1
|
Hitrec T, Del Vecchio F, Alberti L, Luppi M, Martelli D, Occhinegro A, Piscitiello E, Taddei L, Tupone D, Amici R, Cerri M. Activation of orexin-A (hypocretin-1) receptors in the Raphe Pallidus at different ambient temperatures in the rat: effects on thermoregulation, cardiovascular control, sleep, and feeding behavior. Front Neurosci 2024; 18:1458437. [PMID: 39429700 PMCID: PMC11486763 DOI: 10.3389/fnins.2024.1458437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
The Raphe Pallidus (RPa) is a brainstem nucleus containing sympathetic premotor neurons that control thermogenesis and modulate cardiovascular function. It receives inputs from various hypothalamic areas, including the Lateral Hypothalamus (LH), a heterogeneous region intricately involved in several autonomic and behavioral functions. A key subpopulation of neurons in the LH expresses orexin/hypocretin, a neuropeptide which is crucially involved in the regulation of the wake-sleep states and feeding behavior. The RPa receives orexinergic projections from the LH and orexinergic signalling in the RPa has been shown to enhance thermogenesis in the anaesthetized rat, but only in the presence of an already existing thermogenic drive, without significantly affecting cardiovascular function. The present work was aimed at exploring the effects on thermoregulation and autonomic function and the possible role in the modulation of the wake-sleep states and feeding behavior of orexin injection in the RPa in the free-behaving rat. In order to assess the influence of an already present thermogenic drive on orexinergic signalling in the RPa, animals were studied at three different ambient temperatures (Ta, 10°C, 24°C, and 32°C). We found that orexin injection into the RPa variably affected the wake-sleep states, autonomic functions, motor activity, and feeding behavior, at the different Tas. In particular, in the first post-injection hour, we observed an increase in wakefulness, which was large at Ta 24°C and Ta 10°C and rather mild at Ta 32°C. Deep brain temperature was increased by orexin injection at Ta 10°C, but not at either Ta 24°C or Ta 32°C. Moreover, an increase in mean arterial blood pressure occurred at Ta 24°C, which was probably masked by the high baseline levels at Ta 10°C and was completely absent at Ta 32°C. Finally, an enhancement in feeding behavior was observed at Ta 24°C and 10°C only. In accordance with what observed in anaesthetized rats, orexinergic signalling in the RPa seems to be ineffective in the absence of any thermogenic drive. Moreover, the effects observed on the wake-sleep states and feeding behavior introduce the RPa as a novel player in the central neural network promoting wakefulness and feeding.
Collapse
Affiliation(s)
- Timna Hitrec
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Flavia Del Vecchio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luca Alberti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Luppi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Davide Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Occhinegro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Emiliana Piscitiello
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Ludovico Taddei
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Domenico Tupone
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, United States
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Italian Institute of Technology (IIT), Genova, Italy
- National Institute of Nuclear Physics of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Reis TO, Noronha SISR, Lima PMA, De Abreu ARR, Mesquita LBT, Ferreira FI, Silva FC, Chianca-Jr DA, De Menezes RC. Abdominal TRPV1 channel desensitization enhances stress-induced hyperthermia during social stress in rats. Auton Neurosci 2023; 246:103073. [PMID: 36736078 DOI: 10.1016/j.autneu.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
AIMS In rats, stress-induced hyperthermia caused by social interaction depends on brown adipose tissue (BAT) thermogenesis and peripheral vasoconstriction. However, the peripheral mechanisms responsible for regulating the level of hyperthermia during social stress are still unknown. The transient receptor potential vanilloid 1 (TRPV1) subfamily, expressed in sensory and visceral neurons, can serve as a thermoreceptor. Here, we tested the hypothesis that the abdominal TRPV1 is essential in regulating stress-induced hyperthermia during social stress. MAIN METHODS Male Wistar rats received an intraperitoneal injection of Resiniferatoxin (RTX) - an ultra-potent capsaicin analog, (i.e., to desensitize the TRPV1 channels) or vehicle. Seven days later, we evaluated the effects of abdominal TRPV1 channels desensitization on core body temperature (CBT), brown adipose tissue (BAT) temperature, tail skin temperature, and heart rate (HR) of rats subjected to a social stress protocol. KEY FINDINGS We found abdominal TRPV1 desensitization increased CBT and BAT temperature but did not change tail skin temperature and HR during rest. However, under social stress, we found that abdominal TRPV1 desensitization heightened the increase in CBT and BAT caused by stress. Also, it abolished the increase in tail skin temperature that occurs during and after social stress. TRPV1 desensitization also delayed the HR recovery after the exposure to the social stress. SIGNIFICANCE These results show that abdominal TRPV1 channels desensitization heightens stress-induced hyperthermia, causing heat dissipation during and after social stress, enabling optimal thermal control during social encounters.
