PI3K-AKT pathway and focal adhesion were the most enriched pathways. Further cell validation experiments showed that 1 citric acid (CA) compound and 10 hydroxycinnamate derivatives, including 3-O-caffeoylquinic acid (3CQA), 4-O-caffeoylquinic acid (4CQA), 5-O-caffeoylquinic acid (5CQA), caffeic acid (CFA), p-coumaric acid (PCMA), m-coumaric acid (MCMA), ferulic acid (FUA), isoferulic acid (IFUA), 3-hydroxyphenylpropionic acid (3HPPA) and hippuric acid (HPP), could promote the proliferation of IEC-6 cells and inhibit the damage of LPS to IEC-6 cells. Ethyl caffeate (ECFA), a hydroxycinnamic acid derivative, had no effect on promoting the proliferation of IEC-6 cells and was weak in inhibiting the damage of IEC-6 cells caused by LPS. Further mechanistic verification experiments showed that 7 citrate and hydroxycinnamate derivatives (CA, CFA, 3CQA, MCMA, FUA, 3HPPA, and HPP) could upregulate the expression of p-FAK, p-PI3K, and p-AKT proteins. Among them, CA had the better effect on activating the FAK-PI3K-AKT signaling pathway. CONCLUSIONS Citrate and hydroxycinnamate derivatives in MF can ameliorate LPS-induced intestinal epithelial cell injury to demonstrate potential for Crohn's disease alleviation. This protective effect can be achieved by upregulating FAK/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Zhihua Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Zhengxu Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiaonan Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Ping Ma
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
6
|
Hao DL, Li JM, Xie R, Huo HR, Xiong XJ, Sui F, Wang PQ. The role of traditional herbal medicine for ischemic stroke: from bench to clinic-A critical review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154609. [PMID: 36610141 DOI: 10.1016/j.phymed.2022.154609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ischemic stroke (IS) is a leading cause of death and severe long-term disability worldwide. Over the past few decades, considerable progress has been made in anti-ischemic therapies. However, IS remains a tremendous challenge, with favourable clinical outcomes being generally difficult to achieve from candidate drugs in preclinical phase testing. Traditional herbal medicine (THM) has been used to treat stroke for over 2,000 years in China. In modern times, THM as an alternative and complementary therapy have been prescribed in other Asian countries and have gained increasing attention for their therapeutic effects. These millennia of clinical experience allow THM to be a promising avenue for improving clinical efficacy and accelerating drug discovery. PURPOSE To summarise the clinical evidence and potential mechanisms of THMs in IS. METHODS A comprehensive literature search was conducted in seven electronic databases, including PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database, from inception to 17 June 2022 to examine the efficacy and safety of THM for IS, and to investigate experimental studies regarding potential mechanisms. RESULTS THM is widely prescribed for IS alone or as adjuvant therapy. In clinical trials, THM is generally administered within 72 h of stroke onset and are continuously prescribed for over 3 months. Compared with Western medicine (WM), THM combined with routine WM can significantly improve neurological function defect scores, promote clinical total effective rate, and accelerate the recovery time of stroke with fewer adverse effects (AEs). These effects can be attributed to multiple mechanisms, mainly anti-inflammation, antioxidative stress, anti-apoptosis, brain blood barrier (BBB) modulation, inhibition of platelet activation and thrombus formation, and promotion of neurogenesis and angiogenesis. CONCLUSIONS THM may be a promising candidate for IS management to guide clinical applications and as a reference for drug development.
