1
|
Xu YL, Li XJ, Cai W, Yu WY, Chen J, Lee Q, Choi YJ, Wu F, Lou YJ, Ying HZ, Yu CH, Wu QF. Diosmetin-7-O-β-D-glucopyranoside from Pogostemonis Herba alleviated SARS-CoV-2-induced pneumonia by reshaping macrophage polarization and limiting viral replication. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118704. [PMID: 39182703 DOI: 10.1016/j.jep.2024.118704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viral pneumonia is the leading cause of death after SARS-CoV-2 infection. Despite effective at early stage, long-term treatment with glucocorticoids can lead to a variety of adverse effects and limited benefits. The Chinese traditional herb Pogostemonis Herba is the aerial part of Pogostemon Cablin (Blanco) Benth., which has potent antiviral, antibacterial, anti-inflammatory, and anticancer effects. It was used widely for treating various throat and respiratory diseases, including COVID-19, viral infection, cough, allergic asthma, acute lung injury and lung cancer. AIM OF THE STUDY To investigate the antiviral and anti-inflammatory effects of chemical compounds from Pogostemonis Herba in SARS-CoV-2-infected hACE2-overexpressing mouse macrophage RAW264.7 cells and hACE2 transgenic mice. MATERIALS AND METHODS The hACE2-overexpressing RAW264.7 cells were exposed with SARS-CoV-2. The cell viability was detected by CCK8 assay and cell apoptotic rate was by flow cytometric assay. The expressions of macrophage M1 phenotype markers (TNF-α and IL-6) and M2 markers (IL-10 and Arg-1) as well as the viral loads were detected by qPCR. The mice were inoculated intranasally with SARS-CoV-2 omicron variant to induce viral pneumonia. The levels of macrophages, neutrophils, and T cells in the lung tissues of infected mice were analyzed by full spectrum flow cytometry. The expressions of key proteins were detected by Western blot assay. RESULTS Diosmetin-7-O-β-D-glucopyranoside (DG) presented the strongest anti-SARS-CoV-2 activity. Intervention with DG at the concentrations of 0.625-2.5 μM not only reduced the viral replication, cell apoptosis, and the productions of inflammatory cytokines (IL-6 and TNF-α) in SARS-CoV-2-infected RAW264.7 cells, but also reversed macrophage polarity from M1 to M2 phenotype. Furthermore, treatment with DG (25-100 mg/kg) alleviated acute lung injury, and reduced macrophage infiltration in SARS-COV-2-infected mice. Mechanistically, DG inhibited SARS-COV-2 gene expression and HK3 translation via targeting YTHDF1, resulting in the inactivation of glycolysis-mediated NF-κB pathway. CONCLUSIONS DG exerted the potent antiviral and anti-inflammatory activities. It reduced pneumonia in SARS-COV-2-infected mice via inhibiting the viral replication and accelerating M2 macrophage polarization via targeting YTHDF1, indicating its potential for COVID-19 treatment.
Collapse
Affiliation(s)
- Yun-Lu Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xue-Jian Li
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China; Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Wei Cai
- College of Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315500, China
| | - Wen-Ying Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Jing Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qin Lee
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China; Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Yong-Jun Choi
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Fang Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Ying-Jun Lou
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Chen-Huan Yu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, China.
| | - Qiao-Feng Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Huynh DTN, Nguyen HT, Hsieh CM. Taiwan Chingguan Yihau may improve post-COVID-19 respiratory complications through PI3K/AKT, HIF-1, and TNF signaling pathways revealed by network pharmacology analysis. Mol Divers 2024:10.1007/s11030-024-10993-8. [PMID: 39382736 DOI: 10.1007/s11030-024-10993-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024]
Abstract
The emergence of new SARS-CoV-2 variants with a higher contagious capability and faster transmissible speed has imposed an incessant menace on global health and the economy. The SARS-CoV-2 infection might reoccur and last much longer than expected. Thence, there is a high possibility that COVID-19 can cause long-term health problems. This condition needs to be investigated thoroughly, especially the post-COVID-19 complications. Respiratory tract disorders are common and typical complications after recovery. Until now, there has been a lack of data on specialized therapeutic medicine for post-COVID-19 complications. The clinical efficacy of NRICM101 has been demonstrated in hospitalized COVID-19 patients. This herbal medicine may also be a promising therapy for post-COVID-19 complications, thanks to its phytochemical constituents. The potential pharmacological mechanisms of NRICM101 in treating post-COVID-19 respiratory complications were investigated using network pharmacology combined with molecular docking, and the results revealed that NRICM101 may exert a beneficial effect through the three primary pathways: PI3K/AKT, HIF-1, and TNF signaling pathways. Flavonoids (especially quercetin) have a predominant role and synergize with other active compounds to produce therapeutic effectiveness. Most of the main active compounds exist in three chief herbal ingredients, including Liquorice root (Glycyrrhiza glabra), Scutellaria root (Scutellaria baicalensis), and Mulberry leaf (Morus alba). To our knowledge, this is the first study of the NRICM101 effect on post-COVID-19 respiratory complications. Our findings may provide a better understanding of the potential mechanisms of NRICM101 in treating SARS-CoV-2 infection and regulating the immunoinflammatory response to improve post-COVID-19 respiratory complications.
