1
|
Sun YY, Zhu HJ, Du Y, Zhu S, Zhou SY, Pang SY, Qu Y, Liu JC, Lei SY, Yang Y, Guo ZN. A novel NIR-II albumin-escaping probe for cerebral arteries and perfusion imaging in stroke mice model. Biomaterials 2024; 311:122664. [PMID: 38889597 DOI: 10.1016/j.biomaterials.2024.122664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
In order to guide the formulation of post-stroke treatment strategy in time, it is necessary to have real-time feedback on collateral circulation and revascularization. Currently used near-infrared II (NIR-II) probes have inherent binding with endogenous albumin, resulting in significant background signals and uncontrollable pharmacokinetics. Therefore, the albumin-escaping properties of the new probe, IR-808AC, was designed, which achieved timely excretion and low background signal, enabling the short-term repeatable injection for visualization of cerebral vessels and perfusion. We further achieved continuous observation of changes in collateral vessels and perfusion during the 7-d period in middle cerebral artery occlusion mice using IR-808AC in vivo. Furthermore, using IR-808AC, we confirmed that remote ischemic conditioning could promote collateral vessels and perfusion. Finally, we evaluated the revascularization after thrombolysis on time in embolic stroke mice using IR-808AC. Overall, our study introduces a novel methodology for safe, non-invasive, and repeatable assessment of collateral circulation and revascularization in real-time that is crucial for the optimization of treatment strategies.
Collapse
Affiliation(s)
- Ying-Ying Sun
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Hong-Jing Zhu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Yijing Du
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, the First Hospital of Jilin University, Changchun, China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, the First Hospital of Jilin University, Changchun, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Shu-Yan Pang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Jia-Cheng Liu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Shuang-Yin Lei
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China.
| |
Collapse
|
2
|
Leng C, Lin K, Zhou M, Tao X, Sun B, Shu X, Liu W. Apolipoprotein E deficiency exacerbates blood-brain barrier disruption and hyperglycemia-associated hemorrhagic transformation after ischemic stroke. J Stroke Cerebrovasc Dis 2024; 33:107987. [PMID: 39218418 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The polymorphism of the apolipoprotein E (ApoE) gene has been implicated in both the susceptibility to neurodegenerative disease and the prognosis of traumatic brain injury (TBI). However, the influence of ApoE on the risk of hemorrhagic transformation (HT) after acute ischemic stroke remains inconclusive. The present study aimed to investigate the potential impact of ApoE deficiency on the risk of hyperglycemia-associated HT and to elucidate the underlying mechanisms. METHODS Wild-type (WT) and ApoE knockout (ApoE-/-) mice were injected with 50 % glucose to induce hyperglycemia and subsequently subjected to 90 min of intraluminal middle cerebral artery occlusion (MCAO). The mortality, neurological function, HT incidence and HT grading-score were evaluated at 24 hours after reperfusion. To evaluate the integrity of blood-brain barrier (BBB), the immunoglobulin G (IgG) leakage and the protein expressions of tight junctions (TJs) were detected using immunofluorescent staining and western blotting. Finally, the levels of matrix metalloproteinases (MMP)-2/9, microglial activation and proinflammatory mediators were investigated using immunofluorescent staining and western blotting. RESULTS ApoE-/- mice exhibited increased mortality and exacerbated neurological impairment, concomitant with more severe hyperglycemia-associated HT 24 hours post-reperfusion. Meanwhile, ApoE deficiency exacerbated the disruption of BBB, characterized by increased leakage of IgG, aggravated degradation of TJs and microvascular basement membranes. Furthermore, ApoE deficiency further aggravated the upregulation of MMP-2/9 and microglia-triggered neuroinflammation. CONCLUSIONS Our findings demonstrate that the absence of ApoE exacerbates neurological impairment and hyperglycemia-associated HT in ischemic stroke mice, which is closely associated with MMP-2/9 signaling and neuroinflammation-mediated disruption of BBB.
Collapse
Affiliation(s)
- Changlong Leng
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan, China.
| | - Kuan Lin
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan, China.
| | - Mei Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan, China.
| | - Xiaoqin Tao
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China.
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China.
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China.
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
3
|
Al-Romaiyan A, Barakat A, Marafie SK, Masocha W. Notoginsenoside R1, a metabolite from Panax notoginseng (Burkill) F.H.Chen, stimulates insulin secretion through activation of phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Front Pharmacol 2024; 15:1478917. [PMID: 39399466 PMCID: PMC11466869 DOI: 10.3389/fphar.2024.1478917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Background For ages, botanical medicine has been used in the treatment of diabetes mellitus (DM). Notoginsenoside R1 (NGR1), a Panax notoginseng (Burkill) F.H.Chen metabolite, has been documented to possess antidiabetic action in vivo. However, its precise molecular mechanism of action is not clear. Objectives We evaluated NGR1's effects on blood glucose in vivo and then evaluated in vitro whether NGR1 has effects on insulin secretion and the probable molecular pathways involved in NGR1-induced insulin secretion. Methods Diabetes was induced in mice by streptozotocin. Glucose tolerance test was performed before and after NGR1 was administered intraperitoneally to diabetic animals for 4 weeks. Static and perifusion experiments were performed using isolated female BALB/c mouse islets. Preproinsulin (Ins) mRNA expression was measured using q-PCR. Protein expression of PI3K/Akt pathway was assessed using the fully automated Wes™ capillary-based protein electrophoresis. Results Treatment of diabetic mice with NGR1 improved their glucose intolerance. In vitro, NGR1 increased insulin secretion in a concentration-dependent manner. NGR1 initiated the secretion of insulin at 2 mM glucose and augmented glucose-stimulated insulin secretion which was sustained throughout NGR1 perifusion. NGR1-induced insulin secretion was not altered by a voltage gated calcium channel blocker or protein kinase A inhibitor. NGR1 did not significantly modulate Ins mRNA expression. However, NGR1 significantly increased the levels of phospho-Akt and phopho-p-85. Conclusion In conclusion, this study has shown that NGR1 ameliorates hyperglycemia in diabetic mice. NGR1 has a direct insulin secretagogue activity on mouse islets, stimulates insulin secretion at both basal and postprandial glucose concentrations, and activates PI3K/Akt pathway to induce insulin secretion. These results suggest that NGR1 may provide an alternative therapy to manage DM.
Collapse
Affiliation(s)
- Altaf Al-Romaiyan
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Kuwait
| | - Ahmad Barakat
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Kuwait
| | - Sulaiman K. Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Kuwait
| |
Collapse
|
4
|
Xie H, Jiang Y, Xiang Y, Wu B, Zhao J, Huang R, Wang M, Wang Y, Liu J, Wu D, Tian D, Bian E. Super-enhancer-driven LIF promotes the mesenchymal transition in glioblastoma by activating ITGB2 signaling feedback in microglia. Neuro Oncol 2024; 26:1438-1452. [PMID: 38554116 PMCID: PMC11300025 DOI: 10.1093/neuonc/noae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND The mesenchymal (MES) subtype of glioblastoma (GBM) is believed to be influenced by both cancer cell-intrinsic alterations and extrinsic cellular interactions, yet the underlying mechanisms remain unexplored. METHODS Identification of microglial heterogeneity by bioinformatics analysis. Transwell migration, invasion assays, and tumor models were used to determine gene function and the role of small molecule inhibitors. RNA sequencing, chromatin immunoprecipitation, and dual-luciferase reporter assays were performed to explore the underlying regulatory mechanisms. RESULTS We identified the inflammatory microglial subtype of tumor-associated microglia (TAM) and found that its specific gene integrin beta 2 (ITGB2) was highly expressed in TAM of MES GBM tissues. Mechanistically, the activation of ITGB2 in microglia promoted the interaction between the SH2 domain of STAT3 and the cytoplasmic domain of ITGB2, thereby stimulating the JAK1/STAT3/IL-6 signaling feedback to promote the MES transition of GBM cells. Additionally, microglia communicated with GBM cells through the interaction between the receptor ITGB2 on microglia and the ligand ICAM-1 on GBM cells, while an increased secretion of ICAM-1 was induced by the proinflammatory cytokine leukemia inhibitory factor (LIF). Further studies demonstrated that inhibition of cyclin-dependent kinase 7 substantially reduced the recruitment of SNW1 to the super-enhancer of LIF, resulting in transcriptional inhibition of LIF. We identified notoginsenoside R1 as a novel LIF inhibitor that exhibited synergistic effects in combination with temozolomide. CONCLUSIONS Our research reveals that the epigenetic-mediated interaction of GBM cells with TAM drives the MES transition of GBM and provides a novel therapeutic avenue for patients with MES GBM.
