1
|
Su J, Li B, Yao K, Tang C. Deep eutectic solution elution assisted ligand affinity assay: A useful tool for the active coumarins screening from Fructus cnidii. Anal Chim Acta 2025; 1336:343481. [PMID: 39788658 DOI: 10.1016/j.aca.2024.343481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Many of the ligand affinity analyses are presented in water environment, and the hydrophilic solution such as methanol is used for dissociating the bound compounds. The obtained dissociation solution needs to be concentrated for improving the sensitivity of the assay. However, it is not good for the analysis of hydrophobic and volatile compounds such as coumarins. The solubility of them in water environment is low. And they may be lost in the sample preparation process. In this work, a deep eutectic solvent elution assisted ligand affinity assay for the screening of active coumarins in plants was proposed. RESULTS For the first time, deep eutectic solvent was used as a dissociation solution for dissociating the compounds that bind with acetylcholinesterase immobilized magnetic beads. Analytes could be enriched during the phase separation process of deep eutectic solvent. The concentration of the analytes in sample solution was therefore increased. It is good for the detection of coumarins. The LOD and LOQ of the proposed assay were 0.50 (μ g/mL) and 1.50 (μ g/mL), respectively. The relative recovery of the assay was 99.4 ± 7.2 %. The intra-day and inter-day precision were 7.25 % and 6.80 %. Using the assay as a tool, the active coumarins in Fructus cnidii were analyzed. And two coumarins with acetylcholinesterase inhibition activity such as imperatorin and osthole were found. SIGNIFICANCE Coumarins have good solubility in the selected deep eutectic solvent, and could be enriched into hydrophobic phase during the phase separation process. The extra concentration process is not needed. Compared with traditional methods, the proposed method has the benefits of simplified operation process, high sensitivity, and is friendly to the volatile and hydrophobic compounds.
Collapse
Affiliation(s)
- Jianing Su
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Bing Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Kun Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Cheng Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
2
|
Yu X, Jiang J, Li C, Wang Y, Ren Z, Hu J, Yuan T, Wu Y, Wang D, Sun Z, Wu Q, Chen B, Fang P, Ding H, Meng J, Jiang H, Zhao J, Bao N. Osthole ameliorates wear particle-induced osteogenic impairment by mitigating endoplasmic reticulum stress via PERK signaling cascade. Mol Med 2024; 30:266. [PMID: 39707212 DOI: 10.1186/s10020-024-01034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Periprosthetic osteolysis and subsequent aseptic loosening are the leading causes of failure following total joint arthroplasty. Osteogenic impairment induced by wear particles is regarded as a crucial contributing factor in the development of osteolysis, with endoplasmic reticulum (ER) stress identified as a key underlying mechanism. Therefore, identifying potential therapeutic targets and agents that can regulate ER stress adaption in osteoblasts is necessary for arresting aseptic loosening. Osthole (OST), a natural coumarin derivative, has demonstrated promising osteogenic properties and the ability to modulate ER stress adaption in various diseases. However, the impact of OST on ER stress-mediated osteogenic impairment caused by wear particles remains unclear. METHODS TiAl6V4 particles (TiPs) were sourced from the prosthesis of patients who underwent revision hip arthroplasty due to aseptic loosening. A mouse calvarial osteolysis model was utilized to explore the effects of OST on TiPs-induced osteogenic impairment in vivo. Primary mouse osteoblasts were employed to investigate the impact of OST on ER stress-mediated osteoblast apoptosis and osteogenic inhibition induced by TiPs in vitro. The mechanisms underlying OST-modulated alleviation of ER stress induced by TiPs were elucidated through Molecular docking, immunochemistry, PCR, and Western blot analysis. RESULTS In this study, we found that OST treatment effectively mitigated TiAl6V4 particles (TiPs)-induced osteolysis by enhancing osteogenesis in a mouse calvarial model. Furthermore, we observed that OST could attenuate ER stress-mediated apoptosis and osteogenic reduction in osteoblasts exposed to TiPs in vitro and in vivo. Mechanistically, we demonstrated that OST exerts bone-sparing effects on stressed osteoblasts upon TiPs exposure by specifically suppressing the ER stress-dependent PERK signaling cascade. CONCLUSION Osthole ameliorates wear particle-induced osteogenic impairment by mitigating endoplasmic reticulum stress via PERK signaling cascade. These findings suggest that OST may serve as a potential therapeutic agent for combating wear particle-induced osteogenic impairment, offering a novel alternative strategy for managing aseptic prosthesis loosening.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Juan Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Cheng Li