Collapse
Affiliation(s)
- Dung Tam Nguyen Huynh
- College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Can Tho University of Medicine and Pharmacy, Can Tho City, 94117, Vietnam
| | - Hien Thi Nguyen
- Department of Nutrition and Food Safety, Faculty of Public Health, Can Tho University of Medicine and Pharmacy, Can Tho City, 94117, Vietnam
| | - Chien-Ming Hsieh
- College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
3
|
Chatatikun M, Indo HP, Imai M, Kawakami F, Kubo M, Kitagawa Y, Ichikawa H, Udomwech L, Phongphithakchai A, Sarakul O, Sukati S, Somsak V, Ichikawa T, Klangbud WK, Nissapatorn V, Tangpong J, Majima HJ. Potential of traditional medicines in alleviating COVID-19 symptoms. Front Pharmacol 2024; 15:1452616. [PMID: 39391697 PMCID: PMC11464457 DOI: 10.3389/fphar.2024.1452616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
This review discusses the prevention and treatment of coronavirus disease 2019 (COVID-19) caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Mutations in its spike glycoprotein have driven the emergence of variants with high transmissibility and immune escape capabilities. Some antiviral drugs are ineffective against the BA.2 subvariant at the authorized dose. Recently, 150 natural metabolites have been identified as potential candidates for development of new anti-COVID-19 drugs with higher efficacy and lower toxicity than those of existing therapeutic agents. Botanical drug-derived bioactive molecules have shown promise in dampening the COVID-19 cytokine storm and thus preventing pulmonary fibrosis, as they exert a strong binding affinity for viral proteins and inhibit their activity. The Health Ministry of Thailand has approved Andrographis paniculata (Jap. Senshinren) extracts to treat COVID-19. In China, over 85% of patients infected with SARS-CoV-2 receive treatments based on traditional Chinese medicine. A comprehensive map of the stages and pathogenetic mechanisms related to the disease and effective natural products to treat and prevent COVID-19 are presented. Approximately 10% of patients with COVID-19 are affected by long COVID, and COVID-19 infection impairs mitochondrial DNA. As the number of agents to treat COVID-19 is limited, adjuvant botanical drug treatments including vitamin C and E supplementation may reduce COVID-19 symptoms and inhibit progression to long COVID.
Collapse
Affiliation(s)
- Moragot Chatatikun
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Hiroko P. Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Amanogawa Galaxy Astronomy Research Center, Kagoshima University Graduate School of Engineering, Kagoshima, Japan
| | - Motoki Imai
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Fumitaka Kawakami
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Makoto Kubo
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Division of Microbiology, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
- Department of Environmental Microbiology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Yoshimasa Kitagawa
- Oral Diagnosis and Medicine, Division of Oral Pathobiological Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Ichikawa
- Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Lunla Udomwech
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Atthaphong Phongphithakchai
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Orawan Sarakul
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Suriyan Sukati
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Voravuth Somsak
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Wiyada Kwanhian Klangbud
- Medical Technology Program, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Hideyuki J. Majima
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
4
|
Das B, Bhardwaj PK, Chaudhary SK, Pathaw N, Singh HK, Tampha S, Singh KK, Sharma N, Mukherjee PK. Bioeconomy and ethnopharmacology - Translational perspective and sustainability of the bioresources of northeast region of India. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118203. [PMID: 38641075 DOI: 10.1016/j.jep.2024.118203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The ecological environment of Northeast region of India (NER), with its high humidity, has resulted in greater speciation and genetic diversity of plant, animal, and microbial species. This region is not only rich in ethnic and cultural diversity, but it is also a major biodiversity hotspot. The sustainable use of these bioresources can contribute to the region's bioeconomic development. AIM OF THE STUDY The review aimed to deliver various perspectives on the development of bioeconomy from NER bioresources under the tenets of sustainable utilization and socioeconomic expansion. MATERIALS AND METHODS Relevant information related to prospects of the approaches and techniques pertaining to the sustainable use of ethnomedicine resources for the growth of the bioeconomy were retrieved from PubMed, ScienceDirect, Google Scholar, Scopus, and Springer from 1984 to 2023. All the appropriate abstracts, full-text articles and various book chapters on bioeconomy and ethnopharmacology were conferred. RESULT As the population grows, so does the demand for basic necessities such as food, health, and energy resources, where insufficient resource utilization and unsustainable pattern of material consumption cause impediments to economic development. On the other hand, the bioeconomy concept leads to "the production of renewable biological resources and the conversion of these resources and waste streams into value-added products. CONCLUSIONS In this context, major emphasis should be placed on strengthening the economy's backbone in order to ensure sustainable use of these resources and livelihood security; in other words, it can boost the bio-economy by empowering the local people in general.
Collapse
Affiliation(s)
- Bhaskar Das
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Pardeep Kumar Bhardwaj
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Sushil K Chaudhary
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Neeta Pathaw
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Huidrom Khelemba Singh
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Soibam Tampha
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Khaidem Kennedy Singh
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Pulok Kumar Mukherjee
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India; Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Meghalaya Center, Shillong, Meghalaya 793009, India.
