1
|
Garcia-Burgos D, Wilhelm P, Vögele C, Munsch S. Food Restriction in Anorexia Nervosa in the Light of Modern Learning Theory: A Narrative Review. Behav Sci (Basel) 2023; 13:bs13020096. [PMID: 36829325 PMCID: PMC9952578 DOI: 10.3390/bs13020096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Improvements in the clinical management of anorexia nervosa (AN) are urgently needed. To do so, the search for innovative approaches continues at laboratory and clinical levels to translate new findings into more effective treatments. In this sense, modern learning theory provides a unifying framework that connects concepts, methodologies and data from preclinical and clinical research to inspire novel interventions in the field of psychopathology in general, and of disordered eating in particular. Indeed, learning is thought to be a crucial factor in the development/regulation of normal and pathological eating behaviour. Thus, the present review not only tries to provide a comprehensive overview of modern learning research in the field of AN, but also follows a transdiagnostic perspective to offer testable explanations for the origin and maintenance of pathological food rejection. This narrative review was informed by a systematic search of research papers in the electronic databases PsycInfo, Scopus and Web of Science following PRISMA methodology. By considering the number and type of associations (Pavlovian, goal-directed or habitual) and the affective nature of conditioning processes (appetitive versus aversive), this approach can explain many features of AN, including why some patients restrict food intake to the point of life-threatening starvation and others restrict calorie intake to lose weight and binge on a regular basis. Nonetheless, it is striking how little impact modern learning theory has had on the current AN research agenda and practice.
Collapse
Affiliation(s)
- David Garcia-Burgos
- Department of Psychology, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Psychobiology, The “Federico Olóriz” Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18071 Granada, Spain
- Correspondence:
| | - Peter Wilhelm
- Department of Psychology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Claus Vögele
- Institute for Health and Behaviour, Department of Behavioural and Cognitive Sciences, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Simone Munsch
- Department of Psychology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
2
|
Effect of early-life stress or fluoxetine exposure on later-life conditioned taste aversion learning in Sprague-Dawley rats. Neurosci Lett 2022; 787:136818. [PMID: 35931277 DOI: 10.1016/j.neulet.2022.136818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 01/06/2023]
Abstract
In rodents, early-life exposure to environmental stress or antidepressant medication treatment has been shown to induce similar long-term consequences on memory- and depression-related behavior in adulthood. To expand on this line of work, we evaluated how juvenile exposure to chronic variable stress (CVS) or the selective serotonin reuptake inhibitor fluoxetine (FLX) influences conditioned taste aversion (CTA) learning in adulthood. To do this, in Experiment 1, we examined how adolescent CVS alone (postnatal day [PND] 35-48), or with prenatal stress (PNS) history (PNS + CVS), influenced the acquisition and extinction of CTA in adult male Sprague Dawley rats. Specifically, at PND70+ (adulthood), rats were presented with 0.15 % saccharin followed by an intraperitoneal (i.p.) injection of lithium chloride (LiCl) to induce visceral malaise. A total of four saccharin (conditioned stimulus) and LiCl (unconditioned stimulus) pairings occurred across the CTA acquisition phase. Next, saccharin was presented without aversive consequences, and intake was measured across consecutive days of the extinction phase. No differences in body weight gain across the experimental days, rate of CTA acquisition, or extinction of CTA, were observed among the experimental groups (control, n = 7; CVS, n = 12; PNS + CVS, n = 9). In Experiment 2, we evaluated if early-life FLX exposure alters CTA learning in adulthood. Specifically, adolescent stress naïve male and female rats received FLX (0 or 20 mg/kg/i.p) once daily for 15 consecutive days (PND35-49). During antidepressant exposure, FLX decreased body weight gain in both male (n = 7) and female rats (n = 7), when compared to respective controls (male control, n = 8; female control, n = 8). However, juvenile FLX exposure decreased body weight-gain in adult male, but not female, rats. Lastly, adolescent FLX history had no effect on CTA acquisition or extinction in adulthood (PND70), in neither male nor female rats. Together, the data indicate that juvenile FLX exposure results in a long-term decrease of body weight-gain in a male-specific manner. Yet, independent of sex, neither early-life stress nor FLX exposure alters CTA learning in adulthood.