Collapse
Affiliation(s)
- Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia-Meng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hai-Ru Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xing-Jiang Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng-Qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
7
|
Li H, Lam WC, Guo J, Zheng J, Cheung CH, Bian Z, Lau AY, Zhong LLD. A framework on developing integrative medicine clinical practice guideline for stroke management and rehabilitation in Hong Kong. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154442. [PMID: 36099653 DOI: 10.1016/j.phymed.2022.154442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Stroke is the second leading cause of death worldwide. In Hong Kong, the proportion of deaths caused by cerebrovascular disease accounted for approximately 6.8% of total deaths. Although integrative medicine approaches are widely adapted by patients, there is a lack of guideline to support the corresponding clinical practice for stroke management and rehabilitation. Therefore, we design this framework for the development of an integrative medicine clinical practice guideline (CPG) for stroke. METHODS The framework follows the instructions of World Health Organization (WHO) handbook for guideline development, Guideline International Network (GIN), Appraisal of Guidelines for Research and Evaluation Instrument (AGREE II), and Reporting Items for Practice Guidelines in Healthcare (RIGHT). Three stages with ten steps are conducted. CONCLUSION Clinical practice guidelines are essential to provide optimal recommendations for patients' prognosis. With proper methodology, this framework will facilitate the formation of clinical practice guideline for stroke through synthesizing evidences in the scope of integrative medicine.
Collapse
Affiliation(s)
- Huijuan Li
- Hong Kong Chinese Medicine Clinical Study Centre, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR 999077, China
| | - Wai Ching Lam
- Hong Kong Chinese Medicine Clinical Study Centre, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR 999077, China
| | - Jianwen Guo
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| | - Jiangang Zheng
- Hong Kong Chinese Medicine Clinical Study Centre, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR 999077, China
| | - Chun Hoi Cheung
- Hong Kong Chinese Medicine Clinical Study Centre, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR 999077, China
| | - Zhaoxiang Bian
- Hong Kong Chinese Medicine Clinical Study Centre, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR 999077, China
| | - Alexander Y Lau
- Department of Medicine and Therapeutics and Hong Kong Institute of Integrative Medicine, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
| | - Linda L D Zhong
- Hong Kong Chinese Medicine Clinical Study Centre, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR 999077, China.
| |
Collapse
|
8
|
Cai YL, Zhang F, Dou XX, Zeng HW, Wu GS, Liang YL, Xu XK, Zhao J, Ye J, Zhang WD. Integrated metabolomics and network pharmacology to reveal the therapeutic mechanism of Dingkun Pill on polycystic ovary syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115442. [PMID: 35688255 DOI: 10.1016/j.jep.2022.115442] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dingkun Pill (DKP), a traditional Chinese medicine prescription, was modified from Bujing decoction and Xusijiangsheng pill by the imperial physician in the Qing dynasty (1700' s). It was believed to treat various gynecological diseases by nourishing qi and blood. Accumulating evidence indicates that it is effective in treating polycystic ovary syndrome (PCOS). However, the therapeutic efficacy and mechanism of action DKP against PCOS need to be further elucidated. AIM OF THE STUDY To investigate the therapeutic effect and action mechanism of DKP against PCOS using an integrated approach of metabolomics and network pharmacology. MATERIALS AND METHODS The rat model of PCOS was established by dehydroepiandrosterone. An integrated metabolomics and network pharmacology strategy was applied to systemically clarify the mechanism of DKP against PCOS. Theca cells were prepared to evaluate the effect of DKP and its ingredients on testosterone synthesis in vitro. RESULTS The pharmacological experiments demonstrated that DKP could effectively convert the disordered estrous cyclicity, decrease the level of testosterone and the luteinizing hormone/follicle stimulating hormone ratio, and inhibit abnormal follicle formation in PCOS rats. By metabolomics analysis, 164 serum endogenous differential metabolites and 172 urine endogenous differential metabolites were tentatively identified. Steroid hormone biosynthesis and ovarian steroidogenesis were the most significantly impacted pathways. Based on network pharmacology and metabolomics studies, the ingredient-target-pathway network of DKP in the treatment of PCOS was constructed. Among the 10 key targets, CYP17A1, CYP19A1, STS, AR, ESR1, and MYC were closely involved in ovarian androgen synthesis. In theca cell-based assay of testosterone synthesis, DKP and its two active compounds (ligustilide and picrocrocin) showed inhibitory effects. CONCLUSION DKP effectively improved symptoms in rats with dehydroepiandrosterone-induced PCOS. The mechanism of DKP in the treatment of PCOS is related to the CYP17A1 enzyme required for androgen synthesis.
