1
|
Li X, Liang X, Ma S, Zhao S, Wang W, Li M, Feng D, Tang M. SERT and OCT mediate 5-HT 1B receptor regulation of immobility behavior and uptake of 5-HT and HIS. Biomed Pharmacother 2024; 177:117017. [PMID: 38917762 DOI: 10.1016/j.biopha.2024.117017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
5-HT clearance, commonly mediated by transporters in the uptake-1 and uptake-2 families, has been linked to 5-HT1B receptor's action on behaviors. Since no specific transporters identified yet, effects of serotonin transporter (SERT) and organic cation transporter (OCTs) on 5-HT1B-elicited immobility phenotype, and 5-HT and HIS uptake were then investigated. Intraperitoneal injections of SERT inhibitor fluoxetine (FLX) and/or OCTs inhibitor decynium (D22) were used prior to local perfusion of 5-HT1B agonist CP93129 into the ventral hippocampus to measure immobility times in the FST and TST, to measure 5-HT uptake efficiencies and HIS uptake efficiencies derived from linear regressions using the transient no-net-flux quantitative microdialysis in C57BL/6 mice. Exogenous 5-HT and HIS uptake were measured following incubation of FLX and/or D22 with CP93129 in the RBL-2H3 cells. Moreover, surface membrane levels of SERT and OCT were detected in response to CP93129. Local CP93129 prolonged immobility times, which were attenuated following pretreatment of either inhibitor. Local CP93129 lowered the slopes obtained from the lineal regressions for 5-HT and HIS (slope is reciprocal to uptake efficiency), which were then weakened following pretreatment of either inhibitor. Similar findings were obtained following CP93129 incubation, and co-incubation of CP93129 with either inhibitor in the RBL-2H3. Moreover, CP93129 dose-dependently moved SERT and OCT3 in the cytosol to the surface membrane. Both SERT and OCT are the target effectors mediating 5-HT1B regulation of immobility time and 5-HT uptake, OCT mediates 5-HT1B regulation of HIS uptake. Their underlying signal transductions need to be further explored.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xuankai Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shenglu Ma
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Wenyao Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mingxing Li
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Dan Feng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Honan LE, Fraser-Spears R, Daws LC. Organic cation transporters in psychiatric and substance use disorders. Pharmacol Ther 2024; 253:108574. [PMID: 38072333 PMCID: PMC11052553 DOI: 10.1016/j.pharmthera.2023.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Psychiatric and substance use disorders inflict major public health burdens worldwide. Their widespread burden is compounded by a dearth of effective treatments, underscoring a dire need to uncover novel therapeutic targets. In this review, we summarize the literature implicating organic cation transporters (OCTs), including three subtypes of OCTs (OCT1, OCT2, and OCT3) and the plasma membrane monoamine transporter (PMAT), in the neurobiology of psychiatric and substance use disorders with an emphasis on mood and anxiety disorders, alcohol use disorder, and psychostimulant use disorder. OCTs transport monoamines with a low affinity but high capacity, situating them to play a central role in regulating monoamine homeostasis. Preclinical evidence discussed here suggests that OCTs may serve as promising targets for treatment of psychiatric and substance use disorders and encourage future research into their therapeutic potential.
Collapse
Affiliation(s)
- Lauren E Honan
- The University of Texas Health Science Center at San Antonio, Department of Cellular & Integrative Physiology, USA
| | - Rheaclare Fraser-Spears
- University of the Incarnate Word, Feik School of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - Lynette C Daws
- The University of Texas Health Science Center at San Antonio, Department of Cellular & Integrative Physiology, USA; The University of Texas Health Science Center at San Antonio, Department of Pharmacology, USA.
| |
Collapse
|
3
|
Warmerdam LA, van Wezel-Meijler G, de Vries LS, Groenendaal F, Steggerda SJ. The Association of Dexamethasone and Hydrocortisone with Cerebellar Growth in Premature Infants. Neonatology 2023; 120:615-623. [PMID: 37379806 DOI: 10.1159/000531075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/28/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVES Corticosteroids are used to prevent or treat lung disease of prematurity. While neurological side effects have been reported, detailed effects on cerebellar growth are unknown. This study aimed to compare cerebellar growth in premature infants who received dexamethasone or hydrocortisone to premature infants who did not receive postnatal corticosteroids. STUDY DESIGN Retrospective case-control study in infants born at a gestational age of <29 weeks and admitted to two level 3 neonatal intensive care units. Exclusion criteria were severe congenital anomalies and cerebellar or severe supratentorial lesions. Infants were treated with dexamethasone (unit 1) or hydrocortisone (unit 2) for chronic lung disease. Controls (unit 1) did not receive postnatal corticosteroids. Sequential head circumference (HC) and ultrasound measurements of transcerebellar diameter (TCD), biparietal diameter (BPD), and corpus callosum-fastigium length (CCFL) were performed until 40 weeks' postmenstrual age (PMA). Growth was assessed using linear mixed models correcting for PMA at measurement, sex, HC z-score at birth, and a propensity score indicating illness severity. Group differences before treatment were assessed using linear regression. RESULTS 346 infants were included (68 dexamethasone, 37 hydrocortisone, 241 controls). Before starting corticosteroids, TCD, BPD, and HC measurements did not differ between patients and controls at a comparable PMA. After starting treatment, both types of corticosteroid had a negative association with TCD growth. BPD, CCFL, and HC growth were not negatively affected. CONCLUSION Administration of dexamethasone and hydrocortisone are both associated with impaired cerebellar growth in premature infants without evident negative associations with cerebral growth.