Collapse
|
3
|
Hurley MM, Nawari AN, Chen VX, O'Brien SC, Sabir AI, Goodman EJ, Wiles LJ, Biswas A, Aston SA, Khambadkone SG, Tamashiro KL, Moran TH. Adolescent female rats recovered from the activity-based anorexia display blunted hedonic responding. Int J Eat Disord 2022; 55:1042-1053. [PMID: 35689569 PMCID: PMC9545546 DOI: 10.1002/eat.23752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE As patients with anorexia nervosa tend to "like" palatable tastants less than controls, we set out to model this preclinically by using the taste reactivity test (TRT) to assess hedonic state in rats following weight restoration from a bout of activity-based anorexia (ABA). METHOD Female rats (n = 31) were surgically implanted with an intraoral catheter, which allowed experimenters to assess baseline TRT to six tastants. Following baseline TRT, animals were either exposed to the activity-based anorexia condition (ABA; 1.5HR chow/ad lib wheel until 25% weight loss), kept sedentary (SED; ad lib chow/locked wheel), given access to running wheels with ad lib chow access (RW; ad lib chow/wheel), or were body weight matched to the ABA group (BWM; restricted chow/locked wheel). Following 25% weight loss, wheels were locked and food returned to ABA rats. Paired RW groups had their wheels locked and paired BWM rats were given ad lib access to food. Animals were given 10 days to recover prior to a second TRT. Videos were analyzed for liking (tongue protrusions) and disliking (gape) behaviors. RESULTS The ABA group displayed a significant within-subject reduction in cumulative lick responses to water and 1 M sucrose. Additionally, we found the SED and ABA group displayed a significant within-subject reduction in cumulative lick responses to .1 M sucrose. Positive hedonic responses did not decline in either the BWM or the RW groups. DISCUSSION The data show a novel phenomenon that a history of ABA results in an anhedonia phenotype that mirrors aspects of AN. SIGNIFICANCE STATEMENT Patients recovered from anorexia nervosa report anhedonia, or the lack of pleasure in consuming palatable foods. Unfortunately, the biological mechanism underpinning anhedonia in anorexia nervosa is not well understood. The current study assessed hedonic state in adolescent female rats prior to and 10 days recovered following the activity-based anorexia paradigm. Age-matched, running wheel-matched and body weight-matched control groups were also tested at the same time points.
Collapse
Affiliation(s)
- Matthew M. Hurley
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ashraf N. Nawari
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Victoria X. Chen
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Shannon C. O'Brien
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Aliasgher I. Sabir
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ethan J. Goodman
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Lucas J. Wiles
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Aditi Biswas
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sean Andrew Aston
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Seva G. Khambadkone
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kellie L. Tamashiro
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Timothy H. Moran
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
4
|
Adolescent female rats prone to the activity based anorexia (ABA) paradigm have altered hedonic responses and cortical astrocyte density compared to resistant animals. Appetite 2022; 168:105666. [PMID: 34461195 DOI: 10.1016/j.appet.2021.105666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Anhedonia, which in part involves the lack of pleasure in consuming palatable food, is a long-lasting symptom observed in patients both when acutely ill and when long term recovered from Anorexia Nervosa. The neurocircuitry underlying this phenomenon is not well understood. Here we use the preclinical activity-based anorexia (ABA) model in adolescent female rats to assess the impact of excessive exercise, limited food intake and acute weight loss, on adolescent female rat orofacial responding to intraoral sucrose, as measured by the taste reactivity test (TRT). Animals were identified as either prone or resistant to this paradigm based on a weight loss criterion. Measures of food intake, running wheel activity, taste reactivity and medial prefrontal cortex astrocyte expression were compared across groups. METHODS Adolescent female rats implanted with an intraoral catheter were given a TRT using 1 M (M) sucrose at baseline, max weight loss (25% weight loss from start of ABA or 7 full days on the paradigm) or 10 days recovered from the ABA paradigm. Animals were sacrificed after the final TRT and astrocyte density was measured via immunohistochemistry. RESULTS Animals resistant to the ABA paradigm ran less than prone animals during the ABA period. Additionally, we found that resistant animals displayed more cumulative 'liking' responses to sucrose compared to prone animals at maximum weight loss. Finally, we found prone animals 10-days recovered from ABA had reduced medial prefrontal cortex astrocyte density compared to levels in resistant animals. DISCUSSION Rats presented with the physiological challenge of the ABA paradigm either adapt their behavior to stabilize their body weight (i.e. resistant), or rapidly lose weight (i.e. prone). Furthermore, we found that prone animals have reduced orofacial responding to 1 M sucrose at maximum weight loss compared to responses in resistant animals, and this anhedonia-like behavior may be a result of reduced astrocyte density that affects cortical function.