Collapse
Affiliation(s)
- Ying-Li Cai
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feng Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiu-Xiu Dou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hua-Wu Zeng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Gao-Song Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan-Lin Liang
- Guangyuyuan Chinese Medicine Co, Ltd, Shanxi, 030800, China
| | - Xi-Ke Xu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Second Military Medical University, Shanghai, 200433, China
| | - Jing Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ji Ye
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Second Military Medical University, Shanghai, 200433, China.
| | - Wei-Dong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Kubatka P, Mazurakova A, Koklesova L, Samec M, Sokol J, Samuel SM, Kudela E, Biringer K, Bugos O, Pec M, Link B, Adamkov M, Smejkal K, Büsselberg D, Golubnitschaja O. Antithrombotic and antiplatelet effects of plant-derived compounds: a great utility potential for primary, secondary, and tertiary care in the framework of 3P medicine. EPMA J 2022; 13:407-431. [PMID: 35990779 PMCID: PMC9376584 DOI: 10.1007/s13167-022-00293-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/29/2022]
Abstract
Thromboembolism is the third leading vascular disease, with a high annual incidence of 1 to 2 cases per 1000 individuals within the general population. The broader term venous thromboembolism generally refers to deep vein thrombosis, pulmonary embolism, and/or a combination of both. Therefore, thromboembolism can affect both - the central and peripheral veins. Arterial thromboembolism causes systemic ischemia by disturbing blood flow and oxygen supply to organs, tissues, and cells causing, therefore, apoptosis and/or necrosis in the affected tissues. Currently applied antithrombotic drugs used, e.g. to protect affected individuals against ischemic stroke, demonstrate significant limitations. For example, platelet inhibitors possess only moderate efficacy. On the other hand, thrombolytics and anticoagulants significantly increase hemorrhage. Contextually, new approaches are extensively under consideration to develop next-generation antithrombotics with improved efficacy and more personalized and targeted application. To this end, phytochemicals show potent antithrombotic efficacy demonstrated in numerous in vitro, ex vivo, and in vivo models as well as in clinical evaluations conducted on healthy individuals and persons at high risk of thrombotic events, such as pregnant women (primary care), cancer, and COVID-19-affected patients (secondary and tertiary care). Here, we hypothesized that specific antithrombotic and antiplatelet effects of plant-derived compounds might be of great clinical utility in primary, secondary, and tertiary care. To increase the efficacy, precise patient stratification based on predictive diagnostics is essential for targeted protection and treatments tailored to the person in the framework of 3P medicine. Contextually, this paper aims at critical review toward the involvement of specific classes of phytochemicals in antiplatelet and anticoagulation adapted to clinical needs. The paper exemplifies selected plant-derived drugs, plant extracts, and whole plant foods/herbs demonstrating their specific antithrombotic, antiplatelet, and fibrinolytic activities relevant for primary, secondary, and tertiary care. One of the examples considered is antithrombotic and antiplatelet protection specifically relevant for COVID-19-affected patient groups.
Collapse
Affiliation(s)
- Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Alena Mazurakova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Juraj Sokol
- Department of Hematology and Transfusion Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, 24144 Doha, Qatar
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | | | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 61200 Brno, Czech Republic
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, 24144 Doha, Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
10
|
Wang K, Hao Y, Wang C, Zhao X, He X, Sun CC. Simultaneous improvement of physical stability, dissolution, bioavailability, and antithrombus efficacy of Aspirin and Ligustrazine through cocrystallization. Int J Pharm 2022; 616:121541. [PMID: 35124115 DOI: 10.1016/j.ijpharm.2022.121541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/27/2022]
Abstract
A novel 1:1 cocrystal between two cardiovascular drugs, aspirin (ASA) and ligustrazine (tetramethylpyrazine, TMP) has been synthesized and characterized. The structure of this drug-drug cocrystal, ASA-TMP, was determined using single crystal X-ray crystallography. The ASA-TMP cocrystal exhibits a significantly reduced sublimation tendency than TMP. Importantly, cocrystallization simultaneously improves bioavailability of both parent drugs. This suggests the possibility of developing a more effective antithrombosis drug therapy given the synergistic pharmacological effects of the two parent drugs.