Collapse
Affiliation(s)
- Han Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanyi Jiang
- Institute of Health and Medical Technology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yufei Xiang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Baoming Wu
- School of pharmacy, Anhui Medical University, Hefei, China
| | - Jiajia Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengting Wang
- School of pharmacy, Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yunlong Wang
- School of pharmacy, Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Liu
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dasheng Tian
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Erbao Bian
- School of pharmacy, Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Yang J, Yu B, Zheng J. Natural herbal extract roles and mechanisms in treating cerebral ischemia: A systematic review. Front Pharmacol 2024; 15:1424146. [PMID: 39156109 PMCID: PMC11327066 DOI: 10.3389/fphar.2024.1424146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
Background Stroke has been the focus of medical research due to its serious consequences and sequelae. Among the tens of millions of new stroke patients every year, cerebral ischemia patients account for the vast majority. While cerebral ischemia drug research and development is still ongoing, most drugs are terminated at preclinical stages due to their unacceptable toxic side effects. In recent years, natural herbs have received considerable attention in the pharmaceutical research and development field due to their low toxicity levels. Numerous studies have shown that natural herbs exert actions that cannot be ignored when treating cerebral ischemia. Methods We reviewed and summarized the therapeutic effects and mechanisms of different natural herbal extracts on cerebral ischemia to promote their application in this field. We used keywords such as "natural herbal extract," "herbal medicine," "Chinese herbal medicine" and "cerebral ischemia" to comprehensively search PubMed, ScienceDirect, ScienceNet, CNKI, and Wanfang databases, after which we conducted a detailed screening and review strategy. Results We included 120 high-quality studies up to 10 January 2024. Natural herbal extracts had significant roles in cerebral ischemia treatments via several molecular mechanisms, such as improving regional blood flow disorders, protecting the blood-brain barrier, and inhibiting neuronal apoptosis, oxidative stress and inflammatory responses. Conclusion Natural herbal extracts are represented by low toxicity and high curative effects, and will become indispensable therapeutic options in the cerebral ischemia treatment field.
Collapse
Affiliation(s)
| | | | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Wang P, Gao Y, Yang G, Zhao L, Zhao Z, Li S. Conversion of notoginsenoside R1 to 3β,12β-dihydroxydammar-(E)-20(22),24-diene-6-O-β-D-xylopyranosyl-(1→2)-β-D-glucopyranoside by Lactiplantibacillus plantarum S165 enhanced protective effects of LPS-induced intestinal epithelial barrier injury in Caco-2 cells. J Appl Microbiol 2024; 135:lxae180. [PMID: 39066493 DOI: 10.1093/jambio/lxae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/24/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
AIMS Microbial transformation to modify saponins and enhance their biological activities has received increasing attention in recent years. This study aimed to screen the strain that can biotransform notoginsenoside R1, identify the product and study its biological activity. METHODS AND RESULTS A lactic acid bacteria strain S165 with glycosidase-producing activity was isolated from traditional Chinese fermented foods, which was identified and grouped according to API 50 CHL kit and 16S rDNA sequence analysis. Subsequently, notoginsenoside R1 underwent a 30-day fermentation period by the strain S165, and the resulting products were analyzed using High-performance liquid chromatography (HPLC), Ultra-performance liquid chromatography (UPLC)-mass spectrometry (MS)/MS, and 13C-Nuclear magnetic resonance (NMR) techniques. Employing a model of Lipopolysaccharide (LPS)-induced damage to Caco-2 cells, the damage of Caco-2 cells was detected by Hoechst 33 258 staining, and the activity of notoginsenoside R1 biotransformation product was investigated by CCK-8 and western blotting assay. The strain S165 was identified as Lactiplantibacillus plantarum and was used to biotransform notoginsenoside R1. Through a 30-day biotransformation, L. plantarum S165 predominantly converts notoginsenoside R1 into 3β,12β-dihydroxydammar-(E)-20(22),24-diene-6-O-β-D-xylopyranosyl-(1→2)-β-D-glucopyranoside, temporarily named notoginsenoside T6 (NGT6) according to HPLC, UPLC-MS/MS, and 13C-NMR analysis. Results from CCK-8 and Hoechst 33258 staining indicated that the ability notoginsenoside T6 to alleviate the intestinal injury induced by LPS in the Caco-2 cell was stronger than that of notoginsenoside R1. In addition, Western blotting result showed that notoginsenoside T6 could prevent intestinal injury by protecting tight junction proteins (Claudin-1, Occludin, and ZO-1). CONCLUSION Notoginsenoside R1 was biotransformed into the notoginsenoside T6 by L. plantarum S165, and the biotransformed product showed an enhanced intestinal protective effect in vitro.
Collapse
Affiliation(s)
- Penghui Wang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, P. R. China
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - Yansong Gao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, P. R. China
| | - Ge Yang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, P. R. China
| | - Lei Zhao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - Zijian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, P. R. China
| | - Shengyu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, P. R. China
| |
Collapse
|
7
|
Yu ZL, Gao RY, Lv C, Geng XL, Ren YJ, Zhang J, Ren JY, Wang H, Ai FB, Wang ZY, Zhang BB, Liu DH, Yue B, Wang ZT, Dou W. Notoginsenoside R1 promotes Lgr5 + stem cell and epithelium renovation in colitis mice via activating Wnt/β-Catenin signaling. Acta Pharmacol Sin 2024; 45:1451-1465. [PMID: 38491161 PMCID: PMC11192909 DOI: 10.1038/s41401-024-01250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/25/2024] [Indexed: 03/18/2024] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by persistent damage to the intestinal barrier and excessive inflammation, leading to increased intestinal permeability. Current treatments of IBD primarily address inflammation, neglecting epithelial repair. Our previous study has reported the therapeutic potential of notoginsenoside R1 (NGR1), a characteristic saponin from the root of Panax notoginseng, in alleviating acute colitis by reducing mucosal inflammation. In this study we investigated the reparative effects of NGR1 on mucosal barrier damage after the acute injury stage of DSS exposure. DSS-induced colitis mice were orally treated with NGR1 (25, 50, 125 mg·kg-1·d-1) for 10 days. Body weight and rectal bleeding were daily monitored throughout the experiment, then mice were euthanized, and the colon was collected for analysis. We showed that NGR1 administration dose-dependently ameliorated mucosal inflammation and enhanced epithelial repair evidenced by increased tight junction proteins, mucus production and reduced permeability in colitis mice. We then performed transcriptomic analysis on rectal tissue using RNA-sequencing, and found NGR1 administration stimulated the proliferation of intestinal crypt cells and facilitated the repair of epithelial injury; NGR1 upregulated ISC marker Lgr5, the genes for differentiation of intestinal stem cells (ISCs), as well as BrdU incorporation in crypts of colitis mice. In NCM460 human intestinal epithelial cells in vitro, treatment with NGR1 (100 μM) promoted wound healing and reduced cell apoptosis. NGR1 (100 μM) also increased Lgr5+ cells and budding rates in a 3D intestinal organoid model. We demonstrated that NGR1 promoted ISC proliferation and differentiation through activation of the Wnt signaling pathway. Co-treatment with Wnt inhibitor ICG-001 partially counteracted the effects of NGR1 on crypt Lgr5+ ISCs, organoid budding rates, and overall mice colitis improvement. These results suggest that NGR1 alleviates DSS-induced colitis in mice by promoting the regeneration of Lgr5+ stem cells and intestinal reconstruction, at least partially via activation of the Wnt/β-Catenin signaling pathway. Schematic diagram of the mechanism of NGR1 in alleviating colitis. DSS caused widespread mucosal inflammation epithelial injury. This was manifested by the decreased expression of tight junction proteins, reduced mucus production in goblet cells, and increased intestinal permeability in colitis mice. Additionally, Lgr5+ ISCs were in obviously deficiency in colitis mice, with aberrant down-regulation of the Wnt/β-Catenin signaling. However, NGR1 amplified the expression of the ISC marker Lgr5, elevated the expression of genes associated with ISC differentiation, enhanced the incorporation of BrdU in the crypt and promoted epithelial restoration to alleviate DSS-induced colitis in mice, at least partially, by activating the Wnt/β-Catenin signaling pathway.
Collapse
Affiliation(s)
- Zhi-Lun Yu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Rui-Yang Gao
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Cheng Lv
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiao-Long Geng
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Yi-Jing Ren
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Jing Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Jun-Yu Ren
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Hao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Fang-Bin Ai
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Zi-Yi Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Bei-Bei Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Dong-Hui Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Bei Yue
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China.
| | - Zheng-Tao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China.
| | - Wei Dou
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China.
| |
Collapse
|
8
|
Liu Y, Niu P, Ji H, Chen Z, Zhai J, Jin X, Pang B, Zheng W, Zhang J, Yang F, Pang W. The use of Panax notoginseng saponins injections after intravenous thrombolysis in acute ischemic stroke: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1376025. [PMID: 38898926 PMCID: PMC11185952 DOI: 10.3389/fphar.2024.1376025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Background As a bioactive metabolite preparation widely used in acute ischemic stroke (AIS), the efficacy and safety of Panax notoginseng saponins injections (PNSI) in patients with AIS after intravenous thrombolysis remain to be evaluated. Methods This study included randomized controlled trials published before 26 April 2024 in 8 databases. AIS patients who received intravenous thrombolysis were included. The control group receiving conventional treatment and the treatment group receiving additional PNSI. Primary outcomes were selected as mortality, disability, and adverse events. Secondary outcomes were selected as all-cause mortality, improvement of neurological deficit, quality of life, and cerebral injury indicators. The revised Cochrane Risk of Bias tool was used to assess risk of bias. Risk ratio (RR) and mean differences (MD) were calculated for binary variables and continuous variables, respectively, based on a 95% confidence interval (CI). Results A total of 20 trials involving 1,856 participants were included. None of them reported mortality or disability. There was no significant difference in the adverse events [RR: 1.04; 95% CI: 0.60 to 1.81] and hemorrhagic transformation [RR: 0.99; 95% CI: 0.36 to 2.70] between the two groups. Compared to the control group, the treatment group had a better effect in neurological improvement assessed by National Institutes of Health Stroke Scale [MD: -2.91; 95% CI: -4.76 to -1.06], a better effect in activities of daily living changes in Barthel Index [MD: 9.37; 95% CI: 1.86 to 16.88], and a lower serum neuron-specific enolase level [MD: -2.08; 95% CI: -2.67 to -1.49]. Conclusion For AIS patients undergoing intravenous thrombolysis, the use of PNSI improved neurological deficits and enhanced activity of daily living in the short term without increasing the occurrence rate of adverse events. However, due to the moderate to very low certainty of evidence, it is advisable to conduct high-quality clinical trials to validate the findings of this study. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=466851, Identifier CRD42023466851.