Collapse
|
5
|
Hurley MM, Murlanova K, Macias LK, Sabir AI, O'Brien SC, Bhasin H, Tamashiro KL, Pletnikov MV, Moran TH. Activity-based anorexia disrupts systemic oxidative state and induces cortical mitochondrial fission in adolescent female rats. Int J Eat Disord 2021; 54:639-645. [PMID: 33368559 DOI: 10.1002/eat.23453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/13/2020] [Accepted: 12/05/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Patients with Anorexia Nervosa (AN) display increased levels of oxidative stress that correlates with disease severity. Unfortunately, the biological ramifications of AN-induced oxidative stress on the brain are largely unknown. Our lab uses the preclinical activity-based anorexia (ABA) paradigm to model symptoms of AN. The goal of the present study was to determine how ABA experience affects oxidative state and its consequences in adolescent female rats. METHOD We compared systemic glutathione and cysteine plasma concentrations and medial prefrontal cortex (mPFC) mitochondrial fission in ABA animals at maximum weight loss or following 10-days of weight recovery to levels in age-matched sedentary (SED) control rats. RESULTS ABA animals at maximum weight loss had significantly lower plasma levels of cysteine and glutathione compared to SED controls. Additionally, ABA animals at max weight loss have significantly more mPFC mitochondrial fission. There were no significant differences in plasma analyte levels or mitochondrial fission between weight recovered ABA animals and SED controls. DISCUSSION These data suggest that ABA experience results in oxidative stress that is remedied after weight restoration. The long-lasting ramifications of transient periods of increased oxidative stress are unknown and can lead to significant consequences on brain function and behavior.
Collapse
Affiliation(s)
- Matthew M Hurley
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kateryna Murlanova
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lindsey K Macias
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aliasgher I Sabir
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shannon C O'Brien
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harshit Bhasin
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kellie L Tamashiro
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Timothy H Moran
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Scharner S, Stengel A. Animal Models for Anorexia Nervosa-A Systematic Review. Front Hum Neurosci 2021; 14:596381. [PMID: 33551774 PMCID: PMC7854692 DOI: 10.3389/fnhum.2020.596381] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
Anorexia nervosa is an eating disorder characterized by intense fear of gaining weight and a distorted body image which usually leads to low caloric intake and hyperactivity. The underlying mechanism and pathogenesis of anorexia nervosa is still poorly understood. In order to learn more about the underlying pathophysiology of anorexia nervosa and to find further possible treatment options, several animal models mimicking anorexia nervosa have been developed. The aim of this review is to systematically search different databases and provide an overview of existing animal models and to discuss the current knowledge gained from animal models of anorexia nervosa. For the systematic data search, the Pubmed—Medline database, Embase database, and Web of Science database were searched. After removal of duplicates and the systematic process of selection, 108 original research papers were included in this systematic review. One hundred and six studies were performed with rodents and 2 on monkeys. Eighteen different animal models for anorexia nervosa were used in these studies. Parameters assessed in many studies were body weight, food intake, physical activity, cessation of the estrous cycle in female animals, behavioral changes, metabolic and hormonal alterations. The most commonly used animal model (75 of the studies) is the activity-based anorexia model in which typically young rodents are exposed to time-reduced access to food (a certain number of hours a day) with unrestricted access to a running wheel. Of the genetic animal models, one that is of particular interest is the anx/anx mice model. Animal models have so far contributed many findings to the understanding of mechanisms of hunger and satiety, physical activity and cognition in an underweight state and other mechanisms relevant for anorexia nervosa in humans.