Collapse
Affiliation(s)
- Laura A Warmerdam
- Department of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Linda S de Vries
- Department of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, and Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Sylke J Steggerda
- Department of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Neumann J, Hofmann B, Dhein S, Gergs U. Cardiac Roles of Serotonin (5-HT) and 5-HT-Receptors in Health and Disease. Int J Mol Sci 2023; 24:4765. [PMID: 36902195 PMCID: PMC10003731 DOI: 10.3390/ijms24054765] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Serotonin acts solely via 5-HT4-receptors to control human cardiac contractile function. The effects of serotonin via 5-HT4-receptors lead to positive inotropic and chronotropic effects, as well as arrhythmias, in the human heart. In addition, 5-HT4-receptors may play a role in sepsis, ischaemia, and reperfusion. These presumptive effects of 5-HT4-receptors are the focus of the present review. We also discuss the formation and inactivation of serotonin in the body, namely, in the heart. We identify cardiovascular diseases where serotonin might play a causative or additional role. We address the mechanisms which 5-HT4-receptors can use for cardiac signal transduction and their possible roles in cardiac diseases. We define areas where further research in this regard should be directed in the future, and identify animal models that might be generated to this end. Finally, we discuss in what regard 5-HT4-receptor agonists or antagonists might be useful drugs that could enter clinical practice. Serotonin has been the target of many studies for decades; thus, we found it timely to summarise our current knowledge here.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Stefan Dhein
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Leipzig, D-04109 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| |
Collapse
|
5
|
Structural basis of organic cation transporter-3 inhibition. Nat Commun 2022; 13:6714. [PMID: 36344565 PMCID: PMC9640557 DOI: 10.1038/s41467-022-34284-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Organic cation transporters (OCTs) facilitate the translocation of catecholamines, drugs and xenobiotics across the plasma membrane in various tissues throughout the human body. OCT3 plays a key role in low-affinity, high-capacity uptake of monoamines in most tissues including heart, brain and liver. Its deregulation plays a role in diseases. Despite its importance, the structural basis of OCT3 function and its inhibition has remained enigmatic. Here we describe the cryo-EM structure of human OCT3 at 3.2 Å resolution. Structures of OCT3 bound to two inhibitors, corticosterone and decynium-22, define the ligand binding pocket and reveal common features of major facilitator transporter inhibitors. In addition, we relate the functional characteristics of an extensive collection of previously uncharacterized human genetic variants to structural features, thereby providing a basis for understanding the impact of OCT3 polymorphisms.
Collapse
|
6
|
Gould GG, Barba-Escobedo PA, Horton RE, Daws LC. High Affinity Decynium-22 Binding to Brain Membrane Homogenates and Reduced Dorsal Camouflaging after Acute Exposure to it in Zebrafish. Front Pharmacol 2022; 13:841423. [PMID: 35754508 PMCID: PMC9218599 DOI: 10.3389/fphar.2022.841423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Organic cation transporters (OCTs) are expressed in the mammalian brain, kidney, liver, placenta, and intestines, where they facilitate the transport of cations and other substrates between extracellular fluids and cells. Despite increasing reliance on ectothermic vertebrates as alternative toxicology models, properties of their OCT homologs transporting many drugs and toxins remain poorly characterized. Recently, in zebrafish (Danio rerio), two proteins with functional similarities to human OCTs were shown to be highly expressed in the liver, kidney, eye, and brain. This study is the first to characterize in vivo uptake to the brain and the high-affinity brain membrane binding of the mammalian OCT blocker 1-1'-diethyl-2,2'cyanine iodide (decynium-22 or D-22) in zebrafish. Membrane saturation binding of [3H] D-22 in pooled zebrafish whole brain versus mouse hippocampal homogenates revealed a high-affinity binding site with a KD of 5 ± 2.5 nM and Bmax of 1974 ± 410 fmol/mg protein in the zebrafish brain, and a KD of 3.3 ± 2.3 and Bmax of 704 ± 182 fmol/mg protein in mouse hippocampus. The binding of [3H] D-22 to brain membrane homogenates was partially blocked by the neurotoxic cation 1-methyl-4-phenylpyridinium (MPP+), a known OCT substrate. To determine if D-22 bath exposures reach the brain, zebrafish were exposed to 25 nM [3H] D-22 for 10 min, and 736 ± 68 ng/g wet weight [3H] D-22 was bound. Acute behavioral effects of D-22 in zebrafish were characterized in two anxiety-relevant tests. In the first cohort of zebrafish, 12.5, 25, or 50 mg/L D-22 had no effect on their height in the dive tank or entries and time spent in white arms of a light/dark plus maze. By contrast, 25 mg/L buspirone increased zebrafish dive tank top-dwelling (p < 0.05), an anticipated anxiolytic effect. However, a second cohort of zebrafish treated with 50 mg/L D-22 made more white arm entries, and females spent more time in white than controls. Based on these findings, it appears that D-22 bath treatments reach the zebrafish brain and have partial anxiolytic properties, reducing anti-predator dorsal camouflaging, without increasing vertical exploration. High-affinity binding of [3H] D-22 in zebrafish brain and mouse brain was similar, with nanomolar affinity, possibly at conserved OCT site(s).
Collapse
Affiliation(s)
- Georgianna G Gould
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Priscilla A Barba-Escobedo
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Rebecca E Horton
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lynette C Daws
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
7
|
Maximino C. Decynium-22 affects behavior in the zebrafish light/dark test. NEUROANATOMY AND BEHAVIOUR 2021. [DOI: 10.35430/nab.2021.e21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Decynium-22 (D-22) is an inhibitor of the uptake2 system of monoamine clearance, resulting in increased levels of dopamine and norepinephrine (and in some cases serotonin) in the nervous system and elsewhere. Uptake2 is mediated by low-affinity, high-capacity transporters that are inhibited by glucocorticoids, suggesting a mechanism of fast glucocorticoid-monoamine interaction in the brain and a possible target for antidepressants. D-22 dose-dependently increased anxiety-like behavior in adult zebrafish exposed to the light/dark test, monotonically increasing scototaxis (dark preference), but affecting risk assessment with an inverted-U-shaped response. These results suggest that the uptake2 system has a role in defensive behavior in zebrafish, presenting a novel mechanism by which stress and glucocorticoids could produce fast neurobehavioral adjustments in vertebrates.
Collapse
|
8
|
Benton KC, Lowry CA, Gasser PJ. Organic Cation Transporters and Nongenomic Glucocorticoid Action. Handb Exp Pharmacol 2021; 266:241-251. [PMID: 34104992 DOI: 10.1007/164_2021_493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Corticosteroid hormones exert powerful influences on neuronal physiology and behavior by activating intracellular glucocorticoid receptors (GR) and mineralocorticoid receptors (MR), which act as ligand-gated transcription factors, altering gene expression. In addition to these genomic effects on physiology and behavior, which are usually delayed by minutes to hours, corticosteroid hormones also initiate rapid effects through diverse nongenomic mechanisms. One such mechanism involves the direct inhibition by corticosteroid hormones of monoamine transport mediated by the "uptake2" transporter, organic cation transporter 3 (OCT3), a high-capacity, low-affinity transporter for norepinephrine, epinephrine, dopamine, serotonin, and histamine. In this review we describe studies that demonstrate OCT3 expression and corticosterone-sensitive monoamine transport in the brain and present evidence supporting the hypothesis that corticosterone exerts rapid, nongenomic actions on glia and neurons, ultimately modulating physiology and behavior, by inhibiting OCT3-mediated monoamine clearance. We also describe the corticosteroid sensitivity of the other members of the uptake2 family and examine their potential contributions to nongenomic effects of corticosteroids in the brain.