| |
Collapse
|
5
|
Abi Sleiman M, Younes M, Hajj R, Salameh T, Abi Rached S, Abi Younes R, Daoud L, Doumiati JL, Frem F, Ishak R, Medawar C, Naim HY, Rizk S. Urtica dioica: Anticancer Properties and Other Systemic Health Benefits from In Vitro to Clinical Trials. Int J Mol Sci 2024; 25:7501. [PMID: 39000608 PMCID: PMC11242153 DOI: 10.3390/ijms25137501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
While conventional medicine has advanced in recent years, there are still concerns about its potential adverse reactions. The ethnopharmacological knowledge established over many centuries and the existence of a variety of metabolites have made medicinal plants, such as the stinging nettle plant, an invaluable resource for treating a wide range of health conditions, considering its minimal adverse effects on human health. The aim of this review is to highlight the therapeutic benefits and biological activities of the edible Urtica dioica (UD) plant with an emphasis on its selective chemo-preventive properties against various types of cancer, whereby we decipher the mechanism of action of UD on various cancers including prostate, breast, leukemia, and colon in addition to evaluating its antidiabetic, microbial, and inflammatory properties. We further highlight the systemic protective effects of UD on the liver, reproductive, excretory, cardiovascular, nervous, and digestive systems. We present a critical assessment of the results obtained from in vitro and in vivo studies as well as clinical trials to highlight the gaps that require further exploration for future prospective studies.
Collapse
Affiliation(s)
- Marc Abi Sleiman
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Roy Hajj
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Tommy Salameh
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Samir Abi Rached
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Rimane Abi Younes
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Lynn Daoud
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Jean Louis Doumiati
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Francesca Frem
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Ramza Ishak
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Christopher Medawar
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Hassan Y Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| |
Collapse
|
6
|
Hsieh PC, Yu CC, Tzeng IS, Hsieh TH, Wu CF, Ko LF, Lan CC, Chao YC. Clinical effects of traditional Chinese herbal medicine management in patients with COVID-19 sequelae: A hospital-based retrospective cohort study in Taiwan. Int J Med Sci 2024; 21:1280-1291. [PMID: 38818462 PMCID: PMC11134583 DOI: 10.7150/ijms.96575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction: An estimated 43% of COVID-19 patients showed sequelae, including fatigue, neurocognitive impairment, respiratory symptoms, and smell or taste disorders. These sequelae significantly affect an individual's health, work capacity, healthcare systems, and socioeconomic aspects. Traditional Chinese herbal medicine (TCHM) management showed clinical benefits in treating patients with COVID-19 sequelae. This study aimed to analyze the effects of personalized TCHM management in patients with COVID-19 sequelae. Methods: After the COVID-19 outbreak in Taiwan, we recorded Chronic Obstructive Pulmonary Disease Assessment Tool (CAT), Chalder Fatigue Questionnaire (CFQ-11), and Brief Symptom Rating Scale (BSRS-5) to assess post-COVID respiratory, fatigue, and emotional distress symptoms, respectively. In this study, we retrospectively reviewed the medical records between July 2022 and March 2023. We analyzed the effects of TCHM administration after 14- and 28-days of treatment. Results: 47 patients were included in this study. The results demonstrated that personalized TCHM treatment significantly improved the CAT, CFQ-11, and BSRS-5 scores after 14 and 28 days. TCHM alleviated physical and psychological fatigue. In logistic regression analysis, there was no statistically significant differences in the severity of the baseline symptoms and TCHM administration effects concerning the duration since the initial confirmation of COVID-19, sex, age, or dietary preference (non-vegetarian or vegetarian). Conclusions: Our study suggested that personalized TCHM treatment notably reduced fatigue, respiratory and emotional distress symptoms after 14- and 28-days of treatment in patients with COVID-19 sequelae. We propose that TCHM should be considered as an effective intervention for patients with COVID-19 sequelae.
Collapse
Affiliation(s)
- Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chih-Chin Yu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Tsung-Han Hsieh
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chiu-Feng Wu
- Department of Nursing, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Li-Fan Ko
- Department of Nursing, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chou-Chin Lan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - You-Chen Chao
- School of Medicine, Tzu-Chi University, Hualien, Taiwan
- Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
7
|
Mendonça SC, Gomes BA, Campos MF, da Fonseca TS, Esteves MEA, Andriolo BV, Cheohen CFDAR, Constant LEC, da Silva Costa S, Calil PT, Tucci AR, de Oliveira TKF, Rosa ADS, Ferreira VNDS, Lima JNH, Miranda MD, da Costa LJ, da Silva ML, Scotti MT, Allonso D, Leitão GG, Leitão SG. Myrtucommulones and Related Acylphloroglucinols from Myrtaceae as a Promising Source of Multitarget SARS-CoV-2 Cycle Inhibitors. Pharmaceuticals (Basel) 2024; 17:436. [PMID: 38675398 PMCID: PMC11054083 DOI: 10.3390/ph17040436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The LABEXTRACT plant extract bank, featuring diverse members of the Myrtaceae family from Brazilian hot spot regions, provides a promising avenue for bioprospection. Given the pivotal roles of the Spike protein and 3CLpro and PLpro proteases in SARS-CoV-2 infection, this study delves into the correlations between the Myrtaceae species from the Atlantic Forest and these targets, as well as an antiviral activity through both in vitro and in silico analyses. The results uncovered notable inhibitory effects, with Eugenia prasina and E. mosenii standing out, while E. mosenii proved to be multitarget, presenting inhibition values above 72% in the three targets analyzed. All extracts inhibited viral replication in Calu-3 cells (EC50 was lower than 8.3 µg·mL-1). Chemometric analyses, through LC-MS/MS, encompassing prediction models and molecular networking, identified potential active compounds, such as myrtucommulones, described in the literature for their antiviral activity. Docking analyses showed that one undescribed myrtucommulone (m/z 841 [M - H]-) had a higher fitness score when interacting with the targets of this study, including ACE2, Spike, PLpro and 3CLpro of SARS-CoV-2. Also, the study concludes that Myrtaceae extracts, particularly from E. mosenii and E. prasina, exhibit promising inhibitory effects against crucial stages in SARS-CoV-2 infection. Compounds like myrtucommulones emerge as potential anti-SARS-CoV-2 agents, warranting further exploration.
