1
|
He W, Zhao H, Xue W, Luo Y, Yan M, Li J, Qing L, Wu W, Jin Z. Qingre Huoxue Decoction Alleviates Atherosclerosis by Regulating Macrophage Polarization Through Exosomal miR-26a-5p. Drug Des Devel Ther 2024; 18:6389-6411. [PMID: 39749190 PMCID: PMC11693966 DOI: 10.2147/dddt.s487476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Background Qingre Huoxue Decoction (QRHX) is a classical Chinese herbal prescription widely used in clinical practice for the treatment of atherosclerosis (AS). Our previous study demonstrated its efficacy in stabilizing plaque and improving prognosis, as well as its ability to regulate macrophage polarization. This study aimed to further investigate the effects of QRHX on AS and explore the underlying mechanisms. Methods ApoE-/- mice were fed a high-fat diet (HFD) for 8 weeks in order to establish an AS model. Oil Red O, H&E, Masson, and IHC staining were employed to assess lipid accumulation, plaque development, collagen loss and target of the aortas tissue. ELISA was employed to measure the levels of TNF-α and IL-10 in serum. Dual luciferase reporter assay was conducted to ascertain the connection between miR-26a-5p and PTGS2 in vitro. Western blot and RT-qPCR assay were conducted to assess the NF-κB signaling pathway and macrophage polarization. The effects of miR-26a-5p were tested after transfecting miR-26a-5p over-expressive lentivirus. Results QRHX attenuated HFD-induced plaque progression and inflammation of AS model mice. BMDM-derived exosomes (BMDM-exo) increased miR-26a-5p and decreased PTGS2 expressions, inhibited the NF-κB signaling pathway and regulated macrophage polarization in vivo. These effects of BMDM-exo were further enhanced after QRHX intervention. Dual luciferase reporter assay results showed that miR-26a-5p directly binds to the 3'-UTR of PTGS2 mRNA and regulates the expression of PTGS2. The miR-26a-5p of BMDM-exo played a key role in macrophage polarization. After overexpression of miR-26a-5p, the NF-κB signaling pathway was inhibited and macrophages were converted from M1 to M2 in vitro. Conclusion QRHX can exert anti-inflammatory and plaque-stabilizing effects through exosomal miR-26a-5p via inhibiting the PTGS2/NF-κB signaling pathway and regulating macrophage phenotype from M1 to M2 polarization in AS.
Collapse
Affiliation(s)
- Weifeng He
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, People’s Republic of China
| | - Huanyi Zhao
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, People’s Republic of China
| | - Weiqi Xue
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, People’s Republic of China
| | - Yuan Luo
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, People’s Republic of China
| | - Mengyuan Yan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, People’s Republic of China
| | - Junlong Li
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, People’s Republic of China
| | - Lijin Qing
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, People’s Republic of China
| | - Wei Wu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, People’s Republic of China
| | - Zheng Jin
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, People’s Republic of China
| |
Collapse
|
2
|
Liu WT, Li CQ, Fu AN, Yang HT, Xie YX, Yao H, Yi GH. Therapeutic implication of targeting mitochondrial drugs designed for efferocytosis dysfunction. J Drug Target 2024; 32:1169-1185. [PMID: 39099434 DOI: 10.1080/1061186x.2024.2386620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Efferocytosis refers to the process by which phagocytes remove apoptotic cells and related apoptotic products. It is essential for the growth and development of the body, the repair of damaged or inflamed tissues, and the balance of the immune system. Damaged efferocytosis will cause a variety of chronic inflammation and immune system diseases. Many studies show that efferocytosis is a process mediated by mitochondria. Mitochondrial metabolism, mitochondrial dynamics, and communication between mitochondria and other organelles can all affect phagocytes' clearance of apoptotic cells. Therefore, targeting mitochondria to modulate phagocyte efferocytosis is an anticipated strategy to prevent and treat chronic inflammatory diseases and autoimmune diseases. In this review, we introduced the mechanism of efferocytosis and the pivoted role of mitochondria in efferocytosis. In addition, we focused on the therapeutic implication of drugs targeting mitochondria in diseases related to efferocytosis dysfunction.
Collapse
Affiliation(s)
- Wan-Ting Liu
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Chao-Quan Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Ao-Ni Fu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Hao-Tian Yang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Yu-Xin Xie
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Hui Yao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Guang-Hui Yi
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| |
Collapse
|
3
|
Jin X, Zhao Y, Wang H, Jiang R, Wei J, Zeng H, Sun W, Zhang Y, Hu Z. Herqupenoid A, an Unparalleled Sesquiterpene-Quinone Hybrid Featuring a Multicyclic Caged 2,7-Dioxatetracyclo[5.4.0.0 4,11.0 5,9]Hendecane Fragment from Penicillium herquei. Org Lett 2024; 26:10146-10151. [PMID: 39556450 DOI: 10.1021/acs.orglett.4c03867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Herqupenoid A (1), a sesquiterpene-quinone hybrid with an unparalleled 5/5/6/5-fused ring skeleton based on a multicyclic caged 2,7-dioxatetracyclo[5.4.0.04,11.05,9]hendecane fragment, was isolated from fungus Penicillium herquei. Its structure was assigned by extensive spectroscopic analyses, DP4+ computational method, and single-crystal X-ray diffraction. Further pharmacology research has established that compound 1 exhibited significant anti-inflammatory activity via inhibiting NF-κB-NLRP3 axis with an IC50 value of 2.63 μM, which was stronger than the positive control dexamethasone. A putative biosynthetic pathway involving the key hemiacetal and aldol condensation reactions for 1 was also discussed.