Collapse
Affiliation(s)
- Kelsey C Benton
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Paul J Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| |
Collapse
|
9
|
Abstract
Catecholamines, including dopamine, norepinephrine, and epinephrine, are modulatory transmitters released from specialized neurons throughout the brain. Collectively, catecholamines exert powerful regulation of mood, motivation, arousal, and plasticity. Transporter-mediated uptake determines the peak concentration, duration, and physical spread of released catecholamines, thus playing key roles in determining the magnitude and duration of their modulatory effects. Most studies of catecholamine clearance have focused on the presynaptic high-affinity, low-capacity dopamine (DAT), and norepinephrine (NET) transporters, which are members of the uptake1 family of monoamine transporters. However, recent studies have demonstrated that members of the uptake2 family of monoamine transporters, including organic cation transporter 2 (OCT2), OCT3, and the plasma membrane monoamine transporter (PMAT) are expressed widely throughout the brain. In contrast to DAT and NET, these transporters have higher capacity and lower affinity for catecholamines and are multi-specific, each with the capacity to transport all catecholamines. The expression of these transporters in the brain suggests that they play significant roles in regulating catecholamine homeostasis. This review summarizes studies describing the anatomical distribution of OCT2, OCT3, and PMAT, their cellular and subcellular localization, and their contribution to the regulation of the clearance of catecholamines in the brain.
Collapse
|
10
|
Loupy KM, Arnold MR, Hassell JE, Lieb MW, Milton LN, Cler KE, Fox JH, Siebler PH, Schmidt D, Noronha SISR, Day HEW, Lowry CA. Evidence that preimmunization with a heat-killed preparation of Mycobacterium vaccae reduces corticotropin-releasing hormone mRNA expression in the extended amygdala in a fear-potentiated startle paradigm. Brain Behav Immun 2019; 77:127-140. [PMID: 30597198 DOI: 10.1016/j.bbi.2018.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 01/16/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a trauma and stressor-related disorder that is characterized by dysregulation of glucocorticoid signaling, chronic low-grade inflammation, and impairment in the ability to extinguish learned fear. Corticotropin-releasing hormone (Crh) is a stress- and immune-responsive neuropeptide secreted from the paraventricular nucleus of the hypothalamus (PVN) to stimulate the hypothalamic-pituitary-adrenal (HPA) axis; however, extra-hypothalamic sources of Crh from the central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST) govern specific fear- and anxiety-related defensive behavioral responses. We previously reported that preimmunization with a heat-killed preparation of the immunoregulatory environmental bacterium Mycobacterium vaccae NCTC 11659 enhances fear extinction in a fear-potentiated startle (FPS) paradigm. In this follow-up study, we utilized an in situ hybridization histochemistry technique to investigate Crh, Crhr1, and Crhr2 mRNA expression in the CeA, BNST, and PVN of the same rats from the original study [Fox et al., 2017, Brain, Behavior, and Immunity, 66: 70-84]. Here, we demonstrate that preimmunization with M. vaccae NCTC 11659 decreases Crh mRNA expression in the CeA and BNST of rats exposed to the FPS paradigm, and, further, that Crh mRNA expression in these regions is correlated with fear behavior during extinction training. These data are consistent with the hypothesis that M. vaccae promotes stress-resilience by attenuating Crh production in fear- and anxiety-related circuits. These data suggest that immunization with M. vaccae may be an effective strategy for prevention of fear- and anxiety-related disorders.
Collapse
Affiliation(s)
- Kelsey M Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Mathew R Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - James E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Margaret W Lieb
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lauren N Milton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Kristin E Cler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - James H Fox
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Philip H Siebler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Dominic Schmidt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Sylvana I S R Noronha
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Heidi E W Day
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center, Denver Veterans Affairs Medical Center (VAMC), Denver, CO 80045, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO 80045, USA.
| |
Collapse
|
11
|
Hassell JE, Nguyen KT, Gates CA, Lowry CA. The Impact of Stressor Exposure and Glucocorticoids on Anxiety and Fear. Curr Top Behav Neurosci 2019; 43:271-321. [PMID: 30357573 DOI: 10.1007/7854_2018_63] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anxiety disorders and trauma- and stressor-related disorders, such as posttraumatic stress disorder (PTSD), are common and are associated with significant economic and social burdens. Although trauma and stressor exposure are recognized as a risk factors for development of anxiety disorders and trauma or stressor exposure is recognized as essential for diagnosis of PTSD, the mechanisms through which trauma and stressor exposure lead to these disorders are not well characterized. An improved understanding of the mechanisms through which trauma or stressor exposure leads to development and persistence of anxiety disorders or PTSD may result in novel therapeutic approaches for the treatment of these disorders. Here, we review the current state-of-the-art theories, with respect to mechanisms through which stressor exposure leads to acute or chronic exaggeration of avoidance or anxiety-like defensive behavioral responses and fear, endophenotypes in both anxiety disorders and trauma- and stressor-related psychiatric disorders. In this chapter, we will explore physiological responses and neural circuits involved in the development of acute and chronic exaggeration of anxiety-like defensive behavioral responses and fear states, focusing on the role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid hormones.
Collapse
Affiliation(s)
- J E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - K T Nguyen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - C A Gates
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - C A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center, Denver Veterans Affairs Medical Center (VAMC), Denver, CO, USA.
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, USA.