Collapse
Affiliation(s)
- Yaoyuan Liu
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Puyu Niu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongchang Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhe Chen
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingbo Zhai
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyao Jin
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Pang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenke Zheng
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junhua Zhang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengwen Yang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wentai Pang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Zhang S, Chen Q, Jin M, Ren J, Sun X, Zhang Z, Luo Y, Sun X. Notoginsenoside R1 alleviates cerebral ischemia/reperfusion injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway through microbiota-gut-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155530. [PMID: 38493723 DOI: 10.1016/j.phymed.2024.155530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/10/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Ischemic stroke (IS) ranks as the second common cause of death worldwide. However, a narrow thrombolysis timeframe and ischemia-reperfusion (I/R) injury limits patient recovery. Moreover, anticoagulation and antithrombotic drugs do not meet the clinical requirements. Studies have demonstrated close communication between the brain and gut microbiota in IS. Notoginsenoside R1 (NG-R1), a significant component of the total saponins from Panax notoginseng, has been demonstrated to be effective against cerebral I/R injury. Total saponins have been used to treat IS in Chinese pharmacopoeia. Furthermore, previous research has indicated that the absorption of NG-R1 was controlled by gut microbiota. STUDY DESIGN This study aimed to access the impact of NG-R1 treatment on neuroinflammation and investigate the microbiota-related mechanisms. RESULTS NG-R1 significantly reduced neuronal death and neuroinflammation in middle cerebral artery occlusion/reperfusion (MCAO/R) models. 16S rRNA sequencing revealed that NG-R1 treatment displayed the reversal of microbiota related with MCAO/R models. Additionally, NG-R1 administration attenuated intestinal inflammation, gut barrier destruction, and systemic inflammation. Furthermore, microbiota transplantation from NG-R1 exhibited a similar effect in the MCAO/R models. CONCLUSION In summary, NG-R1 treatment resulted in the restoration of the structure of the blood-brain barrier (BBB) and reduction in neuroinflammation via suppressing the stimulation of astrocytes and microglia in the cerebral ischemic area. Mechanistic research demonstrated that NG-R1 treatment suppressed the toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor kappa B (TLR4/MyD88/NF-κB) signaling pathway in both the ischemic brain and colon. NG-R1 treatment enhanced microbiota dysbiosis by inhibiting the TLR4 signaling pathway to protect MCAO/R models. These findings elucidate the mechanisms by which NG-R1 improve stroke outcomes and provide some basis for Panax notoginseng saponins in clinical treatment.
Collapse
Affiliation(s)
- Shuxia Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Qiuyan Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Meiqi Jin
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Jiahui Ren
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Xiao Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Zhixiu Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Yun Luo
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| |
Collapse
|
10
|
Yang Y, Chen W, Lin Z, Wu Y, Li Y, Xia X. Panax notoginseng saponins prevent dementia and oxidative stress in brains of SAMP8 mice by enhancing mitophagy. BMC Complement Med Ther 2024; 24:144. [PMID: 38575939 PMCID: PMC10993618 DOI: 10.1186/s12906-024-04403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/14/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction is one of the distinctive features of neurons in patients with Alzheimer's disease (AD). Intraneuronal autophagosomes selectively phagocytose and degrade the damaged mitochondria, mitigating neuronal damage in AD. Panax notoginseng saponins (PNS) can effectively reduce oxidative stress and mitochondrial damage in the brain of animals with AD, but their exact mechanism of action is unknown. METHODS Senescence-accelerated mouse prone 8 (SAMP8) mice with age-related AD were treated with PNS for 8 weeks. The effects of PNS on learning and memory abilities, cerebral oxidative stress status, and hippocampus ultrastructure of mice were observed. Moreover, changes of the PTEN-induced putative kinase 1 (PINK1)-Parkin, which regulates ubiquitin-dependent mitophagy, and the recruit of downstream autophagy receptors were investigated. RESULTS PNS attenuated cognitive dysfunction in SAMP8 mice in the Morris water maze test. PNS also enhanced glutathione peroxidase and superoxide dismutase activities, and increased glutathione levels by 25.92% and 45.55% while inhibiting 8-hydroxydeoxyguanosine by 27.74% and the malondialdehyde production by 34.02% in the brains of SAMP8 mice. Our observation revealed the promotion of mitophagy, which was accompanied by an increase in microtubule-associated protein 1 light chain 3 (LC3) mRNA and 70.00% increase of LC3-II/I protein ratio in the brain tissues of PNS-treated mice. PNS treatment increased Parkin mRNA and protein expression by 62.80% and 43.80%, while increasing the mRNA transcription and protein expression of mitophagic receptors such as optineurin, and nuclear dot protein 52. CONCLUSION PNS enhanced the PINK1/Parkin pathway and facilitated mitophagy in the hippocampus, thereby preventing cerebral oxidative stress in SAMP8 mice. This may be a mechanism contributing to the cognition-improvement effect of PNS.
Collapse
Affiliation(s)
- Yingying Yang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Wenya Chen
- Key Laboratory of TCM Neuro-metabolism and Immunopharmacology of Guangxi Education Department, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Zhenmei Lin
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yijing Wu
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yuqing Li
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Xing Xia
- Key Laboratory of TCM Neuro-metabolism and Immunopharmacology of Guangxi Education Department, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
11
|
Feng L, Li Y, Lin M, Xie D, Luo Y, Zhang Y, He Z, Gong Q, Zhun ZY, Gao J. Trilobatin attenuates cerebral ischaemia/reperfusion-induced blood-brain barrier dysfunction by targeting matrix metalloproteinase 9: The legend of a food additive. Br J Pharmacol 2024; 181:1005-1027. [PMID: 37723895 DOI: 10.1111/bph.16239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Blood-brain barrier (BBB) breakdown is one of the crucial pathological changes of cerebral ischaemia-reperfusion (I/R) injury. Trilobatin (TLB), a naturally occurring food additive, exerts neuroprotective effects against cerebral I/R injury as demonstrated in our previous study. This study was designed to investigate the effect of TLB on BBB disruption after cerebral I/R injury. EXPERIMENTAL APPROACH Rats with focal cerebral ischaemia caused by transient middle cerebral artery occlusion were studied along with brain microvascular endothelial cells and human astrocytes to mimic BBB injury caused by oxygen and glucose deprivation/reoxygenation (OGD/R). KEY RESULTS The results showed that TLB effectively maintained BBB integrity and inhibited neuronal loss following cerebral I/R challenge. Furthermore, TLB increased tight junction proteins including ZO-1, Occludin and Claudin 5, and decreased the levels of apolipoprotein E (APOE) 4, cyclophilin A (CypA) and phosphorylated nuclear factor kappa B (NF-κB), thereby reducing proinflammatory cytokines. TLB also decreased the Bax/Bcl-2 ratio and cleaved-caspase 3 levels along with a reduced number of apoptotic neurons. Molecular docking and transcriptomics predicted MMP9 as a prominent gene evoked by TLB treatment. The protective effects of TLB on cerebral I/R-induced BBB breakdown was largely abolished by overexpression of MMP9, and the beneficial effects of TLB on OGD/R-induced loss of BBB integrity in human brain microvascular endothelial cells and astrocyte co-cultures was markedly reinforced by knockdown of MMP9. CONCLUSIONS AND IMPLICATIONS Our findings reveal a novel property of TLB: preventing BBB disruption following cerebral I/R via targeting MMP9 and inhibiting APOE4/CypA/NF-κB axis.
Collapse
Affiliation(s)
- Linying Feng
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yeli Li
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Mu Lin
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Dianyou Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yunmei Luo
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yuandong Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhixu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhu Yi Zhun
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Jianmei Gao
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
12
|
Yang Y, Wu Q, Shan X, Zhou H, Wang J, Hu Y, Chen J, Lv Z. Ginkgolide B attenuates cerebral ischemia-reperfusion injury via inhibition of ferroptosis through disrupting NCOA4-FTH1 interaction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116982. [PMID: 37532074 DOI: 10.1016/j.jep.2023.116982] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebral ischemia/reperfusion (I/R) injury is a major cause of neuronal damage and death. Ginkgolide B (GB) has been shown to exhibit neuroprotective effects in various brain injury models. AIM OF STUDY The aim of study was to investigate the potential role of GB in protecting against cerebral I/R injury and explore the underlying mechanisms. MATERIALS AND METHODS Adult male Sprague-Dawley rats were exposed to transient middle cerebral artery occlusion (tMCAO) followed by reperfusion in order to trigger cerebral I/R injury. The rats were treated with different doses of GB, vehicle control or positive drug. Neurological function, infarct volume, and levels of ferroptosis markers were evaluated. In vitro experiments were performed using OGD/R-induced PC12 cells to further investigate the effects of GB on ferroptosis and its mechanisms. In addition, molecular docking, and microscale thermophoresis (MST) assay were conducted to explore the combination of GB and NCOA4. RESULTS Reduced infarct volume and enhanced neurological function were signs of dose-dependent protection from cerebral I/R injury by GB therapy. Additionally, GB treatment had an impact on the levels of oxidative stress and ferroptosis markers, including reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and Fe2+ in the cerebral environment during IR injury. Moreover, relevant ferroptosis key factors such as ACSL4, GPX4, FTH1, and NCOA4 can be regulated by GB. In OGD/R-induced PC12 cells, GB protected against ferroptosis by inhibiting autophagy and disrupting the interaction of NCOA4-FTH1. CONCLUSION Our findings suggest that GB may protect against cerebral I/R injury by inhibiting ferroptosis through disrupting NCOA4-FTH1 interaction. GB has potential therapeutic applications for cerebral I/R injury, and further investigation of the underlying mechanisms and clinical trials are warranted.
