1
|
Zhang H, Tang J, Cao H, Wang C, Shen C, Liu J. Effect and mechanism of Magnolia officinalis in colorectal cancer: Multi-component-multi-target approach. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119007. [PMID: 39471878 DOI: 10.1016/j.jep.2024.119007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Colorectal cancer (CRC) is a prevalent malignant tumor of the digestive tract. Traditional Chinese medicine (TCM) has a long history of treating CRC, with advantages such as effectiveness, multi-target, multi-pathway, and minimal side effects. TCM Magnolia officinalis (M. officinalis) refers to the dried bark, root bark, and branch bark of either Magnolia officinalis Rehd.et Wils. or Magnolia officinalis Rehd.et Wils. var. biloba Rehd.et Wils. It is commonly utilized to alleviate the side effects of chemotherapy for CRC, owing to its anti-inflammatory and anti-tumor properties. However, current research primarily focuses on the individual components and does not take into consideration the characteristics of multi-component-multi-target action. AIM OF THE STUDY Our aim is to study the new action characteristics of M. officinalis in the treatment of CRC. MATERIALS AND METHODS Utilizing network pharmacology to identify potential active ingredients, key targets, and main signaling pathways of M. officinalis for the treatment of CRC. The binding effect was further validated through molecular docking analysis. Furthermore, the aforementioned components were identified using liquid chromatography-mass spectrometry (LC-MS), and the cleavage pathways of the main components were analyzed. Subsequently, both in vitro and in vivo experiments were carried out to investigate the anti-CRC effect of the active ingredients of M. officinalis and its potential mechanism. RESULTS Network pharmacology and Molecular docking identified 5 main active ingredients and 6 core targets of M. officinalis for the treatment of CRC. Then, LC-MS identified the active components of M. officinalis. At the same time, both in vitro and in vivo experiments have confirmed the ability of Eucalyptol (Euc) and Obovatol (Obo)to inhibit inflammation and tumor cell proliferation. The possible mechanism involved is that Euc and Obo counteract CRC by inhibiting the over-activation of NF-κBp65/JAK and Bcl-2/Caspase signaling pathways, respectively. They also play a role in the anti-CRC effect of M. officinalis. CONCLUSION Magnolol (MAG), Honokiol (HK), Euc, Obo, and Neohesperidin (NHP) in M. officinalis may be the pharmacological substance basis for its anti-cancer effect on CRC. The treatment of CRC with M. officinalis is characterized by its multi-component, multi-target, and multi-pathway approach. These findings provide a theoretical basis for further inspiring the clinical application of M. officinalis and the development of efficacy targets.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Huiliang Cao
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Chenguang Wang
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Chong Shen
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China.
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China.
| |
Collapse
|
2
|
He M, Yin Y, Yu G, Zhou H. Phytoestrogens: Pharmacological Potential and Therapeutic Insights for Urinary Tract Infections. Phytother Res 2024. [PMID: 39739399 DOI: 10.1002/ptr.8429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 01/02/2025]
Abstract
Urinary tract infections (UTIs) are exceptionally common in postmenopausal female or patients with diabetes mellitus or nephrolithiasis, carrying substantial burden on patients and healthcare system. Increasing proportion and ongoing spread of antibiotic-resistant pathogens have further debilitated the condition in battlefield against the UTIs. Lack of estrogen may contribute to high inclination of UTIs after menopause and hormone replacement therapy can mitigate symptoms of hot flashes, vaginal dryness and UTIs, rationalizing the usage of estrogen and analogues in treatment and prophylaxis of UTIs. Phytoestrogens which comprise flavonoids, coumerins, stilbenes, and lignans, are natural botanical compounds with estrogen structural similarity and biochemical features. Phytoestrogens have emerged as adjuvant remedy and prophylaxis for uropathogenic bacteria even for multidrug-resistant ones, with the multifaceted mechanisms such as inhibition of adhesion and invading ability of bacteria, destruction of biofilms, synergistically enhancement of antibiotics activity. It is plausible to propose phytoestrogens as potential agents or combination with other strategies to ameliorate the challenge of multi-drug resistance in UTIs.
Collapse
Affiliation(s)
- Mengzhen He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Yin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Liu C, Cao Z, Li L, Li Q, Zhang C, Wang Y, Li L, Fu P. Self-Assembled Pt/Honokiol Nanomicelles for the Treatment of Sepsis-Associated Acute Kidney Injury. ACS Biomater Sci Eng 2024. [PMID: 39681978 DOI: 10.1021/acsbiomaterials.4c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Sepsis is a severe and complex systemic infection that can result in multiple organ dysfunction. Sepsis-associated acute kidney injury (SAKI), caused by inflammatory response, oxidative stress, and cellular apoptosis, is a common complication that seriously impacts patient survival rates. Herein, a potent and novel metal-polyphenol nanomicelle can be efficiently self-assembled with Pt4+ and honokiol (HK) by the chelation, π-π conjugation, hydrophobic action, and the surfactant properties of Tween-80. These nanomicelles not only enhance drug bioavailability (encapsulation rates: Pt─49%, HK─70%) and reduce drug toxicity (safety dose: <20 μg/g) but also improve targeting toward damaged renal tissues. Furthermore, Pt4+ and HK in the nanomicelles exert a synergistic physiological effect by scavenging free radicals to alleviate oxidative damage, inhibiting macrophage activation and the release of inflammatory factors to regulate inflammation, and displaying broad-spectrum antimicrobial activity to control infection. These actions collectively protect renal tissue and restore its functionality. Here, we constructed metal-polyphenol nanomicelles (Pt/HK-NMs) via ingenious and efficient self-assembly, providing a new strategy to compensate for deficiencies in the hemodialysis and antibiotic treatment of SAKI.
Collapse
Affiliation(s)
- Chang Liu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhengjiang Cao
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Qingyin Li
- Department of Nephrology, Institute of Kidney Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chunle Zhang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Linhua Li
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
4
|
Zhang Y, Wu X, Yao W, Ni Y, Ding X. Advances of traditional Chinese medicine preclinical mechanisms and clinical studies on diabetic peripheral neuropathy. PHARMACEUTICAL BIOLOGY 2024; 62:544-561. [PMID: 38946248 PMCID: PMC11218592 DOI: 10.1080/13880209.2024.2369301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
CONTEXT Diabetic peripheral neuropathy (DPN) results in an enormous burden and reduces the quality of life for patients. Considering there is no specific drug for the management of DPN, traditional Chinese medicine (TCM) has increasingly drawn attention of clinicians and researchers around the world due to its characteristics of multiple targets, active components, and exemplary safety. OBJECTIVE To summarize the current status of TCM in the treatment of DPN and provide directions for novel drug development, the clinical effects and potential mechanisms of TCM used in treating DPN were comprehensively reviewed. METHODS Existing evidence on TCM interventions for DPN was screened from databases such as PubMed, the Cochrane Neuromuscular Disease Group Specialized Register (CENTRAL), and the Chinese National Knowledge Infrastructure Database (CNKI). The focus was on summarizing and analyzing representative preclinical and clinical TCM studies published before 2023. RESULTS This review identified the ameliorative effects of about 22 single herbal extracts, more than 30 herbal compound prescriptions, and four Chinese patent medicines on DPN in preclinical and clinical research. The latest advances in the mechanism highlight that TCM exerts its beneficial effects on DPN by inhibiting inflammation, oxidative stress and apoptosis, endoplasmic reticulum stress and improving mitochondrial function. CONCLUSIONS TCM has shown the power latent capacity in treating DPN. It is proposed that more large-scale and multi-center randomized controlled clinical trials and fundamental experiments should be conducted to further verify these findings.
Collapse
Affiliation(s)
- Yuna Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xianglong Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yadong Ni
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Zhang T, Wang H, Hu H, Li W, Zhang X, Zhang X. Composite film based on carboxymethyl cellulose and gellan gum with honokiol-β-cyclodextrin inclusion complex: Characterization and application in strawberry preservation. Int J Biol Macromol 2024; 282:136740. [PMID: 39433191 DOI: 10.1016/j.ijbiomac.2024.136740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
The aim of this study is to fabricate a biodegradable film based on carboxymethyl cellulose and gellan gum (CMC/GG) with the honokiol/β-cyclodextrin inclusion complex (HNK/β-CD). The HNK/β-CD was prepared by freeze-drying and its physicochemical properties were investigated. Then HNK/β-CD was added to CMC/GG solution to form CMC/GG honokiol inclusion complex (HIC) composite film by the casting method. The physicochemical properties, antioxidant and antibacterial effects, and strawberry preservation function were investigated. The composite film with 0.18 % inclusion complex (CMC/GG/0.18 % HIC) was found to be the optimal formulation. The film had a tensile strength of 8.20 MPa and an elongation at break of 115.17 % with water vapor permeability of 0.48 g·mm·(cm2·h·KPa)-1. The increase of HNK/β-CD content yielded lower optical transmittance and water content of CMC/GG/HIC composite film, while improved the hydrophilicity value. The 2,2-diphenyl-1-picrylhydrazyl radical and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) scavenging capacities of CMC/GG/0.18 % HIC composite film were 80.83 % and 53.10 % respectively. CMC/GG/HIC composite film was bacteriostatic against Staphylococcus aureus and Candida albicans but not against Escherichia coli and Aspergillus niger. Packing strawberries with the optimized composite film can retain the appearance, titratable acidity and vitamin C content of strawberries, which was better than the commercially fresh-keeping film control group. The CMC/GG/HIC composite film overcame the shortcomings of a single material, and gained importance in food packaging applications.