Collapse
Affiliation(s)
- Simony Carvalho Mendonça
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (B.A.G.); (M.F.C.)
| | - Brendo Araujo Gomes
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (B.A.G.); (M.F.C.)
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Mariana Freire Campos
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (B.A.G.); (M.F.C.)
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Thamirys Silva da Fonseca
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Maria Eduarda Alves Esteves
- Programa de Pós-Graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.A.E.); (M.L.d.S.)
| | - Bruce Veiga Andriolo
- Programa de Pós-Graduação em Biotecnologia, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Duque de Caxias 25250-020, RJ, Brazil;
| | - Caio Felipe de Araujo Ribas Cheohen
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências da Saúde, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé 27965-045, RJ, Brazil;
| | - Larissa Esteves Carvalho Constant
- Programa de Pós-Graduação em Ciências Biológicas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (L.E.C.C.); (S.d.S.C.); (D.A.)
| | - Stephany da Silva Costa
- Programa de Pós-Graduação em Ciências Biológicas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (L.E.C.C.); (S.d.S.C.); (D.A.)
| | - Pedro Telles Calil
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (P.T.C.); (L.J.d.C.)
| | - Amanda Resende Tucci
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Thamara Kelcya Fonseca de Oliveira
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Alice dos Santos Rosa
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Vivian Neuza dos Santos Ferreira
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
| | - Julia Nilo Henrique Lima
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
| | - Milene Dias Miranda
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Luciana Jesus da Costa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (P.T.C.); (L.J.d.C.)
| | - Manuela Leal da Silva
- Programa de Pós-Graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.A.E.); (M.L.d.S.)
- Programa de Pós-Graduação em Biotecnologia, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Duque de Caxias 25250-020, RJ, Brazil;
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências da Saúde, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé 27965-045, RJ, Brazil;
| | - Marcus Tullius Scotti
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa 58033-455, PB, Brazil;
| | - Diego Allonso
- Programa de Pós-Graduação em Ciências Biológicas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (L.E.C.C.); (S.d.S.C.); (D.A.)
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Suzana Guimarães Leitão
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (B.A.G.); (M.F.C.)
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| |
Collapse
|
8
|
Sopjani M, Falco F, Impellitteri F, Guarrasi V, Nguyen Thi X, Dërmaku-Sopjani M, Faggio C. Flavonoids derived from medicinal plants as a COVID-19 treatment. Phytother Res 2024; 38:1589-1609. [PMID: 38284138 DOI: 10.1002/ptr.8123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 disease. Through its viral spike (S) protein, the virus enters and infects epithelial cells by utilizing angiotensin-converting enzyme 2 as a host cell's receptor protein. The COVID-19 pandemic had a profound impact on global public health and economies. Although various effective vaccinations and medications are now available to prevent and treat COVID-19, natural compounds derived from medicinal plants, particularly flavonoids, demonstrated therapeutic potential to treat COVID-19 disease. Flavonoids exhibit dual antiviral mechanisms: direct interference with viral invasion and inhibition of replication. Specifically, they target key viral molecules, particularly viral proteases, involved in infection. These compounds showcase significant immunomodulatory and anti-inflammatory properties, effectively inhibiting various inflammatory cytokines. Additionally, emerging evidence supports the potential of flavonoids to mitigate the progression of COVID-19 in individuals with obesity by positively influencing lipid metabolism. This review aims to elucidate the molecular structure of SARS-CoV-2 and the underlying mechanism of action of flavonoids on the virus. This study evaluates the potential anti-SARS-CoV-2 properties exhibited by flavonoid compounds, with a specific interest in their structure and mechanisms of action, as therapeutic applications for the prevention and treatment of COVID-19. Nevertheless, a significant portion of existing knowledge is based on theoretical frameworks and findings derived from in vitro investigations. Further research is required to better assess the effectiveness of flavonoids in combating SARS-CoV-2, with a particular emphasis on in vivo and clinical investigations.