Collapse
Affiliation(s)
- Yuwei Yang
- Nanjing University of Chinese Medicine Hanlin College, 6 Kuangshi Road, Taizhou, 225300, Jiangsu, China.
| | - Qing Wu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Xin Shan
- Nanjing University of Chinese Medicine Hanlin College, 6 Kuangshi Road, Taizhou, 225300, Jiangsu, China.
| | - Haiyan Zhou
- Nanjing University of Chinese Medicine Hanlin College, 6 Kuangshi Road, Taizhou, 225300, Jiangsu, China.
| | - Jinwen Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Yue Hu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China; Shen Chun-ti Nation-Famous Experts Studio for Traditional Chinese Medicine Inheritance, Changzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213003, Jiangsu, China.
| | - Jing Chen
- Nanjing University of Chinese Medicine Hanlin College, 6 Kuangshi Road, Taizhou, 225300, Jiangsu, China.
| | - Zhiyang Lv
- Nanjing University of Chinese Medicine Hanlin College, 6 Kuangshi Road, Taizhou, 225300, Jiangsu, China.
| |
Collapse
|
13
|
Zhu B, Cao A, Chen C, Zhou W, Luo W, Gui Y, Wang Q, Xu Z, Wang J. MMP-9 inhibition alleviates postoperative cognitive dysfunction by improving glymphatic function via regulating AQP4 polarity. Int Immunopharmacol 2024; 126:111215. [PMID: 38000234 DOI: 10.1016/j.intimp.2023.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication after surgery, characterized by deficits in memory, attention and cognitive flexibility. However, the underlying mechanisms of POCD remain unclear. Neuroinflammation and blood-brain barrier disruption have been implicated as potential pathological processes. This study explores the neuroprotective effects and mechanisms of the matrix metalloproteinase(MMP-9)inhibitor GM6001 against POCD. We hypothesize GM6001 may reduce neuroinflammation and preserve blood-brain barrier integrity through direct inhibition of MMP-9. Moreover, GM6001 may stabilize aquaporin-4 polarity and glymphatic clearance function by modulating MMP-9-mediated cleavage of dystroglycan, a key protein for aquaporin-4 anchoring. Our results demonstrate GM6001 alleviates postoperative cognitive deficits and neuroinflammation. GM6001 also preserves blood-brain barrier integrity and rescues aquaporin-4 mislocalization after surgery. This study reveals a novel dual role for MMP-9 inhibition in cognitive protection through direct anti-neuroinflammatory effects and regulating aquaporin-4 membrane distribution. Targeting MMP-9 may represent a promising strategy to prevent postoperative cognitive dysfunction by integrating multiple protective mechanisms.
Collapse
Affiliation(s)
- Binbin Zhu
- The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315000, China
| | - Angyang Cao
- The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315000, China
| | - Chunqu Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315000, China
| | - Weijian Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315000, China
| | - Wenjun Luo
- The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315000, China
| | - Yu Gui
- The First Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Qinwen Wang
- Health Science Center, Ningbo University, Ningbo 315000, China
| | - Zhipeng Xu
- The First Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Jianhua Wang
- The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315000, China.
| |
Collapse
|
14
|
Almalki WH. Unraveling the role of Xist RNA in cardiovascular pathogenesis. Pathol Res Pract 2024; 253:154944. [PMID: 38006839 DOI: 10.1016/j.prp.2023.154944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
Understanding the molecular pathways behind cardiovascular illnesses is crucial due to the enormous worldwide health burden they impose. New insights into the role played by Xist (X-inactive specific transcript) RNA in the onset and progression of cardiovascular diseases have emerged from recent studies. Since its discovery, Xist RNA has been known for its role in X chromosome inactivation during embryogenesis; however, new data suggest that its function extends well beyond the control of sex chromosomes. The regulatory roles of Xist RNA are extensive, encompassing epigenetic changes, gene expression, cellular identity, and sex chromosomal inactivation. There is potential for the involvement of this complex regulatory web in a wide range of illnesses, including cardiovascular problems. Atherosclerosis, hypertrophy, and cardiac fibrosis are all conditions linked to dysregulation of Xist RNA expression. Alterations in DNA methylation and histones are two examples of epigenetic changes that Xist RNA orchestrates, leading to modifications in gene expression patterns in different cardiovascular cells. Additionally, Xist RNA has been shown to contribute to the development of cardiovascular illnesses by modulating endothelial dysfunction, inflammation, and oxidative stress responses. New treatment approaches may become feasible with a thorough understanding of the complex function of Xist RNA in cardiovascular diseases. By focusing on Xist RNA and the regulatory network with which it interacts, we may be able to slow the progression of atherosclerosis, cardiac hypertrophy, and fibrosis, thereby opening novel therapeutic options for cardiovascular diseases amenable to precision medicine. This review summarizes the current state of knowledge concerning the impact of Xist RNA in cardiovascular disorders.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
15
|
Wei X, Wen Y, Hu Y, Guo X. Total Saponins of Panax Notoginseng Modulate the Astrocyte Inflammatory Signaling Pathway and Attenuate Inflammatory Injury Induced by Oxygen- Glucose Deprivation/Reperfusion Injury in Rat Brain Microvascular Endothelial Cells. Curr Stem Cell Res Ther 2024; 19:267-276. [PMID: 37218204 DOI: 10.2174/1574888x18666230509113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE Reperfusion after cerebral ischemia causes brain injury. Total saponins of Panax notoginseng (PNS) have potential roles in protecting against cerebral ischemia-reperfusion injury. However, whether PNS regulates astrocytes on oxygen-glucose deprivation/reperfusion (OGD/R) injury in rat brain microvascular endothelial cells (BMECs) and its mechanism still need further clarification. METHODS Rat C6 glial cells were treated with PNS at different doses. Cell models were established by exposing C6 glial cells and BMECs to OGD/R. Cell viability was assessed, and levels of nitrite concentration, inflammatory factors (iNOS, IL-1β, IL-6, IL-8, TNF-α), and oxidative stress-related factors (MDA, SOD, GSH-Px, T-AOC) were subsequently measured through CCK8, Grice analysis, Western blot, and ELISA, respectively. The co-cultured C6 and endothelial cells were treated with PNS for 24 hours before model establishment. Then transendothelial electrical resistance (TEER), lactate dehydrogenase (LDH) activity, brain-derived neurotrophic factor (BDNF) content, and mRNA and protein levels and positive rates of tight junction proteins [Claudin-5, Occludin, ZO-1] were measured by a cell resistance meter, corresponding kits, ELISA, RT-qPCR, Western blot, and immunohistochemistry, respectively. RESULTS PNS had no cytotoxicity. PNS reduced iNOS, IL-1β, IL-6, IL-8, and TNF-α levels in astrocytes, promoted T-AOC level and SOD and GSH-Px activities, and inhibited MDA levels, thus inhibiting oxidative stress in astrocytes. In addition, PNS alleviated OGD/R injury, reduced Na-Flu permeability, and enhanced TEER, LDH activity, BDNF content, and levels of tight junction proteins Claudin-5, Occludin, ZO-1 in the culture system of astrocytes and rat BMECs after OGD/R. CONCLUSION PNS repressed astrocyte inflammation and attenuated OGD/R injury in rat BMECs.
Collapse
Affiliation(s)
- Xiaobing Wei
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, No. 1 Xuebei Street, Huicheng District, Huizhou, Guangdong, China
| | - Yiqi Wen
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, No. 1 Xuebei Street, Huicheng District, Huizhou, Guangdong, China
| | - Yongzhen Hu
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, No. 1 Xuebei Street, Huicheng District, Huizhou, Guangdong, China
| | - Xuli Guo
- Department of Internal Medicine-Oncology, Huizhou Municipal Central Hospital, No. 41 Eleng North Road, Huicheng District, Huizhou, Guangdong, China
| |
Collapse
|
16
|
Pei X, Zhang L, Liu D, Wu Y, Li X, Cao Y, Du X. Notoginsenoside R1 attenuates brain injury in rats with traumatic brain injury: Possible mediation of apoptosis via ERK1/2 signaling pathway. PLoS One 2023; 18:e0295903. [PMID: 38109303 PMCID: PMC10727368 DOI: 10.1371/journal.pone.0295903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023] Open
Abstract
Traumatic brain injury (TBI) occurs worldwide and is associated with high mortality and disability rate. Apoptosis induced by TBI is one of the important causes of secondary injury after TBI. Notoginsenoside R1 (NGR1) is the main phytoestrogen extracted from Panax notoginseng. Many studies have shown that NGR1 has potent neuroprotective, anti-inflammatory, and anti-apoptotic properties and is effective in ischemia-reperfusion injury. Therefore, we investigated the potential neuroprotective effects of NGR1 after TBI and explored its molecular mechanism of action. A rat model of TBI was established using the controlled cortical impact (CCI) method. The expression levels of Bcl-2, Bax, caspase 3, and ERK1/2-related molecules in the downstream pathway were also detected by western blotting. The expression levels of pro-inflammatory cytokines were detected by real-time quantitative PCR. Nissl staining was used to clarify the morphological changes around the injury foci in rats after TBI. Fluoro-Jade B (FJB) and terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) fluorescence staining were used to detect the apoptosis of neural cells in each group of rats. The results showed that NGR1 administration reduced neurological deficits after TBI, as well as brain edema and brain tissue apoptosis. It also significantly inhibited the expression of pro-inflammatory cytokines. Furthermore, NGR1 decreased the expression levels of extracellular signal-regulated kinase (ERK) and p-RSK1, which are phosphorylated after trauma. This study suggests that NGR1 can improve neuronal apoptosis in brain injury by inhibiting the ERK signaling pathway. NGR1 is a potential novel neuroprotective agent for the treatment of secondary brain injury after TBI.