Collapse
Affiliation(s)
- Tong Zhang
- School of Function Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hongyue Wang
- School of Function Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hao Hu
- School of Function Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Wanxuan Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xindi Zhang
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Harbin 150086, China; Key Laboratory of Food Processing of Heilongjiang Province, Harbin 150086, China
| | - Xiangrong Zhang
- School of Function Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
6
|
Cheng Y, Han X, Lai X, Wei X. Liposomal honokiol inhibits non-small cell lung cancer progression and enhances PD-1 blockade via suppressing M2 macrophages polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156093. [PMID: 39531934 DOI: 10.1016/j.phymed.2024.156093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Honokiol (HNK), a natural phenolic compound derived from Magnolia plants, exhibits therapeutic effects on various diseases, including cancer. The advent of immune checkpoint inhibitors (ICIs) has marked a breakthrough in non-small cell lung cancer (NSCLC) treatment. However, a significant subset of patients exhibits primary or acquired resistance to anti-PD-1/PD-L1 therapies, necessitating the development of novel combination strategies to enhance therapeutic efficacy and overcome resistance. PURPOSE This study aimed to explore the anti-tumor efficacy of liposomal honokiol (Lipo-HNK) and elucidate the synergistic effects of Lipo-HNK and ICIs on NSCLC. METHODS The effects of Lipo-HNK on cell proliferation and apoptosis were assessed in human lung cancer cell lines H460 and A549, and mouse Lewis lung cancer cell line (LL2). A murine lung cancer model was established by injecting LL2 cells via the tail vein to evaluate the therapeutic effects of Lipo-HNK and ICIs. Tumor microenvironment features were characterized using immunofluorescence and flow cytometry. Primary macrophages were extracted from mouse bone marrow for mechanistic studies. High-throughput sequencing and bioinformatics analyses of Lipo-HNK-treated macrophages were conducted to identify key signaling pathways, which were subsequently confirmed by Western blotting and inhibitor blockade. RESULTS Lipo-HNK, with enhanced solubility and bioavailability, demonstrated potent cytotoxicity against NSCLC cell lines. In the murine lung cancer model, Lipo-HNK exhibited synergistic anti-cancer effects when combined with anti-PD-1 therapy. Immunofluorescence and flow cytometry analyses revealed that Lipo-HNK significantly reduced the infiltration of myeloid-derived suppressor cells (MDSCs) and M2 macrophages (CD206+). Macrophage depletion experiment showed the anti-tumor effects of Lipo-HNK was macrophage-dependent. M2 macrophages induced by tumor-conditioned medium (TCM) or interleukin-4 (IL-4) released immunosuppressive cytokines such as IL-10, Arg-1, and TGF-β. RNA sequencing analyses showed that Lipo-HNK effectively inhibited the PI3K/Akt signaling pathway, blocking macrophage polarization to the M2 type. Furthermore, the combination of Lipo-HNK and anti-PD-1 therapy led to increased CD8+ T-cell infiltration and activation, enhancing the overall anti-tumor immune response. CONCLUSION This study validated the anti-tumor efficacy of Lipo-HNK against NSCLC. Lipo-HNK reduced the infiltration of MDSCs and M2 macrophages by inhibiting the PI3K/Akt pathway and enhanced the therapeutic effects of ICIs. These findings provide evidence and new insights into Lipo-HNK as a promising anti-cancer drug for NSCLC treatment, highlighting its potential to overcome resistance to current ICI therapies.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Xintian Lai
- Chengdu Jinrui Foundation Biotech Co., Ltd, Yizhou Avenue, High Tech Zone, Chengdu 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Zhu H, Hu E, Guo X, Yuan Z, Jiang H, Zhang W, Tang T, Wang Y, Li T. Promoting remyelination in central nervous system diseases: Potentials and prospects of natural products and herbal medicine. Pharmacol Res 2024; 210:107533. [PMID: 39617281 DOI: 10.1016/j.phrs.2024.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Myelin damage is frequently associated with central nervous system (CNS) diseases and is a critical factor influencing neurological function and disease prognosis. Nevertheless, the majority of current treatments for the CNS concentrate on gray matter injury and repair strategies, while clinical interventions specifically targeting myelin repair remain unavailable. In recent years, natural products and herbal medicine have achieved considerable progress in the domain of myelin repair, given their remarkable curative effect and low toxic side effects, demonstrating significant therapeutic potential. In this review, we present a rather comprehensive account of the mechanisms underlying myelin formation, injury, and repair, with a particular emphasis on the interactions between oligodendrocytes and other glial cells. Furthermore, we summarize the natural products and herbal medicine currently employed in remyelination along with their mechanisms of action, highlighting the potential and challenges of certain natural compounds to enhance myelin repair. This review aims to facilitate the expedited development of innovative therapeutics derived from natural products and herbal medicine and furnish novel insights into myelin repair in the CNS.
Collapse
Affiliation(s)
- Haonan Zhu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - En Hu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Xin Guo
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhiqiang Yuan
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Haoying Jiang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Tao Tang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Yang Wang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Teng Li
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China.
| |
Collapse
|
8
|
Han J, Shen Y, Cao R, Wang W, Duan J, Duan J, Bao C. Active herbal ingredients and drug delivery design for tumor therapy: a review. Chin J Nat Med 2024; 22:1134-1162. [PMID: 39725513 DOI: 10.1016/s1875-5364(24)60741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Indexed: 12/28/2024]
Abstract
Active herbal ingredients are gaining recognition for their potent anti-tumor efficacy, attributable to various mechanisms including tumor cell inhibition, immune system activation, and tumor angiogenesis inhibition. Recent studies have revealed that numerous anti-tumor herbal ingredients, such as ginsenosides, ursolic acid, oleanolic acid, and Angelica sinensis polysaccharides, can be utilized to develop smart drug carriers like liposomes, micelles, and nanoparticles. These carriers can deliver active herbal ingredients and co-deliver anti-tumor drugs to enhance drug accumulation at tumor sites, thereby improving anti-tumor efficacy. This study provides a comprehensive analysis of the mechanisms by which these active herbal ingredients-derived carriers enhance therapeutic outcomes. Additionally, it highlights the structural properties of these active herbal ingredients, demonstrating how their unique features can be strategically employed to design smart drug carriers with improved anti-tumor efficacy. The insights presented aim to serve as a reference and guide future innovations in the design and application of smart drug carriers for cancer therapy that leverage active herbal ingredients.
Collapse
Affiliation(s)
- Jing Han
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanxi Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiying Cao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiren Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jialun Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunjie Bao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Wu H, Liu Y, Liu C. The interregulatory circuit between non-coding RNA and apoptotic signaling in diabetic cardiomyopathy. Noncoding RNA Res 2024; 9:1080-1097. [PMID: 39022683 PMCID: PMC11254508 DOI: 10.1016/j.ncrna.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Diabetes mellitus has surged in prevalence, emerging as a prominent epidemic and assuming a foremost position among prevalent medical disorders. Diabetes constitutes a pivotal risk element for cardiovascular maladies, with diabetic cardiomyopathy (DCM) standing out as a substantial complication encountered by individuals with diabetes. Apoptosis represents a physiological phenomenon observed throughout the aging and developmental stages, giving rise to the programmed cell death, which is implicated in DCM. Non-coding RNAs assume significant functions in modulation of gene expression. Their deviant expression of ncRNAs is implicated in overseeing diverse cellular attributes such as proliferation, apoptosis, and has been postulated to play a role in the progression of DCM. Notably, ncRNAs and the process of apoptosis can mutually influence and cooperate in shaping the destiny of human cardiac tissues. Therefore, the exploration of the interplay between apoptosis and non-coding RNAs holds paramount importance in the formulation of efficacious therapeutic and preventive approaches for managing DCM. In this review, we provide a comprehensive overview of the apoptotic signaling pathways relevant to DCM and subsequently delve into the reciprocal regulation between apoptosis and ncRNAs in DCM. These insights contribute to an enhanced comprehension of DCM and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Hao Wu
- Public Health Clinical Center Affiliated to Shandong University, Jinan, 250100, China
| | - Yan Liu
- Public Health Clinical Center Affiliated to Shandong University, Jinan, 250100, China
| | - Chunli Liu
- Public Health Clinical Center Affiliated to Shandong University, Jinan, 250100, China
| |
Collapse
|
10
|
Wu J, Xu W, Li J, Luo C, Chen B, Lin L, Huang T, Luo T, Yang L, Yang J. Honokiol inhibits human osteosarcoma MG63 cell migration by upregulating FTO and Smad6 to promote autophagy. Mol Cell Probes 2024; 78:101988. [PMID: 39454801 DOI: 10.1016/j.mcp.2024.101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Osteosarcoma (OS) is a common primary malignant tumor of bone, most commonly seen in children and adolescents, which has a low survival rate and is a serious threat to patients' lives. Honokiol (HKL) is the main active components of Magnolia officinalis, which have significant anti-tumor properties. The aim of this study was to observe the autophagic and migratory effects of HKL on MG63 cells and to investigate whether the mechanism of action was related to FTO and Smad6. METHODS Firstly, we cultured MG63 cells in vitro and intervened with different concentrations of HKL to detect cell activity by CCK8, apoptosis by flow cytometry, cell migration ability by scratch assay, cell invasion ability by transwell assay and MMP2, P62, LC3 I/II, FTO and Smad6 protein expression by Western blot. RESULTS HKL inhibited MG63 cells activity and that this effect was dose and time dependent. Although there was no significant effect on apoptosis and invasive ability, HKL could act through effects such as promoting cell autophagy and inhibiting migration. HKL increased the protein expression levels of FTO, Smad6, MMP2, LC3 I/II and P62, and this effect was reduced after silencing of Smad6. CONCLUSIONS HKL induced autophagy and inhibited cell migration in MG63 cells by increasing the expression of FTP and Smad6. It can be seen that HKL may be a promising drug for the treatment of OS.
Collapse
Affiliation(s)
- Jian Wu
- Department of Orthopedics, Luzhou Key Laboratory of Orthopedic Disorders, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China.
| | - Wenqiang Xu
- Department of Orthopedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, PR China.
| | - Jingchi Li
- Department of Orthopedics, Luzhou Key Laboratory of Orthopedic Disorders, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Cheng Luo
- Department of Orthopedics, Luzhou Key Laboratory of Orthopedic Disorders, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Bo Chen
- Department of Orthopedics, Luzhou Key Laboratory of Orthopedic Disorders, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Luo Lin
- Department of Orthopedics, Luzhou Key Laboratory of Orthopedic Disorders, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Tianyu Huang
- Department of Orthopedics, Luzhou Key Laboratory of Orthopedic Disorders, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Tao Luo
- Department of Orthopedics, Luzhou Key Laboratory of Orthopedic Disorders, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Lin Yang
- Department of Orthopedics, Luzhou Key Laboratory of Orthopedic Disorders, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China
| | - Jiexiang Yang
- Department of Orthopedics, Luzhou Key Laboratory of Orthopedic Disorders, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, PR China.
| |
Collapse
|
11
|
Zheng S, Xue C, Xue T, Li S, Zao X, Li X, Cao X, Chen Y, Qi W, Wang W, Zhang P, Ye Y. Research Progress of Chinese Medicine in Treating Chronic Liver Disease by Regulating Autophagy. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2053-2077. [PMID: 39614413 DOI: 10.1142/s0192415x24500794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
In recent years, rising living standards and an accelerated lifestyle have led to an increase in the incidence of chronic liver disease. Modern medicine has yet to fully develop effective methods for preventing and treating these conditions due to their complex pathogenesis. Autophagy, a cellular process that maintains homeostasis by removing abnormal proteins, has emerged as a promising therapeutic target for chronic liver diseases. These diseases include liver fibrosis, liver cirrhosis, non-alcoholic steatohepatitis, chronic hepatitis B, and hepatocellular carcinoma. Chinese medicine, with its multi-component, multi-target, and multi-pathway approach, offers unique advantages in treating these conditions, especially given the unclear etiology of chronic liver diseases. Recent research demonstrates that Chinese medicine - comprising single herbs, herbal combinations, and proprietary formulas - can effectively regulate autophagy, thereby providing therapeutic and preventive benefits for chronic liver diseases. This paper reviews recent studies, categorizes various chronic liver diseases, and examines the impact of active ingredients and compound formulas from Chinese medicine on autophagy. These insights are crucial for slowing the progression of chronic liver diseases and pave the way for the future application of Chinese medicine in preventing and managing these conditions through autophagy modulation.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Chengyuan Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Tianyu Xue
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, P. R. China
| | - Size Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yu Chen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Wei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
12
|
Wen X, Hu J. Targeting STAT3 signaling pathway in the treatment of Alzheimer's disease with compounds from natural products. Int Immunopharmacol 2024; 141:112936. [PMID: 39163684 DOI: 10.1016/j.intimp.2024.112936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is difficult to cure and of global concern. Neuroinflammation is closely associated with the onset and progression of AD, making its treatment increasingly important. Compounds from natural products, with fewer side effects than synthetic drugs, are of high research interest. STAT3, a multifunctional transcription factor, is involved in various cellular processes including inflammation, cell growth, and apoptosis. Its activation and inhibition can have different effects under various pathological conditions. In AD, the STAT3 protein plays a crucial role in promoting neuroinflammation and contributing to disease progression. This occurs primarily through the JAK2-STAT3 signaling pathway, which impacts microglia, astrocytes, and hippocampal neurons. This paper reviews the STAT3 signaling pathway in AD and 25 compounds targeting STAT3 up to 2024. Notably, Rutin, Paeoniflorin, and Geniposide up-regulate STAT3 in hippocampal and cortex neurons, showing neuroprotective effects in various AD models. Other 23 compounds downregulate AD by suppressing neuroinflammation through inhibition of STAT3 activation in microglia and astrocytes. These findings highlight the potential of compounds from natural products in improving AD by targeting STAT3, offering insights into the prevention and management of AD.