Collapse
Affiliation(s)
- Sophie Scharner
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Leppanen J, Cardi V, Sedgewick F, Treasure J, Tchanturia K. Basal ganglia volume and shape in anorexia nervosa. Appetite 2020; 144:104480. [PMID: 31586464 PMCID: PMC6891247 DOI: 10.1016/j.appet.2019.104480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/07/2019] [Accepted: 10/01/2019] [Indexed: 12/04/2022]
Abstract
Background Reward-centred models have proposed that anomalies in the basal ganglia circuitry that underlies reward learning and habit formation perpetuate anorexia nervosa (AN). The present study aimed to investigate the volume and shape of key basal ganglia regions, including the bilateral caudate, putamen, nucleus accumbens (NAcc), and globus pallidus in AN. Methods The present study combined data from two existing studies resulting in a sample size of 46 women with AN and 56 age-matched healthy comparison (HC) women. Group differences in volume and shape of the regions of interest were examined. Within the AN group, the impact of eating disorder characteristics on volume and shape of the basal ganglia regions were also explored. Results The shape analyses revealed inward deformations in the left caudate, right NAcc, and bilateral ventral and internus globus pallidus, and outward deformations in the right middle and posterior globus pallidus in the AN group. Conclusions The present findings appear to fit with the theoretical models suggesting that there are alterations in the basal ganglia regions associated with habit formation and reward processing in AN. Further investigation of structural and functional connectivity of these regions in AN as well as their role in recovery would be of interest.
Collapse
Affiliation(s)
- Jenni Leppanen
- Kings' College London, Institute of Psychiatry, Psychology, and Neuroscience, Psychological Medicine, London, United Kingdom.
| | - Valentina Cardi
- Kings' College London, Institute of Psychiatry, Psychology, and Neuroscience, Psychological Medicine, London, United Kingdom
| | - Felicity Sedgewick
- University of Bristol, 35 Berkeley Square, Clifton, Bristol, United Kingdom
| | - Janet Treasure
- Kings' College London, Institute of Psychiatry, Psychology, and Neuroscience, Psychological Medicine, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Kate Tchanturia
- Kings' College London, Institute of Psychiatry, Psychology, and Neuroscience, Psychological Medicine, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom; Illia State University, Department of Psychology, Tbilisi, Georgia
| |
Collapse
|
8
|
Schalla MA, Stengel A. Activity Based Anorexia as an Animal Model for Anorexia Nervosa-A Systematic Review. Front Nutr 2019; 6:69. [PMID: 31165073 PMCID: PMC6536653 DOI: 10.3389/fnut.2019.00069] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Anorexia nervosa (AN) is a severe eating disorder affecting around 1 per 100 persons. However, the knowledge about its underlying pathophysiology is limited. To address the need for a better understanding of AN, an animal model was established early on in the late 1960's: the activity-based anorexia (ABA) model in which rats have access to a running wheel combined with restricted food access leading to self-starving/body weight loss and hyperactivity. Both symptoms, separately or combined, can also be found in patients with AN. The aim of this systematic review was to compile the current knowledge about this animal model as well as to address gaps in knowledge. Using the data bases of PubMed, Embase and Web of science 102 publications were identified meeting the search criteria. Here, we show that the ABA model mimics core features of human AN and has been characterized with regards to brain alterations, hormonal changes as well as adaptations of the immune system. Moreover, pharmacological interventions in ABA animals and new developments, such as a chronic adaptation of the ABA model, will be highlighted. The chronic model might be well suited to display AN characteristics but should be further characterized. Lastly, limitations of the model will be discussed.