Collapse
Affiliation(s)
- Xiaoqi Jin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yixuan Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rui Jiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiangchun Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hanxiao Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Wei XH, Chen J, Wu XF, Zhang Q, Xia GY, Chu XY, Xia H, Lin S, Shang HC. Salvianolic acid B alleviated myocardial ischemia-reperfusion injury via modulating SIRT3-mediated crosstalk between mitochondrial ROS and NLRP3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156260. [PMID: 39579610 DOI: 10.1016/j.phymed.2024.156260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/14/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Mitochondrial ROS (mtROS) accumulation and NLRP3 inflammasome activation are critical in the pathogenesis of myocardial ischemia-reperfusion injury (MIRI). However, their upstream regulatory mechanisms and interaction remain inadequately understood. PURPOSE The study aims to investigate the therapeutic effect of Salvianolic acid B (Sal B) on MIRI and elucidate its potential molecular mechanism, mainly focusing on the role of SIRT3. METHODS SIRT3 was knocked down (SIRT3KD) and overexpressed (SIRT3OE) using small interfering RNA and plasmid, respectively. The role of SIRT3 in the cardioprotective effect of Sal B was explored using MIRI rat models and H9c2 cell hypoxia/reoxygenation (H/R) models. SIRT3, NLRP3 inflammasome proteins, and MnSOD expression were analyzed by Western blot and immunofluorescence staining. MtROS levels were assessed with mitochondrial superoxide indicators (MitoSOX™ Red). ELISA was utilized to measure the levels of LDH, CK-MB, cTnT, and markers of inflammation and oxidative stress. The interaction between SIRT3 and Sal B was studied through biolayer interferometry, cellular thermal shift assay and molecular docking. RESULTS Our findings revealed significantly decreased SIRT3 level, enhanced MnSOD acetylation, and activated NLRP3 inflammasome in myocardium after MIRI and H9c2 cardiomyocytes exposed to H/R conditions. SIRT3KD promoted MnSOD acetylation and NLRP3 expression, aggravating mtROS accumulation and inflammation. Conversely, SIRT3OE significantly inhibited MnSOD acetylation and NLRP3 inflammasome activation. In vitro studies confirmed the crosstalk between mtROS and NLRP3, demonstrating that mtROS scavenger inhibited NLRP3 inflammasome activation induced by H/R and SIRT3KD, and the NLRP3 inhibitor suppressed MnSOD acetylation in H/R and SIRT3KD cardiomyocytes. Interestingly, Sal B was found to bind and upregulate SIRT3, reduce the expression of Acy-MnSOD, NLRP3, ASC, Caspase-1, and GSDMD, inhibit oxidative stress and inflammatory response, decrease myocardial infarct size and ST-segment elevation, and restore myocardial morphology. However, the protective effect of Sal B against MIRI was nullified by a specific SIRT3 inhibitor. CONCLUSION This study unveils that the SIRT3-mediated interplay between mtROS and the NLRP3 inflammasome is pivotal in the pathogenesis of MIRI. Furthermore, it highlights Sal B as a novel therapeutic agent that alleviates MIRI by targeting SIRT3, offering new insights into MIRI treatment.
Collapse
Affiliation(s)
- Xiao-Hong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Haiyuncang Hutong, Dongcheng District, Beijing, 100700, China
| | - Jie Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Haiyuncang Hutong, Dongcheng District, Beijing, 100700, China
| | - Xue-Fen Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Haiyuncang Hutong, Dongcheng District, Beijing, 100700, China
| | - Qian Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Haiyuncang Hutong, Dongcheng District, Beijing, 100700, China
| | - Gui-Yang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Haiyuncang Hutong, Dongcheng District, Beijing, 100700, China
| | - Xin-Yu Chu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Haiyuncang Hutong, Dongcheng District, Beijing, 100700, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Haiyuncang Hutong, Dongcheng District, Beijing, 100700, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Haiyuncang Hutong, Dongcheng District, Beijing, 100700, China.
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Haiyuncang Hutong, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
5
|
Han J, Ye L, Wang Y. Pyroptosis: An Accomplice in the Induction of Multisystem Complications Triggered by Obstructive Sleep Apnea. Biomolecules 2024; 14:1349. [PMID: 39595526 PMCID: PMC11592050 DOI: 10.3390/biom14111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a common respiratory disorder, primarily characterized by two pathological features: chronic intermittent hypoxia (CIH) and sleep deprivation (SD). OSA has been identified as a risk factor for numerous diseases, and the inflammatory response related to programmed cell necrosis is believed to play a significant role in the occurrence and progression of multisystem damage induced by OSA, with increasing attention being paid to pyroptosis. Recent studies have indicated that OSA can elevate oxidative stress levels in the body, activating the process of pyroptosis within different tissues, ultimately accelerating organ dysfunction. However, the molecular mechanisms of pyroptosis in the multisystem damage induced by OSA remain unclear. Therefore, this review focuses on four major systems that have received concentrated attention in existing research in order to explore the role of pyroptosis in promoting renal diseases, cardiovascular diseases, neurocognitive diseases, and skin diseases in OSA patients. Furthermore, we provide a comprehensive overview of methods for inhibiting pyroptosis at different molecular levels, with the goal of identifying viable targets and therapeutic strategies for addressing OSA-related complications.
Collapse
Affiliation(s)
- Jingwen Han
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; (J.H.); (L.Y.)
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Lisong Ye
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; (J.H.); (L.Y.)
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Yan Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| |
Collapse
|
6
|
Hu H, Wang S, Chen C. Pathophysiological role and potential drug target of NLRP3 inflammasome in the metabolic disorders. Cell Signal 2024; 122:111320. [PMID: 39067838 DOI: 10.1016/j.cellsig.2024.111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
NLRP3 plays a role in the development of autoinflammatory diseases. NLRP3, ASC, and Caspases 1 or 8 make up the NLRP3 inflammasome, which is an important part of innate immune system. The NLRP3 inflammasome-mediated inflammatory cytokines may also participate in metabolic disorders, such as diabetes, hyperlipidemia, atherosclerosis, non-alcoholic fatty liver disease, and gout. Hence, an overview of the NLRP3 regulation in these metabolic diseases and the potential drugs targeting NLRP3 is the focus of this review.