Collapse
Affiliation(s)
- Mentor Sopjani
- Faculty of Medicine, University of Prishtina, Prishtina, Kosova
| | - Francesca Falco
- Institute for Marine Biological Resources and Biotechnology (IRBIM)-CNR, Mazara del Vallo, Italy
| | | | - Valeria Guarrasi
- Institute of Biophysics, National Research Council (CNR), Palermo, Italy
| | - Xuan Nguyen Thi
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
- Department of Eco sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
9
|
Kaur P, Dey A, Rawat K, Dey S. Novel antioxidant protein target therapy to counter the prevalence and severity of SARS-CoV-2. Front Immunol 2024; 14:1241313. [PMID: 38235136 PMCID: PMC10791803 DOI: 10.3389/fimmu.2023.1241313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Background This review analyzed the magnitude of the COVID-19 pandemic globally and in India and the measures to counter its effect using natural and innate immune booster molecules. The study focuses on two phases: the first focuses on the magnitude, and the second on the effect of antioxidants (natural compounds) on SARS-CoV-2. Methods The magnitude of the prevalence, mortality, and comorbidities was acquired from the World Health Organization (WHO) report, media, a report from the Ministry of Health and Family Welfare (MoHFW), newspapers, and the National Centre of Disease Control (NCDC). Research articles from PubMed as well as other sites/journals and databases were accessed to gather literature on the effect of antioxidants. Results In the elderly and any chronic diseases, the declined level of antioxidant molecules enhanced the reactive oxygen species, which in turn deprived the immune system. Conclusion Innate antioxidant proteins like sirtuin and sestrin play a vital role in enhancing immunity. Herbal products and holistic approaches can also be alternative solutions for everyday life to boost the immune system by improving the redox balance in COVID-19 attack. This review analyzed the counteractive effect of alternative therapy to boost the immune system against the magnitude of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Priyajit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Akash Dey
- Clinton Health Access Initiative, New Delhi, India
| | - Kartik Rawat
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Khan M, Khan M, Alshareef E, Alaqeel SI, Alkhathlan HZ. Chemical Characterization and Chemotaxonomic Significance of Essential Oil Constituents of Matricaria aurea Grown in Two Different Agro-Climatic Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3553. [PMID: 37896017 PMCID: PMC10610148 DOI: 10.3390/plants12203553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
A comprehensive study on chemical characterization of essential oil (EO) constituents of a rarely explored plant species (Matricaria aurea) of the Asteraceae family grown in Saudi Arabia and Jordan was carried out. Analyses were conducted employing gas chromatographic approaches such as GC-MS, GC-FID, and Co-GC, as well as RT, LRI determination, and database and literature comparisons, on two diverse stationary phase columns, which led to the identification of a total of 135 constituents from both EOs. Oxygenated sesquiterpenes were found to be the most predominant chemical class of Saudi M. aurea EOs, in which α-bisabolol (27.8%), γ-gurjunenepoxide (21.7%), (E, E)-α-farnesene (16.3%), and cis-spiroether (7.5%) were present as major components. In contrast, the most dominant chemical class of Jordanian M. aurea oil was found to be sesquiterpene hydrocarbons, where (E, E)-α-farnesene (50.2%), γ-gurjunenepoxide (8.5%), (E)-β-farnesene (8.1%), and (Z, E)-α-farnesene (4.4%) were detected as chief constituents. It is interesting to mention here that Saudi and Jordanian M. aurea EOs showed quite interesting chemical compositions and were found to have different chemotypes when compared to previously reported M. aurea EO compositions.
Collapse
Affiliation(s)
- Merajuddin Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Eman Alshareef
- Department of Chemistry, College of Science, King Saud University (034), Riyadh 11495, Saudi Arabia; (E.A.); (S.I.A.)
| | - Shatha Ibrahim Alaqeel
- Department of Chemistry, College of Science, King Saud University (034), Riyadh 11495, Saudi Arabia; (E.A.); (S.I.A.)
| | - Hamad Z. Alkhathlan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
11
|
Cheong KL, Yu B, Teng B, Veeraperumal S, Xu B, Zhong S, Tan K. Post-COVID-19 syndrome management: Utilizing the potential of dietary polysaccharides. Biomed Pharmacother 2023; 166:115320. [PMID: 37595427 DOI: 10.1016/j.biopha.2023.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
The COVID-19 pandemic has caused significant global impact, resulting in long-term health effects for many individuals. As more patients recover, there is a growing need to identify effective management strategies for ongoing health concerns, such as post-COVID-19 syndrome, characterized by persistent symptoms or complications beyond several weeks or months from the onset of symptoms. In this review, we explore the potential of dietary polysaccharides as a promising approach to managing post-COVID-19 syndrome. We summarize the immunomodulatory, antioxidant, antiviral, and prebiotic activities of dietary polysaccharides for the management of post-COVID-19 syndrome. Furthermore, the review investigates the role of polysaccharides in enhancing immune response, regulating immune function, improving oxidative stress, inhibiting virus binding to ACE2, balancing gut microbiota, and increasing functional metabolites. These properties of dietary polysaccharides may help alleviate COVID-19 symptoms, providing a promising avenue for effective treatment strategies.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Biao Yu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Bo Teng
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Baojun Xu
- Programme of Food Science and Technology, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, Guangxi, China.