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Wang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jianlun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Tao Yuan
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yongjie Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dongsheng Wang
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ziying Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi Wu
- Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Bin Chen
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Peng Fang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hao Ding
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jia Meng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Hui Jiang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Jianning Zhao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Nirong Bao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Wang X, Yang J, Zhang X, Cai J, Zhang J, Cai C, Zhuo Y, Fang S, Xu X, Wang H, Liu P, Zhou S, Wang W, Hu Y, Fang J. An endophenotype network strategy uncovers YangXue QingNao Wan suppresses Aβ deposition, improves mitochondrial dysfunction and glucose metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156158. [PMID: 39447228 DOI: 10.1016/j.phymed.2024.156158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD), an escalating global health issue, lacks effective treatments due to its complex pathogenesis. YangXue QingNao Wan (YXQNW) is a China Food and Drug Administration (CFDA)- approved TCM formula that has been repurposed in clinical Phase II for the treatment of AD. Identifying YXQNW's active ingredients and their mechanisms is crucial for developing effective AD treatments. PURPOSE This study aims to elucidate the anti-AD effects of YXQNW and to explore its potential therapeutic mechanisms employing an endophenotype network strategy. METHODS Herein we present an endophenotype network strategy that combines active ingredient identification in rat serum, network proximity prediction, metabolomics, and in vivo experimental validation in two animal models. Specially, utilizing UPLC-Q-TOF-MS/MS, active ingredients are identified in YXQNW to build a drug-target network. We applied network proximity to identify potential AD pathological mechanisms of YXQNW via integration of drug-target network, AD endophenotype gene sets, and human protein interactome, and validated related mechanisms in two animal models. In a d-galactose-induced senescent rat model, YXQNW was administered at varying doses for cognitive and neuronal assessments through behavioral tests, Nissl staining, and transmission electron microscopy (TEM). Metabolomic analysis with LC-MS revealed YXQNW's influence on brain metabolites, suggesting therapeutic pathways. Levels of key proteins and biochemicals were measured by WB and ELISA, providing insights into YXQNW's neuroprotective mechanisms. In addition, 5×FAD model mice were used and administered YXQNW by gavage for 14 days at two doses. Amyloid-β levels, transporter expression, and cerebral blood flow have been detected by MRI and biochemical assays. RESULTS The network proximity analysis showed that the effect of YXQNW on AD was highly correlated with amyloid β, synaptic function, glucose metabolism and mitochondrial function. The results of metabolomics combined with in vivo experimental validation suggest that YXQNW has the potential to ameliorate glucose transport abnormalities in the brain by upregulating the expression of GLUT1 and GLUT3, while further enhancing glucose metabolism through increased O-GlcNAcylation and mitigating mitochondrial dysfunction via the AMPK/Sirt1 pathway, thereby improving d-galactose-induced cognitive deficits in rats. Additionally, YXQNW treatment significantly decreased Aβ1-42 levels and enhanced cerebral blood flow (CBF) in the hippocampus of 5×FAD mice. while mechanistic findings indicated that YXQNW treatment increased the expression of ABCB1, an Aβ transporter, in 5×FAD model mice to promote the clearance of Aβ from the brain and alleviate AD-like symptoms. CONCLUSIONS This study reveals that YXQNW may mitigate AD by inhibiting Aβ deposition and ameliorating mitochondrial dysfunction and glucose metabolism, thus offering a promising therapeutic approach for AD.