Collapse
Affiliation(s)
- Huiming Hu
- School of pharmacy, Nanchang Medical College, Nanchang, Jiangxi, China; School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia; Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Jiangxi, China
| | - Shuwen Wang
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia.
| |
Collapse
|
7
|
Wang Y, Chen J, Zheng Y, Jiang J, Wang L, Wu J, Zhang C, Luo M. Glucose metabolite methylglyoxal induces vascular endothelial cell pyroptosis via NLRP3 inflammasome activation and oxidative stress in vitro and in vivo. Cell Mol Life Sci 2024; 81:401. [PMID: 39269632 PMCID: PMC11399538 DOI: 10.1007/s00018-024-05432-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Methylglyoxal (MGO), a reactive dicarbonyl metabolite of glucose, plays a prominent role in the pathogenesis of diabetes and vascular complications. Our previous studies have shown that MGO is associated with increased oxidative stress, inflammatory responses and apoptotic cell death in endothelial cells (ECs). Pyroptosis is a novel form of inflammatory caspase-1-dependent programmed cell death that is closely associated with the activation of the NOD-like receptor 3 (NLRP3) inflammasome. Recent studies have shown that sulforaphane (SFN) can inhibit pyroptosis, but the effects and underlying mechanisms by which SFN affects MGO-induced pyroptosis in endothelial cells have not been determined. Here, we found that SFN prevented MGO-induced pyroptosis by suppressing oxidative stress and inflammation in vitro and in vivo. Our results revealed that SFN dose-dependently prevented MGO-induced HUVEC pyroptosis, inhibited pyroptosis-associated biochemical changes, and attenuated MGO-induced morphological alterations in mitochondria. SFN pretreatment significantly suppressed MGO-induced ROS production and the inflammatory response by inhibiting the NLRP3 inflammasome (NLRP3, ASC, and caspase-1) signaling pathway by activating Nrf2/HO-1 signaling. Similar results were obtained in vivo, and we demonstrated that SFN prevented MGO-induced oxidative damage, inflammation and pyroptosis by reversing the MGO-induced downregulation of the NLRP3 signaling pathway through the upregulation of Nrf2. Additionally, an Nrf2 inhibitor (ML385) noticeably attenuated the protective effects of SFN on MGO-induced pyroptosis and ROS generation by inhibiting the Nrf2/HO-1 signaling pathway, and a ROS scavenger (NAC) and a permeability transition pore inhibitor (CsA) completely reversed these effects. Moreover, NLRP3 inhibitor (MCC950) and caspase-1 inhibitor (VX765) further reduced pyroptosis in endothelial cells that were pretreated with SFN. Collectively, these findings broaden our understanding of the mechanism by which SFN inhibits pyroptosis induced by MGO and suggests important implications for the potential use of SFN in the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yanan Wang
- Basic Medicine Research Innovation Center for Cardiometabolic DiseasesMinistry of EducationLaboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Jinxiang Chen
- Basic Medicine Research Innovation Center for Cardiometabolic DiseasesMinistry of EducationLaboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic DiseasesMinistry of EducationLaboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Liqun Wang
- Basic Medicine Research Innovation Center for Cardiometabolic DiseasesMinistry of EducationLaboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jianbo Wu
- Basic Medicine Research Innovation Center for Cardiometabolic DiseasesMinistry of EducationLaboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Chunxiang Zhang
- Basic Medicine Research Innovation Center for Cardiometabolic DiseasesMinistry of EducationLaboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic DiseasesMinistry of EducationLaboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China.
| |
Collapse
|
8
|
Zhao M, Mu F, Lin R, Gao K, Zhang W, Tao X, Xu D, Wang J. Chinese Medicine-Derived Salvianolic Acid B for Disease Therapy: A Scientometric Study. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1359-1396. [PMID: 39212495 DOI: 10.1142/s0192415x2450054x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Salvianolic acid B (SalB), among the most abundant bioactive polyphenolic compounds found in Salvia miltiorrhiza Bge., exerts therapeutic and protective effects against various diseases. Although some summaries of the activities of SalB exist, there is lack of a scientometric and in-depth review regarding disease therapy. In this review, scientometrics was employed to analyze the number of articles, publication trends, countries, institutions, keywords, and highly cited papers pertaining to SalB research. The scientometric findings showed that SalB exerts excellent protective effects on the heart, lungs, liver, bones, and brain, along with significant therapeutic effects against atherosclerosis (AS), Alzheimer's disease (AD), liver fibrosis, diabetes, heart/brain ischemia, and osteoporosis, by regulating signaling pathways and acting on specific molecular targets. Moreover, this review delves into in-depth insights and perspectives, such as the utilization of SalB in combination with other drugs, the validation of molecular mechanisms and targets, and the research and development of novel drug carriers and dosage forms. In conclusion, this review aimed to offer a comprehensive scientometric analysis and in-depth appraisal of SalB research, encompassing both present achievements and future prospects, thereby providing a valuable resource for the clinical application and therapeutic exploitation of SalB.