Collapse
Affiliation(s)
- Martha A Schalla
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Affiliation(s)
- E. Ito
- Department of Biology, Waseda University , Tokyo, Japan
| | - Y. Totani
- Department of Biology, Waseda University , Tokyo, Japan
| | - A. Oike
- Department of Biology, Waseda University , Tokyo, Japan
| |
Collapse
|
10
|
Boersma GJ, Treesukosol Y, Cordner ZA, Kastelein A, Choi P, Moran TH, Tamashiro KL. Exposure to activity-based anorexia impairs contextual learning in weight-restored rats without affecting spatial learning, taste, anxiety, or dietary-fat preference. Int J Eat Disord 2016; 49:167-79. [PMID: 26711541 PMCID: PMC4777973 DOI: 10.1002/eat.22489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/30/2015] [Accepted: 11/13/2015] [Indexed: 02/02/2023]
Abstract
UNLABELLED Relapse rates are high amongst cases of anorexia nervosa (AN) suggesting that some alterations induced by AN may remain after weight restoration. OBJECTIVE To study the consequences of AN without confounds of environmental variability, a rodent model of activity-based anorexia (ABA) can be employed. We hypothesized that exposure to ABA during adolescence may have long-term consequences in taste function, cognition, and anxiety-like behavior after weight restoration. METHODS To test this hypothesis, we exposed adolescent female rats to ABA (1.5 h food access, combined with voluntary running wheel access) and compared their behavior to that of control rats after weight restoration was achieved. The rats were tested for learning/memory, anxiety, food preference, and taste in a set of behavioral tests performed during the light period. RESULTS Our data show that ABA exposure leads to reduced performance during the novel object recognition task, a test for contextual learning, without altering performance in the novel place recognition task or the Barnes maze, both tasks that test spatial learning. Furthermore, we do not observe alterations in unconditioned lick responses to sucrose nor quinine (described by humans as "sweet" and "bitter," respectively). Nor Do we find alterations in anxiety-like behavior during an elevated plus maze or an open field test. Finally, preference for a diet high in fat is not altered. DISCUSSION Overall, our data suggest that ABA exposure during adolescence impairs contextual learning in adulthood without altering spatial leaning, taste, anxiety, or fat preference.
Collapse
Affiliation(s)
- Gretha J. Boersma
- Department of Psychiatry and Behavioral Sciences School of Medicine; Johns Hopkins University; Baltimore Maryland
| | - Yada Treesukosol
- Department of Psychiatry and Behavioral Sciences School of Medicine; Johns Hopkins University; Baltimore Maryland
| | - Zachary A. Cordner
- Department of Psychiatry and Behavioral Sciences School of Medicine; Johns Hopkins University; Baltimore Maryland
| | - Anneke Kastelein
- Department of Psychiatry and Behavioral Sciences School of Medicine; Johns Hopkins University; Baltimore Maryland
| | - Pique Choi
- Department of Psychiatry and Behavioral Sciences School of Medicine; Johns Hopkins University; Baltimore Maryland
| | - Timothy H. Moran
- Department of Psychiatry and Behavioral Sciences School of Medicine; Johns Hopkins University; Baltimore Maryland
| | - Kellie L. Tamashiro
- Department of Psychiatry and Behavioral Sciences School of Medicine; Johns Hopkins University; Baltimore Maryland
| |
Collapse
|
11
|
Agmatine attenuates hyperactivity and weight loss associated with activity-based anorexia in female rats. Pharmacol Biochem Behav 2015; 132:136-141. [DOI: 10.1016/j.pbb.2015.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/25/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022]
|
12
|
Guarda AS, Schreyer CC, Boersma GJ, Tamashiro KL, Moran TH. Anorexia nervosa as a motivated behavior: Relevance of anxiety, stress, fear and learning. Physiol Behav 2015; 152:466-72. [PMID: 25846837 DOI: 10.1016/j.physbeh.2015.04.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/02/2015] [Indexed: 12/12/2022]
Abstract
The high comorbidity between anorexia nervosa (AN) and anxiety disorders is well recognized. AN is a motivated behavioral disorder in which habit formation is likely to contribute to the persistence of abnormal eating and exercise behaviors. Secondary alterations in brain circuitry underlying the reward value of food and exercise, along with disturbances in neuroendocrine hunger and satiety signaling arising from starvation and excessive exercise, are likely contributors to the maintenance of anorectic behaviors in genetically vulnerable individuals. The potential role of fear conditioning in facilitating onset of AN, or of impaired fear extinction in contributing to the high relapse rates observed following weight restoration, is of interest. Evidence from animal models of anxiety and human laboratory studies indicate that low estrogen impairs fear extinction. Low estradiol levels in AN may therefore play a role in perpetuating fear of food and fat in recently weight restored patients. Translational models including the activity based anorexia (ABA) rodent model of AN, and neuroimaging studies of fear extinction and conditioning, could help clarify the underlying molecular mechanisms and neurocircuitry involved in food avoidance behaviors in AN. Moreover, the adaptation of novel treatment interventions with efficacy in anxiety disorders may contribute to the development of new treatments for this impairing disorder.