| |
Collapse
|
12
|
Fraser-Spears R, Krause-Heuer AM, Basiouny M, Mayer FP, Manishimwe R, Wyatt NA, Dobrowolski JC, Roberts MP, Greguric I, Kumar N, Koek W, Sitte HH, Callaghan PD, Fraser BH, Daws LC. Comparative analysis of novel decynium-22 analogs to inhibit transport by the low-affinity, high-capacity monoamine transporters, organic cation transporters 2 and 3, and plasma membrane monoamine transporter. Eur J Pharmacol 2018; 842:351-364. [PMID: 30473490 DOI: 10.1016/j.ejphar.2018.10.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/03/2018] [Accepted: 10/19/2018] [Indexed: 11/30/2022]
Abstract
Growing evidence supports involvement of low-affinity/high-capacity organic cation transporters (OCTs) and plasma membrane monoamine transporter (PMAT) in regulating clearance of monoamines. Currently decynium-22 (D22) is the best pharmacological tool to study these transporters, however it does not readily discriminate among them, underscoring a need to develop compounds with greater selectivity for each of these transporters. We developed seven D22 analogs, and previously reported that some have lower affinity for α1-adrenoceptors than D22 and showed antidepressant-like activity in mice. Here, we extend these findings to determine the affinity of these analogs for OCT2, OCT3 and PMAT, as well as serotonin, norepinephrine and dopamine transporters (SERT, NET and DAT) using a combination of uptake competition with [3H]methyl-4-phenylpyridinium acetate in overexpressed HEK cells and [3H]citalopram, [3H]nisoxetine and [3H]WIN 35428 displacement binding in mouse hippocampal and striatal preparations. Like D22, all analogs showed greater binding affinities for OCT3 than OCT2 and PMAT. However, unlike D22, some analogs also showed modest affinity for SERT and DAT. Dual OCT3/SERT and/or OCT3/DAT actions of certain analogs may help explain their ability to produce antidepressant-like effects in mice and help account for our previous findings that D22 lacks antidepressant-like effects unless SERT function is either genetically or pharmacologically compromised. Though these analogs are not superior than D22 in discriminating among OCTs/PMAT, our findings point to development of compounds with combined ability to inhibit both low-affinity/high-capacity transporters, such as OCT3, and high-affinity/low-capacity transporters, such as SERT, as therapeutics with potentially improved efficacy for treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Rheaclare Fraser-Spears
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, United States; University of the Incarnate Word, Feik School of Pharmacy, Department of Pharmaceutical Sciences, United States
| | - Anwen M Krause-Heuer
- The Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Mohamed Basiouny
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, United States
| | - Felix P Mayer
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090 Vienna, Austria
| | - Retrouvailles Manishimwe
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, United States
| | - Naomi A Wyatt
- The Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | | | - Maxine P Roberts
- The Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Ivan Greguric
- The Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Naresh Kumar
- University of New South Wales, School of Chemistry, Sydney, NSW 2052, Australia
| | - Wouter Koek
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, United States; Department of Psychiatry, University of Texas Health Science Center at San Antonio, United States
| | - Harald H Sitte
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090 Vienna, Austria
| | - Paul D Callaghan
- The Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Benjamin H Fraser
- The Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Lynette C Daws
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, United States; Department of Pharmacology, University of Texas Health Science Center at San Antonio, United States.
| |
Collapse
|
13
|
Gasser PJ, Lowry CA. Organic cation transporter 3: A cellular mechanism underlying rapid, non-genomic glucocorticoid regulation of monoaminergic neurotransmission, physiology, and behavior. Horm Behav 2018; 104:173-182. [PMID: 29738736 PMCID: PMC7137088 DOI: 10.1016/j.yhbeh.2018.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/11/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. Corticosteroid hormones act at intracellular glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) to alter gene expression, leading to diverse physiological and behavioral responses. In addition to these classical genomic effects, corticosteroid hormones also exert rapid actions on physiology and behavior through a variety of non-genomic mechanisms, some of which involve GR or MR, and others of which are independent of these receptors. One such GR-independent mechanism involves corticosteroid-induced inhibition of monoamine transport mediated by "uptake2" transporters, including organic cation transporter 3 (OCT3), a low-affinity, high-capacity transporter for norepinephrine, epinephrine, dopamine, serotonin and histamine. Corticosterone directly and acutely inhibits OCT3-mediated transport. This review describes the studies that initially characterized uptake2 processes in peripheral tissues, and outlines studies that demonstrated OCT3 expression and corticosterone-sensitive monoamine transport in the brain. Evidence is presented supporting the hypothesis that corticosterone can exert rapid, GR-independent actions on neuronal physiology and behavior by inhibiting OCT3-mediated monoamine clearance. Implications of this mechanism for glucocorticoid-monoamine interactions in the context-dependent regulation of behavior are discussed.
Collapse
Affiliation(s)
- Paul J Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver Veterans Affairs Medical Center (VAMC), Denver, CO 80220, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO 80220, USA.
| |
Collapse
|
14
|
Gasser PJ. Roles for the uptake 2 transporter OCT3 in regulation of dopaminergic neurotransmission and behavior. Neurochem Int 2018; 123:46-49. [PMID: 30055194 DOI: 10.1016/j.neuint.2018.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/30/2022]
Abstract
Transporter-mediated uptake determines the peak concentration, duration, and physical spread of released monoamines. Most studies of monoamine clearance focus on the presynaptic uptake1 transporters SERT, NET and DAT. However, recent studies have demonstrated the expression of the uptake2 transporter OCT3 (organic cation transporter 3), throughout the rodent brain. In contrast to NET, DAT and SERT, OCT3 has higher capacity and lower affinity for substrates, is sodium-independent, and is multi-specific, with the capacity to transport norepinephrine, dopamine, serotonin and histamine. OCT3 is insensitive to inhibition by cocaine and antidepressant drugs but is inhibited directly by the glucocorticoid hormone corticosterone. Thus, OCT3 represents a novel, stress hormone-sensitive, monoamine transport mechanism. Incorporating this transporter into current models of monoaminergic neurotransmission requires information on: A) the cellular and subcellular localization of the transporter; B) the effects of OCT3 inhibitors on monoamine clearance; and C) the consequences of decreased OCT3-mediated transport on physiology and/or behavior. This review summarizes studies describing the anatomical distribution of OCT3, its cellular and subcellular localization, its contribution to the regulation of dopaminergic signaling, and its roles in the regulation of behavior. Together, these and other studies suggest that both Uptake1 and Uptake2 transporters play key roles in regulating monoaminergic neurotransmission and the effects of monoamines on behavior.
Collapse
Affiliation(s)
- Paul J Gasser
- Department of Biomedical Sciences, Marquette University, 561 N 15th Street, Milwaukee, WI, 53233, USA.
| |
Collapse
|
15
|
Wheeler DS, Ebben AL, Kurtoglu B, Lovell ME, Bohn AT, Jasek IA, Baker DA, Mantsch JR, Gasser PJ, Wheeler RA. Corticosterone regulates both naturally occurring and cocaine-induced dopamine signaling by selectively decreasing dopamine uptake. Eur J Neurosci 2017; 46:2638-2646. [PMID: 28965353 DOI: 10.1111/ejn.13730] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 01/22/2023]
Abstract
Stressful and aversive events promote maladaptive reward-seeking behaviors such as drug addiction by acting, in part, on the mesolimbic dopamine system. Using animal models, data from our laboratory and others show that stress and cocaine can interact to produce a synergistic effect on reward circuitry. This effect is also observed when the stress hormone corticosterone is administered directly into the nucleus accumbens (NAc), indicating that glucocorticoids act locally in dopamine terminal regions to enhance cocaine's effects on dopamine signaling. However, prior studies in behaving animals have not provided mechanistic insight. Using fast-scan cyclic voltammetry, we examined the effect of systemic corticosterone on spontaneous dopamine release events (transients) in the NAc core and shell in behaving rats. A physiologically relevant systemic injection of corticosterone (2 mg/kg i.p.) induced an increase in dopamine transient amplitude and duration (both voltammetric measures sensitive to decreases in dopamine clearance), but had no effect on the frequency of transient release events. This effect was compounded by cocaine (2.5 mg/kg i.p.). However, a second experiment indicated that the same injection of corticosterone had no detectable effect on the dopaminergic encoding of a palatable natural reward (saccharin). Taken together, these results suggest that corticosterone interferes with naturally occurring dopamine uptake locally, and this effect is a critical determinant of dopamine concentration specifically in situations in which the dopamine transporter is pharmacologically blocked by cocaine.