Collapse
Affiliation(s)
- Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Rui Lin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Xingru Tao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| |
Collapse
|
9
|
Fan J, Zhu T, Tian X, Liu S, Zhang SL. Exploration of ferroptosis and necroptosis-related genes and potential molecular mechanisms in psoriasis and atherosclerosis. Front Immunol 2024; 15:1372303. [PMID: 39072329 PMCID: PMC11272566 DOI: 10.3389/fimmu.2024.1372303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Objective Ferroptosis and necroptosis are two recently identified forms of non-apoptotic cell death. Their dysregulation plays a critical role in the development and progression of Psoriasis (PsD) and Atherosclerosis (AS). This study explores shared Ferroptosis and necroptosis-related genes and elucidates their molecular mechanisms in PsD and AS through the analysis of public databases. Methods Data sets for PsD (GSE30999) and AS (GSE28829) were retrieved from the GEO database. Differential gene expression (DEG) and weighted gene co-expression network analysis (WGCNA) were performed. Machine learning algorithms identified candidate biomarkers, whose diagnostic values were assessed using Receiver Operating Characteristic (ROC) curve analysis. Additionally, the expression levels of these biomarkers in cell models of AS and PsD were quantitatively measured using Western Blot (WB) and real-time quantitative PCR (RT-qPCR). Furthermore, CIBERSORT evaluated immune cell infiltration in PsD and AS tissues, highlighting the correlation between characteristic genes and immune cells. Predictive analysis for candidate drugs targeting characteristic genes was conducted using the DGIdb database, and an lncRNA-miRNA-mRNA network related to these genes was constructed. Results We identified 44 differentially expressed ferroptosis-related genes (DE-FRGs) and 30 differentially expressed necroptosis-related genes (DE-NRGs). GO and KEGG enrichment analyses revealed significant enrichment of these genes in immune-related and inflammatory pathways, especially in NOD-like receptor and TNF signaling pathways. Two ferroptosis-related genes (NAMPT, ZFP36) and eight necroptosis-related genes (C7, CARD6, CASP1, CTSD, HMOX1, NOD2, PYCARD, TNFRSF21) showed high sensitivity and specificity in ROC curve analysis. These findings were corroborated in external validation datasets and cell models. Immune infiltration analysis revealed increased levels of T cells gamma delta, Macrophages M0, and Macrophages M2 in PsD and AS samples. Additionally, we identified 43 drugs targeting 5 characteristic genes. Notably, the XIST-miR-93-5p-ZFP36/HMOX1 and NEAT1-miR-93-5p-ZFP36/HMOX1 pathways have been identified as promising RNA regulatory pathways in AS and PsD. Conclusion The two ferroptosis-related genes (NAMPT, ZFP36) and eight necroptosis-related genes (C7, CARD6, CASP1, CTSD, HMOX1, NOD2, PYCARD, TNFRSF21) are potential key biomarkers for PsD and AS. These genes significantly influence the pathogenesis of PsD and AS by modulating macrophage activity, participating in immune regulation, and mediating inflammatory responses.
Collapse
Affiliation(s)
- Jilin Fan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhu
- Department of Neurosurgery Ward 5, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiaoling Tian
- Department of Neurosurgery Ward 5, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Sijia Liu
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shi-Liang Zhang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
10
|
Sun X, Jia X, Tan Z, Fan D, Chen M, Cui N, Liu A, Liu D. Oral Nanoformulations in Cardiovascular Medicine: Advances in Atherosclerosis Treatment. Pharmaceuticals (Basel) 2024; 17:919. [PMID: 39065770 PMCID: PMC11279631 DOI: 10.3390/ph17070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerosis (AS) is the formation of atherosclerotic plaques on the walls of the arteries, causing them to narrow. If this occurs in the coronary arteries, the blood vessels may be completely blocked, resulting in myocardial infarction; if it occurs in the blood vessels of the brain, the blood vessels may be blocked, resulting in cerebral infarction, i.e., stroke. Studies have shown that the pathogenesis of atherosclerosis involves the processes of inflammation, lipid infiltration, oxidative stress, and endothelial damage, etc. SIRT, as a key factor regulating the molecular mechanisms of oxidative stress, inflammation, and aging, has an important impact on the pathogenesis of plaque formation, progression, and vulnerability. Statistics show that AS accounts for about 50 per cent of deaths in Western countries. Currently, oral medication is the mainstay of AS treatment, but its development is limited by side effects, low bioavailability and other unfavourable factors. In recent years, with the rapid development of nano-preparations, researchers have combined statins and natural product drugs within nanopreparations to improve their bioavailability. Based on this, this paper summarises the main pathogenesis of AS and also proposes new oral nanoformulations such as liposomes, nanoparticles, nanoemulsions, and nanocapsules to improve their application in the treatment of AS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aidong Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.S.); (X.J.); (Z.T.); (D.F.); (M.C.); (N.C.)
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.S.); (X.J.); (Z.T.); (D.F.); (M.C.); (N.C.)
| |
Collapse
|
11
|
She Y, Shao CY, Liu YF, Huang Y, Yang J, Wan HT. Catalpol reduced LPS induced BV2 immunoreactivity through NF-κB/NLRP3 pathways: an in Vitro and in silico study. Front Pharmacol 2024; 15:1415445. [PMID: 38994205 PMCID: PMC11237369 DOI: 10.3389/fphar.2024.1415445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Background: Ischemic Stroke (IS) stands as one of the primary cerebrovascular diseases profoundly linked with inflammation. In the context of neuroinflammation, an excessive activation of microglia has been observed. Consequently, regulating microglial activation emerges as a vital target for neuroinflammation treatment. Catalpol (CAT), a natural compound known for its anti-inflammatory properties, holds promise in this regard. However, its potential to modulate neuroinflammatory responses in the brain, especially on microglial cells, requires comprehensive exploration. Methods: In our study, we investigated into the potential anti-inflammatory effects of catalpol using lipopolysaccharide (LPS)-stimulated BV2 microglial cells as an experimental model. The production of nitric oxide (NO) by LPS-activated BV2 cells was quantified using the Griess reaction. Immunofluorescence was employed to measure glial cell activation markers. RT-qPCR was utilized to assess mRNA levels of various inflammatory markers. Western blot analysis examined protein expression in LPS-activated BV2 cells. NF-κB nuclear localization was detected by immunofluorescent staining. Additionally, molecular docking and molecular dynamics simulations (MDs) were conducted to explore the binding affinity of catalpol with key targets. Results: Catalpol effectively suppressed the production of nitric oxide (NO) induced by LPS and reduced the expression of microglial cell activation markers, including Iba-1. Furthermore, we observed that catalpol downregulated the mRNA expression of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β, as well as key molecules involved in the NLRP3 inflammasome and NF-κB pathway, including NLRP3, NF-κB, caspase-1, and ASC. Our mechanistic investigations shed light on how catalpol operates against neuroinflammation. It was evident that catalpol significantly inhibited the phosphorylation of NF-κB and NLRP3 inflammasome activation, both of which serve as upstream regulators of the inflammatory cascade. Molecular docking and MDs showed strong binding interactions between catalpol and key targets such as NF-κB, NLRP3, and IL-1β. Conclusion: Our findings support the idea that catalpol holds the potential to alleviate neuroinflammation, and it is achieved by inhibiting the activation of NLRP3 inflammasome and NF-κB, ultimately leading to the downregulation of pro-inflammatory cytokines. Catalpol emerges as a promising candidate for the treatment of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Yong She