Collapse
Affiliation(s)
- T O Reis
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - S I S R Noronha
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - P M A Lima
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - A R R De Abreu
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - L B T Mesquita
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - F I Ferreira
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - F C Silva
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil..
| | - D A Chianca-Jr
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil..
| | - R C De Menezes
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil..
| |
Collapse
|
3
|
Almeida DL, Moreira VM, Cardoso LE, Junior MDF, Pavanelo A, Ribeiro TA, da Silva Franco CC, Tófolo LP, Peres MNC, Ribeiro MVG, Ferreira ARO, Gomes RM, Miranda RA, Trevenzoli IH, Armitage JA, Palma-Rigo K, de Freitas Mathias PC. Lean in one way, in obesity another: effects of moderate exercise in brown adipose tissue of early overfed male Wistar rats. Int J Obes (Lond) 2022; 46:137-143. [PMID: 34552207 DOI: 10.1038/s41366-021-00969-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Early postnatal overfeeding (PO) induces long-term overweight and reduces brown adipose tissue (BAT) thermogenesis. Exercise has been suggested as a possible intervention to increase BAT function. In this study, we investigated chronical effects of moderate-intensity exercise in BAT function in postnatal overfed male Wistar rats METHODS: Litters' delivery was on postnatal-day 0 - PN0. At PN2, litters were adjusted to nine (normal litter - NL) or three pups (small litter - SL) per dam. Animals were weaned on PN21 and in PN30 randomly divided into sedentary (NL-Sed and SL-Sed) or exercised (NL-Exe and SL-Exe), N of 14 litters per group. Exercise protocol started (PN30) with an effort test; training sessions were performed three times weekly at 60% of the VO2max achieved in effort test, until PN80. On PN81, a temperature transponder was implanted beneath the interscapular BAT, whose temperature was assessed in periods of lights-on and -off from PN87 to PN90. Sympathetic nerve activation of BAT was registered at PN90. Animals were euthanized at PN91 and tissues collected RESULTS: PO impaired BAT thermogenesis in lights-on (pPO < 0.0001) and -off (pPO < 0.01). Exercise increased BAT temperature in lights-on (pExe < 0.0001). In NL-Exe, increased BAT activity was associated with higher sympathetic activity (pExe < 0.05), β3-AR (pExe < 0.001), and UCP1 (pExe < 0.001) content. In SL-Exe, increasing BAT thermogenesis is driven by a combination of tissue morphology remodeling (pExe < 0.0001) with greater effect in increasing UCP1 (pExe < 0.001) and increased β3-AR (pExe < 0.001) content. CONCLUSION Moderate exercise chronically increased BAT thermogenesis in both, NL and SL groups. In NL-Exe by increasing Sympathetic activity, and in SL-Exe by a combination of increased β3-AR and UCP1 content with morphologic remodeling of BAT. Chronically increasing BAT thermogenesis in obese subjects may lead to higher overall energy expenditure, favoring the reduction of obesity and related comorbidities.
Collapse
Affiliation(s)
- Douglas Lopes Almeida
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, 5790 Av, Colombo, Maringá/PR, Brazil.
- Department of Physiology, State University of Londrina, Londrina, Paraná, Brazil.