Collapse
Affiliation(s)
- Xiyue Wen
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Jinyue Hu
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China.
| |
Collapse
|
13
|
Hu XT, Wu XF, Xu JY, Xu X. Lactate-mediated lactylation in human health and diseases: Progress and remaining challenges. J Adv Res 2024:S2090-1232(24)00529-0. [PMID: 39522689 DOI: 10.1016/j.jare.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Lactate was once considered as metabolic waste for a long time. In 2019, Professor Zhao Yingming's team from the University of Chicago found that lactate could also be used as a substrate to induce histone lactylation and regulate gene expression. Since then, researchers have discovered that lactate-mediated lactylation play important regulatory roles in various physiological and pathological processes. AIM OF REVIEW In this review, we aim to discuss the roles and mechanisms of lactylation in human health and diseases, as well as the effects of lactylation on proteins and metabolic modulators targeting lactylation. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we emphasize the crucial regulatory roles of lactylation in the development of numerous physiological and pathological processes. Of relevance, we discuss the current issues and challenges pertaining to lactylation. This review provides directions and a theoretical basis for future research and clinical translation of lactylation.
Collapse
Affiliation(s)
- Xue-Ting Hu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiao-Feng Wu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jin-Yi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
14
|
Park S, Cho S, Kim KM, Chu MK, Kim CH, Jeong KH, Kim WJ. Honokiol-induced SIRT3 upregulation protects hippocampal neurons by suppressing inflammatory processes in pilocarpine-induced status epilepticus. Neurochem Int 2024; 180:105873. [PMID: 39362498 DOI: 10.1016/j.neuint.2024.105873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Status epilepticus (SE), a continuous and self-sustaining epileptic seizure lasting more than 30 min, is a neurological emergency that can cause severe brain injuries and increase the risk for the development of epilepsy. Over the past few decades, accumulating evidence has suggested the importance of brain inflammation in the pathogenesis of epilepsy. Honokiol (HNK), a pharmacological activator of sirtuin 3 (SIRT3), is a bioactive compound extracted from the bark or leaves of Magnolia plants that possesses therapeutic benefits for preventing the development of inflammatory injury. However, the therapeutic effects of HNK against epileptic brain injury via regulating molecular mechanisms related to neuroinflammation remains elusive. Therefore, the present study investigated the effects of HNK on pilocarpine-induced status epilepticus (PCSE) and the therapeutic benefits of HNK in regulating inflammatory processes in the hippocampus. Treatment with HNK before PCSE induction attenuated the initiation of behavioral seizures. Post-treatment with HNK after SE onset increased SIRT3 expression, which mitigated glial activation, including reactive astrocytes and activated microglia, in the hippocampus following PCSE. Moreover, HNK treatment reduced the activation of the nuclear factor-κB/nucleotide-binding domain leucine-rich repeat with a pyrin-domain containing 3 inflammasome pathway, thereby inhibiting the production of interleukin-1β pro-inflammatory cytokine, subsequently alleviating PCSE-triggered apoptotic neuronal death in the hippocampus. These results indicate that HNK-induced SIRT3 upregulation has the potential to prevent the progression of epileptic neuropathology through its anti-inflammatory properties. Therefore, the present study suggests that HNK is a natural therapeutic agent for epileptic brain injury.
Collapse
Affiliation(s)
- Soojin Park
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Soomi Cho
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyung Min Kim
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Brain Korea 21 Project, Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyoung Hoon Jeong
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Won-Joo Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
| |
Collapse
|
15
|
Zhong C, Wang C, Li W, Li W, Chen X, Guo J, Feng Y, Wu X. A derivative of honokiol HM568 has an anti-neuroinflammatory effect in Parkinson's disease. Chem Biol Interact 2024; 403:111212. [PMID: 39241940 DOI: 10.1016/j.cbi.2024.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/28/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Parkinson's disease (PD) is the fastest growing neurodegenerative disease in the world at present. Neuroinflammation plays an important role in Parkinson's disease. In our study, we initially screened magnolol/honokiol derivatives synthesized by our group for their potential anti-neuroinflammatory properties. This was done using LPS-activated BV-2 microglial cell and MPP + -induced PC-12 cell models. Most of derivatives had increased anti-inflammatory activities and decreased toxicities compared to raw materials. Then, compounds were scored with inflammatory factors IL-1β, TNF-α and IL-6 by molecular docking in silico. Our studies revealed the strongest binding compound HM568 which binds with honokiol and metformin. Furthermore, HM568 showed no acute toxicity in mice through acute toxicity. And it is stable under high temperature, high humidity and strong light irradiation. Combining cell experiments and computer results, HM568 was considered for further in vivo pharmacological validations. Intraperitoneal injection administration of MPTP into C57BL/6 mice was utilized as Parkinson's animal model. Results showed that administration of HM568 for 14 days in MPTP-PD mice led to a significant alleviation in weight loss and movement disorders. Further HM568 could significantly down-regulate the expression levels of inflammatory factors IL-1β, IL-6 and TNF-α in brain tissue of the mouse model, reduce the level of caspase-3 and the ratio of Bcl-2/Bax, and up-regulate the level of transforming factor TGF-β, thus producing anti-apoptosis and anti-neuroinflammatory effects on neuronal cells. In terms of pathological features, HM568 could reduce the infiltration of neuronal cells and alleviate the development of lesions, promote the transformation of microglia from M1 negative phenotype to M2 type, and reverse the reduction of TH-positive immune cells in mouse neurons induced by MPTP. The administration of HM568 could reduce the abnormal accumulation of α-syn, and thus produce neuroprotective effect on MPTP-PD mice. Cell experiments, molecular docking and animal experiments thus depict HM568 as a promising agent to delay neuronal degeneration in PD, and its mechanism is related to anti-neuroinflammation.
Collapse
Affiliation(s)
- Changfeng Zhong
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, PR China
| | - Changmei Wang
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, PR China
| | - Wei Li
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, PR China
| | - Wenyuan Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, PR China
| | - Xuemei Chen
- Criminal Science and Technology Research Institute of Huizhou Public Security Bureau, Huizhou, 516000, PR China
| | - Jieqing Guo
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, PR China
| | - Yifan Feng
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, PR China.
| | - Xia Wu
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, PR China.
| |
Collapse
|
16
|
Li M, McKeon BA, Gu S, Prasad RR, Zhang H, Kumar S, Riddle S, Irwin DC, Stenmark KR. Honokiol and Nicotinamide Adenine Dinucleotide Improve Exercise Endurance in Pulmonary Hypertensive Rats Through Increasing SIRT3 Function in Skeletal Muscle. Int J Mol Sci 2024; 25:11600. [PMID: 39519152 PMCID: PMC11545838 DOI: 10.3390/ijms252111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Pulmonary hypertension (PH) significantly impairs exercise capacity and the quality of life in patients, which is influenced by dysfunctions in multiple organ systems, including the right ventricle, lungs, and skeletal muscles. Recent research has identified metabolic reprogramming and mitochondrial dysfunction as contributing factors to reduced exercise tolerance in PH patients. In this study, we investigated the therapeutic potential of enhancing mitochondrial function through the activation of the mitochondrial deacetylase SIRT3, using SIRT3 activator Honokiol combined with the SIRT3 co-factor nicotinamide adenine dinucleotide (NAD), in a Sugen/Hypoxia-induced PH rat model. Our results show that Sugen/Hypoxia-induced PH significantly impairs RV, lung, and skeletal muscle function, leading to reduced exercise capacity. Treatment with Honokiol and NAD notably improved exercise endurance, primarily by restoring SIRT3 levels in skeletal muscles, reducing proteolysis and atrophy in the gastrocnemius, and enhancing mitochondrial complex I levels in the soleus. These effects were independent of changes in cardiopulmonary hemodynamics. We concluded that targeting skeletal muscle dysfunction may be a promising approach to improving exercise capacity and overall quality of life in PH patients.
Collapse
Affiliation(s)
- Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
17
|
Shi J, Liu M, Zhao J, Tan Y, Jiang C. Honokiol protects against diabetic retinal microvascular injury via sirtuin 3-mediated mitochondrial fusion. Front Pharmacol 2024; 15:1485831. [PMID: 39564112 PMCID: PMC11574205 DOI: 10.3389/fphar.2024.1485831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024] Open
Abstract
Introduction Mitochondrial dysfunction and oxidative stress play important roles in diabetic retinal vascular injuries. Honokiol (HKL) is a small-molecule polyphenol that exhibits antioxidant effects and has a beneficial effect in diabetes. This study aimed to explore the potential ability of HKL to ameliorate vascular injury in diabetic retinopathy (DR) and its possible mechanisms of action. Methods The effect of HKL was evaluated in vascular injury in an in vivo type 2 diabetic (db/db) mouse model. In vitro, retinal microvascular endothelial cells were treated with high glucose (HG) to simulate the pathological diabetic environment. Cell viability, expression of apoptosis-related proteins, cellular reactive oxygen species, mitochondrial membrane potential, and morphological changes in the mitochondria were examined. Results The diabetic mice exhibited severe retinal vascular damage, including vascular leakage in vivo and capillary endothelial cell apoptosis in vitro. HKL reversed the retinal vascular leakage in the diabetic mice. In vitro, HKL improved retinal capillary endothelial cell viability, decreased apoptosis, and reversed the HG-induced increased cellular oxidative stress and mitochondrial fragmentation. The sirtuin 3 (SIRT3) inhibitor 3-TYP blocked all the in vivo and in vitro protective effects of HKL against diabetic retinal vascular leakage and capillary endothelium and eliminated the decrease in oxidative stress levels and reduction of mitochondrial fragmentation. Discussion In conclusion, these findings suggest that HKL inhibits vascular injury in DR, which was likely achieved through SIRT3-mediated mitochondrial fusion. This study provides a potential new strategy for the treatment of DR.
Collapse
Affiliation(s)
- Jiemei Shi
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
| | - Min Liu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
| | - Jiajie Zhao
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
| | - Ye Tan
- Department of Ophthalmology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Chunhui Jiang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
| |
Collapse
|
18
|
Sasia C, Borgonetti V, Mancini C, Lori G, Arbiser JL, Taddei ML, Galeotti N. The Neolignan Honokiol and Its Synthetic Derivative Honokiol Hexafluoro Reduce Neuroinflammation and Cellular Senescence in Microglia Cells. Cells 2024; 13:1652. [PMID: 39404415 PMCID: PMC11482602 DOI: 10.3390/cells13191652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Microglia-mediated neuroinflammation has been linked to neurodegenerative disorders. Inflammation and aging contribute to microglial senescence. Microglial senescence promotes the development of neurodegenerative disorders, including Alzheimer's disease (AD). In this study, we investigated the anti-neuroinflammatory and anti-senescence activity of Honokiol (HNK), a polyphenolic neolignane from Magnolia officinalis Rehder & E.H Wilson, in comparison with its synthetic analogue Honokiol Hexafluoro (CH). HNK reduced the pro-inflammatory cell morphology of LPS-stimulated BV2 microglia cells and increased the expression of the anti-inflammatory cytokine IL-10 with an efficacy comparable to CH. HNK and CH were also able to attenuate the alterations in cell morphology associated with cellular senescence in BV2 cells intermittently stimulated with LPS and significantly reduce the activity and expression of the senescence marker ß-galactosidase and the expression of p21 and pERK1/2. The treatments reduced the expression of senescence-associated secretory phenotype (SASP) factors IL-1ß and NF-kB, decreased ROS production, and abolished H2AX over phosphorylation (γ-H2AX) and acetylated H3 overexpression. Senescent microglia cells showed an increased expression of the Notch ligand Jagged1 that was reduced by HNK and CH with a comparable efficacy to the Notch inhibitor DAPT. Overall, our data illustrate a protective activity of HNK and CH on neuroinflammation and cellular senescence in microglia cells involving a Notch-signaling-mediated mechanism and suggesting a potential therapeutic contribution in aging-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Sasia
- Department of Neurosciences, Psychology, Drug Research and Child Health (Neurofarba), University of Floence, Viale G. Pieraccini 6, 50121 Florence, Italy; (C.S.); (V.B.)
| | - Vittoria Borgonetti
- Department of Neurosciences, Psychology, Drug Research and Child Health (Neurofarba), University of Floence, Viale G. Pieraccini 6, 50121 Florence, Italy; (C.S.); (V.B.)
| | - Caterina Mancini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy (G.L.)