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chong-yu Shao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuan-feng Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying Huang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hai-tong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Xing Y, Lin X. Challenges and advances in the management of inflammation in atherosclerosis. J Adv Res 2024:S2090-1232(24)00253-4. [PMID: 38909884 DOI: 10.1016/j.jare.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024] Open
Abstract
INTRODUCTION Atherosclerosis, traditionally considered a lipid-related disease, is now understood as a chronic inflammatory condition with significant global health implications. OBJECTIVES This review aims to delve into the complex interactions among immune cells, cytokines, and the inflammatory cascade in atherosclerosis, shedding light on how these elements influence both the initiation and progression of the disease. METHODS This review draws on recent clinical research to elucidate the roles of key immune cells, macrophages, T cells, endothelial cells, and clonal hematopoiesis in atherosclerosis development. It focuses on how these cells and process contribute to disease initiation and progression, particularly through inflammation-driven processes that lead to plaque formation and stabilization. Macrophages ingest oxidized low-density lipoprotein (oxLDL), which partially converts to high-density lipoprotein (HDL) or accumulates as lipid droplets, forming foam cells crucial for plaque stability. Additionally, macrophages exhibit diverse phenotypes within plaques, with pro-inflammatory types predominating and others specializing in debris clearance at rupture sites. The involvement of CD4+ T and CD8+ T cells in these processes promotes inflammatory macrophage states, suppresses vascular smooth muscle cell proliferation, and enhances plaque instability. RESULTS The nuanced roles of macrophages, T cells, and the related immune cells within the atherosclerotic microenvironment are explored, revealing insights into the cellular and molecular pathways that fuel inflammation. This review also addresses recent advancements in imaging and biomarker technology that enhance our understanding of disease progression. Moreover, it points out the limitations of current treatment and highlights the potential of emerging anti-inflammatory strategies, including clinical trials for agents such as p38MAPK, tumor necrosis factor α (TNF-α), and IL-1β, their preliminary outcomes, and the promising effects of canakinumab, colchicine, and IL-6R antagonists. CONCLUSION This review explores cutting-edge anti-inflammatory interventions, their potential efficacy in preventing and alleviating atherosclerosis, and the role of nanotechnology in delivering drugs more effectively and safely.
Collapse
Affiliation(s)
- Yiming Xing
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China
| | - Xianhe Lin
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China.
| |
Collapse
|
13
|
Zhao S, Guo H, Qiu L, Zhong C, Xue J, Qin M, Zhang Y, Xu C, Xie Y, Yu J. Saponins from Allii Macrostemonis Bulbus attenuate atherosclerosis by inhibiting macrophage foam cell formation and inflammation. Sci Rep 2024; 14:12917. [PMID: 38839811 PMCID: PMC11153636 DOI: 10.1038/s41598-024-61209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Allii Macrostemonis Bulbus (AMB) is a traditional Chinese medicine with medicinal and food homology. AMB has various biological activities, including anti-coagulation, lipid-lowering, anti-tumor, and antioxidant effects. Saponins from Allium macrostemonis Bulbus (SAMB), the predominant beneficial compounds, also exhibited lipid-lowering and anti-inflammatory properties. However, the effect of SAMB on atherosclerosis and the underlying mechanisms are still unclear. This study aimed to elucidate the pharmacological impact of SAMB on atherosclerosis. In apolipoprotein E deficiency (ApoE-/-) mice with high-fat diet feeding, oral SAMB administration significantly attenuated inflammation and atherosclerosis plaque formation. The in vitro experiments demonstrated that SAMB effectively suppressed oxidized-LDL-induced foam cell formation by down-regulating CD36 expression, thereby inhibiting lipid endocytosis in bone marrow-derived macrophages. Additionally, SAMB effectively blocked LPS-induced inflammatory response in bone marrow-derived macrophages potentially through modulating the NF-κB/NLRP3 pathway. In conclusion, SAMB exhibits a potential anti-atherosclerotic effect by inhibiting macrophage foam cell formation and inflammation. These findings provide novel insights into potential preventive and therapeutic strategies for the clinical management of atherosclerosis.
Collapse
Affiliation(s)
- Shutian Zhao
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Huijun Guo
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liang Qiu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chao Zhong
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jing Xue
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Manman Qin
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yifeng Zhang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| | - Yanfei Xie
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| | - Jun Yu
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
14
|
Lin J, Wang J, Fang J, Li M, Xu S, Little PJ, Zhang D, Liu Z. The cytoplasmic sensor, the AIM2 inflammasome: A precise therapeutic target in vascular and metabolic diseases. Br J Pharmacol 2024; 181:1695-1719. [PMID: 38528718 DOI: 10.1111/bph.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/02/2024] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
Cardio-cerebrovascular diseases encompass pathological changes in the heart, brain and vascular system, which pose a great threat to health and well-being worldwide. Moreover, metabolic diseases contribute to and exacerbate the impact of vascular diseases. Inflammation is a complex process that protects against noxious stimuli but is also dysregulated in numerous so-called inflammatory diseases, one of which is atherosclerosis. Inflammation involves multiple organ systems and a complex cascade of molecular and cellular events. Numerous studies have shown that inflammation plays a vital role in cardio-cerebrovascular diseases and metabolic diseases. The absent in melanoma 2 (AIM2) inflammasome detects and is subsequently activated by double-stranded DNA in damaged cells and pathogens. With the assistance of the mature effector molecule caspase-1, the AIM2 inflammasome performs crucial biological functions that underpin its involvement in cardio-cerebrovascular diseases and related metabolic diseases: The production of interleukin-1 beta (IL-1β), interleukin-18 (IL-18) and N-terminal pore-forming Gasdermin D fragment (GSDMD-N) mediates a series of inflammatory responses and programmed cell death (pyroptosis and PANoptosis). Currently, several agents have been reported to inhibit the activity of the AIM2 inflammasome and have the potential to be evaluated for use in clinical settings. In this review, we systemically elucidate the assembly, biological functions, regulation and mechanisms of the AIM2 inflammasome in cardio-cerebrovascular diseases and related metabolic diseases and outline the inhibitory agents of the AIM2 inflammasome as potential therapeutic drugs.