| | - Veridiana Mota Moreira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, 5790 Av, Colombo, Maringá/PR, Brazil
- Department of Physiology, State University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Lucas Eduardo Cardoso
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, 5790 Av, Colombo, Maringá/PR, Brazil
| | | | - Audrei Pavanelo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, 5790 Av, Colombo, Maringá/PR, Brazil
| | - Tatiane Aparecida Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, 5790 Av, Colombo, Maringá/PR, Brazil
| | - Claudinéia Conationi da Silva Franco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, 5790 Av, Colombo, Maringá/PR, Brazil
| | - Laize Perón Tófolo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, 5790 Av, Colombo, Maringá/PR, Brazil
| | - Maria Natália Chimirri Peres
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, 5790 Av, Colombo, Maringá/PR, Brazil
| | - Maiara Vanusa Guedes Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, 5790 Av, Colombo, Maringá/PR, Brazil
| | - Anna Rebeka Oliveira Ferreira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, 5790 Av, Colombo, Maringá/PR, Brazil
| | - Rodrigo Mello Gomes
- Physiological Sciences Department, Federal University of Goiás, Av Esperança, Goiânia/GO, Brazil
| | - Rosiane Aparecida Miranda
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, 550 Av, Pedro Calmon, Rio de Janeiro, Brazil
| | - Isis Hara Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, 550 Av, Pedro Calmon, Rio de Janeiro, Brazil
| | - James Andrew Armitage
- Deakin University, School of Medicine, Optometry, 75 Pigdons Rd, Waurn Ponds, VIC, Australia
| | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, 5790 Av, Colombo, Maringá/PR, Brazil
| | - Paulo Cesar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Cell Biology and Genetics, State University of Maringá, 5790 Av, Colombo, Maringá/PR, Brazil
| |
Collapse
|
4
|
Harshaw C, Lanzkowsky J, Tran AQD, Bradley AR, Jaime M. Oxytocin and 'social hyperthermia': Interaction with β 3-adrenergic receptor-mediated thermogenesis and significance for the expression of social behavior in male and female mice. Horm Behav 2021; 131:104981. [PMID: 33878523 DOI: 10.1016/j.yhbeh.2021.104981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
Oxytocin (OT) is a critical regulator of multiple facets of energy homeostasis, including brown adipose tissue (BAT) thermogenesis. Nevertheless, it is unclear what, if any, consequence the thermoregulatory and metabolic effects of OT have for the display of social behavior in adult rodents. Here, we examine the contribution of the OT receptor (OTR) and β3 adrenergic receptor (β3AR) to the increase in body temperature that typically accompanies social interaction (i.e., social hyperthermia; SH) and whether SH relates to the expression of social behavior in adult mice. Specifically, we examined how OTR antagonism via peripheral injection of L-368,899 (10 mg/kg) affects the expression of social behavior in C57BL/6J mice, in the presence of active/agonized versus antagonized β3AR, the receptor known to mediate stress-induced BAT thermogenesis. After drug treatment and a 30 min delay, mice were provided a 10 min social interaction test with an unfamiliar, same-sex conspecific. We hypothesized that OTR and β3AR/BAT interact to influence behavior during social interaction, with at least some effects of OT on social behavior dependent upon OT's thermal effects via β3AR/BAT. We found that OTR-mediated temperature elevation is largely responsible for SH during social interaction in mice-albeit not substantially via β3AR-dependent BAT thermogenesis. Further, our results reveal a complex relationship between OTR, β3AR, social hyperthermia and the display of specific social behaviors, with SH most closely associated with anxiety and/or vigilance-related behaviors-that is, behaviors that antagonize or interfere with the initiation of close, non-agonistic social behavior.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America.
| | - Jessica Lanzkowsky
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America
| | | | - Alana Rose Bradley
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America
| | - Mark Jaime
- Division of Science, Indiana University-Purdue University, Columbus, Columbus, IN, United States of America
| |
Collapse
|
5
|
Sokolowska E, Viitanen R, Misiewicz Z, Mennesson M, Saarnio S, Kulesskaya N, Kängsep S, Liljenbäck H, Marjamäki P, Autio A, Callan SA, Nuutila P, Roivainen A, Partonen T, Hovatta I. The circadian gene Cryptochrome 2 influences stress-induced brain activity and depressive-like behavior in mice. GENES BRAIN AND BEHAVIOR 2020; 20:e12708. [PMID: 33070440 DOI: 10.1111/gbb.12708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/15/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
Cryptochrome 2 (Cry2) is a core clock gene important for circadian regulation. It has also been associated with anxiety and depressive-like behaviors in mice, but the previous findings have been conflicting in terms of the direction of the effect. To begin to elucidate the molecular mechanisms of this association, we carried out behavioral testing, PET imaging, and gene expression analysis of Cry2-/- and Cry2+/+ mice. Compared to Cry2+/+ mice, we found that Cry2-/- mice spent less time immobile in the forced swim test, suggesting reduced despair-like behavior. Moreover, Cry2-/- mice had lower saccharin preference, indicative of increased anhedonia. In contrast, we observed no group differences in anxiety-like behavior. The behavioral changes were accompanied by lower metabolic activity of the ventro-medial hypothalamus, suprachiasmatic nuclei, ventral tegmental area, anterior and medial striatum, substantia nigra, and habenula after cold stress as measured by PET imaging with a glucose analog. Although the expression of many depression-associated and metabolic genes was upregulated or downregulated by cold stress, we observed no differences between Cry2-/- and Cry2+/+ mice. These findings are consistent with other studies showing that Cry2 is required for normal emotional behavior. Our findings confirm previous roles of Cry2 in behavior and extend them by showing that the effects on behavior may be mediated by changes in brain metabolism.