| |
Collapse
|
12
|
Liang Y, Jiang Q, Zou H, Zhao J, Zhang J, Ren L. Withaferin A: A potential selective glucocorticoid receptor modulator with anti-inflammatory effect. Food Chem Toxicol 2023; 179:113949. [PMID: 37467946 DOI: 10.1016/j.fct.2023.113949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Glucocorticoids have been widely applied to various clinical treatment, however some serious side effects may occur during the treatment. It is widely known that glucocorticoids produce a marked effect through binding to glucocorticoid receptor (GR). As withaferin A can provide multiple health benefits, this work aims to confirm withaferin A as a potential selective GR modulator with anti-inflammatory effect. Fluorescence polarization assay confirmed that withaferin A could steadily bind to GR with an IC50 value of 203.80 ± 0.36 μM. Meanwhile, glucocorticoid receptor translocation of withaferin A was measured by nuclear fractionation assay. Dual luciferase reporter assay showed that withaferin A did not activate GR transcription. Furthermore, withaferin A decreased the GR-related protein expression with less side effects. The result of molecular docking showed that hydrogen-bonding and hydrophobic interactions contributed to the binding of withaferin A with GR. In addition, the GR-withaferin A complex maintained a stable binding throughout the dynamics simulation process. Enzyme-linked immunosorbent assay showed that withaferin A inhibited the production of cytokines, confirming its anti-inflammatory effect. These findings indicate that withaferin A is a potential selective GR modulator and this work may provide a research basis for developing dietary supplements and nutraceuticals against inflammation.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
13
|
Ng CYJ, Bun HH, Zhao Y, Zhong LLD. TCM "medicine and food homology" in the management of post-COVID disorders. Front Immunol 2023; 14:1234307. [PMID: 37720220 PMCID: PMC10500073 DOI: 10.3389/fimmu.2023.1234307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Background The World Health Organization declared that COVID-19 is no longer a public health emergency of global concern on May 5, 2023. Post-COVID disorders are, however, becoming more common. Hence, there lies a growing need to develop safe and effective treatment measures to manage post-COVID disorders. Investigating the use of TCM medicinal foods in the long-term therapy of post-COVID illnesses may be beneficial given contemporary research's emphasis on the development of medicinal foods. Scope and approach The use of medicinal foods for the long-term treatment of post-COVID disorders is highlighted in this review. Following a discussion of the history of the TCM "Medicine and Food Homology" theory, the pathophysiological effects of post-COVID disorders will be briefly reviewed. An analysis of TCM medicinal foods and their functions in treating post-COVID disorders will then be provided before offering some insight into potential directions for future research and application. Key findings and discussion TCM medicinal foods can manage different aspects of post-COVID disorders. The use of medicinal foods in the long-term management of post-COVID illnesses may be a safe and efficient therapy choice because they are typically milder in nature than chronic drug use. These findings may also be applied in the long-term post-disease treatment of similar respiratory disorders.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hung Hung Bun
- The University of Hong Kong (HKU) School of Professional and Continuing Education, Hong Kong, Hong Kong SAR, China
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Linda L. D. Zhong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Tetsatsi ACM, Nguena AA, Deutou AL, Talom AT, Metchum BT, Tiotsia AT, Watcho P, Colizzi V. Factors Associated with COVID-19 Vaccine Refusal: A Community-Based Study in the Menoua Division in Cameroon. Trop Med Infect Dis 2023; 8:424. [PMID: 37755886 PMCID: PMC10534537 DOI: 10.3390/tropicalmed8090424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
COVID-19, which was named in March 2020 as a global pandemic by the WHO, remains a serious public health threat worldwide. Despite the adoption of vaccines as an effective strategy to counter this pandemic, the vaccination rate in Cameroon is far lower than that planned by the Cameroonian government and its partners. The main objective of this study was to determine the factors limiting COVID-19 vaccine acceptance in the Menoua Division in the West Region of Cameroon. A community-based cross-sectional and analytical study was conducted between March and April 2022 in the Menoua Division. A pre-tested questionnaire was filled out by willing participants of more than 18 years old, and data were further expressed in order to estimate the knowledge of participants on COVID-19, vaccine status, and the factors associated with vaccine refusal. A Pearson test was performed in order to identify the associated factors, with a p-value < 0.05 considered as significant. A total of 520 participants with a mean age of 33.27 ± 12.78 were included. Most had a secondary education level (56.15%), and trade and informal sectors (34.04%) were the main occupations. Knowledge on COVID-19 was average, and it was significantly associated (p < 0.05) with gender and education level. The vaccination rate was 10%, which was six times less than the national target. A lack of information, confidence, and medicinal plant use were all factors significantly associated with vaccine refusal. This pioneer community-based study in Cameroon identified a lack of knowledge, confidence, and medicinal plant use as the leading factors limiting COVID-19 vaccine acceptance in Cameroon. Health authorities should therefore strengthen sensitization in order to tackle the lack of information and the misinformation among the target groups.
Collapse
Affiliation(s)
- Aimé Césaire Momo Tetsatsi
- Faculty of Science and Technology, Evangelical University of Cameroon, Bandjoun P.O. Box 127, Cameroon
- Research Unit of Animal Physiology and Phytopharmacology, University of Dschang, Dschang P.O. Box 67, Cameroon
- Faculty of Health Sciences, The University of Bamenda, Bambili P.O. Box 39, Cameroon
| | - Astride Arolle Nguena
- Faculty of Science and Technology, Evangelical University of Cameroon, Bandjoun P.O. Box 127, Cameroon
| | - Andrillene Laure Deutou
- Faculty of Science and Technology, Evangelical University of Cameroon, Bandjoun P.O. Box 127, Cameroon
- Department of Biology and Interdepartmental Centre for Comparative Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alaric Tamuedjoun Talom
- Faculty of Science and Technology, Evangelical University of Cameroon, Bandjoun P.O. Box 127, Cameroon
| | - Beatrice Talom Metchum
- Faculty of Science and Technology, Evangelical University of Cameroon, Bandjoun P.O. Box 127, Cameroon
| | - Armand Tsapi Tiotsia
- Faculty of Science and Technology, Evangelical University of Cameroon, Bandjoun P.O. Box 127, Cameroon
| | - Pierre Watcho
- Research Unit of Animal Physiology and Phytopharmacology, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Vittorio Colizzi
- Faculty of Science and Technology, Evangelical University of Cameroon, Bandjoun P.O. Box 127, Cameroon
- Department of Biology and Interdepartmental Centre for Comparative Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
15
|
Buck CB. The mint versus Covid hypothesis. Med Hypotheses 2023; 173:111047. [PMID: 37007799 PMCID: PMC10062428 DOI: 10.1016/j.mehy.2023.111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Recent lines of evidence suggest the intriguing hypothesis that consuming common culinary herbs of the mint family might help prevent or treat Covid. Individual citizens could easily explore the hypothesis using ordinary kitchen materials. I offer a philosophical framework to account for the puzzling lack of public health messaging about this interesting idea.