Collapse
Affiliation(s)
- Jiuguo Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Jiaojiao Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Jian Fang
- Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Meihang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peter J Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba, Queensland, Australia
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Gong H, Xia Y, Jing G, Yuan M, Zhou H, Wu D, Zuo J, Lei C, Aidebaike D, Wu X, Song X. Berberine alleviates neuroinflammation by downregulating NFκB/LCN2 pathway in sepsis-associated encephalopathy: network pharmacology, bioinformatics, and experimental validation. Int Immunopharmacol 2024; 133:112036. [PMID: 38640713 DOI: 10.1016/j.intimp.2024.112036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Sepsis refers to a systemic inflammatory response caused by infection, involving multiple organs. Sepsis-associated encephalopathy (SAE), as one of the most common complications in patients with severe sepsis, refers to the diffuse brain dysfunction caused by sepsis without central nervous system infection. However, there is no clear diagnostic criteria and lack of specific diagnostic markers. METHODS The main active ingredients of coptidis rhizoma(CR) were identified from TCMSP and SwissADME databases. SwissTargetPrediction and PharmMapper databases were used to obtain targets of CR. OMIM, DisGeNET and Genecards databases were used to explore targets of SAE. Limma differential analysis was used to identify the differential expressed genes(DEGs) in GSE167610 and GSE198861 datasets. WGCNA was used to identify feature module. GO and KEGG enrichment analysis were performed using Metascape, DAVID and STRING databases. The PPI network was constructed by STRING database and analyzed by Cytoscape software. AutoDock and PyMOL software were used for molecular docking and visualization. Cecal ligation and puncture(CLP) was used to construct a mouse model of SAE, and the core targets were verified in vivo experiments. RESULTS 277 common targets were identified by taking the intersection of 4730 targets related to SAE and 509 targets of 9 main active ingredients of CR. 52 common DEGs were mined from GSE167610 and GSE198861 datasets. Among the 25,864 DEGs in GSE198861, LCN2 showed the most significant difference (logFC = 6.9). GO and KEGG enrichment analysis showed that these 52 DEGs were closely related to "inflammatory response" and "innate immunity". A network containing 38 genes was obtained by PPI analysis, among which LCN2 ranked the first in Degree value. Molecular docking results showed that berberine had a well binding affinity with LCN2. Animal experiments results showed that berberine could inhibit the high expression of LCN2,S100A9 and TGM2 induced by CLP in the hippocampus of mice, as well as the high expression of inflammatory factors (TNFα, IL-6 and IL-1β). In addition, berberine might reduce inflammation and neuronal cell death by partially inhibiting NFκB/LCN2 pathway in the hippocampus of CLP models, thereby alleviating SAE. CONCLUSION Overall, Berberine may exert anti-inflammatory effects through multi-ingredients, multi-targets and multi-pathways to partially rescue neuronal death and alleviate SAE.
Collapse
Affiliation(s)
- Hailong Gong
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Yun Xia
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Guoqing Jing
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Min Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Huimin Zhou
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Die Wu
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Jing Zuo
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Chuntian Lei
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Delida Aidebaike
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China.
| | - Xuemin Song
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China.
| |
Collapse
|
16
|
Liu Y, Su W, Li P, Zeng X, Zheng Y, Wang Y, Peng W, Wu H. Exploring the Mechanism of Fufang Danshen Tablet against Atherosclerosis by Network Pharmacology and Experimental Validation. Pharmaceuticals (Basel) 2024; 17:643. [PMID: 38794213 PMCID: PMC11124970 DOI: 10.3390/ph17050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerosis is the main pathological basis of cardiovascular diseases (CVDs). Fufang Danshen Tablet (FDT) is a traditional Chinese medicine that has been clinically used to treat CVDs for more than 40 years. Nevertheless, owing to the complexity of the ingredients, the pharmacological mechanism of FDT in the treatment of CVDs has not been fully elucidated. In this study, an integrated strategy of UFLC-Q-TOF-MS/MS, network pharmacology, molecular biology, and transcriptomics was used to elucidate the mechanisms of action of FDT in the treatment of atherosclerosis. In total, 22 absorbed constituents were identified in rat serum after oral administration of FDT. In silico, network pharmacology studies have shown that FDT regulates four key biological functional modules for the treatment of atherosclerosis: oxidative stress, cell apoptosis, energy metabolism, and immune/inflammation. In animal experiments, FDT exerted protective effects against atherosclerosis by reducing the plaque area and lipid levels in ApoE-/- mice. Furthermore, we found that FDT inhibited inflammatory macrophage accumulation by regulating the expression of Selp and Ccl2, which are both involved in monocyte adhesion and migration. The inhibition of monocyte recruitment by FDT is a new perspective to elucidate the anti-atherosclerotic mechanism of FDT, which has not been adopted in previous studies on FDT. Our results may help to elucidate the therapeutic mechanism of FDT against CVDs and provide potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hao Wu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Y.L.); (W.S.); (P.L.); (X.Z.); (Y.Z.); (Y.W.); (W.P.)