Collapse
Affiliation(s)
- Ewa Sokolowska
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | | | - Zuzanna Misiewicz
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Marie Mennesson
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.,SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Suvi Saarnio
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Natalia Kulesskaya
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Sanna Kängsep
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | | | - Anu Autio
- Turku PET Centre, University of Turku, Turku, Finland
| | - Saija-Anita Callan
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland.,Department of Endocrinology, Turku University Hospital, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Timo Partonen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Iiris Hovatta
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.,SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Schnabl K, Li Y, Klingenspor M. The gut hormone secretin triggers a gut-brown fat-brain axis in the control of food intake. Exp Physiol 2020; 105:1206-1213. [PMID: 32271980 DOI: 10.1113/ep087878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 12/25/2022]
Abstract
NEW FINDINGS What is the topic of this review? Brown fat's role in meal-associated thermogenesis and the related consequences for energy balance regulation with a focus on the gut hormone secretin, which has been identified as the endocrine molecular mediator of meal-associated brown fat thermogenesis. What advances does it highlight? The finding of the secretin-induced gut-brown fat-brain axis creates new opportunities to manipulate brown fat and thereby energy balance in a natural way while living in a thermoneutral environment. The role of brown fat as a mere catabolic heater organ needs to be revised and more attention should be directed towards the regulatory role of brown fat beyond energy expenditure. ABSTRACT Brown fat research concentrates on the energy expenditure function of this heating organ, whereas previous evidence for a role of brown fat in regulating energy intake has been mostly neglected. Ingestion of a single mixed meal activates human brown fat thermogenesis to the same degree as cold. In mice, activation of brown fat thermogenesis with a β3 -adrenergic receptor agonist inhibits food intake. Pharmacological β-blockade, however, inhibits neither meal-associated thermogenesis nor food intake. We recently identified the gut hormone secretin as a non-adrenergic activator of brown fat. In vivo, secretin treatment acutely increases energy expenditure and inhibits food intake in wild-type, but not in uncoupling protein 1 (UCP1)-knockout (KO) mice, which lack thermogenic brown fat function. Concurrently, secretin alters gene expression of melanocortinergic peptides of hypothalamic neurons in wild-type mice, but not UCP1-KO. Blocking endogenous secretin with a neutralizing antibody attenuates brown fat thermogenesis during refeeding, increases food intake of mice, and alters ad libitum feeding behaviour. Taken together, these findings demonstrate that secretin triggers an endocrine gut-brown adipose tissue-brain axis in the control of satiation. We hypothesize that meal-associated activation of brown adipose tissue thermogenesis induced by secretin results in a rise in brain temperature and increased melanocortinergic signalling. Taken together, brown fat is not a mere heating organ dissipating excess calories but also involved in gut-brain communication in the control of food intake.
Collapse
Affiliation(s)
- Katharina Schnabl
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Yongguo Li
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
7
|
Refinetti R. Circadian rhythmicity of body temperature and metabolism. Temperature (Austin) 2020; 7:321-362. [PMID: 33251281 PMCID: PMC7678948 DOI: 10.1080/23328940.2020.1743605] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
This article reviews the literature on the circadian rhythms of body temperature and whole-organism metabolism. The two rhythms are first described separately, each description preceded by a review of research methods. Both rhythms are generated endogenously but can be affected by exogenous factors. The relationship between the two rhythms is discussed next. In endothermic animals, modulation of metabolic activity can affect body temperature, but the rhythm of body temperature is not a mere side effect of the rhythm of metabolic thermogenesis associated with general activity. The circadian system modulates metabolic heat production to generate the body temperature rhythm, which challenges homeothermy but does not abolish it. Individual cells do not regulate their own temperature, but the relationship between circadian rhythms and metabolism at the cellular level is also discussed. Metabolism is both an output of and an input to the circadian clock, meaning that circadian rhythmicity and metabolism are intertwined in the cell.