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy (G.L.)
| | - Jack L. Arbiser
- Department of Dermatology, Emory School of Medicine, Winship Cancer Institute, Atlanta, GA 30322, USA;
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy (G.L.)
| | - Nicoletta Galeotti
- Department of Neurosciences, Psychology, Drug Research and Child Health (Neurofarba), University of Floence, Viale G. Pieraccini 6, 50121 Florence, Italy; (C.S.); (V.B.)
| |
Collapse
|
19
|
El-Ashmawy NE, Khedr EG, Al-Ashmawy GM, Kamel AA. Emerging role of natural lipophagy modulators in metabolic dysfunction-associated steatotic liver disease. Nutrition 2024; 126:112517. [PMID: 39146583 DOI: 10.1016/j.nut.2024.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 08/17/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a seriously increasing liver disorder affecting nearly 32% of adults globally. Hepatic triglycerides (TG) accumulation is the hallmark of MASLD, which results from dysregulated lipid and fatty acid uptake, increased de novo lipogenesis (DNL), and decreased lipid removal. More recently, selective autophagy of lipid droplets (LDs), termed lipophagy, has emerged to be closely associated with disrupted hepatic lipid homeostasis. Recent studies have indicated that a series of natural products have shown promise as an alternative approach in attenuating MASLD via regulating lipophagy in vivo and in vitro. Therefore, lipophagy could be a new approach for natural products to be used to improve MASLD. This article aims to provide a comprehensive overview on the interrelationship between dysregulated lipid metabolism, lipophagy, and MASLD pathogenesis. In addition, the role of some natural products as lipophagy modulators and their impact on MASLD will be discussed.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt; Department of Pharmacology & Biochemistry, Faculty of Pharmacy, The British University in Egypt, El Sherouk, Cairo, Egypt
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt; Department of Biochemistry, Faculty of Pharmacy, Al Salam University in Egypt, Kafr Az Zayat, Egypt
| | - Asmaa A Kamel
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
20
|
Szychowski KA, Skóra B. Triclosan affects steroidogenesis in mouse primary astrocytes in vitro with engagement of Sirtuin 1 and 3. J Steroid Biochem Mol Biol 2024; 243:106586. [PMID: 39013540 DOI: 10.1016/j.jsbmb.2024.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Triclosan (TCS) is a widely used antimicrobial, antifungal, and antiviral agent. To date, it has been reported that TCS can enter the human body and disrupt hormonal homeostasis. Therefore, the aim of our paper was to evaluate the impact of TCS on astrocytes, i.e. a crucial population of cells responsible for steroid hormone production. Our data showed that, in mouse primary astrocyte cultures, TCS can act as an endocrine disrupting chemical through destabilization of the production or secretion of progesterone (P4), testosterone (T), and estradiol (E2). TCS affects the mRNA expression of enzymes involved in neurosteroidogenesis, such as Cyp17a1, 17β-Hsd, and Cyp19a1. Our data showed that a partial PPARγ agonist (honokiol) prevented changes in Cyp17a1 mRNA expression caused by TCS. Similarly, honokiol inhibited TCS-stimulated P4 release. However, rosiglitazone (classic PPARγ agonist) or GW9662 (PPARγ antagonist) had a much stronger effect. Therefore, we believe that the changes observed in the P4, T, and E2 levels are a result of dysregulation of the activity of the aforementioned enzymes, whose expression can be affected by TCS through a Pparγ-dependent pathway. TCS was found to decrease the aryl hydrocarbon receptor (AhR) and Sirtuin 3 protein levels, which may be the result of the activation of the these proteins. Since our study showed dysregulation of the production or secretion of neurosteroids in astrocytes, it can be concluded that TCS reaching the brain may contribute to the development of neurodegenerative diseases in which an abnormal amount of neurosteroids is observed.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, Rzeszow 35-225, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, Rzeszow 35-225, Poland
| |
Collapse
|
21
|
Meneses-Sagrero SE, Rascón-Valenzuela LA, Arellano-García ME, Toledano-Magaña Y, García-Ramos JC. Natural compounds combined with imatinib as promising antileukemic therapy: An updated review. Fitoterapia 2024; 178:106185. [PMID: 39142530 DOI: 10.1016/j.fitote.2024.106185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Natural products (NP) have been an alternative therapy for several diseases for centuries, and they also serve as an essential source of bioactive molecules, enhancing our drug discovery capacity. Among these NP, some phytochemicals have shown multiple biological effects, including anticancer activity, with higher effectiveness and less toxicity than actual treatments, suggesting their possible use on resilient human malignancies such as leukemia. Imatinib mesylate (Im) is a selective tyrosine kinase inhibitor widely used as an anticancer drug, the gold standard to attend chronic myeloid leukemia (CML). Nevertheless, resistance to this drug in patients with CML renders it insufficient to eliminate cells with Philadelphia chromosome (BCR/ABL+). Moreover, recent studies show that imatinib can induce genotoxic and chromosomic damage in some in vitro and in vivo models. These facts urge finding new therapeutic alternatives to increase the effectiveness of antileukemic treatment. Recent research has shown that the combined effects of phytochemicals with imatinib can improve the cytotoxicity or resensitized the resistant cells to this drug in diverse leukemia cell lines. Independent mechanisms of action among phytochemicals and imatinib include BCR/ABL regulation, downregulation of transcription factors, inhibition of anti-apoptotic and activation of pro-apoptotic proteins, apoptosis induction dependent- and independent of ROS-overproduction, membrane functions disruption, induction of cell cycle arrest, and cell death. This review summarizes and discusses the synergic effect of some phytochemicals combined with imatinib on leukemia cells and the mechanism of action proposed for these combinations, looking to contribute to developing new effective alternatives for leukemia treatment.
Collapse
Affiliation(s)
| | - Luisa Alondra Rascón-Valenzuela
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo, Sonora, Mexico
| | - María Evarista Arellano-García
- Facultad de Ciencias, Universidad Autónoma de Baja California, Ctra. Transpeninsular No. 3917, Col. Playitas, Ensenada, Baja California, Mexico
| | - Yanis Toledano-Magaña
- Instituto Tecnológico de Ensenada, Tecnológico Nacional de México, Blvd. Tecnológico #150, Ex Ejido Chapultepec, Ensenada, Baja California, Mexico; Centro de Bachillerato Tecnológico Industrial y de Servicios No. 41. Dirección General de Educación Tecnológica Industrial y de Servicios, Carr. Transpeninsular km 115, Ex-Ejido Chapultepec, Ensenada, Baja California, Mexico.
| | - Juan Carlos García-Ramos
- Instituto Tecnológico de Ensenada, Tecnológico Nacional de México, Blvd. Tecnológico #150, Ex Ejido Chapultepec, Ensenada, Baja California, Mexico; Centro de Bachillerato Tecnológico Industrial y de Servicios No. 41. Dirección General de Educación Tecnológica Industrial y de Servicios, Carr. Transpeninsular km 115, Ex-Ejido Chapultepec, Ensenada, Baja California, Mexico.
| |
Collapse
|
22
|
Youn K, Jun M. Determination of Potential Lead Compound from Magnolia officinalis for Alzheimer's Disease through Pharmacokinetic Prediction, Molecular Docking, Dynamic Simulation, and Experimental Validation. Int J Mol Sci 2024; 25:10507. [PMID: 39408835 PMCID: PMC11477134 DOI: 10.3390/ijms251910507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Amyloid β protein (Aβ) deposition has been implicated as the molecular driver of Alzheimer's disease (AD) progression. The modulation of the formation of abnormal aggregates and their post-translational modification is strongly suggested as the most effective approach to anti-AD. Beta-site APP-cleaving enzyme 1 (BACE1) acts upstream in amyloidogenic processing to generate Aβ, which rapidly aggregates alone or in combination with acetylcholinesterase (AChE) to form fibrils. Accumulated Aβ promotes BACE1 activation via glycogen synthase kinase-3β (GSK-3β) and is post-translationally modified by glutaminyl cyclase (QC), resulting in increased neurotoxicity. A novel multi-target inhibitor as a potential AD agent was identified using an in silico approach and experimental validation. Magnolia officinalis, which showed the best anti-AD activity in our preliminary study, was subjected to analysis, and 82 compounds were studied. Among 23 compounds with drug-likeness, blood-brain barrier penetration, and safety, honokiol emerged as a lead structure for the inhibition of BACE1, AChE, QC, and GSK-3β in docking and molecular dynamics (MD) simulations. Furthermore, honokiol was found to be an excellent multi-target inhibitor of these enzymes with an IC50 of 6-90 μM, even when compared to other natural single-target inhibitors. Taken together, the present study is the first to demonstrate that honokiol acts as a multiple enzyme inhibitor with an excellent pharmacokinetic and safety profile which may provide inhibitory effects in broad-range areas including the overproduction, aggregation, and post-translational modification of Aβ. It also provides insight into novel structural features for the design and discovery of multi-target inhibitors for anti-AD.
Collapse
Affiliation(s)
- Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea;
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea;
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
23
|
Liu Y, Pan R, Ouyang Y, Gu W, Xiao T, Yang H, Tang L, Wang H, Xiang B, Chen P. Pyroptosis in health and disease: mechanisms, regulation and clinical perspective. Signal Transduct Target Ther 2024; 9:245. [PMID: 39300122 DOI: 10.1038/s41392-024-01958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Pyroptosis is a type of programmed cell death characterized by cell swelling and osmotic lysis, resulting in cytomembrane rupture and release of immunostimulatory components, which play a role in several pathological processes. Significant cellular responses to various stimuli involve the formation of inflammasomes, maturation of inflammatory caspases, and caspase-mediated cleavage of gasdermin. The function of pyroptosis in disease is complex but not a simple angelic or demonic role. While inflammatory diseases such as sepsis are associated with uncontrollable pyroptosis, the potent immune response induced by pyroptosis can be exploited as a therapeutic target for anti-tumor therapy. Thus, a comprehensive review of the role of pyroptosis in disease is crucial for further research and clinical translation from bench to bedside. In this review, we summarize the recent advancements in understanding the role of pyroptosis in disease, covering the related development history, molecular mechanisms including canonical, non-canonical, caspase 3/8, and granzyme-mediated pathways, and its regulatory function in health and multiple diseases. Moreover, this review also provides updates on promising therapeutic strategies by applying novel small molecule inhibitors and traditional medicines to regulate pyroptosis. The present dilemmas and future directions in the landscape of pyroptosis are also discussed from a clinical perspective, providing clues for scientists to develop novel drugs targeting pyroptosis.