Collapse
Affiliation(s)
- Christopher B Buck
- Lab of Cellular Oncology, National Cancer Institute, Building 37 Room 4118, 9000 Rockville Pike, Bethesda, MD 20892-4263 USA
| |
Collapse
|
16
|
England C, TrejoMartinez J, PerezSanchez P, Karki U, Xu J. Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19. Life (Basel) 2023; 13:617. [PMID: 36983772 PMCID: PMC10054913 DOI: 10.3390/life13030617] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had a profound impact on the world's health and economy. Although the end of the pandemic may come in 2023, it is generally believed that the virus will not be completely eradicated. Most likely, the disease will become an endemicity. The rapid development of vaccines of different types (mRNA, subunit protein, inactivated virus, etc.) and some other antiviral drugs (Remdesivir, Olumiant, Paxlovid, etc.) has provided effectiveness in reducing COVID-19's impact worldwide. However, the circulating SARS-CoV-2 virus has been constantly mutating with the emergence of multiple variants, which makes control of COVID-19 difficult. There is still a pressing need for developing more effective antiviral drugs to fight against the disease. Plants have provided a promising production platform for both bioactive chemical compounds (small molecules) and recombinant therapeutics (big molecules). Plants naturally produce a diverse range of bioactive compounds as secondary metabolites, such as alkaloids, terpenoids/terpenes and polyphenols, which are a rich source of countless antiviral compounds. Plants can also be genetically engineered to produce valuable recombinant therapeutics. This molecular farming in plants has an unprecedented opportunity for developing vaccines, antibodies, and other biologics for pandemic diseases because of its potential advantages, such as low cost, safety, and high production volume. This review summarizes the latest advancements in plant-derived drugs used to combat COVID-19 and discusses the prospects and challenges of the plant-based production platform for antiviral agents.
Collapse
Affiliation(s)
- Corbin England
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | | | - Paula PerezSanchez
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- College of Agriculture, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
17
|
Gavanji S, Bakhtari A, Famurewa AC, Othman EM. Cytotoxic Activity of Herbal Medicines as Assessed in Vitro: A Review. Chem Biodivers 2023; 20:e202201098. [PMID: 36595710 DOI: 10.1002/cbdv.202201098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Since time immemorial, human beings have sought natural medications for treatment of various diseases. Weighty evidence demonstrates the use of chemical methodologies for sensitive evaluation of cytotoxic potentials of herbal agents. However, due to the ubiquitous use of cytotoxicity methods, there is a need for providing updated guidance for the design and development of in vitro assessment. The aim of this review is to provide practical guidance on common cell-based assays for suitable assessment of cytotoxicity potential of herbal medicines and discussing their advantages and disadvantages Relevant articles in authentic databases, including PubMed, Web of Science, Science Direct, Scopus, Google Scholar and SID, from 1950 to 2022 were collected according to selection criteria of in vitro cytotoxicity assays and protocols. In addition, the link between cytotoxicity assay selection and different factors such as the drug solvent, concentration and exposure duration were discussed.
Collapse
Affiliation(s)
- Shahin Gavanji
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, 8415683111, Isfahan, Iran
| | - Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, 7133654361, Shiraz, Iran
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, PMB 1010, Ikwo, Ebonyi State, Nigeria.,Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576104, Manipal, Karnataka State, India
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.,Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Wuerzburg, Germany
| |
Collapse
|
18
|
Dofuor AK, Quartey NKA, Osabutey AF, Boateng BO, Lutuf H, Osei JHN, Ayivi-Tosuh SM, Aiduenu AF, Ekloh W, Loh SK, Opoku MJ, Aidoo OF. The Global Impact of COVID-19: Historical Development, Molecular Characterization, Drug Discovery and Future Directions. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2023; 16:2632010X231218075. [PMID: 38144436 PMCID: PMC10748929 DOI: 10.1177/2632010x231218075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023]
Abstract
In December 2019, an outbreak of a respiratory disease called the coronavirus disease 2019 (COVID-19) caused by a new coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China. The SARS-CoV-2, an encapsulated positive-stranded RNA virus, spread worldwide with disastrous consequences for people's health, economies, and quality of life. The disease has had far-reaching impacts on society, including economic disruption, school closures, and increased stress and anxiety. It has also highlighted disparities in healthcare access and outcomes, with marginalized communities disproportionately affected by the SARS-CoV-2. The symptoms of COVID-19 range from mild to severe. There is presently no effective cure. Nevertheless, significant progress has been made in developing COVID-19 vaccine for different therapeutic targets. For instance, scientists developed multifold vaccine candidates shortly after the COVID-19 outbreak after Pfizer and AstraZeneca discovered the initial COVID-19 vaccines. These vaccines reduce disease spread, severity, and mortality. The addition of rapid diagnostics to microscopy for COVID-19 diagnosis has proven crucial. Our review provides a thorough overview of the historical development of COVID-19 and molecular and biochemical characterization of the SARS-CoV-2. We highlight the potential contributions from insect and plant sources as anti-SARS-CoV-2 and present directions for future research.