Collapse
Affiliation(s)
- Roberto Refinetti
- Department of Psychology, University of New Orleans, New Orleans, LA, USA
| |
Collapse
|
8
|
Perry RJ, Lyu K, Rabin-Court A, Dong J, Li X, Yang Y, Qing H, Wang A, Yang X, Shulman GI. Leptin mediates postprandial increases in body temperature through hypothalamus-adrenal medulla-adipose tissue crosstalk. J Clin Invest 2020; 130:2001-2016. [PMID: 32149734 PMCID: PMC7108915 DOI: 10.1172/jci134699] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/14/2020] [Indexed: 02/03/2023] Open
Abstract
Meal ingestion increases body temperature in multiple species, an effect that is blunted by obesity. However, the mechanisms responsible for these phenomena remain incompletely understood. Here we show that refeeding increases plasma leptin concentrations approximately 8-fold in 48-hour-fasted lean rats, and this normalization of plasma leptin concentrations stimulates adrenomedullary catecholamine secretion. Increased adrenal medulla-derived plasma catecholamines were necessary and sufficient to increase body temperature postprandially, a process that required both fatty acids generated from adipose tissue lipolysis and β-adrenergic activation of brown adipose tissue (BAT). Diet-induced obese rats, which remained relatively hyperleptinemic while fasting, did not exhibit fasting-induced reductions in temperature. To examine the impact of feeding-induced increases in body temperature on energy balance, we compared rats fed chronically by either 2 carbohydrate-rich boluses daily or a continuous isocaloric intragastric infusion. Bolus feeding increased body temperature and reduced weight gain compared with continuous feeding, an effect abrogated by treatment with atenolol. In summary, these data demonstrate that leptin stimulates a hypothalamus-adrenal medulla-BAT axis, which is necessary and sufficient to induce lipolysis and, as a result, increase body temperature after refeeding.
Collapse
Affiliation(s)
- Rachel J. Perry
- Departments of Internal Medicine
- Cellular & Molecular Physiology
| | - Kun Lyu
- Departments of Internal Medicine
- Cellular & Molecular Physiology
| | | | | | - Xiruo Li
- Departments of Internal Medicine
- Cellular & Molecular Physiology
| | | | - Hua Qing
- Departments of Internal Medicine
- Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Andrew Wang
- Departments of Internal Medicine
- Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xiaoyong Yang
- Cellular & Molecular Physiology
- Comparative Medicine, and
| | | |
Collapse
|
9
|
Allostasis: A Brain-Centered, Predictive Mode of Physiological Regulation. Trends Neurosci 2019; 42:740-752. [PMID: 31488322 DOI: 10.1016/j.tins.2019.07.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/10/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022]
Abstract
Although the concept of allostasis was proposed some 30 years ago, doubts persist about its precise meaning and whether it is useful. Here we review the concept in the context of recent studies as a strategy to efficiently regulate physiology and behavior. The brain, sensing the internal and external milieu, and consulting its database, predicts what is likely to be needed; then, it computes the best response. The brain rewards a better-than-predicted result with a pulse of dopamine, thereby encouraging the organism to learn effective regulatory behaviors. The brain, by prioritizing behaviors and dynamically adjusting the flows of energy and nutrients, reduces costly errors and exploits more opportunities. Despite significant costs of computation, allostasis pays off and can now be recognized as a core principle of organismal design.
Collapse
|
10
|
Goh GH, Maloney SK, Mark PJ, Blache D. Episodic Ultradian Events-Ultradian Rhythms. BIOLOGY 2019; 8:E15. [PMID: 30875767 PMCID: PMC6466064 DOI: 10.3390/biology8010015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/24/2019] [Accepted: 03/09/2019] [Indexed: 11/16/2022]
Abstract
In the fast lane of chronobiology, ultradian events are short-term rhythms that have been observed since the beginning of modern biology and were quantified about a century ago. They are ubiquitous in all biological systems and found in all organisms, from unicellular organisms to mammals, and from single cells to complex biological functions in multicellular animals. Since these events are aperiodic and last for a few minutes to a few hours, they are better classified as episodic ultradian events (EUEs). Their origin is unclear. However, they could have a molecular basis and could be controlled by hormonal inputs-in vertebrates, they originate from the activity of the central nervous system. EUEs are receiving increasing attention but their aperiodic nature requires specific sampling and analytic tools. While longer scale rhythms are adaptations to predictable changes in the environment, in theory, EUEs could contribute to adaptation by preparing organisms and biological functions for unpredictability.