Collapse
Affiliation(s)
- Xue Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinna Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China
| | - Xiaolian Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinyong Cai
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Jieqi Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xinxin Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Peng Liu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Shuiping Zhou
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Wenjia Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China
| | - Yunhui Hu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
4
|
Wang Y, Chen Y, Liang X, Zhu L, Wen X. Network pharmacology and transcriptomics explore the therapeutic effects of Ermiao Wan categorized formulas for diabetes in mice. Sci Rep 2024; 14:27014. [PMID: 39506066 PMCID: PMC11541784 DOI: 10.1038/s41598-024-78364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Ermiao wan (EMW) is a classical traditional Chinese medicine formula, with two modified versions including Sanmiao wan (SMW) and Simiao wan (FMW). These Ermiao wan categorized formulas (ECFs) are traditionally used to treat gouty arthritis and hyperuricemia. However, their potential benefits and mechanisms on diabetes remain to be explored. This study aims to investigate the overall effects and biological differences of ECFs in high fat diet (HFD)-fed mice based on network pharmacology and transcriptomics. ECFs significantly reduced body weight, improved oral glucose tolerance, decreased fat accumulation, and lowered serum insulin and inflammatory cytokine levels in HFD-fed mice. FMW had better efficacy than EMW and SMW. Network pharmacology analysis revealed that ECFs targeted functional modules associated with chronic inflammation, lipid metabolism, and glucose metabolism. Transcriptome results also showed ECFs could inhibit genes associated with inflammation and upregulated some genes in lipid metabolism. Comprehensive analysis and QPCR verification indicated the beneficial effects of ECFs on diabetes might be attributed to the regulation of Ddit3, Ccl2, Esr1, and Cyp7a1. This study provides a theoretical basis for the clinical use of ECFs.
Collapse
Affiliation(s)
- Yuping Wang
- Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, China Pharmaceutical University, 639 Longmian road, Nanjing, China
| | - Yimeng Chen
- Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, China Pharmaceutical University, 639 Longmian road, Nanjing, China
| | - Xinyi Liang
- Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, China Pharmaceutical University, 639 Longmian road, Nanjing, China
| | - Lijuan Zhu
- Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, China Pharmaceutical University, 639 Longmian road, Nanjing, China
| | - Xiaodong Wen
- Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, China Pharmaceutical University, 639 Longmian road, Nanjing, China.
| |
Collapse
|
5
|
Li S, Yang J. Pathogenesis of Alzheimer's disease and therapeutic strategies involving traditional Chinese medicine. RSC Med Chem 2024; 15:d4md00660g. [PMID: 39430949 PMCID: PMC11484936 DOI: 10.1039/d4md00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative disorder affecting the central nervous system of the elderly. Patients primarily manifest cognitive decline and non-cognitive neuro-psychiatric symptoms. Currently, western medications for AD primarily include cholinesterase inhibitors and glutamate receptor inhibitors, which have limited efficacy and accompanied by significant toxic side effects. Given the intricate pathogenesis of AD, the use of single-target inhibitors is limited. In recent years, as research on AD has progressed, traditional Chinese medicine (TCM) and its active ingredients have increasingly played a crucial role in clinical treatment. Numerous studies demonstrate that TCM and its active ingredients can exert anti-Alzheimer's effects by modulating pathological protein production and deposition, inhibiting tau protein hyperphosphorylation, apoptosis, inflammation, and oxidative stress, while enhancing the central cholinergic system, protecting neurons and synapses, and optimizing energy metabolism. This article summarizes extracts from TCM and briefly elucidates their pharmacological mechanisms against AD, aiming to provide a foundation for further research into the specific mechanisms of TCM in the prevention and treatment of the disease, as well as the identification of efficacious active ingredients.
Collapse
Affiliation(s)
- Shutang Li
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
| | - Jinfei Yang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| |
Collapse
|
6
|
Yang C, Zhao M, Chen Y, Song J, Wang D, Zou M, Liu J, Wen W, Xu S. Dietary bitter ginger-derived zerumbone improved memory performance during aging through inhibition of the PERK/CHOP-dependent endoplasmic reticulum stress pathway. Food Funct 2024; 15:9070-9084. [PMID: 39078275 DOI: 10.1039/d4fo00402g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
PERK/CHOP pathway-mediated excessive endoplasmic reticulum (ER) stress is closely linked to aging-related cognitive impairment (ARCD). Zerumbone (ZB), a naturally occurring sesquiterpene molecule obtained from dietary bitter ginger, has garnered significant interest due to its diverse range of biological properties. It is unclear, though, if ZB can reduce ARCD by preventing ER stress that is dependent on the PERK/CHOP pathway. Here, the PERK-CHOP ER stress pathway was the main focus of an evaluation of the effects and mechanisms of ZB for attenuating ARCD in D-galactose (D-gal)-induced aging mice and SH-SY5Y cells. According to our findings, ZB not only greatly decreased neuronal impairment both in vitro and in vivo, but also significantly alleviated learning and memory failure in vivo. ZB significantly reduced the activation of the PERK/CHOP pathway and neuronal apoptosis in vitro and in vivo, exhibiting the down-regulation of GRP78, p-PREK/PERK, and CHOP expression levels, in addition to suppressing oxidative damage (MDA drop and SOD rise). Comparable outcomes were noted in SH-SY5Y cells subjected to severe ER stress caused by TM. On the other hand, 4-PBA, an ER stress inhibitor, considerably reversed these modifications. Remarkably, CCT020312 (a PERK activator) dramatically overrode the inhibitory effects of ZB on the PERK/CHOP pathway and neuronal death in D-gal-induced SH-SY5Y cells. In contrast, GSK2606414 (a PERK inhibitor) significantly increased these effects of ZB. In summary, our results suggested that ZB prevented D-gal-induced cognitive deficits by blocking the PERK/CHOP-dependent ER stress pathway and apoptosis, suggesting that ZB might be a natural sesquiterpene molecule that relieves ARCD.