Collapse
Affiliation(s)
- Xiaoxian Pei
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
- Medical College of Soochow University, Suzhou, China
| | - Ling Zhang
- Translational Medicine Center, The First People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Dan Liu
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Yajuan Wu
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Xiaowei Li
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Ying Cao
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Xiangdong Du
- Department of Psychiatric, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Qi Z, Zhou X, Dong W, Timmins GS, Pan R, Shi W, Yuan S, Zhao Y, Ji X, Liu KJ. Neuronal Zinc Transporter ZnT3 Modulates Cerebral Ischemia-Induced Blood-Brain Barrier Disruption. Aging Dis 2023:AD.2023.1011. [PMID: 37962463 DOI: 10.14336/ad.2023.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Zinc plays important roles in both physiological and pathological processes in the brain. Accumulation of free zinc in ischemic tissue is recognized to contribute to blood-brain barrier (BBB) disruption following cerebral ischemia, but little is known either about the source of free zinc in microvessels or the mechanism by which free zinc mediates ischemia-induced BBB damage. We utilized cellular and animal models of ischemic stroke to determine the source of high levels of free zinc and the mechanism of free zinc-mediated BBB damage after ischemia. We report that cerebral ischemia elevated the level of extracellular fluid (ECF-Zn) of ischemic brain, leading to exacerbated BBB damage in a rat stroke model. Specifically suppressing zinc release from neurons, utilizing neuronal-specific zinc transporter 3 (ZnT3) knockout mice, markedly reduced ECF-Zn and BBB permeability after ischemia. Intriguingly, the activity of zinc-dependent metalloproteinase-2 (MMP-2) was modulated by ECF-Zn levels. Elevated ECF-Zn during ischemia directly bound to MMP-2 in extracellular fluid, increased its zinc content and augmented MMP-2 activity, leading to the degradation of tight junction protein in cerebral microvessels and BBB disruption. These findings suggest the role of neuronal ZnT3 in modulating ischemia-induced BBB disruption and reveal a novel mechanism of MMP-2 activation in BBB disruption after stroke, demonstrating ZnT3 as an effective target for stroke treatment.
Collapse
Affiliation(s)
- Zhifeng Qi
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Wen Dong
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Graham S Timmins
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Rong Pan
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wenjuan Shi
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shuhua Yuan
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yongmei Zhao
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
18
|
Ma T, Liu X, Xiong T, Li H, Zhou Y, Liang J. Polystyrene nanoplastics aggravated dibutyl phthalate-induced blood-testis barrier dysfunction via suppressing autophagy in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115403. [PMID: 37659273 DOI: 10.1016/j.ecoenv.2023.115403] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/04/2023]
Abstract
Nanoplastics (NPs) frequently cause adverse health effects by transporting organic pollutants such as dibutyl phthalate (DBP) into organisms by utilizing their large specific surface area, large surface charge, and increased hydrophobicity. However, the effects of NPs combined with DBP on the reproductive systems of mammals are still unclear. The present investigation involved the administration of polystyrene NPs (PS-NPs) to BALB/c mice via gavage, with a size of 100 nm and at doses of 5 mg/kg/day or 50 mg/kg/day, along with DBP at a dose of 0.5 mg/kg/day, or a combination of PS-NPs and DBP, for 30 days, to assess their potential for reproductive toxicity. The co-exposure of mice to PS-NPs and DBP resulted in a significant increase in reproductive toxicities compared to exposure to PS-NPs or DBP alone. This was demonstrated by a marked decrease in sperm quality, significant impairment of spermatogenesis, and increased disruption of the blood-testis barrier (BTB). Furthermore, a combination of in vivo and in vitro investigations were conducted to determine that the co-exposure of DBP and PS-NPs resulted in a noteworthy reduction in the expressions of tight junction proteins (ZO-1 and occludin). Moreover, the in vitro findings revealed that monobutyl phthalate (MBP, the active metabolite of DBP, 0.5 μg/mL) and PS-NPs (30 μg/mL or 300 μg/mL) inhibited autophagy in Sertoli cells, thereby increasing the expression of matrix metalloproteinases (MMPs). The study found that PS-NPs and DBP co-exposure caused harmful effects in male reproductive organs by disrupting BTB, which may be alleviated by reactivating autophagy. The paper's conclusions provided innovative perspectives on the collective toxicities of PS-NPs and other emerging pollutants.
Collapse
Affiliation(s)
- Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Xing Liu
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Tianqing Xiong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Yue Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China.
| |
Collapse
|
19
|
Zheng X, Ren B, Gao Y. Tight junction proteins related to blood-brain barrier and their regulatory signaling pathways in ischemic stroke. Biomed Pharmacother 2023; 165:115272. [PMID: 37544283 DOI: 10.1016/j.biopha.2023.115272] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Tight junctions (TJs) are crucial for intercellular connections. The abnormal expression of proteins related to TJs can result in TJ destruction, structural damage, and endothelial and epithelial cell dysfunction. These factors are associated with the occurrence and progression of several diseases. Studies have shown that blood-brain barrier (BBB) damage and dysfunction are the prominent pathological features of stroke. TJs are directly associated with the BBB integrity. In this article, we first discuss the structure and function of BBB TJ-related proteins before focusing on the crucial events that cause TJ dysfunction and BBB damage, as well as the regulatory mechanisms that affect the qualitative and quantitative expression of TJ proteins during ischemic stroke. Multiple regulatory mechanisms, including phosphorylation, matrix metalloproteinases (MMPs), and microRNAs, regulate TJ-related proteins and affect BBB permeability. Some signaling pathways and mechanisms have been demonstrated to have dual functions. Hopefully, our understanding of the regulation of BBB TJs in ischemic stroke will be applied to the development of targeted medications and therapeutic therapies.
Collapse
Affiliation(s)
- Xiangyi Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Beida Ren
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.
| | - Ying Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
20
|
Hong L, Shi X, Zhao Y, Zhao G, Jiang H, Liu M, Zhang H, Wu H, Wang L, He L, Chen W. Network pharmacology-guided and TCM theory-supported in vitro and in vivo component identification of Naoluoxintong. Heliyon 2023; 9:e19369. [PMID: 37681188 PMCID: PMC10480607 DOI: 10.1016/j.heliyon.2023.e19369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Naoluoxintong (NLXT) has been used to treat ischemic stroke (IS) in China for more than two hundred years. However, the pharmacodynamic material basis of NLXT has not been fully studied. Under the guidance of the former network pharmacological analysis, a rapid and reliable method combining UPLC-Q-TOF-MSE with the novel informatics UNIFI™ platform was established which was used to study the composition of NLXT and its prototype components and metabolites in vivo. A total of 102 compounds were identified. 13 compounds were sourced from "Monarch herb", mainly involving flavonoids and their glycosides. 54 compounds were sourced from "Minister herb", mainly involving triterpenoid saponins, organic acids and lactones. 11 compounds were from the "Assistant herb", mostly containing citric acid and esters of citric acid. 24 compounds were from the "Guide herb", mostly including flavonoids and their glycosides, organic acids and lactones. Moreover, 24 prototype components and 30 metabolites were detected, and in vivo transformation pathways for different types of chemical components were provided. This is a comprehensive report on the identification of major chemical components in NLXT and metabolic components in rats by UPLC-Q-TOF-MS combined with UNIFI platform under the guidance of network pharmacology, which is helpful for the quality control of NLXT and the study of quality markers.
Collapse
Affiliation(s)
- Lu Hong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Xiaoqian Shi
- Department of Pharmacy, Huaibei People's Hospital, Huaibei, Anhui, 235000, China
| | - Yutong Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Guodong Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Huihui Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Mingming Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Hanzhi Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Huan Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230038, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230038, China
| | - Ling He
- Key Laboratory of Xin’ an Medicine (Anhui University of Chinese Medicine) Ministry of Education, Hefei, Anhui, 230038, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230038, China
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230038, China
| |
Collapse
|
21
|
Liao YC, Wang JW, Guo C, Bai M, Ran Z, Wen LM, Ju BW, Ding Y, Hu JP, Yang JH. Cistanche tubulosa alleviates ischemic stroke-induced blood-brain barrier damage by modulating microglia-mediated neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116269. [PMID: 36863639 DOI: 10.1016/j.jep.2023.116269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke (IS) has both high morbidity and mortality. Previous research conducted by our group demonstrated that the bioactive ingredients of the traditional medicinal and edible plant Cistanche tubulosa (Schenk) Wight (CT) have various pharmacological effects in treating nervous system diseases. However, the effect of CT on the blood-brain barrier (BBB) after IS are still unknown. AIM OF THE STUDY This study aimed to identify CT's curative effect on IS and explore its underlying mechanism. MATERIALS AND METHODS IS injury was established in a rat model of middle cerebral artery occlusion (MCAO). Gavage administration of CT at dosages of 50, 100, and 200 mg/kg/day was carried out for seven consecutive days. Network pharmacology was used for predicting the pathways and potential targets of CT against IS, and subsequent studies confirmed the relevant targets. RESULTS According to the results, both neurological dysfunction and BBB disruption were exacerbated in the MCAO group. Moreover, CT improved BBB integrity and neurological function and protected against cerebral ischemia injury. Network pharmacology revealed that IS might involve neuroinflammation mediated by microglia. Extensive follow-up studies verified that MCAO caused IS by stimulating the production of inflammatory factors and microglial infiltration. CT was found to influence neuroinflammation via microglial M1-M2 polarization. CONCLUSION These findings suggested that CT may regulate microglia-mediated neuroinflammation by reducing MCAO-induced IS. The results provide theoretical and experimental evidence for the efficacy of CT therapy and novel concepts for the prevention and treatment of cerebral ischemic injuries.