Collapse
Affiliation(s)
- Grace H Goh
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia.
| | - Shane K Maloney
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia.
| | - Peter J Mark
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia.
| | - Dominique Blache
- School of Agriculture and Environment and UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia.
| |
Collapse
|
11
|
Li Y, Schnabl K, Gabler SM, Willershäuser M, Reber J, Karlas A, Laurila S, Lahesmaa M, u Din M, Bast-Habersbrunner A, Virtanen KA, Fromme T, Bolze F, O’Farrell LS, Alsina-Fernandez J, Coskun T, Ntziachristos V, Nuutila P, Klingenspor M. Secretin-Activated Brown Fat Mediates Prandial Thermogenesis to Induce Satiation. Cell 2018; 175:1561-1574.e12. [DOI: 10.1016/j.cell.2018.10.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
|
12
|
Hillar C, Onnis G, Rhea D, Tecott L. Active State Organization of Spontaneous Behavioral Patterns. Sci Rep 2018; 8:1064. [PMID: 29348406 PMCID: PMC5773533 DOI: 10.1038/s41598-017-18276-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 12/06/2017] [Indexed: 11/16/2022] Open
Abstract
We report the development and validation of a principled analytical approach to reveal the manner in which diverse mouse home cage behaviors are organized. We define and automate detection of two mutually-exclusive low-dimensional spatiotemporal units of behavior: “Active” and “Inactive” States. Analyses of these features using a large multimodal 16-strain behavioral dataset provide a series of novel insights into how feeding, drinking, and movement behaviors are coordinately expressed in Mus Musculus. Moreover, we find that patterns of Active State expression are exquisitely sensitive to strain, and classical supervised machine learning incorporating these features provides 99% cross-validated accuracy in genotyping animals using behavioral data alone. Altogether, these findings advance understanding of the organization of spontaneous behavior and provide a high-throughput phenotyping strategy with wide applicability to behavioral neuroscience and animal models of disease.
Collapse
Affiliation(s)
- C Hillar
- University of California, San Francisco Department of Psychiatry, 1550 4th Street, San Francisco, CA, 94158, USA
| | - G Onnis
- University of California, San Francisco Department of Psychiatry, 1550 4th Street, San Francisco, CA, 94158, USA
| | - D Rhea
- University of California, San Francisco Department of Psychiatry, 1550 4th Street, San Francisco, CA, 94158, USA
| | - L Tecott
- University of California, San Francisco Department of Psychiatry, 1550 4th Street, San Francisco, CA, 94158, USA.
| |
Collapse
|
13
|
|
14
|
Blessing WW. Thermoregulation and the ultradian basic rest–activity cycle. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:367-375. [DOI: 10.1016/b978-0-444-63912-7.00022-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Gordon CJ. The mouse thermoregulatory system: Its impact on translating biomedical data to humans. Physiol Behav 2017; 179:55-66. [PMID: 28533176 PMCID: PMC6196327 DOI: 10.1016/j.physbeh.2017.05.026] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/04/2017] [Accepted: 05/18/2017] [Indexed: 01/01/2023]
Abstract
The laboratory mouse has become the predominant test species in biomedical research. The number of papers that translate or extrapolate data from mouse to human has grown exponentially since the year 2000. There are many physiological and anatomical factors to consider in the process of extrapolating data from one species to another. Body temperature is, of course, a critical determinant in extrapolation because it has a direct impact on metabolism, cardiovascular function, drug efficacy, pharmacokinetics of toxins and drugs, and many other effects. While most would consider the thermoregulatory system of mice to be sufficiently stable and predictable as to not be a cause for concern, the thermal physiology of mice does in fact present unique challenges to the biomedical researcher. A variable and unstable core temperature, high metabolic rate, preference for warm temperatures, large surface area: body mass ratio, and high rate of thermal conductance, are some of the key factors of mice that can affect the interpretation and translation of data to humans. It is the intent of this brief review to enlighten researchers studying interspecies translation of biomedical data on the salient facets of the mouse thermal physiology and show how extrapolation in fields such as physiology, psychology, nutrition, pharmacology, toxicology, and pathology.