| |
Collapse
|
17
|
Wang H, Han J, Dmitrii G, Zhang XA. Potential Targets of Natural Products for Improving Cardiac Ischemic Injury: The Role of Nrf2 Signaling Transduction. Molecules 2024; 29:2005. [PMID: 38731496 PMCID: PMC11085255 DOI: 10.3390/molecules29092005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Myocardial ischemia is the leading cause of health loss from cardiovascular disease worldwide. Myocardial ischemia and hypoxia during exercise trigger the risk of sudden exercise death which, in severe cases, will further lead to myocardial infarction. The Nrf2 transcription factor is an important antioxidant regulator that is extensively engaged in biological processes such as oxidative stress, inflammatory response, apoptosis, and mitochondrial malfunction. It has a significant role in the prevention and treatment of several cardiovascular illnesses, since it can control not only the expression of several antioxidant genes, but also the target genes of associated pathological processes. Therefore, targeting Nrf2 will have great potential in the treatment of myocardial ischemic injury. Natural products are widely used to treat myocardial ischemic diseases because of their few side effects. A large number of studies have shown that the Nrf2 transcription factor can be used as an important way for natural products to alleviate myocardial ischemia. However, the specific role and related mechanism of Nrf2 in mediating natural products in the treatment of myocardial ischemia is still unclear. Therefore, this review combs the key role and possible mechanism of Nrf2 in myocardial ischemic injury, and emphatically summarizes the significant role of natural products in treating myocardial ischemic symptoms, thus providing a broad foundation for clinical transformation.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Gorbachev Dmitrii
- General Hygiene Department, Samara State Medical University, Samara 443000, Russia;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| |
Collapse
|
18
|
Ye Y, Lin M, Zhou G, Wang W, Yao Y, Su Y, Qi J, Zheng Y, Zhong C, Chen X, Huang M, Lu Y. Fuyuan decoction prevents nasopharyngeal carcinoma metastasis by inhibiting circulating tumor cells/ endothelial cells interplay and enhancing anti-cancer immune response. Front Pharmacol 2024; 15:1355650. [PMID: 38738179 PMCID: PMC11084272 DOI: 10.3389/fphar.2024.1355650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024] Open
Abstract
Distant metastasis is a major cause of treatment failure in cancer patients and a key challenge to improving cancer care today. We hypothesized that enhancing anti-cancer immune response and inhibiting circulating tumor cells (CTCs) adhesion and transendothelial migration through synergistic multi-target approaches may effectively prevent cancer metastasis. "Fuyuan Decoction" (FYD) is a traditional Chinese medicine compound that is widely used to prevent postoperative metastasis in cancer patients, but its underlying mechanism remains unclear. In this work, we systematically elucidated the underlying molecular mechanism by which FYD prevents cancer metastasis through multi-compound and multi-target synergies in vitro and in vivo. FYD significantly prevented cancer metastasis at non-cytotoxic concentrations by suppressing the adhesion of CTCs to endothelial cells and their subsequent transendothelial migration, as well as enhancing anti-cancer immune response. Mechanistically, FYD interrupts adhesion of CTCs to vascular endothelium by inhibiting TNF-α-induced CAMs expression via regulation of the NF-κB signaling pathway in endothelial cells. FYD inhibits invasion and migration of CTCs by suppressing EMT, PI3K/AKT and FAK signaling pathways. Moreover, FYD enhances the anti-cancer immune response by significantly increasing the population of Tc and NK cells in the peripheral immune system. In addition, the chemical composition of FYD was determined by UPLC-HRMS, and the results indicated that multiple compounds in FYD prevents cancer metastasis through multi-target synergistic treatment. This study provides a modern medical basis for the application of FYD in the prevention of cancer metastasis, and suggesting that multi-drug and multi-target synergistic therapy may be one of the most effective ways to prevent cancer metastasis.
Collapse
Affiliation(s)
- Yuying Ye
- Department of Otorhinolaryngology, Affiliated People’s Hospital (Fujian Provincial People’s Hospital), Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mengting Lin
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Guiyu Zhou
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Weiyu Wang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yinyin Yao
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yafei Su
- Department of Otorhinolaryngology, Fuzhou Second Hospital, Fuzhou, China
| | - Jianqiang Qi
- Center for Teaching of Clinical Skills, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yanfang Zheng
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Chunlian Zhong
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Xi Chen
- Department of Otorhinolaryngology, Affiliated People’s Hospital (Fujian Provincial People’s Hospital), Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingqing Huang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yusheng Lu
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
19
|
Wang J, Guo Y, Zhou H, Hua Y, Wan H, Yang J. Investigating the Mechanistic of Danhong Injection in Brain Damage Caused by Cardiac I/R Injury via Bioinformatics, Computer Simulation, and Experimental Validation. ACS OMEGA 2024; 9:18341-18357. [PMID: 38680343 PMCID: PMC11044240 DOI: 10.1021/acsomega.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Cardiac ischemia-reperfusion (I/R) injury has negative effects on the brain and can even lead to the occurrence of ischemic stroke. Clinical evidence shows that Danhong injection (DHI) protects the heart and brain following ischemic events. This study investigated the mechanisms and key active compounds underlying the therapeutic effect of DHI against brain damage induced by cardiac I/R injury. METHODS The gene expression omnibus database provided GSE66360 and GSE22255 data sets. The R programming language was used to identify the common differentially expressed genes (cDEGs). Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed, and protein-protein interaction network was constructed. Active compounds of DHI were collected from the Traditional Chinese Medicine Systems Pharmacology database. Molecular docking and molecular dynamics simulations were performed. The MMPBSA method was used to calculate the binding-free energy. The pkCSM server and DruLiTo software were used for Absorption, Distribution, metabolism, excretion, and toxicity (ADMET) analysis and drug-likeness analysis. Finally, in vitro experiments were conducted to validate the results. RESULTS A total of 27 cDEGs had been identified. The PPI and enrichment results indicated that TNF-α was considered to be the core target. A total of 80 active compounds were retrieved. The molecular docking results indicated that tanshinone I (TSI), tanshinone IIA (TSIIA), and hydroxyl safflower yellow A (HSYA) were selected as core active compounds. Molecular dynamics verification revealed that the conformations were relatively stable without significant fluctuations. MMPBSA analysis revealed that the binding energies of TSI, TSIIA, and HSYA with TNF-α were -36.01, -21.71, and -14.80 kcal/mol, respectively. LEU57 residue of TNF-α has the highest contribution. TSI and TSIIA passed both the ADMET analysis and drug-likeness screening, whereas HSYA did not. Experimental verification confirmed that DHI and TSIIA reduced the expression of TNF-α, NLRP3, and IL-1β in the injured H9C2 and rat brain microvascular endothelial cells. CONCLUSION TNF-α can be considered to be a key target for BD-CI/R. TSIIA in DHI exerts a significant inhibitory effect on the inflammatory damage of BD-CI/R, providing new insights for future drug development.