Collapse
Affiliation(s)
- Yu-Cheng Liao
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, China; Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Min Bai
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zheng Ran
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, China
| | - Li-Mei Wen
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, 830011, China
| | - Bo-Wei Ju
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, China; Department of Pharmacy, The Fifth Affiliated Hospital, Xinjiang Medical University, Urumqi, 830011, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jun-Ping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, China.
| | - Jian-Hua Yang
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
22
|
Xia L, Liu X, Mao W, Guo Y, Huang J, Hu Y, Jin L, Liu X, Fu H, Du Y, Shou Q. Panax notoginseng saponins normalises tumour blood vessels by inhibiting EphA2 gene expression to modulate the tumour microenvironment of breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154787. [PMID: 37060724 DOI: 10.1016/j.phymed.2023.154787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/02/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Panax notoginseng saponins (PNS), the main active component of Panax notoginseng, can promote vascular microcirculation. PNS exhibits antitumor effects in various cancers. However, the molecular basis of the relationship between PNS and tumor blood vessels remains unclear. PURPOSE To study the relationship between PNS inhibiting the growth and metastasis of breast cancer and promoting the normalization of blood vessels. METHODS We performed laser speckle imaging of tumor microvessels and observed the effects of PNS on tumor growth and metastasis of MMTV-PyMT (FVB) spontaneous breast cancer in a transgenic mouse model. Immunohistochemical staining of Ki67 and CD31 was performed for tumors, scanning electron microscopy was used to observe tumor vascular morphology, and flow cytometry was used to detect tumor tissue immune microenvironment (TME). RNA-seq analysis was performed using the main vessels of the tumor tissues of the mice. HUVECs were cultured in tumor supernatant in vitro to simulate tumor microenvironment and verify the sequencing differential key genes. RESULTS After treatment with PNS, we observed that tumor growth was suppressed, the blood perfusion of the systemic tumor microvessels in the mice increased, and the number of lung metastases decreased. Moreover, the vascular density of the primary tumor increased, and the vascular epidermis was smoother and flatter. Moreover, the number of tumor-associated macrophages in the tumor microenvironment was reduced, and the expression levels of IL-6, IL-10, and TNF-α were reduced in the tumor tissues. PNS downregulated the expression of multiple genes associated with tumor angiogenesis, migration, and adhesion. In vitro tubule formation experiments revealed that PNS promoted the formation and connection of tumor blood vessels and normalized the vessel morphology primarily by inhibiting EphA2 expression. In addition, PNS inhibited the expression of tumor vascular marker proteins and vascular migration adhesion-related proteins in vivo. CONCLUSION In this study, we found that PNS promoted the generation and connection of tumor vascular endothelial cells, revealing the key role of EphA2 in endothelial cell adhesion and tumor blood vessel morphology. PNS can inhibit the proliferation and metastasis of breast cancer by inhibiting EphA2, improving the immune microenvironment of breast cancer and promoting the normalization of tumor blood vessels.
Collapse
Affiliation(s)
- Linying Xia
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Jinghua Academy of Zhejiang Chinese Medicine University, Jinghua 321015, PR China
| | - XianLi Liu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Jinghua Academy of Zhejiang Chinese Medicine University, Jinghua 321015, PR China
| | - Weiye Mao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Jinghua Academy of Zhejiang Chinese Medicine University, Jinghua 321015, PR China
| | - Yingxue Guo
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jie Huang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yingnan Hu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Lu Jin
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Provincial Key Laboratory of Sexual function of Integrated Traditional Chinese and Western Medicine, Hangzhou 310053, PR China
| | - Xia Liu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Provincial Key Laboratory of Sexual function of Integrated Traditional Chinese and Western Medicine, Hangzhou 310053, PR China
| | - Huiying Fu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Provincial Key Laboratory of Sexual function of Integrated Traditional Chinese and Western Medicine, Hangzhou 310053, PR China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Jinghua Academy of Zhejiang Chinese Medicine University, Jinghua 321015, PR China.
| | - Yueguang Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Qiyang Shou
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Provincial Key Laboratory of Sexual function of Integrated Traditional Chinese and Western Medicine, Hangzhou 310053, PR China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Jinghua Academy of Zhejiang Chinese Medicine University, Jinghua 321015, PR China.
| |
Collapse
|
23
|
Zhang X, Zhang Y, Zhang L, Qin C. Overexpression of ACE2 ameliorates Aβ-induced blood-brain barrier damage and angiogenesis by inhibiting NF-κB/VEGF/VEGFR2 pathway. Animal Model Exp Med 2023; 6:237-244. [PMID: 37183346 PMCID: PMC10272905 DOI: 10.1002/ame2.12324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Pathological angiogenesis and blood-brain barrier damage may play an important role in Alzheimer's disease (AD). ACE2 is mainly expressed on the surface of endothelial cells in brain. Recent studies have shown that the expression of ACE2 in AD is reduced, but its role in AD is still unclear. METHOD We induced AD damage in endothelial cells using Aβ25-35 and overexpressed ACE2 in bEend.3 cells through lentiviral transfection. We detected the effect of Aβ25-35 on cell viability using the CCK-8 assay and examined the effect of overexpressing ACE2 on angiogenesis using an angiogenesis assay. We used western blot and cell immunofluorescence to detect changes in the expression of the VEGF/VEGFR2 pathway, tight junction protein, and NF-κB pathway. RESULTS Aβ25-35 treatment significantly decreased the expression of ACE2 and reduced cell viability. ACE2 overexpression (1) reduced the number of branches and junctions in tube formation, (2) inhibited the activation of the VEGF/VEGFR2 pathway induced by Aβ25-35 , (3) increased the expression of TJPs, including ZO-1 and claudin-5, and (4) restored Aβ25-35 -induced activation of the NF-κB pathway. CONCLUSION Overexpression of ACE2 can improve pathological angiogenesis and blood-brain barrier damage in AD models in vitro by inhibiting NF-κB/VEGF/VEGFR2 pathway activity. ACE2 may therefore represent a therapeutic target for endothelial cell dysfunction in AD.