Collapse
Affiliation(s)
- Yifan Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Oncology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Renjie Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Yuzhen Ouyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Neurology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Ling Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Bo Xiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| |
Collapse
|
24
|
Al Azzani M, Nizami ZN, Magramane R, Sekkal MN, Eid AH, Al Dhaheri Y, Iratni R. Phytochemical-mediated modulation of autophagy and endoplasmic reticulum stress as a cancer therapeutic approach. Phytother Res 2024; 38:4353-4385. [PMID: 38961675 DOI: 10.1002/ptr.8283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Autophagy and endoplasmic reticulum (ER) stress are conserved processes that generally promote survival, but can induce cell death when physiological thresholds are crossed. The pro-survival aspects of these processes are exploited by cancer cells for tumor development and progression. Therefore, anticancer drugs targeting autophagy or ER stress to induce cell death and/or block the pro-survival aspects are being investigated extensively. Consistently, several phytochemicals have been reported to exert their anticancer effects by modulating autophagy and/or ER stress. Various phytochemicals (e.g., celastrol, curcumin, emodin, resveratrol, among others) activate the unfolded protein response to induce ER stress-mediated apoptosis through different pathways. Similarly, various phytochemicals induce autophagy through different mechanisms (namely mechanistic target of Rapamycin [mTOR] inhibition). However, phytochemical-induced autophagy can function either as a cytoprotective mechanism or as programmed cell death type II. Interestingly, at times, the same phytochemical (e.g., 6-gingerol, emodin, shikonin, among others) can induce cytoprotective autophagy or programmed cell death type II depending on cellular contexts, such as cancer type. Although there is well-documented mechanistic interplay between autophagy and ER stress, only a one-way modulation was noted with some phytochemicals (carnosol, capsaicin, cryptotanshinone, guangsangon E, kaempferol, and δ-tocotrienol): ER stress-dependent autophagy. Plant extracts are sources of potent phytochemicals and while numerous phytochemicals have been investigated in preclinical and clinical studies, the search for novel phytochemicals with anticancer effects is ongoing from plant extracts used in traditional medicine (e.g., Origanum majorana). Nonetheless, the clinical translation of phytochemicals, a promising avenue for cancer therapeutics, is hindered by several limitations that need to be addressed in future studies.
Collapse
Affiliation(s)
- Mazoun Al Azzani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rym Magramane
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed N Sekkal
- Department of Surgery, Specialty Orthopedic, Tawam Hospital, Al Ain, United Arab Emirates
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
25
|
Shen Y, Liu F, Zhang M. Therapeutic potential of plant-derived natural compounds in Alzheimer's disease: Targeting microglia-mediated neuroinflammation. Biomed Pharmacother 2024; 178:117235. [PMID: 39094545 DOI: 10.1016/j.biopha.2024.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Microglia are resident immune cells of the central nervous system (CNS) with roles in sensing, housekeeping, and defense. Exploring the role of microglia in the occurrence and development of Alzheimer's disease (AD) and the possible therapeutic mechanism of plant-derived natural compounds (PDNCs) that regulate microglia-associated neuroinflammation may potentially help in elucidating the pathogenesis of AD and provide novel insights for its treatment. This review explores the role of abnormal microglial activation and its dominant neuroinflammatory response, as well as the activation of their target receptors and signaling pathways in AD pathogenesis. Additionally, we report an update on the potential pharmacological mechanisms of multiple PDNCs in modulating microglia-associated neuroinflammation in AD treatment. Dysregulated activation of microglial receptors and their downstream pathways impaired immune homeostasis in animal models of AD. Multiple signaling pathways, such as mitogen-activated protein kinase (MAPK), nuclear factor kappa light chain enhancer of activated B cells (NF-κB), and Toll-like receptors, play important roles in microglial activation and can exacerbate microglia-mediated neuroinflammation. PDNCs, such as magnolol, stigmasterol, matrine, naringenin, naringin, and resveratrol, can delay the progression of AD by inhibiting the proinflammatory receptors of microglia, activating its anti-inflammatory receptors, regulating the receptors related to β-amyloid (Aβ) clearance, reversing immune dysregulation, and maintaining the immune homeostasis of microglial downstream pathways. This review summarizes the mechanisms by which microglia cause chronic inflammation in AD and evaluates the beneficial effects of PDNCs on immune regulation in AD by regulating microglial receptors and their downstream pathways.
Collapse
Affiliation(s)
- Yanyan Shen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, China.
| | - Fang Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, China
| | - Mingjie Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
26
|
Hadni H, Fitri A, Touimi Benjelloun A, Benzakour M, Mcharfi M, Benbrahim M. Identification of terpenoids as potential inhibitors of SARS-CoV-2 (main protease) and spike (RBD) via computer-aided drug design. J Biomol Struct Dyn 2024; 42:8145-8158. [PMID: 37548619 DOI: 10.1080/07391102.2023.2245051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
The scientific community has been faced with a major challenge in the fight against the SARS-CoV-2 virus responsible for the COVID-19 pandemic, due to the lack of targeted antiviral drugs. To address this issue, we used an in silico approach to screen 23 natural compounds from the terpenoid class for their ability to target key SARS-CoV-2 therapeutic proteins. The results revealed that several compounds showed promising interactions with SARS-CoV-2 proteins, specifically the main protease and the spike receptor binding domain. The molecular docking analysis revealed the importance of certain residues, such as GLY143, SER144, CYS145 and GLU166, in the main protease of the SARS-CoV-2 protein, which play a crucial role in interactions with the ligand. In addition, our study highlighted the importance of interactions with residues GLY496, ARG403, SER494 and ARG393 of the spike receptor-binding domain within the SARS-CoV-2 protein. ADMET and drug similarity analyses were also performed, followed by molecular dynamics and MM-GBSA calculations, to identify potential drugs could be repurposed to combat COVID-19. Indeed, the results suggest that certain terpenoid compounds of plant origin have promising potential as therapeutic targets for SARS-CoV-2. However, additional experimental studies are required to confirm their efficacy as drugs against COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hanine Hadni
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Asmae Fitri
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Adil Touimi Benjelloun
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Benzakour
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Mcharfi
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Benbrahim
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
27
|
Lv S, Yang N, Lu Y, Zhang G, Zhong X, Cui Y, Huang Y, Teng J, Sai Y. The therapeutic potential of traditional Chinese medicine in depression: focused on the modulation of neuroplasticity. Front Pharmacol 2024; 15:1426769. [PMID: 39253375 PMCID: PMC11381291 DOI: 10.3389/fphar.2024.1426769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Depression, a mood disorder characterized by a persistent low mood and lack of enjoyment, is considered the leading cause of non-fatal health losses worldwide. Neuroplasticity refers to the brain's ability to adapt to external or internal stimuli, resulting in functional and structural changes. This process plays a crucial role in the development of depression. Traditional Chinese Medicine (TCM) shows significant potential as a complementary and alternative therapy for neurological diseases, including depression. However, there has been no systematic summary of the role of neuroplasticity in the pathological development of depression and TCM Interventions currently. This review systematically summarized recent literature on changes in neuroplasticity in depression and analyzed the regulatory mechanisms of active metabolites in TCM and TCM formulas on neuroplasticity in antidepressant treatment. Additionally, this review discussed the limitations of current research and the application prospects of TCM in regulating neuroplasticity in antidepressant research.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Yaru Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanyan Sai
- University Town Hospital, Afiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
28
|
Villalaín J. Localization and Aggregation of Honokiol in the Lipid Membrane. Antioxidants (Basel) 2024; 13:1025. [PMID: 39199269 PMCID: PMC11351574 DOI: 10.3390/antiox13081025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Honokiol, a biphenyl lignan extracted from bark extracts belonging to Magnolia plant species, is a pleiotropic compound which exhibits a widespread range of antioxidant, antibacterial, antidiabetic, anti-inflammatory, antiaggregant, analgesic, antitumor, antiviral and neuroprotective activities. Honokiol, being highly hydrophobic, is soluble in common organic solvents but insoluble in water. Therefore, its biological effects could depend on its bioactive mechanism. Although honokiol has many impressive bioactive properties, its effects are unknown at the level of the biological membrane. Understanding honokiol's bioactive mechanism could unlock innovative perspectives for its therapeutic development or for therapeutic development of molecules similar to it. I have studied the behaviour of the honokiol molecule in the presence of a plasma-like membrane and established the detailed relation of honokiol with membrane components using all-atom molecular dynamics. The results obtained in this work sustain that honokiol has a tendency to insert inside the membrane; locates near and below the cholesterol oxygen atom, amid the hydrocarbon membrane palisade; increases slightly hydrocarbon fluidity; does not interact specifically with any membrane lipid; and, significantly, forms aggregates. Significantly, aggregation does not impede honokiol from going inside the membrane. Some of the biological characteristics of honokiol could be accredited to its aptitude to alter membrane biophysical properties, but the establishment of aggregate forms in solution might hamper its clinical use.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202 Elche, Alicante, Spain
| |
Collapse
|
29
|
Lin J, Liu H, Huang X, Deng Y. Toxicological effects of Honokiol on zebrafish and its underlying mechanism. J Biochem Mol Toxicol 2024; 38:e23789. [PMID: 39097765 DOI: 10.1002/jbt.23789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024]
Abstract
The compound Honokiol, derived from the bark of Magnolia officinalis, possesses the ability to induce apoptosis and inhibit cellular damage caused by reactive oxygen species. The objective of this study was to investigate the toxicological and histopathological effects of Honokiol on zebrafish (Danio rerio) through conducting a semistatic acute toxicity test involving immersion in an Honokiol-containing solution. The results showed that the toxic effects of Honokiol on zebrafish were primarily manifested in the liver and gills. When exposed to 0.6 mg/L of Honokiol, it could lead to liver hemorrhage as well as swelling and necrosis of gill tissues, and high concentrations of Honokiol could trigger inflammatory responses. Additionally, research found that Honokiol could induce apoptosis in liver and gill tissues through the P53 pathway and possessed the ability to enhance antioxidation. The present findings significantly contribute to a more profound understanding of the toxic impact of Honokiol and its underlying mechanism, thereby providing a valuable reference for the future safe utilization of Honokiol and related pharmaceutical advancements.
Collapse
Affiliation(s)
- Jue Lin
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Hongli Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Ciebiera M, Kociuba J, Ali M, Madueke-Laveaux OS, Yang Q, Bączkowska M, Włodarczyk M, Żeber-Lubecka N, Zarychta E, Corachán A, Alkhrait S, Somayeh V, Malasevskaia I, Łoziński T, Laudański P, Spaczynski R, Jakiel G, Al-Hendy A. Uterine fibroids: current research on novel drug targets and innovative therapeutic strategies. Expert Opin Ther Targets 2024; 28:669-687. [PMID: 39136530 DOI: 10.1080/14728222.2024.2390094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Uterine fibroids, the most common nonmalignant tumors affecting the female genital tract, are a significant medical challenge. This article focuses on the most recent studies that attempted to identify novel non-hormonal therapeutic targets and strategies in UF therapy. AREAS COVERED This review covers the analysis of the pharmacological and biological mechanisms of the action of natural substances and the role of the microbiome in reference to UFs. This study aimed to determine the potential role of these compounds in UF prevention and therapy. EXPERT OPINION While there are numerous approaches for treating UFs, available drug therapies for disease control have not been optimized yet. This review highlights the biological potential of vitamin D, EGCG and other natural compounds, as well as the microbiome, as promising alternatives in UF management and prevention. Although these substances have been quite well analyzed in this area, we still recommend conducting further studies, particularly randomized ones, in the field of therapy with these compounds or probiotics. Alternatively, as the quality of data continues to improve, we propose the consideration of their integration into clinical practice, in alignment with the patient's preferences and consent.