Collapse
Affiliation(s)
- Christopher J Gordon
- Toxicity Assessment Division, National Health Effects and Environmental Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| |
Collapse
|
16
|
Miyata K, Kuwaki T, Ootsuka Y. The integrated ultradian organization of behavior and physiology in mice and the contribution of orexin to the ultradian patterning. Neuroscience 2016; 334:119-133. [PMID: 27491480 DOI: 10.1016/j.neuroscience.2016.07.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 11/15/2022]
Abstract
Our series of rat experiments have shown that locomotor activity, arousal level, body and brown adipose tissue temperatures, heart rate and arterial pressure increase episodically in an integrated manner approximately every 100min (ultradian manner). Although it has been proposed that the integrated ultradian pattern is a fundamental biological rhythm across species, there are no reports of the integrated ultradian pattern in species other than rats. The aim of the present study was to establish a mouse model using simultaneous recording of locomotor activity, eating behavior, body temperature, heart rate and arousal in order to determine whether their behavior and physiology are organized in an ultradian manner in normal (wild-type) mice. We also incorporated the same recording in prepro-orexin knockout (ORX-KO) mice to reveal the role of orexin in the brain mechanisms underlying ultradian patterning. The orexin system is one of the key conductors required for coordinating autonomic functions and behaviors, and thus may contribute to ultradian patterning. In wild-type mice, locomotor activity, arousal level, body temperature and heart rate increased episodically every 93±18min (n=8) during 24h. Eating was integrated into the ultradian pattern, commencing 23±4min (n=8) after the onset of an electroencephalogram (EEG) ultradian episode. The integrated ultradian pattern in wild-type mice is very similar to that observed in rats. In ORX-KO mice, the ultradian episodic changes in locomotor activity, EEG arousal indices and body temperature were significantly attenuated, but the ultradian patterning was preserved. Our findings support the view that the ultradian pattern is common across species. The present results also suggest that orexin contributes to driving ultradian episodic changes, however, this neuropeptide is not essential for the generation of the ultradian pattern.
Collapse
Affiliation(s)
- Kohei Miyata
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Youichirou Ootsuka
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan; Centre for Neuroscience, Department of Human Physiology, School of Medicine, Flinders University, South Australia, Australia.
| |
Collapse
|
17
|
Blessing W, McAllen R, McKinley M. Control of the Cutaneous Circulation by the Central Nervous System. Compr Physiol 2016; 6:1161-97. [PMID: 27347889 DOI: 10.1002/cphy.c150034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The central nervous system (CNS), via its control of sympathetic outflow, regulates blood flow to the acral cutaneous beds (containing arteriovenous anastomoses) as part of the homeostatic thermoregulatory process, as part of the febrile response, and as part of cognitive-emotional processes associated with purposeful interactions with the external environment, including those initiated by salient or threatening events (we go pale with fright). Inputs to the CNS for the thermoregulatory process include cutaneous sensory neurons, and neurons in the preoptic area sensitive to the temperature of the blood in the internal carotid artery. Inputs for cognitive-emotional control from the exteroceptive sense organs (touch, vision, sound, smell, etc.) are integrated in forebrain centers including the amygdala. Psychoactive drugs have major effects on the acral cutaneous circulation. Interoceptors, chemoreceptors more than baroreceptors, also influence cutaneous sympathetic outflow. A major advance has been the discovery of a lower brainstem control center in the rostral medullary raphé, regulating outflow to both brown adipose tissue (BAT) and to the acral cutaneous beds. Neurons in the medullary raphé, via their descending axonal projections, increase the discharge of spinal sympathetic preganglionic neurons controlling the cutaneous vasculature, utilizing glutamate, and serotonin as neurotransmitters. Present evidence suggests that both thermoregulatory and cognitive-emotional control of the cutaneous beds from preoptic, hypothalamic, and forebrain centers is channeled via the medullary raphé. Future studies will no doubt further unravel the details of neurotransmitter pathways connecting these rostral control centers with the medullary raphé, and those operative within the raphé itself. © 2016 American Physiological Society. Compr Physiol 6:1161-1197, 2016.
Collapse
Affiliation(s)
- William Blessing
- Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, S.A., Australia
| | - Robin McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| | - Michael McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| |
Collapse
|
18
|
Blessing W, Ootsuka Y. Timing of activities of daily life is jaggy: How episodic ultradian changes in body and brain temperature are integrated into this process. Temperature (Austin) 2016; 3:371-383. [PMID: 28349079 PMCID: PMC5079224 DOI: 10.1080/23328940.2016.1177159] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 10/29/2022] Open
Abstract
Charles Darwin noted that natural selection applies even to the hourly organization of daily life. Indeed, in many species, the day is segmented into active periods when the animal searches for food, and inactive periods when the animal digests and rests. This episodic temporal patterning is conventionally referred to as ultradian (<24 hours) rhythmicity. The average time between ultradian events is approximately 1-2 hours, but the interval is highly variable. The ultradian pattern is stochastic, jaggy rather than smooth, so that although the next event is likely to occur within 1-2 hours, it is not possible to predict the precise timing. When models of circadian timing are applied to the ultradian temporal pattern, the underlying assumption of true periodicity (stationarity) has distorted the analyses, so that the ultradian pattern is frequently averaged away and ignored. Each active ultradian episode commences with an increase in hippocampal theta rhythm, indicating the switch of attention to the external environment. During each active episode, behavioral and physiological processes, including changes in body and brain temperature, occur in an integrated temporal order, confirming organization by programs endogenous to the central nervous system. We describe methods for analyzing episodic ultradian events, including the use of wavelet mathematics to determine their timing and amplitude, and the use of fractal-based procedures to determine their complexity.