Collapse
Affiliation(s)
- Xueling Zhang
- Institute of Laboratory Animal Sciences, CAMS & PUMCBeijingChina
| | - Yu Zhang
- Institute of Laboratory Animal Sciences, CAMS & PUMCBeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijingChina
- Changping National Laboratory (CPNL)BeijingChina
| | - Ling Zhang
- Institute of Laboratory Animal Sciences, CAMS & PUMCBeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijingChina
- Changping National Laboratory (CPNL)BeijingChina
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, CAMS & PUMCBeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijingChina
- Changping National Laboratory (CPNL)BeijingChina
| |
Collapse
|
24
|
Zhao H, Wang L, Zhang L, Zhao H. Phytochemicals targeting lncRNAs: A novel direction for neuroprotection in neurological disorders. Biomed Pharmacother 2023; 162:114692. [PMID: 37058817 DOI: 10.1016/j.biopha.2023.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Neurological disorders with various etiologies impacting the nervous system are prevalent in clinical practice. Long non-coding RNA (lncRNA) molecules are functional RNA molecules exceeding 200 nucleotides in length that do not encode proteins, but participate in essential activities. Research indicates that lncRNAs may contribute to the pathogenesis of neurological disorders, and may be potential targets for their treatment. Phytochemicals in traditional Chinese herbal medicine (CHM) have been found to exert neuroprotective effects by targeting lncRNAs and regulating gene expression and various signaling pathways. We aim to establish the development status and neuroprotective mechanism of phytochemicals that target lncRNAs through a thorough literature review. A total of 369 articles were retrieved through manual and electronic searches of PubMed, Web of Science, Scopus and CNKI databases from inception to September 2022. The search utilized combinations of natural products, lncRNAs, neurological disorders, and neuroprotective effects as keywords. The included studies, a total of 31 preclinical trials, were critically reviewed to present the current situation and the progress in phytochemical-targeted lncRNAs in neuroprotection. Phytochemicals have demonstrated neuroprotective effects in preclinical studies of various neurological disorders by regulating lncRNAs. These disorders include arteriosclerotic ischemia-reperfusion injury, ischemic/hemorrhagic stroke, Alzheimer's disease, Parkinson's disease, glioma, peripheral nerve injury, post-stroke depression, and depression. Several phytochemicals exert neuroprotective roles through mechanisms such as anti-inflammatory, antioxidant, anti-apoptosis, autophagy regulation, and antagonism of Aβ-induced neurotoxicity. Some phytochemicals targeted lncRNAs and served a neuroprotective role by regulating microRNA and mRNA expression. The emergence of lncRNAs as pathological regulators provides a novel direction for the study of phytochemicals in CHM. Elucidating the mechanism of phytochemicals regulating lncRNAs will help to identify new therapeutic targets and promote their application in precision medicine.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lin Wang
- Department of Emergency medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Hongyu Zhao
- Department of Emergency medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
25
|
Li Y, Hong Z, Li S, Xie S, Wang J, Wang J, Liu Y. Efficacy of Butylphthalide in Combination with Edaravone in the Treatment of Acute Ischemic Stroke and the Effect on Serum Inflammatory Factors. DISEASE MARKERS 2023; 2023:9969437. [PMID: 37082457 PMCID: PMC10113042 DOI: 10.1155/2023/9969437] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 04/22/2023]
Abstract
Objective To investigate the efficacy of butylphthalide combined with edaravone in the treatment of acute ischemic stroke and the effect on serum inflammatory factors. Methods One hundred and sixty patients with acute ischemic stroke who attended the neurovascular intervention department of our hospital from May 2020 to June 2022 were enrolled as study subjects for prospective analysis and were equally divided into a control group and an experimental group using the random number table method, with 80 cases in each group. The control group was treated with edaravone injection, while the experimental group was treated with butylphthalide combined with edaravone. The disease was recorded to compare the efficacy, erythrocyte sedimentation rate, homocysteine, serum inflammatory factors including tumor necrosis factor-α, C-reactive protein and interleukin-6 levels, and the incidence of adverse reactions between the two groups. Results The total effective rate of treatment in the experimental group was 90.0% (72/80), while that of the control group was 62.5% (50/80), the total effective rate of the experimental group was significantly higher than that of the control group, and the difference was statistically significant (P < 0.05). After treatment, the erythrocyte sedimentation rate, homocysteine level, and serum TNF-α, CRP, and IL-6 levels of patients in the experimental group improved compared with those before treatment, and the degree of improvement was better than that of the control group, and the difference was statistically significant (P < 0.05). After 3 months of treatment, a comparison of the incidence of adverse reactions in the two groups showed no statistically significant difference between the two groups (P > 0.05). Conclusion The treatment of acute ischemic stroke with butylphthalide combined with edaravone has positive significance in improving blood circulation regulation and serum inflammatory factor levels and is reliable and worthy of clinical promotion.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurovascular Intervention, Cangzhou Central Hospital, Cangzhou, China
| | - Zhen Hong
- Department of Neurovascular Intervention, Cangzhou Central Hospital, Cangzhou, China
| | - Shaoquan Li
- Department of Neurovascular Intervention, Cangzhou Central Hospital, Cangzhou, China
| | - Songwang Xie
- Department of Neurovascular Intervention, Cangzhou Central Hospital, Cangzhou, China
| | - Junyong Wang
- Department of Neurovascular Intervention, Cangzhou Central Hospital, Cangzhou, China
| | - Jian Wang
- Department of Neurovascular Intervention, Cangzhou Central Hospital, Cangzhou, China
| | - Yongchang Liu
- Department of Neurovascular Intervention, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
26
|
Chrysin protects against cerebral ischemia-reperfusion injury in hippocampus via restraining oxidative stress and transition elements. Biomed Pharmacother 2023; 161:114534. [PMID: 36933376 DOI: 10.1016/j.biopha.2023.114534] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Chrysin is a natural flavonoid compound that has antioxidant and neuroprotective effects. Cerebral ischemia reperfusion (CIR) is closely connected with increased oxidative stress in the hippocampal CA1 region and homeostasis disorder of transition elements such as iron (Fe), copper (Cu) and zinc (Zn). This exploration was conducted to elucidate the antioxidant and neuroprotective effects of chrysin based on transient middle cerebral artery occlusion (tMCAO) in rats. Experimentally, sham group, model group, chrysin (50.0 mg/kg) group, Ginaton (21.6 mg/kg) group, Dimethyloxallyl Glycine (DMOG, 20.0 mg/kg) + chrysin group and DMOG group were devised. The rats in each group were performed to behavioral evaluation, histological staining, biochemical kit detection, and molecular biological detection. The results indicated that chrysin restrained oxidative stress and the rise of transition element levels, and regulated transition element transporter levels in tMCAO rats. DMOG activated hypoxia-inducible factor-1 subunit alpha (HIF-1α), reversed the antioxidant and neuroprotective effects of chrysin, and increased transition element levels. In a word, our findings emphasize that chrysin plays a critical role in protecting CIR injury via inhibiting HIF-1α against enhancive oxidative stress and raised transition metal levels.
Collapse
|
27
|
Liu W, Li Z. Diagnostic performance of perfusion-weighted imaging combined with serum MMP-2 and -9 levels in tumor recurrence after postoperative concomitant chemoradiotherapy of glioblastoma. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:563-570. [PMID: 36435971 DOI: 10.1002/jcu.23402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To evaluate diagnostic accuracy of dynamic susceptibility contrast- perfusion weighted imaging (DSC-PWI) combined with serum MMP-2 and -9 levels in differentiating recurrent glioblastoma (GBM). METHODS We enrolled a total of 220 GBM patients, including recurrent cases (n = 150) and non-recurrent cases (n = 70) after postoperative concomitant chemoradiotherapy. All patients performed preoperative and follow-up DSC-PWI, and two parameters [normalized cerebral blood volume (nCBV) and cerebral blood flow (nCBF)] were obtained. Preoperative serum levels of MMP-2 and MMP-9 were detected using ELISA. The diagnostic performance was evaluated by analyzing receiver operating characteristic (ROC) and area under the curve (AUC). RESULTS At baseline, the recurrence patients had higher nCBF and nCBV than the non-recurrence patients, accompanying by the increased MMP-2 and MMP-9 levels in serum. Serum MMP-2 level were positively associated with MMP-9 in recurrent patients. In patients classified as recurrence, both MMP-9 and MMP-2 in serum had a significant correlation with nCBV and nCBF. A sensitivity and specificity of nCBF for recurrence vs. non-recurrence were 94.29% and 63.33%, respectively. nCBV also could provide high discrimination between recurrence and non-recurrence patients (sensitivity: 84.29%, specificity: 62.67%, AUC: 0.821). In ROC analyses, both MMP-2 and MMP-9 distinguished recurrence from non-recurrence with AUC values of 0.883 and 0.900, respectively. Finally, the combination of DSC-PWI parameters (nCBF and nCBV) and serum MMP-2 and -9 levels showed much better discrimination capacity between recurrence and non-recurrence patients with a sensitivity of 92.86%, specificity of 79.33% and AUC of 0.899. CONCLUSION The combination of DSC-PWI parameters together with serum MMP-2 and -9 levels offered an attractive approach to noninvasively distinguish recurrence after postoperative radiotherapy of GBM.
Collapse
Affiliation(s)
- Wen Liu
- Image Teaching and Researching Office, Langfang Health Vocational College, Langfang, China
| | - Zhaoxiang Li
- Image Teaching and Researching Office, Langfang Health Vocational College, Langfang, China
| |
Collapse
|
28
|
Predictive Value of CT Perfusion in Hemorrhagic Transformation after Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Brain Sci 2023; 13:brainsci13010156. [PMID: 36672136 PMCID: PMC9856940 DOI: 10.3390/brainsci13010156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Background: Existing studies indicate that some computed tomography perfusion (CTP) parameters may predict hemorrhagic transformation (HT) after acute ischemic stroke (AIS), but there is an inconsistency in the conclusions alongside a lack of comprehensive comparison. Objective: To comprehensively evaluate the predictive value of CTP parameters in HT after AIS. Data sources: A systematical literature review of existing studies was conducted up to 1st October 2022 in six mainstream databases that included original data on the CTP parameters of HT and non-HT groups or on the diagnostic performance of relative cerebral blood flow (rCBF), relative permeability-surface area product (rPS), or relative cerebral blood volume (rCBV) in patients with AIS that completed CTP within 24 h of onset. Data Synthesis: Eighteen observational studies were included. HT and non-HT groups had statistically significant differences in CBF, CBV, PS, rCBF, rCBV, and rPS (p < 0.05 for all). The hierarchical summary receiver operating characteristic (HSROC) revealed that rCBF (area under the curve (AUC) = 0.9), rPS (AUC = 0.89), and rCBV (AUC = 0.85) had moderate diagnostic performances in predicting HT. The pooled sensitivity and specificity of rCBF were 0.85 (95% CI, 0.75−0.91) and 0.83 (95% CI, 0.63−0.94), respectively. Conclusions: rCBF, rPS, and rCBV had moderate diagnostic performances in predicting HT, and rCBF had the best pooled sensitivity and specificity.
Collapse
|
29
|
Zhu T, Wan Q. Pharmacological properties and mechanisms of Notoginsenoside R1 in ischemia-reperfusion injury. Chin J Traumatol 2023; 26:20-26. [PMID: 35922249 PMCID: PMC9912185 DOI: 10.1016/j.cjtee.2022.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Panax notoginseng is an ancient Chinese medicinal plant that has great clinical value in regulating cardiovascular disease in China. As a single component of panax notoginosides, notoginsenoside R1 (NGR1) belongs to the panaxatriol group. Many reports have demonstrated that NGR1 exerts multiple pharmacological effects in ischemic stroke, myocardial infarction, acute renal injury, and intestinal injury. Here, we outline the available reports on the pharmacological effects of NGR1 in ischemia-reperfusion (I/R) injury. We also discuss the chemistry, composition and molecular mechanism underlying the anti-I/R injury effects of NGR1. NGR1 had significant effects on reducing cerebral infarct size and neurological deficits in cerebral I/R injury, ameliorating the impaired mitochondrial morphology in myocardial I/R injury, decreasing kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin in renal I/R injury and attenuating jejunal mucosal epithelium injury in intestinal I/R injury. The various organ anti-I/R injury effects of NGR1 are mainly through the suppression of oxidative stress, apoptosis, inflammation, endoplasmic reticulum stress and promotion of angiogenesis and neurogenesis. These findings provide a reference basis for future research of NGR1 on I/R injury.