Collapse
Affiliation(s)
- Kairu Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Yanshuang Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xinghua Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Xin He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
11
|
Diindolylmethane ameliorates platelet aggregation and thrombosis: In silico, in vitro, and in vivo studies. Eur J Pharmacol 2022; 919:174812. [DOI: 10.1016/j.ejphar.2022.174812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 01/01/2023]
|
12
|
Combined Therapy with Traditional Chinese Medicine and Antiplatelet Drugs for Ischemic Heart Disease: Mechanism, Efficacy, and Safety. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9956248. [PMID: 34745309 PMCID: PMC8566037 DOI: 10.1155/2021/9956248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Ischemic heart disease is a significant risk factor that threatens human health, and antiplatelet drugs are routinely used to treat cases in clinical settings. Chinese medicine for promoting blood circulation and removing blood stasis (PBCRBSCM) can often be combined with antiplatelet drugs to treat ischemic heart disease. PBCRBSCM can inhibit platelet adhesion, activation, and aggregation; moreover, PBCRBSCM in combination with antiplatelet drugs exerts antiplatelet effects. The mechanism is related to several factors, including the inhibition of platelet activation and aggregation, improvement of the hemodynamic status and coagulation function, and correction of metabolism and inflammation. PBCRBSCM can also regulate the absorption and metabolism of conventional antiplatelet drugs and protect the gastric mucosal epithelial cells against damage induced by conventional antiplatelet drugs. Randomized controlled trials have confirmed that PBCRBSCM preparations and the active ingredients in these preparations can reduce resistance to aspirin and clopidogrel so that the combination of these drugs can exert their antiplatelet effects. In the perioperative treatment of patients with stable angina pectoris, unstable angina pectoris, and acute coronary syndrome undergoing percutaneous coronary intervention therapy, preparations of the active ingredients of PBCRBSCM combined with antiplatelet drugs and other conventional Western medicine treatments have been proven effective. The efficacy and safety of such combinations have also been extensively verified. Considerable progress has been made to understand the antiplatelet mechanism of PBCRBSCM. However, most clinical studies had problems, such as limited sample size and inappropriate research design, which has limited the translational use of PBCRBSCM in antiplatelet therapy. A large-scale, multicenter, randomized controlled study with cardiovascular events as the endpoint is still to be conducted to provide evidence for the combined application of PBCRBSCM and antiplatelet drugs in the prevention and treatment of ischemic heart disease.
Collapse
|
13
|
Liu F, Hou P, Zhang H, Tang Q, Xue C, Li RW. Food-grade carrageenans and their implications in health and disease. Compr Rev Food Sci Food Saf 2021; 20:3918-3936. [PMID: 34146449 DOI: 10.1111/1541-4337.12790] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/22/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022]
Abstract
Food additives, often used to guarantee the texture, shelf-life, taste, and appearance of processed foods, have gained widespread attention due to their increased link to the growing incidence of chronic diseases. As one of the most common additives, carrageenans have been used in human diets for hundreds of years. While classified as generally recognized as safe (GRAS) for human consumption, numerous studies since the 1980s have suggested that carrageenans, particularly those with random coil conformations, may have adverse effects on gastrointestinal health, including aggravating intestinal inflammation. While these studies have provided some evidence of adverse effects, the topic is still controversial. Some have suggested that the negative consequence of the consumption of carrageenans may be structure dependent. Furthermore, pre-existing conditions may predispose individuals to varied outcomes of carrageenan intake. In this review, structure-function relationships of various carrageenans in the context of food safety are discussed. We reviewed the molecular mechanisms by which carrageenans exert their biological effects. We summarized the findings associated with carrageenan intake in animal models and clinical trials. Moreover, we examined the interactions between carrageenans and the gut microbiome in the pathogenesis of gastrointestinal disorders. This review argues for personalized guidance on carrageenan intake based on individuals' health status. Future research efforts that aim to close the knowledge gap on the effect of low-dose and chronic carrageenan intake as well as interactions among food additives should be conducive to the improved safety profile of carrageenans in processed food products.