Collapse
Affiliation(s)
- Chuan Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Meihuan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuanyuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juxian Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dan Wang
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mi Zou
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingru Liu
- University College London, Gower Street, London WC1E 6BT, UK
| | - Wen Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
7
|
Wei Q, Gao F, Gao L, Gao H, Zhang J, Bao R, Zhang H, Wang J, Shen Q, Gu M. Construction of chrysophanol loaded nanoparticles with N-octyl-O-sulfate chitosan for enhanced nephroprotective effect. Eur J Pharm Sci 2024; 193:106685. [PMID: 38154506 DOI: 10.1016/j.ejps.2023.106685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 12/30/2023]
Abstract
Natural occurring anthraquinone like chrysophanol has been studied because of its anti-diabetic, anti-tumor, anti-inflammatory, hepatoprotective and neuroprotective properties. Nonetheless, its poor water solubility and unstable nature are big concerns in achieving efficient delivery and associated pharmacokinetic and pharmacodynamic effects. Herein, this study sought to solve the above-mentioned problem through development of chrysophanol-loaded nanoparticles to enhance the bioavailability of chrysophanol and to evaluate its anti-renal fibrosis effect in rats. After synthesis of a safe N-octyl-O-sulfate chitosan, we used it to prepare chrysophanol-loaded nanoparticles through dialysis technique before we performed and physical characterization. Also, we tested the stability of the nanoparticles for 21 days at 4 °C and room temperature (25 °C) and evaluated their pharmacokinetics and anti-renal fibrosis effect in rat model of chronic kidney disease (CKD). In terms of results, the nano-preparation demonstrated an acceptable narrow size distribution, wherein the encapsulation rate, size, polydispersed index (PDI) and electrokinetic potential at room temperature were respectively 83.41±0.89 %, 364.88±13.62 nm, 0.192±0.015 and 23.78±1.39 mV. During 21 days of storage, we observed that size of particles and electrokinetic potential altered slightly but the difference was statistically insignificant (p > 0.05). Also, in vitro release studies showed that the formulation reached 84.74 % at 24 h. Chrysophanol nanoparticles showed a 2.57-fold increase in bioavailability compared to unformulated chrysophanol. More importantly, chrysophanol nanoparticles demonstrated certain renal internalization properties and anti-renal fibrosis effects, which could ultimately result in reduced blood-urea nitrogen (BUN), kidney-injury molecule-1 (KIM-1) and serum creatinine (SCr) levels in model rats. In conclusion, the prepared chrysophanol-loaded nanoparticles potentially increased bioavailability and enhanced nephroprotective effects of chrysophanol.
Collapse
Affiliation(s)
- Qingxue Wei
- Department of Nephrology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China
| | - Fuping Gao
- Department of Pathology, Gaochun People's Hospital, Nanjing, Jiangsu 211300, China
| | - Leiping Gao
- Department of Nephrology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China
| | - Hong Gao
- PharmaMax Pharmaceuticals, Ltd., No.1 Nanbatang Road, China Medical City, Taizhou, Jiangsu 225300, China
| | - Jian Zhang
- Department of Orthopedics, Taicang Affiliated Hospital of Soochow University, No.58 Changsheng South Road, Taicang, Jiangsu 215499, China
| | - Rui Bao
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hang Zhang
- Department of Nephrology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China
| | - Jiapeng Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiusheng Shen
- Department of Cardiology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China.
| | - Mingjia Gu
- Department of Nephrology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China.
| |
Collapse
|