Collapse
Affiliation(s)
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
30
|
Li DD, Li N, Cai C, Wei CM, Liu GH, Wang TH, Xu FR. A molecular network-based pharmacological study on the protective effect of Panax notoginseng rhizomes against renal ischemia-reperfusion injury. Front Pharmacol 2023; 14:1134408. [PMID: 37144215 PMCID: PMC10151715 DOI: 10.3389/fphar.2023.1134408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Objective: We aimed to explore the protective effect of Panax notoginseng rhizomes (PNR) on renal ischemia and reperfusion injury (RIRI) and the underlying molecular network mechanism based on network pharmacology and combined systemic experimental validation. Methods: A bilateral RIRI model was established, and Cr, SCr, and BUN levels were detected. Then, the PNR was pretreated 1 week before the RIRI model was prepared. To determine the effects of the PNR in RIRI, histopathological damage and the effect of PNRs to the kidney was assessed, using TTC, HE, and TUNEL staining. Furthermore, the underlying network pharmacology mechanism was detected by screening drug-disease intersection targets from PPI protein interactions and GO and KEGG analysis, and the hub genes were screened for molecular docking based on the Degree value. Finally, the expression of hub genes in kidney tissues was verified by qPCR, and the protein expression of related genes was further detected by Western blot (WB). Results: PNR pretreatment could effectively increase Cr level, decrease SCr and BUN levels, reduce renal infarct areas and renal tubular cell injury areas, and inhibit renal cell apoptosis. By using network pharmacology combined with bioinformatics, we screened co-targets both Panax notoginseng (Sanchi) and RIRI, acquired ten hub genes, and successfully performed molecular docking. Of these, pretreatment with the PNR reduced the mRNA levels of IL6 and MMP9 at postoperative day 1 and TP53 at postoperative day 7, and the protein expression of MMP9 at postoperative day 1 in IRI rats. These results showed that the PNR could decrease kidney pathological injury in IRI rats and inhibit apoptotic reaction and cell inflammation so as to improve renal injury effectively, and the core network mechanism is involved in the inhibition of MMP9, TP53, and IL-6. Conclusion: The PNR has a marked protective effect for RIRI, and the underlying mechanism is involved in inhibiting the expression of MMP9, TP53, and IL-6. This striking discovery not only provides fruitful evidence for the protective effect of the PNR in RIRI rats but also provides a novel mechanic explanation.
Collapse
Affiliation(s)
- Dan-Dan Li
- Yunnan Key Laboratory of Dai and Yi Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Na Li
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, Yunnan, China
| | - Chui Cai
- Yunnan Key Laboratory of Dai and Yi Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chun-Mian Wei
- Yunnan Key Laboratory of Dai and Yi Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Guang-Hua Liu
- Yunnan Key Laboratory of Dai and Yi Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ting-Hua Wang
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, Yunnan, China
- *Correspondence: Ting-Hua Wang, ; Fu-Rong Xu,
| | - Fu-Rong Xu
- Yunnan Key Laboratory of Dai and Yi Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Ting-Hua Wang, ; Fu-Rong Xu,
| |
Collapse
|
31
|
Components of Salvia miltiorrhiza and Panax notoginseng Protect Pericytes Against OGD/R-Induced Injury via Regulating the PI3K/AKT/mTOR and JNK/ERK/P38 Signaling Pathways. J Mol Neurosci 2022; 72:2377-2388. [PMID: 36394713 DOI: 10.1007/s12031-022-02082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Salvia miltiorrhiza (SAL) and Panax notoginseng (PNS) are widely used in treating of ischemic stroke. However, it is unknown which components of SAL and PNS protect brain microvascular pericytes after an ischemic stroke. We evaluated the protective effects and mechanisms of SAL and PNS components in pericytes subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Pericytes were subjected to OGD/R. Cell Counting Kit-8 (CCK-8) was used to evaluate cell viability. ROS and SOD kits were used to detect oxidative stress. Flow cytometry was performed to analyze cell apoptosis. To evaluate cell migration, a scratch assay was performed. Expression of cleaved caspase-3, Bcl-2, Bax, VEGF, Ang-1, PDGFR-β, PI3K/AKT/mTOR, and JNK/ERK/P38 signaling pathways were identified using western blot. The results revealed that salvianolic acid B (Sal B), salvianolic acid D (Sal D), notoginsenoside R1 (R1), ginsenoside Rb1 (Rb1), and ginsenoside Rg1 (Rg1) increased the cell viability of pericytes subjected to OGD/R, reduced the level of ROS, and increased the expression of SOD. The components reduced cell apoptosis, increased the protein level of Bcl-2/Bax, reduced the level of cleaved caspase-3/caspase-3, increased cell migration, and enhanced the levels of Ang-1, PDGFR-β, and VEGF. The components could activate PI3K/AKT/mTOR pathway while inhibiting the JNK/ERK/P38 pathway. Studies found that Sal B, Sal D, R1, Rb1, and Rg1 inhibited oxidative stress and apoptosis while increasing the release of pro-angiogenic regulators of pericytes related to the PI3K/AKT/mTOR and JNK/ERK/P38 signaling pathways. This provides a potential foundation for developing monomeric drugs for treating ischemic stroke.
Collapse
|
32
|
The Crosstalk between the Blood–Brain Barrier Dysfunction and Neuroinflammation after General Anaesthesia. Curr Issues Mol Biol 2022; 44:5700-5717. [PMID: 36421670 PMCID: PMC9689502 DOI: 10.3390/cimb44110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
As we know, with continuous medical progress, the treatment of many diseases can be conducted via surgery, which often relies on general anaesthesia for its satisfactory performance. With the widespread use of general anaesthetics, people are beginning to question the safety of general anaesthesia and there is a growing interest in central nervous system (CNS) complications associated with anaesthetics. Recently, abundant evidence has suggested that both blood–brain barrier (BBB) dysfunction and neuroinflammation play roles in the development of CNS complications after anaesthesia. Whether there is a crosstalk between BBB dysfunction and neuroinflammation after general anaesthesia, and whether this possible crosstalk could be a therapeutic target for CNS complications after general anaesthesia needs to be clarified by further studies.
Collapse
|
33
|
Lannes-Costa PS, Pimentel BADS, Nagao PE. Role of Caveolin-1 in Sepsis – A Mini-Review. Front Immunol 2022; 13:902907. [PMID: 35911737 PMCID: PMC9334647 DOI: 10.3389/fimmu.2022.902907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Sepsis is a generalized disease characterized by an extreme response to a severe infection. Moreover, challenges remain in the diagnosis, treatment and management of septic patients. In this mini-review we demonstrate developments on cellular pathogenesis and the role of Caveolin-1 (Cav-1) in sepsis. Studies have shown that Cav-1 has a significant role in sepsis through the regulation of membrane traffic and intracellular signaling pathways. In addition, activation of apoptosis/autophagy is considered relevant for the progression and development of sepsis. However, how Cav-1 is involved in sepsis remains unclear, and the precise mechanisms need to be further investigated. Finally, the role of Cav-1 in altering cell permeability during inflammation, in sepsis caused by microorganisms, apoptosis/autophagy activation and new therapies under study are discussed in this mini-review.
Collapse
|
34
|
Liu B, Zhao T, Li Y, Han Y, Xu Y, Yang H, Wang S, Zhao Y, Li P, Wang Y. Notoginsenoside R1 ameliorates mitochondrial dysfunction to circumvent neuronal energy failure in acute phase of focal cerebral ischemia. Phytother Res 2022; 36:2223-2235. [PMID: 35419891 DOI: 10.1002/ptr.7450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/03/2022] [Accepted: 03/08/2022] [Indexed: 11/10/2022]
Abstract
Due to sudden loss of cerebral blood circulation, acute ischemic stroke (IS) causes neuronal energy attenuation or even exhaustion by mitochondrial dysfunction resulting in aggravation of neurological injury. In this study, we investigated if Notoginsenoside R1 ameliorated cerebral energy metabolism by limiting neuronal mitochondrial dysfunction in acute IS. Male Sprague-Dawley rats (260-280 g) were selected and performed by permanent middle cerebral artery occlusion model. In vitro, the oxygen glucose deprivation (OGD) model of Neuro2a (N2a) cells was established. We found Notoginsenoside R1 treatment reduced rats' cerebral infarct volume and neurological deficits, with increased Adenosine triphosphate (ATP) level together with upregulated expression of glucose transporter 1/3, monocarboxylate transporter 1 and citrate synthase in brain peri-ischemic tissue. In vitro, OGD-induced N2a cell death was inhibited, cell mitochondrial morphology was improved. Mitochondrial amount, mitochondrial membrane potential, and mitochondrial DNA copy number were increased by Notoginsenoside R1 administration. Furthermore, mitochondrial energy metabolism-related mRNA array found Atp12a and Atp6v1g3 gene expression were upregulated more than twofold, which were also verified in rat ischemic tissue by quantitative polymerase chain reaction (qPCR) assay. Therefore, Notoginsenoside R1 administration increases cerebral glucose and lactate transportation and ATP levels, ameliorates neuronal mitochondrial function after IS. Notoginsenoside R1 may be a novel protective agent for neuronal mitochondria poststroke.
Collapse
Affiliation(s)
- Bowen Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Tingting Zhao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| |
Collapse
|