Collapse
Affiliation(s)
- Michal Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
- Warsaw Institute of Women's Health, Warsaw, Poland
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, Rzeszow, Poland
| | - Jakub Kociuba
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
- Warsaw Institute of Women's Health, Warsaw, Poland
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | | | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Monika Bączkowska
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Elżbieta Zarychta
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Ana Corachán
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Samar Alkhrait
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Vafaei Somayeh
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | | | - Tomasz Łoziński
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, Rzeszow, Poland
- Department of Obstetrics and Gynecology, Pro-Familia Hospital, Rzeszow, Poland
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Piotr Laudański
- Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, Warsaw, Poland
- Women's Health Research Institute, Calisia University, Kalisz, Poland
- OVIklinika Infertility Center, Warsaw, Poland
| | - Robert Spaczynski
- Center for Gynecology, Obstetrics and Infertility Treatment, Poznan, Poland
- Collegium Medicum, University of Zielona Gora, Zielona Gora, Poland
| | - Grzegorz Jakiel
- First Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Yang J, Zhao H, Qu S. Phytochemicals targeting mitophagy: Therapeutic opportunities and prospects for treating Alzheimer's disease. Biomed Pharmacother 2024; 177:117144. [PMID: 39004063 DOI: 10.1016/j.biopha.2024.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder and the leading cause of age-related cognitive decline. Recent studies have established a close relationship between mitophagy and the pathogenesis of AD. Various phytochemicals have shown promising therapeutic effects in mitigating the onset and progression of AD. This review offers a comprehensive overview of the typical features of mitophagy and the underlying mechanisms leading to its occurrence in AD, highlighting its significance in the disease's pathogenesis and progression. Additionally, we examine the therapeutic mechanisms of synthetic drugs that induce mitophagy in AD. Finally, we summarize recent advances in research on phytochemicals that regulate mitophagy in the treatment of AD, potentially guiding the development of new anti-AD drugs.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
32
|
Ni L, Xu J, Li Q, Ge X, Wang F, Deng X, Miao L. Focusing on the Immune Cells: Recent Advances in Immunotherapy for Biliary Tract Cancer. Cancer Manag Res 2024; 16:941-963. [PMID: 39099760 PMCID: PMC11296367 DOI: 10.2147/cmar.s474348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Biliary tract cancer (BTC) represents a challenging malignancy characterized by aggressive behavior, high relapse rates, and poor prognosis. In recent years, immunotherapy has revolutionized the treatment landscape for various cancers, but its efficacy in BTC remains limited. This article provides a comprehensive overview of the advances in preclinical and clinical studies of immunotherapy for BTC. We explore the potential of immune checkpoint inhibitors in reshaping the management of BTC. Despite disappointing results thus far, ongoing clinical trials are investigating the combination of immunotherapy with other treatment modalities. Furthermore, research on the tumor microenvironment has unveiled novel targets for immunotherapeutic interventions. By understanding the current state of immunotherapy in BTC and highlighting future directions, this article aims to fuel further exploration and ultimately improve patient outcomes in this challenging disease.
Collapse
Affiliation(s)
- Luohang Ni
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jianing Xu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Quanpeng Li
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xianxiu Ge
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Fei Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xueting Deng
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Lin Miao
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
33
|
Sun N, Zhi Z, Xiao T, Deng X, He T, Dong W, Feng S, Chen S, Wong WL, Yuan W. The study of honokiol as a natural product-based antimicrobial agent and its potential interaction with FtsZ protein. Front Microbiol 2024; 15:1361508. [PMID: 39104591 PMCID: PMC11298477 DOI: 10.3389/fmicb.2024.1361508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Multidrug resistant bacteria have been a global health threat currently and frontline clinical treatments for these infections are very limited. To develop potent antibacterial agents with new bactericidal mechanisms is thus needed urgently to address this critical antibiotic resistance challenge. Natural products are a treasure of small molecules with high bioactive and low toxicity. In the present study, we demonstrated that a natural compound, honokiol, showed potent antibacterial activity against a number of Gram-positive bacteria including MRSA and VRE. Moreover, honokiol in combination with clinically used β-lactam antibiotics exhibits strong synergistic antimicrobial effects against drug-resistant S. aureus strains. Biochemical studies further reveal that honokiol may disrupt the GTPase activity, FtsZ polymerization, cell division. These biological impacts induced by honokiol may ultimately cause bacterial cell death. The in vivo antibacterial activity of honokiol against S. aureus infection was also verified with a biological model of G. mellonella larvae. The in vivo results support that honokiol is low toxic against the larvae and effectively increases the survival rate of the larvae infected with S. aureus. These findings demonstrate the potential of honokiol for further structural advancement as a new class of antibacterial agents with high potency against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Ning Sun
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Ziling Zhi
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Ting Xiao
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Xin Deng
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Tenghui He
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Wanyang Dong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Shuyi Feng
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Sisi Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
34
|
Rahman MA, Rakib-Uz-Zaman SM, Chakraborti S, Bhajan SK, Gupta RD, Jalouli M, Parvez MAK, Shaikh MH, Hoque Apu E, Harrath AH, Moon S, Kim B. Advancements in Utilizing Natural Compounds for Modulating Autophagy in Liver Cancer: Molecular Mechanisms and Therapeutic Targets. Cells 2024; 13:1186. [PMID: 39056768 PMCID: PMC11274515 DOI: 10.3390/cells13141186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Autophagy, an intrinsic catabolic mechanism that eliminates misfolded proteins, dysfunctional organelles, and lipid droplets, plays a vital function in energy balance and cytoplasmic quality control, in addition to maintaining cellular homeostasis. Liver cancer such as hepatocellular carcinoma (HCC) is one of the most common causes of cancer deaths globally and shows resistance to several anticancer drugs. Despite the rising incidence and poor prognosis of malignant HCC, the underlying molecular mechanisms driving this aggressive cancer remain unclear. Several natural compounds, such as phytochemicals of dietary and non-dietary origin, affect hepatocarcinogenesis signaling pathways in vitro and in vivo, which may help prevent and treat HCC cells. Current HCC cells treatments include chemotherapy, radiation, and surgery. However, these standard therapies have substantial side effects, and combination therapy enhances side effects for an acceptable therapeutic benefit. Therefore, there is a need to develop treatment strategies for HCC cells that are more efficacious and have fewer adverse effects. Multiple genetic and epigenetic factors are responsible for the HCC cells to become resistant to standard treatment. Autophagy contributes to maintain cellular homeostasis, which activates autophagy for biosynthesis and mitochondrial regulation and recycling. Therefore, modifying autophagic signaling would present a promising opportunity to identify novel therapies to treat HCC cells resistant to current standard treatments. This comprehensive review illustrates how natural compounds demonstrate their anti-hepatocellular carcinoma function through autophagy.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - S M Rakib-Uz-Zaman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Somdeepa Chakraborti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
| | - Sujay Kumar Bhajan
- Department of Biotechnology & Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj 8100, Bangladesh;
| | - Rajat Das Gupta
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | | | - Mushfiq H. Shaikh
- Department of Otolaryngology-Head & Neck Surgery, Western University, London, ON N6A 4V2, Canada;
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
- Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1–5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1–5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
35
|
Qiu Q, Fu F, Wu Y, Han C, Pu W, Wen L, Xia Q, Du D. Rhei Radix et Rhizoma and its anthraquinone derivatives: Potential candidates for pancreatitis treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155708. [PMID: 38733906 DOI: 10.1016/j.phymed.2024.155708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Pancreatitis is a common exocrine inflammatory disease of the pancreas and lacks specific medication currently. Rhei Radix et Rhizoma (RR) and its anthraquinone derivatives (AQs) have been successively reported for their pharmacological effects and molecular mechanisms in experimental and clinical pancreatitis. However, an overview of the anti-pancreatitis potential of RR and its AQs is limited. PURPOSE To summarize and analyze the pharmacological effects of RR and its AQs on pancreatitis and the underlying mechanisms, and discuss their drug-like properties and future perspectives. METHODS The articles related to RR and its AQs were collected from the Chinese National Knowledge Infrastructure, Wanfang data, PubMed, and the Web of Science using relevant keywords from the study's inception until April first, 2024. Studies involving RR or its AQs in cell or animal pancreatitis models as well as structure-activity relationship, pharmacokinetics, toxicology, and clinical trials were included. RESULTS Most experimental studies are based on severe acute pancreatitis rat models and a few on chronic pancreatitis. Several bioactive anthraquinone derivatives of Rhei Radix et Rhizoma (RRAQs) exert local protective effects on the pancreas by maintaining pancreatic acinar cell homeostasis, inhibiting inflammatory signaling, and anti-fibrosis, and they improve systemic organ function by alleviating intestinal and lung injury. Pharmacokinetic and toxicity studies have revealed the low bioavailability and wide distribution of RRAQs, as well as hepatotoxicity and nephrotoxicity. However, there is insufficient research on the clinical application of RRAQs in pancreatitis. Furthermore, we propose effective strategies for subsequent improvement in terms of balancing effectiveness and safety. CONCLUSION RRAQs can be developed as either candidate drugs or novel lead structures for pancreatitis treatment. The comprehensive review of RR and its AQs provides references for optimizing drugs, developing therapies, and conducting future studies on pancreatitis.
Collapse
Affiliation(s)
- Qi Qiu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Fu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Chenxia Han
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiling Pu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li Wen
- State Key Laboratory of Complex, Severe, and Rare Diseases, Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100073, China
| | - Qing Xia
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dan Du
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China.
| |
Collapse
|
36
|
Dai SY, Qin WX, Yu S, Li C, Yang YH, Pei YH. Honokiol and magnolol: A review of structure-activity relationships of their derivatives. PHYTOCHEMISTRY 2024; 223:114132. [PMID: 38714288 DOI: 10.1016/j.phytochem.2024.114132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Honokiol (HK) and magnolol (MAG) are typical representatives of neolignans possessing a wide range of biological activities and are employed as traditional medicines in Asia. In the past few decades, HK and MAG have been proven to be promising chemical scaffolds for the development of novel neolignan drugs. This review focuses on recent advances in the medicinal chemistry of HK and MAG derivatives, especially their structure-activity relationships. In addition, it also presents a comprehensive summary of the pharmacology, biosynthetic pathways, and metabolic characteristics of HK and MAG. This review can provide pharmaceutical chemists deeper insights into medicinal research on HK and MAG, and a reference for the rational design of HK and MAG derivatives.
Collapse
Affiliation(s)
- Si-Yang Dai
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Wen-Xiu Qin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Shuo Yu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Yi-Hui Yang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
37
|
Li X, Yuan Z, Wang Y, Wang W, Shi J. Recent advances of honokiol:pharmacological activities, manmade derivatives and structure-activity relationship. Eur J Med Chem 2024; 272:116471. [PMID: 38704945 DOI: 10.1016/j.ejmech.2024.116471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Honokiol (HNK) is a typical natural biphenyl polyphenol compound. It has been proven to have a wide range of biological activities, including pharmacological effects such as anti-cancer, anti-inflammatory, neuroprotective, and antimicrobial. However, due to the poor stability, water solubility, and bioavailability of HNK, HNK has not been used in clinical treatment. This article reviews the latest research on the pharmacological activity of HNK and summarizes the HNK derivatives designed and improved by several researchers. Reviewing these contents could promote the research process of HNK and guide the design of better HNK derivatives for clinical application in the future.