Collapse
Affiliation(s)
- Daniel S Wheeler
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - Amanda L Ebben
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - Beliz Kurtoglu
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - Marissa E Lovell
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - Austin T Bohn
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - Isabella A Jasek
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - John R Mantsch
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - Paul J Gasser
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - Robert A Wheeler
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| |
Collapse
|
16
|
Fox JH, Hassell JE, Siebler PH, Arnold MR, Lamb AK, Smith DG, Day HEW, Smith TM, Simmerman EM, Outzen AA, Holmes KS, Brazell CJ, Lowry CA. Preimmunization with a heat-killed preparation of Mycobacterium vaccae enhances fear extinction in the fear-potentiated startle paradigm. Brain Behav Immun 2017; 66:70-84. [PMID: 28888667 DOI: 10.1016/j.bbi.2017.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/02/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
The hygiene hypothesis or "Old Friends" hypothesis proposes that inflammatory diseases are increasing in modern urban societies, due in part to reduced exposure to microorganisms that drive immunoregulatory circuits, and a failure to terminate inappropriate inflammatory responses. Inappropriate inflammation is also emerging as a risk factor for trauma-related, anxiety, and affective disorders, including posttraumatic stress disorder (PTSD), which is characterized as persistent re-experiencing of the trauma after a traumatic experience. Traumatic experiences can lead to long-lasting fear memories and exaggerated fear potentiation of the acoustic startle reflex. The acoustic startle reflex is an ethologically relevant reflex and can be potentiated in both humans and rats through Pavlovian conditioning. Mycobacterium vaccae NCTC 11659 is a soil-derived bacterium with immunoregulatory and anti-inflammatory properties that has been demonstrated to confer stress resilience in mice. Here we immunized adult male Sprague Dawley rats 3×, once per week, with a heat-killed preparation of M. vaccae NCTC 11659 (0.1mg, s.c., in 100µl borate-buffered saline) or vehicle, and, then, 3weeks following the final immunization, tested them in the fear-potentiated startle paradigm; controls were maintained under home cage control conditions throughout the experiment (n=11-12 per group). Rats were tested on days 1 and 2 for baseline acoustic startle, received fear conditioning on days 3 and 4, and underwent fear extinction training on days 5-10. Rats were euthanized on day 11 and brain tissue was sectioned for analysis of mRNA expression for genes important in control of brain serotonergic signaling, including tph2, htr1a, slc6a4, and slc22a3, throughout the brainstem dorsal and median raphe nuclei. Immunization with M. vaccae had no effect on baseline acoustic startle or fear expression on day 5. However, M. vaccae-immunized rats showed enhanced between-session and within-session extinction on day 6, relative to vehicle-immunized controls. Immunization with M. vaccae and fear-potentiated startle altered serotonergic gene expression in a gene- and subregion-specific manner. These data are consistent with the hypothesis that immunoregulatory strategies, such as preimmunization with M. vaccae, have potential for prevention of stress- and trauma-related psychiatric disorders.
Collapse
Affiliation(s)
- James H Fox
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - James E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Philip H Siebler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Mathew R Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Andrew K Lamb
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - David G Smith
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Heidi E W Day
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Tessa M Smith
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Emma M Simmerman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Alexander A Outzen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Kaley S Holmes
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Christopher J Brazell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO 80220, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO 80220, USA.
| |
Collapse
|
17
|
Pranzatelli MR, Tate ED. Dexamethasone, Intravenous Immunoglobulin, and Rituximab Combination Immunotherapy for Pediatric Opsoclonus-Myoclonus Syndrome. Pediatr Neurol 2017; 73:48-56. [PMID: 28651977 DOI: 10.1016/j.pediatrneurol.2017.04.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Although pulse-dose dexamethasone is increasingly favored for treating pediatric opsoclonus-myoclonus syndrome (OMS), and multimodal immunotherapy is associated with improved clinical response, there have been no neuroimmunologic studies of dexamethasone-based multimodal disease-modifying therapy. METHODS In this observational retrospective study, 19 children with OMS (with or without associated neuroblastoma) underwent multibiomarker evaluation for neuroinflammation. Nine children of varying OMS severity, duration, and treatment status were treated empirically with pulse dexamethasone, intravenous immunoglobulin (IVIg), and rituximab combination immunotherapy (DEXIR-CI). Another 10 children on dexamethasone alone or with IVIg at initial evaluation only provided a comparison group. Motor severity (total score) was scored rater-blinded via videotapes using the validated OMS Evaluation Scale. RESULTS DEXIR-CI was associated with a 69% reduction in group total score (P = 0.004) and was clinically well tolerated. Patients given the dexamethasone combination exhibited significantly lowered B cell frequencies in cerebrospinal fluid (-94%) and blood (-76%), normalizing the cerebrospinal fluid B cell percentage. The number of patients with positive inflammatory markers dropped 87% (P = 0.002) as did the number of markers. Cerebrospinal fluid oligoclonal bands were positive in four of nine pretreatment patients but zero of six post-treatment patients. In the comparison group, partial response to dexamethasone alone or with IVIg was associated with multiple positive markers for neuroinflammation despite an average of seven months of treatment. CONCLUSIONS Multimechanistic dexamethasone-based combination immunotherapy increases the therapeutic armamentarium for OMS, providing a viable option for less severely affected individuals. Partial response to dexamethasone with or without IVIg is indicative of ongoing neuroinflammation and should be treated promptly and accordingly.