Collapse
Affiliation(s)
- Fang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Pengfen Hou
- Affiliated Hospital of Qingdao Binhai University, Qingdao, China
| | - Hui Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Robert W Li
- USDA-ARS Animal Genomics and Improvement Laboratory, Beltsville, Maryland, USA
| |
Collapse
|
14
|
Tong H, Yu M, Fei C, Ji D, Dong J, Su L, Gu W, Mao C, Li L, Bian Z, Lu T, Hao M, Zeng B. Bioactive constituents and the molecular mechanism of Curcumae Rhizoma in the treatment of primary dysmenorrhea based on network pharmacology and molecular docking. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153558. [PMID: 33866197 DOI: 10.1016/j.phymed.2021.153558] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Curcumae Rhizoma (CR) has a clinical efficacy in activating blood circulation to dissipate blood stasis and has been used for the clinical treatment of qi stagnation and blood stasis (QSBS) primary dysmenorrhea for many years. However, its molecular mechanism is unknown. OBJECTIVE The present study aimed to demonstrate the multicomponent, multitarget and multipathway regulatory molecular mechanisms of CR in the treatment of QSBS primary dysmenorrhea. METHODS Observations of pathological changes in uterine tissues and biochemical assays were used to confirm that a rat model was successfully established and that CR was effective in the treatment of QSBS primary dysmenorrhea. The main active components of CR in rat plasma were identified and screened by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS). The component-target-disease network and protein-protein interaction (PPI) network of CR were constructed by a network pharmacology approach. Then, we performed Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecular docking was adopted to verify the interactions between the core components and targets of CR to confirm the accuracy of the network pharmacology prediction results. Furthermore, we evaluated the bioactive constituents of CR and molecular mechanism of by which CR promote blood circulation and remove blood stasis via platelet tests in vivo and in vitro and Western blot analysis. RESULTS The results of HE staining and biochemical assays of PGF2α, TXB2 and Ca2+ showed that CR was effective in the treatment of QSBS primary dysmenorrhea. A total of 36 active components were identified in CR, and 329 common targets were obtained and used to construct the networks. Of these, 14 core components and 10 core targets of CR in the treatment of primary dysmenorrhea were identified. The GO and KEGG enrichment analyses revealed that the common targets were involved in multiple signaling pathways, including the calcium, cAMP, MAPK, and PI3K-Akt signaling pathways, as well as platelet activation, which is closely related to platelet aggregation. The molecular docking results showed that the 14 core components and 10 core targets could bind spontaneously. Two core targets (MAPK1 and CCR5) and 7 core components (Isoprocurcumenol, Curcumadione, Epiprocurcumenol, (+)-Curdione, Neocurdione, Procurcumenol, and 13-Hydroxygermacrone) were closely related to CR in the treatment of primary dysmenorrhea. Furthermore, the in vivo platelet test showed that CR clearly inhibited platelet aggregation. Five core components ((+)-Curdione, Neocurdione, Isoprocurcumenol, Curcumadione and Procurcumenol) obviously inhibited platelet aggregation in vitro. In addition, based on the relationships among the signaling pathways, we confirmed that CR can effectively inhibit the expression of MAPK and PI3K-Akt signaling pathway-related proteins and decrease the protein expression levels of ERK, JNK, MAPK, PI3K, AKT and CCR5, thereby inhibiting platelet aggregation. CONCLUSION This study demonstrated the bioactive constituents and mechanisms of CR in promoting blood circulation and removing blood stasis and its multicomponent, multitarget and multipathway treatment characteristics in primary dysmenorrhea. The results provide theoretical evidence for the development and utilization of CR.
Collapse
Affiliation(s)
- Huangjin Tong
- Department of Pharmacy, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengting Yu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Chenghao Fei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiajia Dong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Gu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenhua Bian
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Wuxi TCM Hospital Affiliated with Nanjing University of Chinese Medicine, Wuxi, 214071, China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Hao
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| | - Bailin Zeng
- Department of Pharmacy, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|