Collapse
Affiliation(s)
- Angela S Guarda
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| | - Colleen C Schreyer
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| | - Gretha J Boersma
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| | - Kellie L Tamashiro
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
13
|
Walewski JL, Ge F, Lobdell H, Levin N, Schwartz GJ, Vasselli JR, Pomp A, Dakin G, Berk PD. Spexin is a novel human peptide that reduces adipocyte uptake of long chain fatty acids and causes weight loss in rodents with diet-induced obesity. Obesity (Silver Spring) 2014; 22:1643-52. [PMID: 24550067 PMCID: PMC4077920 DOI: 10.1002/oby.20725] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 02/14/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Microarray studies identified Ch12:orf39 (Spexin) as the most down-regulated gene in obese human fat. Therefore, we examined its role in obesity pathogenesis. METHODS Spexin effects on food intake, meal patterns, body weight, respiratory exchange ratio (RER), and locomotor activity were monitored electronically in C57BL/6J mice or Wistar rats with diet-induced obesity (DIO). Its effects on adipocyte [(3)H]-oleate uptake were determined. RESULTS In humans, Spexin gene expression was down-regulated 14.9-fold in obese omental and subcutaneous fat. Circulating Spexin changed in parallel, correlating (r = -0.797) with Leptin. In rats, Spexin (35 µg/kg/day SC) reduced caloric intake ∼32% with corresponding weight loss. Meal patterns were unaffected. In mice, Spexin (25 µg/kg/day IP) significantly reduced the RER at night, and increased locomotion. Spexin incubation in vitro significantly inhibited facilitated fatty acid (FA) uptake into DIO mouse adipocytes. Conditioned taste aversion testing (70 µg/kg/day IP) demonstrated no aversive Spexin effects. CONCLUSIONS Spexin gene expression is markedly down-regulated in obese human fat. The peptide produces weight loss in DIO rodents. Its effects on appetite and energy regulation are presumably central; those on adipocyte FA uptake appear direct and peripheral. Spexin is a novel hormone involved in weight regulation, with potential for obesity therapy.
Collapse
Affiliation(s)
- José L Walewski
- Department of Medicine, Columbia University Medical Center, New York, New York, 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Friederich HC, Wu M, Simon JJ, Herzog W. Neurocircuit function in eating disorders. Int J Eat Disord 2013; 46:425-32. [PMID: 23658085 DOI: 10.1002/eat.22099] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2012] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Eating disorders are serious psychosomatic disorders with high morbidity and lifetime mortality. Inadequate response to current therapeutic interventions constitutes a challenging clinical problem. A better understanding of the underlying neurobiological mechanisms could improve psychotherapeutic and drug treatment strategies. METHOD A review highlighting the current state of brain imaging in eating disorders related to the anxiety and pathological fear learning model of anorexia nervosa (AN) and the impulsivity model of binge eating in bulimia nervosa (BN). RESULTS Available neuroimaging studies in patients with acute AN primarily suggest a hyper-responsive emotional and fear network to food, but not necessarily to eating disorder-unrelated, salient stimuli. Furthermore, patients with AN show decreased activation in the ventral fronto-striatal circuits during the performance of a cognitive flexibility task. Results in patients with BN primarily suggest a hypo-responsive reward system to food stimuli, especially to taste reward. Additionally, patients with BN exhibit impaired brain activation in the inhibitory control network during the performance of general response-inhibition tasks. DISCUSSION Anxiety and pathological fear learning may lead to conditioned neural stimulus-response patterns to food stimuli and increased cognitive rigidity, which could account for the phobic avoidance of food intake in patients with acute AN. However, further neurobiological studies are required to investigate pathological fear learning in patients with AN. Patients with BN may binge eat to compensate for a hypo-responsive reward system. The impaired brain activation in the inhibitory control network may facilitate the loss of control over food intake in patients with BN.