Collapse
Affiliation(s)
- Xiuxia Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhuo Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxia Wang
- Geriatric Intensive Care Unit, Sichuan Geriatric Medical Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, China
| | - Wenjing Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
38
|
Liu F, Zhang Y, Xia X, Han J, Cao L. Honokiol regulates ovarian cancer cell malignant behavior through YAP/TAZ pathway modulation. J Obstet Gynaecol Res 2024; 50:1010-1019. [PMID: 38576101 DOI: 10.1111/jog.15940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Ovarian cancer (OVCA) stands as one of the most fatal gynecological malignancies. Honokiol (HNK) has been substantiated by numerous studies for its anti-tumor activity against malignancies including OVCA. Consequently, this work was designed to elucidate the impact of HNK-mediated modulation of the YAP/TAZ pathway on the biological functions of OVCA cells. METHODS OVCA cells were subjected to treatment with varying concentrations (0, 25, 50, 75, and 100 μM) of HNK, concomitant with the administration of YAP agonist (XMU). Assessment of cellular viability was executed employing the CCK-8 assay, while quantification of cellular proliferation transpired via colony formation assays. Apoptosis was ascertained using flow cytometry, and expression of apoptosis-related proteins (caspase-3, Bcl-2, Bax), EMT-related proteins (E-cadherin, N-cadherin), migration-associated proteins (MMP-2, MMP-9), and YAP/TAZ pathway-related proteins was evaluated by western blot. Transwell experiments were conducted to assess cellular migratory and invasive propensities. Xenograft tumor models were built to observe tumor growth (volume and weight), apoptosis was assessed by TUNEL staining, and Ki67 expression was evaluated through IHC. RESULTS HNK exerted inhibitory effects on the viability and proliferative capacity of OVCA cells, elicited apoptotic responses, curtailed the migratory and invasive tendencies of cells, and downregulated the YAP/TAZ pathway. Stimulation with YAP agonist (XMU-MP-1) partially attenuated the impacts of HNK on OVCA cell biology. Experiments in vivo confirmed that HNK inhibited OVCA tumor growth. CONCLUSION The outcomes of this investigation conclusively established that HNK orchestrated the modulation of the YAP/TAZ pathway, thereby exerting control over the malignant phenotypic manifestations of OVCA cells. The ascertained function of HNK in restraining cellular proliferation and tumor progression provided novel evidence of its anti-proliferative activity within OVCA cells.
Collapse
Affiliation(s)
- Fang Liu
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Yufang Zhang
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Xinyi Xia
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Jing Han
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Linyan Cao
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| |
Collapse
|
39
|
Pan C, Li Q, Xiong S, Yang Y, Yang Y, Huang C, Wang ZP. Delivery Strategies, Structural Modification, and Pharmacological Mechanisms of Honokiol: A Comprehensive Review. Chem Biodivers 2024; 21:e202302032. [PMID: 38308434 DOI: 10.1002/cbdv.202302032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Honokiol (HK) is a traditional Chinese herbal bioactive compound that originates mainly from the Magnolia species, traditionally used to treat anxiety and stroke, as well as alleviation of flu symptoms. This natural product and its derivatives displayed diverse biological activities, including anticancer, antioxidant, anti-inflammatory, neuroprotective, and antimicrobial activities. However, its poor bioavailability and pharmacological activity require primary consideration in the development of HK-based drugs. Recent innovative HK formulations based on the nanotechnology approach allowed for improvement in both bioavailability and therapeutic efficacy. Chemical derivation and drug combination are also effective strategies to ameliorate the drawbacks of HK. In recent years, studies on HK derivatives and compositions have made great progress in the treatment of cancer, inflammation, bacterial infection, cardiovascular, and cerebrovascular diseases, demonstrating better activity than HK. The objective of this review is an examination of the recent developments in the field of pharmacological activity of HK and its drug-related issues, and approaches to improve its physicochemical and biological properties, including solubility, stability, and bioavailability. Recent patents and the ongoing clinical trials in HK are also summarized.
Collapse
Affiliation(s)
- Congying Pan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, P. R. China
| | - Qing Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, P. R. China
| | - Shuxin Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, P. R. China
| | - Yan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, P. R. China
| | - Yi Yang
- Chongqing Energy College, No. 2 Fuxing Avenue, Shuangfu New District, Jiangjin District, Chongqing, 402260, P. R. China
| | - Chao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, P. R. China
| | - Zhi-Peng Wang
- College of Pharmacy, Chongqing Medical University, Yixueyuan Road, Yuzhong District, Chongqing, 400016, P. R. China
| |
Collapse
|
40
|
Luo L, Wu T, Ji M, Xiang J, Zou Y, Liao Y. Honokiol suppress the PD-L1 expression to improve anti-tumor immunity in lung cancer. Int Immunopharmacol 2024; 133:112098. [PMID: 38626551 DOI: 10.1016/j.intimp.2024.112098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Lung cancer is a serious health issue globally, and current treatments have proven to be inadequate. Therefore, immune checkpoint inhibitors (ICIs) that target the PD-1/PD-L1 pathway have become a viable treatment option in lun cancer. Honokiol, a lignan derived from Magnolia officinalis, has been found to possess anti-inflammatory, antioxidant, and antitumor properties. Our research found that honokiol can effectively regulate PD-L1 through network pharmacology and transcriptome analysis. Cell experiments showed that honokiol can significantly reduce PD-L1 expression in cells with high PD-L1 expression. Molecular docking, cellular thermal shift assay (CETSA) and Bio-Layer Interferometry (BLI)indicated that Honokiol can bind to PD-L1. Co-culture experiments on lung cancer cells and T cells demonstrated that honokiol mediates PD-L1 degradation, stimulates T cell activation, and facilitates T cell killing of tumor cells. Moreover, honokiol activates CD4 + and CD8 + T cell infiltration in vivo, thus suppressing tumor growth in C57BL/6 mice. In conclusion, this study has demonstrated that honokiol can inhibit the growth of lung cancer by targeting tumor cell PD-L1, suppressing PD-L1 expression, blocking the PD-1/PD-L1 pathway, and enhancing anti-tumor immunity.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Tong Wu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Miaorong Ji
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jing Xiang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Youwen Zou
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Yinglin Liao
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| |
Collapse
|
41
|
Yin Y, Xu J, Ilyas I, Xu S. Bioactive Flavonoids in Protecting Against Endothelial Dysfunction and Atherosclerosis. Handb Exp Pharmacol 2024. [PMID: 38755351 DOI: 10.1007/164_2024_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Atherosclerosis is a common cardiovascular disease closely associated with factors such as hyperlipidaemia and chronic inflammation. Among them, endothelial dysfunction serves as a major predisposing factor. Vascular endothelial dysfunction is manifested by impaired endothelium-dependent vasodilation, enhanced oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, endothelial senescence, and endothelial-mesenchymal transition (EndoMT). Flavonoids are known for their antioxidant activity, eliminating oxidative stress induced by reactive oxygen species (ROS), thereby preventing the oxidation of low-density lipoprotein (LDL) cholesterol, reducing platelet aggregation, alleviating ischemic damage, and improving vascular function. Flavonoids have also been shown to possess anti-inflammatory activity and to protect the cardiovascular system. This review focuses on the protective effects of these naturally-occuring bioactive flavonoids against the initiation and progression of atherosclerosis through their effects on endothelial cells including, but not limited to, their antioxidant, anti-inflammatory, anti-thrombotic, and lipid-lowering properties. However, more clinical evidences are still needed to determine the exact role and optimal dosage of these compounds in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yanjun Yin
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Jingjing Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
42
|
Zhang Y, Zhang P, Zhang X, Liu Y. HH-A, a modified honokiol, protects against cerebral ischemia/reperfusion induced brain injury in rodent via Nrf2/HO-1 signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3389-3402. [PMID: 37955691 DOI: 10.1007/s00210-023-02816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
Honokiol, a bioactive component found in Magnolia officinalis, has shown in protecting against ischemic stroke in animal models. However, its poor water solubility has limited its clinical applications. In this study, we introduced a hydrophilic building block on the aromatic ring of honokiol, resulting in the synthesis of four new compounds (HH-A, -B, -C and -D) with significantly improved water solubility. We then investigated the neuroprotective effects of these compounds in mouse and rat models of transient middle cerebral artery occlusion/reperfusion (tMCAO/R) brain injury. Among the compounds tested, HH-A, also known as (S)-6-((3',5-diallyl-2,4'-dihydroxy-[1,1'-biphenyl]-3-yl)amino)-6-oxohexane-1,5-diaminium chloride, showed the most promising results. HH-A was found to significantly reduced the infarct volume and brain edema in mice. It also outperformed the other three compounds and honokiol, even surpassing the effects of edaravone dexborneol. Additionally, HH-A demonstrated dose-dependent improvements in body weight, neurological deficits, and infarct volume. Further analysis in tMCAO/R rat model revealed that HH-A treatment led to significant upregulations of Nrf2 and HO-1 in the brain. HH-A also significantly reduced the expression of HNE, and exhibited anti-apoptotic effects by decreasing the expression of Bax and increasing the expression of Bcl-2. This was further supported by a decrease in the number of TUNEL positive cells. Taken together, the neuroprotective effects of HH-A may be attributed to its ability to target the Nrf2/HO-1 signaling pathway, leading to reduced oxidative stress and apoptosis in the brain. These findings suggest that HH-A has potential as a therapeutic agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
- Beijing Honghui Meditech Co., Ltd, No. 50 Huatuo Road, CBP Daxing, Beijing, 102600, China
| | - Pingping Zhang
- Beijing Honghui Meditech Co., Ltd, No. 50 Huatuo Road, CBP Daxing, Beijing, 102600, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China.
| | - Ye Liu
- Beijing Honghui Meditech Co., Ltd, No. 50 Huatuo Road, CBP Daxing, Beijing, 102600, China.
| |
Collapse
|
43
|
Hurwitz SJ, De R, LeCher JC, Downs-Bowen JA, Goh SL, Zandi K, McBrayer T, Amblard F, Patel D, Kohler JJ, Bhasin M, Dobosh BS, Sukhatme V, Tirouvanziam RM, Schinazi RF. Why Certain Repurposed Drugs Are Unlikely to Be Effective Antivirals to Treat SARS-CoV-2 Infections. Viruses 2024; 16:651. [PMID: 38675992 PMCID: PMC11053489 DOI: 10.3390/v16040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Most repurposed drugs have proved ineffective for treating COVID-19. We evaluated median effective and toxic concentrations (EC50, CC50) of 49 drugs, mostly from previous clinical trials, in Vero cells. Ratios of reported unbound peak plasma concentrations, (Cmax)/EC50, were used to predict the potential in vivo efficacy. The 20 drugs with the highest ratios were retested in human Calu-3 and Caco-2 cells, and their CC50 was determined in an expanded panel of cell lines. Many of the 20 drugs with the highest ratios were inactive in human Calu-3 and Caco-2 cells. Antivirals effective in controlled clinical trials had unbound Cmax/EC50 ≥ 6.8 in Calu-3 or Caco-2 cells. EC50 of nucleoside analogs were cell dependent. This approach and earlier availability of more relevant cultures could have reduced the number of unwarranted clinical trials.
Collapse
Affiliation(s)
- Selwyn J. Hurwitz
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Ramyani De
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Julia C. LeCher
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Jessica A. Downs-Bowen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Shu Ling Goh
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Keivan Zandi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Tamara McBrayer
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Dharmeshkumar Patel
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - James J. Kohler
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Manoj Bhasin
- Center for Cystic Fibrosis & Airways Disease Research, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and Sleep, Emory University and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; (M.B.); (B.S.D.); (R.M.T.)
| | - Brian S. Dobosh
- Center for Cystic Fibrosis & Airways Disease Research, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and Sleep, Emory University and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; (M.B.); (B.S.D.); (R.M.T.)
| | - Vikas Sukhatme
- Morningside Center for Innovative and Affordable Medicine, Departments of Medicine and Hematology and Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Rabindra M. Tirouvanziam
- Center for Cystic Fibrosis & Airways Disease Research, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and Sleep, Emory University and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; (M.B.); (B.S.D.); (R.M.T.)
| | - Raymond F. Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| |
Collapse
|
44
|
Xu Y, Xin J, Sun Y, Wang X, Sun L, Zhao F, Niu C, Liu S. Mechanisms of Sepsis-Induced Acute Lung Injury and Advancements of Natural Small Molecules in Its Treatment. Pharmaceuticals (Basel) 2024; 17:472. [PMID: 38675431 PMCID: PMC11054595 DOI: 10.3390/ph17040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI), characterized by widespread lung dysfunction, is associated with significant morbidity and mortality due to the lack of effective pharmacological treatments available clinically. Small-molecule compounds derived from natural products represent an innovative source and have demonstrated therapeutic potential against sepsis-induced ALI. These natural small molecules may provide a promising alternative treatment option for sepsis-induced ALI. This review aims to summarize the pathogenesis of sepsis and potential therapeutic targets. It assembles critical updates (from 2014 to 2024) on natural small molecules with therapeutic potential against sepsis-induced ALI, detailing their sources, structures, effects, and mechanisms of action.