Collapse
Affiliation(s)
- Michael R Pranzatelli
- National Pediatric Myoclonus Center, National Pediatric Neuroinflammation Organization, Inc, Orlando, Florida.
| | - Elizabeth D Tate
- National Pediatric Myoclonus Center, National Pediatric Neuroinflammation Organization, Inc, Orlando, Florida
| |
Collapse
|
18
|
Gasser PJ, Hurley MM, Chan J, Pickel VM. Organic cation transporter 3 (OCT3) is localized to intracellular and surface membranes in select glial and neuronal cells within the basolateral amygdaloid complex of both rats and mice. Brain Struct Funct 2016; 222:1913-1928. [PMID: 27659446 DOI: 10.1007/s00429-016-1315-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
Organic cation transporter 3 (OCT3) is a high-capacity, low-affinity transporter that mediates corticosterone-sensitive uptake of monoamines including norepinephrine, epinephrine, dopamine, histamine and serotonin. OCT3 is expressed widely throughout the amygdaloid complex and other brain regions where monoamines are key regulators of emotional behaviors affected by stress. However, assessing the contribution of OCT3 to the regulation of monoaminergic neurotransmission and monoamine-dependent regulation of behavior requires fundamental information about the subcellular distribution of OCT3 expression. We used immunofluorescence and immuno-electron microscopy to examine the cellular and subcellular distribution of the transporter in the basolateral amygdaloid complex of the rat and mouse brain. OCT3-immunoreactivity was observed in both glial and neuronal perikarya in both rat and mouse amygdala. Electron microscopic immunolabeling revealed plasma membrane-associated OCT3 immunoreactivity on axonal, dendritic, and astrocytic processes adjacent to a variety of synapses, as well as on neuronal somata. In addition to plasma membrane sites, OCT3 immunolabeling was also observed associated with neuronal and glial endomembranes, including Golgi, mitochondrial and nuclear membranes. Particularly prominent labeling of the outer nuclear membrane was observed in neuronal, astrocytic, microglial and endothelial perikarya. The localization of OCT3 to neuronal and glial plasma membranes adjacent to synaptic sites is consistent with an important role for this transporter in regulating the amplitude, duration, and physical spread of released monoamines, while its localization to mitochondrial and outer nuclear membranes suggests previously undescribed roles for the transporter in the intracellular disposition of monoamines.
Collapse
Affiliation(s)
- Paul J Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53201-1881, USA.
| | - Matthew M Hurley
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53201-1881, USA
| | - June Chan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY, 10065, USA
| | - Virginia M Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY, 10065, USA
| |
Collapse
|
19
|
Bayer M, Schmitt J, Dittmann H, Handgretinger R, Bruchelt G, Sauter AW. Improved selectivity of mIBG uptake into neuroblastoma cells in vitro and in vivo by inhibition of organic cation transporter 3 uptake using clinically approved corticosteroids. Nucl Med Biol 2016; 43:543-551. [PMID: 27376201 DOI: 10.1016/j.nucmedbio.2016.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/09/2016] [Accepted: 05/25/2016] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Radiolabeled meta-iodobenzylguanidine (mIBG) is used for imaging and therapy of neuroblastoma as well as pheochromocytoma. However, non-tumorous tissues also incorporate mIBG mainly by organic cation transporters (OCTs). In this study, we tested different clinically approved corticosteroids as potential inhibitors of the OCT3-mediated uptake in vitro and in vivo, to achieve a more selective mIBG tumor uptake. METHODS The in vitro incorporation of [(3)H]norepinephrine ([(3)H]NE), [(3)H]dopamine ([(3)H]DA) and [(123)I]mIBG in neuroblastoma cells (SK-N-SH, Kelly, IMR-32) and in HEK-293 cells transfected with human OCT3 was measured with and without supplemental corticosteroids (hydrocortisone, prednisolone, dexamethasone, corticosterone). The in vivo biodistribution of [(123)I]mIBG in absence and presence of corticosteroids was studied in non-tumor bearing NOD scid gamma mice. Retrospectively, we selected patients with and without corticosteroid treatment prior to [(123)I]mIBG scintigraphy. RESULTS A concentration-dependent inhibitory effect of different corticosteroids on the [(3)H]NE and [(3)H]DA uptake via OCT3 was illustrated in vitro. The highest OCT3 inhibition was observed for corticosterone, but clinically used corticosteroids, showed also promising inhibitory effects. In contrast, the uptake in neuroblastoma cells was reduced only moderately. Hydrocortisone or prednisolone had only minor effects on [(123)I]mIBG uptake of both neuroblastoma cells, but reduced uptake in OCT3 expressing cells significantly. In mice tissues, [(123)I]mIBG uptake was inhibited by corticosteroids especially in the small intestine and kidney. Finally, in one patient with hydrocortisone treatment performed prior to [(123)I]mIBG scan, heart and liver uptake was reduced compared to untreated patients. CONCLUSIONS The OCT3 is widely spread in many organs and responsible for non-targeted uptake of radiolabeled mIBG. In our study, clinically approved corticosteroids inhibited mIBG uptake in OCT3 expressing cells effectively, whereas tracer accumulation in NT (norepinephrine transporter) expressing neuroblastoma cells showed consistency. We conclude, that a single dose of hydrocortisone or prednisolone prior to [(123)I]mIBG scintigraphy may improve specificity and reduce radiation dose to non-target organs.
Collapse
Affiliation(s)
- Melanie Bayer
- Eberhard Karls University, Children's Hospital, Department I, General Pediatrics & Hematology/Oncology, Tuebingen, Germany
| | - Julia Schmitt
- Eberhard Karls University, Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Tuebingen, Germany
| | - Helmut Dittmann
- Eberhard Karls University, Department of Radiology, Nuclear Medicine, Tuebingen, Germany
| | - Rupert Handgretinger
- Eberhard Karls University, Children's Hospital, Department I, General Pediatrics & Hematology/Oncology, Tuebingen, Germany
| | - Gernot Bruchelt
- Eberhard Karls University, Children's Hospital, Department I, General Pediatrics & Hematology/Oncology, Tuebingen, Germany
| | - Alexander W Sauter
- Eberhard Karls University, Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Tuebingen, Germany; Eberhard Karls University, Department of Radiology, Diagnostic and Interventional Radiology, Hoppe-Seyler-Str. 3, D-72076 Tuebingen, Germany.