Collapse
Affiliation(s)
- Hans-Christoph Friederich
- Department of General Internal Medicine and Psychosomatics, Medical University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
15
|
|
16
|
Effects of an activity-based anorexia procedure on within-session changes in nose-poke responding. LEARNING AND MOTIVATION 2012. [DOI: 10.1016/j.lmot.2012.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Mickley GA, Wilson GN, Remus JL, Ramos L, Ketchesin KD, Biesan OR, Luchsinger JR, Prodan S. Periaqueductal gray c-Fos expression varies relative to the method of conditioned taste aversion extinction employed. Brain Res 2011; 1423:17-29. [PMID: 22000083 PMCID: PMC3207248 DOI: 10.1016/j.brainres.2011.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/06/2011] [Accepted: 09/16/2011] [Indexed: 01/01/2023]
Abstract
A conditioned taste aversion (CTA) is acquired when an animal consumes a novel taste (CS) and then experiences the symptoms of poisoning (US). Following CTA training, animals will avoid the taste that was previously associated with malaise. This defensive reaction to a learned fear can be extinguished by repeated exposure to the CS alone (CS-only; CSO-EXT). However, following a latency period in which the CS is not presented, the CTA will spontaneously recover (SR). Through the use of an explicitly unpaired extinction procedure (EU-EXT) we have shown that we can speed up extinction and attenuate SR of the CTA. Here we compared and contrasted the ability of CSO and EU extinction procedures to affect c-Fos expression in the periaqueductal gray (PAG). Fluid-deprived Sprague-Dawley rats acquired a strong CTA [via 3 pairings of 0.3% oral saccharin (SAC; the CS) and 81mg/kg i.p. lithium chloride (LiCl; the US)] followed by extinction trials consisting of multiple exposures to either, (a) the CS every-other day (CSO-EXT), or (b) CS and US on alternate days (EU-EXT). A different group of rats did not receive multiple CS exposures and served as a "no extinction" (NE) control. Both extinction procedures resulted in ≥90% reacceptance of SAC (achieving asymptotic extinction). Some of the animals were sacrificed for c-Fos immunohistochemical analysis following asymptotic extinction. Other rats entered a 30-day latency period where they drank water only. These remaining animals were then tested for SR with a final exposure to SAC before being sacrificed for c-Fos immunohistochemistry. As reported previously, rats in the CS-only group exhibited a significant SR of the CTA. However, animals in the EU extinction group reached asymptotic extinction more rapidly than did CSO rats and they did not show SR of the CTA. As compared to rats that retained their CTA, both groups of extinguished rats showed suppression in the number of c-Fos-labeled neurons in all 4 longitudinal columns of the PAG. The number of c-Fos-labeled cells in the PAG was generally low but there was a reliable increase in c-Fos expression in dorsolateral PAG (dlPAG) following the SR test in the brains of rats that went through the EU-EXT procedure as compared with those that either went through the more-traditional CSO extinction procedure or experienced no extinction at all. The number of c-Fos-labeled neurons in the dlPAG was significantly correlated with the amount of SAC consumed at the SR test. Surprisingly, the brains of EU-extinguished rats and CSO extinguished rats did not differ in the number of c-Fos-labeled neurons in gustatory neocortex, medial prefrontal cortex, basolateral amygdala, or the central nucleus of the amygdala. Thus, behavioral differences in SR between the EU and CSO extinction animals were not represented by corresponding changes in the neural activity of several brain nuclei classically associated with extinction learning. However a detailed analysis of PAG c-Fos expression provided hints about some of the physiological changes evoked by these 2 extinction paradigms that produce very different behavioral outcomes. The findings are clinically relevant as we seek the development of treatments for deficits in fear extinction (e.g. PTSD, phobias).
Collapse
Affiliation(s)
- G. Andrew Mickley
- The Neuroscience Program, Baldwin-Wallace College, 275 Eastland Rd., Berea, OH, 44017, USA
| | - Gina N. Wilson
- The Neuroscience Program, Baldwin-Wallace College, 275 Eastland Rd., Berea, OH, 44017, USA
| | - Jennifer L. Remus
- The Neuroscience Program, Baldwin-Wallace College, 275 Eastland Rd., Berea, OH, 44017, USA
| | - Linnet Ramos
- The Neuroscience Program, Baldwin-Wallace College, 275 Eastland Rd., Berea, OH, 44017, USA
| | - Kyle D. Ketchesin
- The Neuroscience Program, Baldwin-Wallace College, 275 Eastland Rd., Berea, OH, 44017, USA
| | - Orion R. Biesan
- The Neuroscience Program, Baldwin-Wallace College, 275 Eastland Rd., Berea, OH, 44017, USA
| | - Joseph R. Luchsinger
- The Neuroscience Program, Baldwin-Wallace College, 275 Eastland Rd., Berea, OH, 44017, USA
| | - Suzanna Prodan
- The Neuroscience Program, Baldwin-Wallace College, 275 Eastland Rd., Berea, OH, 44017, USA
| |
Collapse
|