Collapse
Affiliation(s)
- Aboagye Kwarteng Dofuor
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Naa Kwarley-Aba Quartey
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Belinda Obenewa Boateng
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Hanif Lutuf
- Crop Protection Division, Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Selina Mawunyo Ayivi-Tosuh
- Department of Biochemistry, School of Life Sciences, Northeast Normal University, Changchun, Jilin Province, China
| | - Albert Fynn Aiduenu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - William Ekloh
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Seyram Kofi Loh
- Department of Built Environment, School of Sustainable Development, University of Environment and Sustainable Development, Somanya, Ghana
| | - Maxwell Jnr Opoku
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| |
Collapse
|
19
|
The Potential of Stilbene Compounds to Inhibit M pro Protease as a Natural Treatment Strategy for Coronavirus Disease-2019. Curr Issues Mol Biol 2022; 45:12-32. [PMID: 36661488 PMCID: PMC9857500 DOI: 10.3390/cimb45010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
COVID-19 disease has had a global impact on human health with increased levels of morbidity and mortality. There is an unmet need to design and produce effective antivirals to treat COVID-19. This study aimed to explore the potential ability of natural stilbenes to inhibit the Mpro protease, an acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enzyme involved in viral replication. The binding affinities of stilbene compounds against Mpro were scrutinized using molecular docking, prime molecular mechanics-generalized Born surface area (MM-GBSA) energy calculations, and molecular dynamic simulations. Seven stilbene molecules were docked with Mpro and compared with GC376 and N3, antivirals with demonstrated efficacy against Mpro. Ligand binding efficiencies and polar and non-polar interactions between stilbene compounds and Mpro were analyzed. The binding affinities of astringin, isorhapontin, and piceatannol were -9.319, -8.166, and -6.291 kcal/mol, respectively, and higher than either GC376 or N3 at -6.976 and -6.345 kcal/mol, respectively. Prime MM-GBSA revealed that these stilbene compounds exhibited useful ligand efficacy and binding affinity to Mpro. Molecular dynamic simulation studies of astringin, isorhapontin, and piceatannol showed their stability at 300 K throughout the simulation time. Collectively, these results suggest that stilbenes such as astringin, isorhapontin, and piceatannol could provide useful natural inhibitors of Mpro and thereby act as novel treatments to limit SARS-CoV-2 replication.
Collapse
|
20
|
Herbal Medicine Uses for Respiratory System Disorders and Possible Trends in New Herbal Medicinal Recipes during COVID-19 in Pasvalys District, Lithuania. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19158905. [PMID: 35897276 PMCID: PMC9332438 DOI: 10.3390/ijerph19158905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Despite some preliminary studies of the available herbal medicine preparations and their curative effects on COVID-19, experts still fear that unproper use of such homemade medicines could do more harm than good to people relying on unproven alternatives of questionable efficacy. The main purpose of this study was to evaluate the safety of herbal medicines used for respiratory system disorders in the Pasvalys district during the COVID-19 pandemic in Lithuania. An archival source was also studied, looking for possible recipes for the treatment and prevention of respiratory diseases in Lithuanian traditional medicine, emphasizing the safety guidelines. The survey was conducted using the deep interview method. The respondents mentioned 60 species of medicinal plants from 29 different families used for the treatment and prevention of respiratory system disorders (for cough mostly, 51.70% of all indications). Twenty eight out of 60 plant species were not included in the European Medicines Agency monographs and only 50% of all included species were used as indicated by the European Medicines Agency for respiratory system disorders. The trends in the ethnopharmacological choices of modern consumers and the analysis of archival sources can be a great source of ideas for new herbal-based pharmaceutical preparations for COVID-19 symptoms in Lithuania considering the safety recommendations.
Collapse
|
21
|
Iacopetta D, Ceramella J, Catalano A, Saturnino C, Pellegrino M, Mariconda A, Longo P, Sinicropi MS, Aquaro S. COVID-19 at a Glance: An Up-to-Date Overview on Variants, Drug Design and Therapies. Viruses 2022; 14:573. [PMID: 35336980 PMCID: PMC8950852 DOI: 10.3390/v14030573] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a member of the Coronavirus family which caused the worldwide pandemic of human respiratory illness coronavirus disease 2019 (COVID-19). Presumably emerging at the end of 2019, it poses a severe threat to public health and safety, with a high incidence of transmission, predominately through aerosols and/or direct contact with infected surfaces. In 2020, the search for vaccines began, leading to the obtaining of, to date, about twenty COVID-19 vaccines approved for use in at least one country. However, COVID-19 continues to spread and new genetic mutations and variants have been discovered, requiring pharmacological treatments. The most common therapies for COVID-19 are represented by antiviral and antimalarial agents, antibiotics, immunomodulators, angiotensin II receptor blockers, bradykinin B2 receptor antagonists and corticosteroids. In addition, nutraceuticals, vitamins D and C, omega-3 fatty acids and probiotics are under study. Finally, drug repositioning, which concerns the investigation of existing drugs for new therapeutic target indications, has been widely proposed in the literature for COVID-19 therapies. Considering the importance of this ongoing global public health emergency, this review aims to offer a synthetic up-to-date overview regarding diagnoses, variants and vaccines for COVID-19, with particular attention paid to the adopted treatments.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (C.S.); (A.M.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (C.S.); (A.M.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| |
Collapse
|