Collapse
Affiliation(s)
- Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Lili Sun
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| |
Collapse
|
45
|
Chen J, Ding Z. Natural products as potential drug treatments for acute promyelocytic leukemia. Chin Med 2024; 19:57. [PMID: 38566147 PMCID: PMC10988969 DOI: 10.1186/s13020-024-00928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
Acute promyelocytic leukemia (APL), which was once considered one of the deadliest types of leukemia, has become a curable malignancy since the introduction of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) as clinical treatments. ATO, which has become the first-line therapeutic agent for APL, is derived from the natural mineral product arsenic, exemplifying an important role of natural products in the treatment of APL. Many other natural products, ranging from small-molecule compounds to herbal extracts, have also demonstrated great potential for the treatment and adjuvant therapy of APL. In this review, we summarize the natural products and representative components that have demonstrated biological activity for the treatment of APL. We also discuss future directions in better exploring their medicinal value, which may provide a reference for subsequent new drug development and combination therapy programs.
Collapse
Affiliation(s)
- Jiaxin Chen
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Zuoqi Ding
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China.
- Editorial Board of Chinese Journal of Natural Medicines, Nanjing, China.
| |
Collapse
|
46
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
47
|
Szałabska-Rąpała K, Zych M, Borymska W, Londzin P, Dudek S, Kaczmarczyk-Żebrowska I. Beneficial effect of honokiol and magnolol on polyol pathway and oxidative stress parameters in the testes of diabetic rats. Biomed Pharmacother 2024; 172:116265. [PMID: 38364735 DOI: 10.1016/j.biopha.2024.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
In diabetes hyperglycemia, excessive production of free radicals and present oxidative stress lead to many complications in the body, including male reproductive system disorders. To prevent the development of diabetic complications in the testes resulting from them, it seems beneficial to include compounds considered as natural antioxidants. Honokiol and magnolol are neolignans obtained from magnolia bark, which possess proven antioxidant properties. The aim of this study was to evaluate the effect of honokiol and magnolol on the parameters of oxidative stress, polyol pathway and glycation products in the testes as well as on selected biochemical parameters in the blood serum of rats with type 2 diabetes. The study was conducted on mature male Wistar rats with high fat diet and streptozotocin-induced type 2 diabetes. Neolignans-treated rats received honokiol or magnolol orally at the doses of 5 or 25 mg/kg, respectively, for 4 weeks. Parameters related to glucose and lipid homeostasis, basic serological parameters and sex hormones level in the serum as well as polyol pathway parameters, antioxidant enzyme activity, endogenous antioxidants level, sumaric parameters for oxidative stress and oxidative damage in the testes were estimated. Oral administration of honokiol and magnolol turned out to be beneficial in combating the effects of oxidative stess in the testes, but showed no favorable effects on serum biochemical parameters. Additionally, magnolol compared to honokiol revealed more advantageous impact indicating the reversal of the effects of diabetic complications in the male reproductive system and counteracted oxidative stress damages and polyol pathway disorders in the testes.
Collapse
Affiliation(s)
- Katarzyna Szałabska-Rąpała
- Doctoral School of the Medical University of Silesia in Katowice, Discipline of Pharmaceutical Sciences, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland.
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Piotr Londzin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Sławomir Dudek
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Ilona Kaczmarczyk-Żebrowska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| |
Collapse
|
48
|
Black BJ, Ghazal RE, Lojek N, Williams V, Rajput JS, Lawson JM. Phenotypic Screening of Prospective Analgesics Among FDA-Approved Compounds using an iPSC-Based Model of Acute and Chronic Inflammatory Nociception. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303724. [PMID: 38189546 PMCID: PMC10953557 DOI: 10.1002/advs.202303724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/26/2023] [Indexed: 01/09/2024]
Abstract
Classical target-based drug screening is low-throughput, largely subjective, and costly. Phenotypic screening based on in vitro models is increasingly being used to identify candidate compounds that modulate complex cell/tissue functions. Chronic inflammatory nociception, and subsequent chronic pain conditions, affect peripheral sensory neuron activity (e.g., firing of action potentials) through myriad pathways, and remain unaddressed in regard to effective, non-addictive management/treatment options. Here, a chronic inflammatory nociception model is demonstrated based on induced pluripotent stem cell (iPSC) sensory neurons and glia, co-cultured on microelectrode arrays (MEAs). iPSC sensory co-cultures exhibit coordinated spontaneous extracellular action potential (EAP) firing, reaching a stable baseline after ≈27 days in vitro (DIV). Spontaneous and evoked EAP metrics are significantly modulated by 24-h incubation with tumor necrosis factor-alpha (TNF-α), representing an inflammatory phenotype. Compared with positive controls (lidocaine), this model is identified as an "excellent" stand-alone assay based on a modified Z' assay quality metric. This model is then used to screen 15 cherry-picked, off-label, Food and Drug Administration (FDA)-approved compounds; 10 of 15 are identified as "hits". Both hits and "misses" are discussed in turn. In total, this data suggests that iPSC sensory co-cultures on MEAs may represent a moderate-to-high-throughput assay for drug discovery targeting inflammatory nociception.
Collapse
Affiliation(s)
- Bryan James Black
- Department of Biomedical EngineeringFrancis College of EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Rasha El Ghazal
- Department of Biomedical EngineeringFrancis College of EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Neal Lojek
- Department of Biomedical EngineeringFrancis College of EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Victoria Williams
- Department of Biomedical EngineeringFrancis College of EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Jai Singh Rajput
- Department of Biomedical EngineeringFrancis College of EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Jennifer M. Lawson
- Department of Biomedical EngineeringFrancis College of EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| |
Collapse
|
49
|
Wan S, Xie X, Yang G, Feng F. Discovery of the toxicity-related quality markers and mechanisms of Zhi-Zi-Hou-Po decoction based on Chinmedomics combined with differentially absorbed components and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117408. [PMID: 37972910 DOI: 10.1016/j.jep.2023.117408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhi-Zi-Hou-Po decoction (ZZHPD), as a representative traditional Chinese medicine (TCM) formula for the treatment of depression, has frequently triggered hepatorenal toxicity in recent years. However, its toxic effect, material basis, and underlying mechanisms have not been fully elucidated. AIM OF THE STUDY To explore the hepatorenal toxicity-material basis-quality markers (Q-markers) and multiple mechanisms of ZZHPD. MATERIALS AND METHODS ZZHPD-induced rat model of toxicity was evaluated by behavioral indicators, biochemical parameters, and histopathological sections. Then, UHPLC-Q-Exactive Orbitrap-MS combined with multivariate data analysis was utilized to identify the endogenous differential metabolites and the prototype components of ZZHPD in the plasma. A comprehensive strategy integrating in-house library, diagnostic ions, Compound Discover software, and network databases was constructed to identify the chemical constituents of ZZHPD. Additionally, the differentially absorbed components of ZZHPD were screened out based on the spectrum-effect relationship (toxic state and normal state), feature extraction of exogenous components, and variable influence on projection (VIP). Further, Chinmedomics and network pharmacology oriented by differentially absorbed components were performed to predict toxicity-related Q-markers and core targets, as well as relevant pathways. Finally, the binding ability between components and targets was predicted using molecular docking, and the mRNA expression of core target genes was determined by real-time qPCR experiment. RESULTS ZZHPD exerted significant hepatotoxicity and nephrotoxicity in rats accompanied by body weight loss, abnormal biochemical indicators, and pathologic characteristics with mild inflammation and cell damage. The results of plasma metabolomics indicated that 22 differential metabolites interfered by ZZHPD mainly involved in primary bile acid biosynthesis, arginine and proline metabolism, phenylalanine metabolism and biosynthesis, sphingolipid metabolism, pyrimidine and purine metabolism. Firstly, 106 chemical substances of ZZHPD were identified, 44 of them were absorbed into the blood, mainly including 7 iridoid glycosides, 15 flavonoids, 5 lignans, and others. Then, the correlation analysis results suggested that 12 of 19 differentially absorbed constituents were highly correlated with 22 differential metabolites and recognized as potential Q-markers. Finally, 9 toxicity-related Q-markers were predicted and confirmed with better binding ability to 5 core targets (PTGS2, CASP3, TNF, PPARG, HMOX1), including 3 flavonoids (naringin, hesperidin, and neohesperidin), 2 iridoid glycosides (geniposide and genipin-1-β-D-gentiobioside), 2 lignans (honokiol and magnolol), organic acid (chlorogenic acid), and crocin (crocetin). The real-time qPCR results showed that the mRNA levels of CASP3, TNF-α, and PPARG significantly increased in the damaged liver. Combining metabolomics and network pharmacology results, the multiple mechanisms of toxicity might involve in oxidative damage, inflammation, and apoptosis pathways. CONCLUSION Taken together, the toxicity-related Q-markers of ZZHPD screened for the first time in this work were reliable, and the holistic intervention for hepatorenal toxicity further revealed the multi-component, multi-target, and multi-pathway features in TCM. The integrated approach provides a novel perspective for the discovery of toxicity/efficacy-related substances and mechanistic studies in TCM.
Collapse
Affiliation(s)
- Shulin Wan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaoxia Xie
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| | - Gongjun Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Fang Feng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
50
|
Yu J, Gao X, Zhang L, Shi H, Yan Y, Han Y, Wu C, Liu Y, Fang M, Huang C, Fan S. Magnolol extends lifespan and improves age-related neurodegeneration in Caenorhabditis elegans via increase of stress resistance. Sci Rep 2024; 14:3158. [PMID: 38326350 PMCID: PMC10850488 DOI: 10.1038/s41598-024-53374-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
Magnolol is a naturally occurring polyphenolic compound in many edible plants, which has various biological effects including anti-aging and alleviating neurodegenerative diseases. However, the underlying mechanism on longevity is uncertain. In this study, we investigated the effect of magnolol on the lifespan of Caenorhabditis elegans and explored the mechanism. The results showed that magnolol treatment significantly extended the lifespan of nematode and alleviated senescence-related decline in the nematode model. Meanwhile, magnolol enhanced stress resistance to heat shock, hydrogen peroxide (H2O2), mercuric potassium chloride (MeHgCl) and paraquat (PQ) in nematode. In addition, magnolol reduced reactive oxygen species and malondialdehyde (MDA) levels, and increased superoxide dismutase and catalase (CAT) activities in nematodes. Magnolol also up-regulated gene expression of sod-3, hsp16.2, ctl-3, daf-16, skn-1, hsf-1, sir2.1, etc., down-regulated gene expression of daf-2, and promoted intranuclear translocation of daf-16 in nematodes. The lifespan-extending effect of magnolol were reversed in insulin/IGF signaling (IIS) pathway-related mutant lines, including daf-2, age-1, daf-16, skn-1, hsf-1 and sir-2.1, suggesting that IIS signaling is involved in the modulation of longevity by magnolol. Furthermore, magnolol improved the age-related neurodegeneration in PD and AD C. elegans models. These results indicate that magnolol may enhance lifespan and health span through IIS and sir-2.1 pathways. Thus, the current findings implicate magnolol as a potential candidate to ameliorate the symptoms of aging.
Collapse
Affiliation(s)
- Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hang Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongli Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chengyuan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|