| |
Collapse
|
20
|
Zhang WQ, Smolik CM, Barba-Escobedo PA, Gamez M, Sanchez JJ, Javors MA, Daws LC, Gould GG. Acute dietary tryptophan manipulation differentially alters social behavior, brain serotonin and plasma corticosterone in three inbred mouse strains. Neuropharmacology 2015; 90:1-8. [PMID: 25445490 PMCID: PMC4276517 DOI: 10.1016/j.neuropharm.2014.10.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/21/2014] [Accepted: 10/26/2014] [Indexed: 12/22/2022]
Abstract
Clinical evidence indicates brain serotonin (5-HT) stores and neurotransmission may be inadequate in subpopulations of individuals with autism, and this may contribute to characteristically impaired social behaviors. Findings that depletion of the 5-HT precursor tryptophan (TRP) worsens autism symptoms support this hypothesis. Yet dietetic studies show and parents report that many children with autism consume less TRP than peers. To measure the impact of dietary TRP content on social behavior, we administered either diets devoid of TRP, with standard TRP (0.2 g%), or with 1% added TRP (1.2 g%) overnight to three mouse strains. Of these, BTBRT(+)Itpr3(tf)/J and 129S1/SvImJ consistently exhibit low preference for social interaction relative to C57BL/6. We found that TRP depletion reduced C57BL/6 and 129S social interaction preference, while TRP enhancement improved BTBR sociability (p < 0.05; N = 8-10). Subsequent marble burying did not differ among diets or strains. After behavior tests, brain TRP levels and plasma corticosterone were higher in TRP enhanced C57BL/6 and BTBR, while 5-HT levels were reduced in all strains by TRP depletion (p < 0.05; N = 4-10). Relative hyperactivity of BTBR and hypoactivity of 129S, evident in self-grooming and chamber entries during sociability tests, were uninfluenced by dietary TRP. Our findings demonstrate mouse sociability and brain 5-HT turnover are reduced by acute TRP depletion, and can be enhanced by TRP supplementation. This outcome warrants further basic and clinical studies employing biomarker combinations such as TRP metabolism and 5-HT regulated hormones to characterize conditions wherein TRP supplementation may best ameliorate sociability deficits.
Collapse
Affiliation(s)
- Wynne Q Zhang
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Rice University, Houston, TX 77005, USA
| | - Corey M Smolik
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Priscilla A Barba-Escobedo
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Texas A&M University at San Antonio, TX 78224, USA
| | - Monica Gamez
- Texas A&M University at San Antonio, TX 78224, USA
| | - Jesus J Sanchez
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Martin A Javors
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lynette C Daws
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Georgianna G Gould
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
21
|
Herculano AM, Maximino C. Serotonergic modulation of zebrafish behavior: towards a paradox. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:50-66. [PMID: 24681196 DOI: 10.1016/j.pnpbp.2014.03.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 12/22/2022]
Abstract
Due to the fish-specific genome duplication event (~320-350 mya), some genes which code for serotonin proteins were duplicated in teleosts; this duplication event was preceded by a reorganization of the serotonergic system, with the appearance of the raphe nuclei (dependent on the isthmus organizer) and prosencephalic nuclei, including the paraventricular and pretectal complexes. With the appearance of amniotes, duplicated genes were lost, and the serotonergic system was reduced to a more complex raphe system. From a comparative point of view, then, the serotonergic system of zebrafish and that of mammals shows many important differences. However, many different behavioral functions of serotonin, as well as the effects of drugs which affect the serotonergic system, seem to be conserved among species. For example, in both zebrafish and rodents acute serotonin reuptake inhibitors (SSRIs) seem to increase anxiety-like behavior, while chronic SSRIs decrease it; drugs which act at the 5-HT1A receptor seem to decrease anxiety-like behavior in both zebrafish and rodents. In this article, we will expose this paradox, reviewing the chemical neuroanatomy of the zebrafish serotonergic system, followed by an analysis of the role of serotonin in zebrafish fear/anxiety, stress, aggression and the effects of psychedelic drugs.
Collapse
Affiliation(s)
- Anderson Manoel Herculano
- Neuroendocrinology Laboratory, Biological Sciences Institute, Federal University of Pará, Belém, PA, Brazil; "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil
| | - Caio Maximino
- "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil; International Zebrafish Neuroscience Research Consortium, United States.
| |
Collapse
|
22
|
Canteros MG. D-Arginine as a neuroprotective amino acid: promising outcomes for neurological diseases. Drug Discov Today 2013; 19:627-36. [PMID: 24252866 DOI: 10.1016/j.drudis.2013.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/24/2022]
Abstract
In humans, as in other mammals, endogenous glucocorticoids (GCs) are essential for adapting to physiological life stress. They are also crucial for the healthy development of the fetus. However, when the physiological concentrations of GCs increase over a long period of time, the central nervous system (CNS) is predisposed to the development of psychiatric disorders and neurological diseases. Here, I discuss the strong influence of GCs on the nitric oxide (NO) pathway and the generation of reactive oxygen species (ROS). I also highlight supporting evidence for the neuroprotective actions of d-arginine (d-Arg) against neurotoxicity induced by high levels of GCs in the CNS. Given that d-Arg does not interfere with the immunosuppressive and anti-inflammatory effects of GCs, this might be a novel way of neutralizing the neurotoxic effects of GCs in the CNS without compromising their positive peripheral actions.
Collapse
Affiliation(s)
- M Griselda Canteros
- National University of Northeast, School of Medicine, Department of Biophysics, Corrientes 3400, Argentina.
| |
Collapse
|
23
|
Graf EN, Wheeler RA, Baker DA, Ebben AL, Hill JE, McReynolds JR, Robble MA, Vranjkovic O, Wheeler DS, Mantsch JR, Gasser PJ. Corticosterone acts in the nucleus accumbens to enhance dopamine signaling and potentiate reinstatement of cocaine seeking. J Neurosci 2013; 33:11800-10. [PMID: 23864669 PMCID: PMC3713722 DOI: 10.1523/jneurosci.1969-13.2013] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/08/2013] [Accepted: 06/12/2013] [Indexed: 01/06/2023] Open
Abstract
Stressful life events are important contributors to relapse in recovering cocaine addicts, but the mechanisms by which they influence motivational systems are poorly understood. Studies suggest that stress may "set the stage" for relapse by increasing the sensitivity of brain reward circuits to drug-associated stimuli. We examined the effects of stress and corticosterone on behavioral and neurochemical responses of rats to a cocaine prime after cocaine self-administration and extinction. Exposure of rats to acute electric footshock stress did not by itself reinstate drug-seeking behavior but potentiated reinstatement in response to a subthreshold dose of cocaine. This effect of stress was not observed in adrenalectomized animals, and was reproduced in nonstressed animals by administration of corticosterone at a dose that reproduced stress-induced plasma levels. Pretreatment with the glucocorticoid receptor antagonist RU38486 did not block the corticosterone effect. Corticosterone potentiated cocaine-induced increases in extracellular dopamine in the nucleus accumbens (NAc), and pharmacological blockade of NAc dopamine receptors blocked corticosterone-induced potentiation of reinstatement. Intra-accumbens administration of corticosterone reproduced the behavioral effects of stress and systemic corticosterone. Corticosterone treatment acutely decreased NAc dopamine clearance measured by fast-scan cyclic voltammetry, suggesting that inhibition of uptake₂-mediated dopamine clearance may underlie corticosterone effects. Consistent with this hypothesis, intra-accumbens administration of the uptake₂ inhibitor normetanephrine potentiated cocaine-induced reinstatement. Expression of organic cation transporter 3, a corticosterone-sensitive uptake₂ transporter, was detected on NAc neurons. These findings reveal a novel mechanism by which stress hormones can rapidly regulate dopamine signaling and contribute to the impact of stress on drug intake.