Collapse
Affiliation(s)
- Jinfu Wang
- School
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
| | - Yan Guo
- Hangzhou
TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Huifen Zhou
- School
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou, Zhejiang 310053, China
| | - Yanjie Hua
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Haitong Wan
- School
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou, Zhejiang 310053, China
| | - Jiehong Yang
- School
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
20
|
Fu Z, Zhang Y, Jin T, Wang Z, Zhao C, Zhao M. A comprehensive quality evaluation strategy of Shensong Yangxin capsules based on qualitative, fingerprint and quantitative analyses. Biomed Chromatogr 2024; 38:e5832. [PMID: 38317273 DOI: 10.1002/bmc.5832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Shensong Yangxin capsule (SSYXC), an effective Chinese patent medicine, has been recorded in the Chinese Pharmacopeia, mainly for the treatment of coronary heart disease and ventricular premature beat. To further complete the quality evaluation of SSYXC, a comprehensive analysis strategy was established. Firstly, the components of SSYXC were qualitatively analysed using ultra-high- performance liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry. A total of 134 compounds were identified or tentatively characterized. Additionally, the fingerprint of SSYXC was established by HPLC, and the similarity of 10 batches of SSYXC was elucidated by similarity analysis. The result indicated that the consistency of chemical composition is good. Finally, to enhance the quality control of SSYXC, according to the results of the fingerprint analysis, the contents of the seven active components was determined, comprising morroniside, loganin, paeoniflorin, salvianolic acid B, palmatine hydrochloride, berberine hydrochloride and tanshinone IIA. In conclusion, the established method, comprising identification of components, fingerprint analysis and quantification of multicomponents, can be sensitively and comprehensively applied to the quality evaluation of SSYXC, which can provide chemical ingredients bases for quality control and the pharmacodynamic mechanism of SSYXC, which could serve as a benchmark for controlling the quality of other Chinese patent medicines.
Collapse
Affiliation(s)
- Zixuan Fu
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Tong Jin
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Zheyong Wang
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang, Liaoning Province, China
| |
Collapse
|
21
|
Lihao Q, Tingting L, Jiawei Z, Yifei B, Zheyu T, Jingyan L, Tongqing X, Zhongzhi J. 3D bioprinting of Salvianolic acid B-sodium alginate-gelatin skin scaffolds promotes diabetic wound repair via antioxidant, anti-inflammatory, and proangiogenic effects. Biomed Pharmacother 2024; 171:116168. [PMID: 38232662 DOI: 10.1016/j.biopha.2024.116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
In patients with diabetic wounds, wound healing is impaired due to the presence of persistent oxidative stress, an altered inflammatory response, and impaired angiogenesis and epithelization. Salvianolic acid B (SAB), which is derived from the Chinese medicinal plant Salvia miltiorrhiza, has been found to exhibit antioxidant, anti-inflammatory, and proangiogenic effects. Previous studies have used 3D bioprinting technology incorporating sodium alginate (SA) and gelatin (Gel) as basic biomaterials to successfully produce artificial skin. In the current study, 3D bioprinting technology was used to incorporate SAB into SA-Gel to form a novel SAB-SA-Gel composite porous scaffold. The morphological characteristics, physicochemical characteristics, biocompatibility, and SAB release profile of the SAB-SA-Gel scaffolds were evaluated in vitro. In addition, the antioxidant, anti-inflammatory, and proangiogenic abilities of the SAB-SA-Gel scaffolds were evaluated in cells and in a rat model. Analysis demonstrated that 1.0 wt% (the percentage of SAB in the total weight of the solution containing SA and Gel) SAB-SA-Gel scaffolds had strong antioxidant, anti-inflammatory, and proangiogenic properties both in cells and in the rat model. The 1.0% SAB-SA-Gel scaffold reduced the expression of tumor necrosis factor-α, interleukin-6, and interluekin-1β and increased the expression of transforming growth factor-β. In addition, this scaffold removed excessive reactive oxygen species by increasing the expression of superoxide dismutase, thereby protecting fibroblasts from injury. The scaffold increased the expression of vascular endothelial growth factor and platelet/endothelial cell adhesion molecule-1, accelerated granulation tissue regeneration and collagen deposition, and promoted wound healing. These findings suggest that this innovative scaffold may have promise as a simple and efficient approach to managing diabetic wound repair.
Collapse
Affiliation(s)
- Qin Lihao
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Liu Tingting
- Graduate College, Dalian Medical University, Dalian 116044, China
| | - Zhang Jiawei
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Bai Yifei
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Tang Zheyu
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Li Jingyan
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, China.
| | - Xue Tongqing
- Department of Interventional Radiology, Huaian Hospital of Huai'an City (Huaian Cancer Hospital), Huai'an 223200, China.
| | - Jia Zhongzhi
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, China.
| |
Collapse
|