Collapse
Affiliation(s)
- Evan N. Graf
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Robert A. Wheeler
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - David A. Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Amanda L. Ebben
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Jonathan E. Hill
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Jayme R. McReynolds
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Mykel A. Robble
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Oliver Vranjkovic
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Daniel S. Wheeler
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - John R. Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Paul J. Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| |
Collapse
|
24
|
Hill JE, Gasser PJ. Organic cation transporter 3 is densely expressed in the intercalated cell groups of the amygdala: anatomical evidence for a stress hormone-sensitive dopamine clearance system. J Chem Neuroanat 2013; 52:36-43. [PMID: 23694905 DOI: 10.1016/j.jchemneu.2013.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 11/16/2022]
Abstract
The intercalated cell groups of the amygdala (ITCs) are clusters of GABAergic neurons which exert powerful modulatory control of amygdala output, and are thought to play key roles in the extinction of conditioned fear responses. Dopamine, acting through D1 receptors, inhibits ITC neuronal activity, an action that has the potential to disinhibit amygdala activity, leading to changes in behavioral responses. Dopaminergic neurotransmission in the ITC occurs through a combination of synaptic and volume transmission. Thus, mechanisms, including transport mechanisms, that regulate extracellular dopamine concentrations in the ITC, are likely to be important determinants of amygdala function. We have recently demonstrated the expression of organic cation transporter 3 (OCT3), a high-capacity transporter for dopamine and other monoamines, throughout the rat brain. In this study, we used immunohistochemical and immunofluorescence techniques to examine the distribution of OCT3 in the ITC, to identify the phenotype of OCT3-expressing cells, and to describe the spatial relationships of OCT3 to dopaminergic terminals and dopamine D1 receptors in these areas. We observed high densities of OCT3-immunoreactive perikarya and punctae throughout the D1 receptor-rich main, anterior and paracapsular ITCs, in contrast with the basolateral amygdala, where OCT3 immunoreactive perikarya and puncta were observed at much lower density. OCT3-immunoreactive perikarya in the ITC were identified as neurons. Tyrosine hydroxylase-immunoreactive fibers in the ITC were immunonegative for OCT3, though OCT3-immunoreactive punctae were observed in close proximity to TH+ terminals. Punctate OCT3-immunoreactivity in the ITCs was observed in very close proximity (<1 μm) to D1 receptor immunoreactivity. These anatomical data are consistent with the hypothesis that OCT3 plays a central role in regulating dopaminergic neurotransmission in the ITC, and that it represents a post- or peri-synaptic dopamine clearance mechanism. Inhibition of OCT3-mediated transport by corticosterone may represent a mechanism by which acute stress alters dopaminergic neurotransmission in the amygdala, leading to alterations in fear and anxiety-like behavior.
Collapse
Affiliation(s)
- Jonathan E Hill
- Department of Biomedical Sciences, Marquette University, 516 N 15th Street, Milwaukee, WI 53233, USA.
| | | |
Collapse
|
25
|
|
26
|
Butts KA, Weinberg J, Young AH, Phillips AG. Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function. Proc Natl Acad Sci U S A 2011; 108:18459-64. [PMID: 22032926 PMCID: PMC3215005 DOI: 10.1073/pnas.1111746108] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Enhanced dopamine efflux in the prefrontal cortex is a well-documented response to acute stress. However, the underlying mechanism(s) for this response is unknown. Using in vivo microdialysis, we demonstrate that blocking glucocorticoid receptors locally within the rat prefrontal cortex results in a reduction in stress-evoked dopamine efflux. In contrast, blocking glucocorticoid receptors in the ventral tegmental area did not affect stress-evoked dopamine efflux in the prefrontal cortex. Additionally, local administration of corticosterone into the prefrontal cortex increased prefrontal dopamine efflux. The functional impact of enhanced dopamine efflux evoked by acute stress was demonstrated using a cognitive task dependent on the prefrontal cortex and sensitive to impairment in working memory. Notably, stress-induced impairments in cognition were attenuated by blockade of glucocorticoid receptors in the prefrontal cortex. Taken together, these data demonstrate that glucocorticoids act locally within the prefrontal cortex to modulate mesocortical dopamine efflux leading to the cognitive impairments observed during acute stress.
Collapse
Affiliation(s)
| | - Joanne Weinberg
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | | | | |
Collapse
|
27
|
Hengen N, Lizer MH, Kidd RS. Evaluation of genetic variations in organic cationic transporter 3 in depressed and nondepressed subjects. ISRN PHARMACOLOGY 2011; 2011:161740. [PMID: 22084709 PMCID: PMC3196918 DOI: 10.5402/2011/161740] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 06/29/2011] [Indexed: 01/11/2023]
Abstract
Organic cationic transporter 3 (OCT3, SLS22A3) has only recently emerged as one of the regulators of monoaminergic neurotransmission, which plays a critical role in the pathogenesis of depression and is a potential new antidepressant drug target. OCT3 single-nucleotide polymorphisms (SNPs) have been investigated for their association with psychiatric disorders such as methamphetamine use disorder and obsessive-compulsive disorder in children and adolescents, but not depression. This study was designed to evaluate the allele frequencies of seven OCT3 SNPs in a US Caucasian depressed population and compare these frequencies with a control group of nondepressed subjects. Informed consent and a DNA sample were obtained from 157 subjects and analysis was performed using real-time PCR. Allele and genotype frequencies were compared using a t-test and the Pearson chi-square analysis, respectively. There were no significant differences in OCT3 allele or genotype frequencies between the depressed and non-depressed groups for all seven SNPs evaluated.
Collapse
Affiliation(s)
- Nina Hengen
- Bernard J. Dunn School of Pharmacy, Shenandoah University, 1775 North Sector Court, Winchester, VA 22601, USA
| | | | | |
Collapse
|