Collapse
Affiliation(s)
- William Blessing
- Centre for Neuroscience Department of Human Physiology, Flinders University , Adelaide, SA, Australia
| | - Youichirou Ootsuka
- Centre for Neuroscience Department of Human Physiology, Flinders University , Adelaide, SA, Australia
| |
Collapse
|
19
|
Pedunculopontine Gamma Band Activity and Development. Brain Sci 2015; 5:546-67. [PMID: 26633526 PMCID: PMC4701027 DOI: 10.3390/brainsci5040546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/25/2022] Open
Abstract
This review highlights the most important discovery in the reticular activating system in the last 10 years, the manifestation of gamma band activity in cells of the reticular activating system (RAS), especially in the pedunculopontine nucleus, which is in charge of waking and rapid eye movement (REM) sleep. The identification of different cell groups manifesting P/Q-type Ca(2+) channels that control waking vs. those that manifest N-type channels that control REM sleep provides novel avenues for the differential control of waking vs. REM sleep. Recent discoveries on the development of this system can help explain the developmental decrease in REM sleep and the basic rest-activity cycle.
Collapse
|
20
|
Abstract
Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short- and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | | |
Collapse
|
21
|
Mohammed M, Ootsuka Y, Yanagisawa M, Blessing W. Reduced brown adipose tissue thermogenesis during environmental interactions in transgenic rats with ataxin-3-mediated ablation of hypothalamic orexin neurons. Am J Physiol Regul Integr Comp Physiol 2014; 307:R978-89. [PMID: 25324552 DOI: 10.1152/ajpregu.00260.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thermogenesis in brown adipose tissue (BAT) contributes to substantial increases in body temperature evoked by threatening or emotional stimuli. BAT thermogenesis also contributes to increases in body temperature that occur during active phases of the basic rest-activity cycle (BRAC), as part of normal daily life. Hypothalamic orexin-synthesizing neurons influence many physiological and behavioral variables, including BAT and body temperature. In conscious unrestrained animals maintained for 3 days in a quiet environment (24-26°C) with ad libitum food and water, we compared temperatures in transgenic rats with ablation of orexin neurons induced by expression of ataxin-3 (Orx_Ab) with wild-type (WT) rats. Both baseline BAT temperature and baseline body temperature, measured at the onset of BRAC episodes, were similar in Orx_Ab and WT rats. The time interval between BRAC episodes was also similar in the two groups. However, the initial slopes and amplitudes of BRAC-related increases in BAT and body temperature were reduced in Orx_Ab rats. Similarly, the initial slopes and amplitudes of the increases in BAT temperatures induced by sudden exposure to an intruder rat (freely moving or confined to a small cage) or by sudden exposure to live cockroaches were reduced in resident Orx_Ab rats. Constriction of the tail artery induced by salient alerting stimuli was also reduced in Orx_Ab rats. Our results suggest that orexin-synthesizing neurons contribute to the intensity with which rats interact with the external environment, both when the interaction is "spontaneous" and when the interaction is provoked by threatening or salient environmental events.
Collapse
Affiliation(s)
- Mazher Mohammed
- Centre for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia; and
| | - Youichirou Ootsuka
- Centre for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia; and
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Japan; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - William Blessing
- Centre for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia; and
| |
Collapse
|
22
|
Mohammed M, Ootsuka Y, Blessing W. Brown adipose tissue thermogenesis contributes to emotional hyperthermia in a resident rat suddenly confronted with an intruder rat. Am J Physiol Regul Integr Comp Physiol 2014; 306:R394-400. [PMID: 24452545 PMCID: PMC3949111 DOI: 10.1152/ajpregu.00475.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Body temperature increases when individuals experience salient, emotionally significant events. There is controversy concerning the contribution of nonshivering thermogenesis in brown adipose tissue (BAT) to emotional hyperthermia. In the present study we compared BAT, core body, and brain temperature, and tail blood flow, simultaneously measured, to determine whether BAT thermogenesis contributes to emotional hyperthermia in a resident Sprague-Dawley rat when an intruder rat, either freely-moving or confined to a small cage, is suddenly introduced into the cage of the resident rat for 30 min. Introduction of the intruder rat promptly increased BAT, body, and brain temperatures in the resident rat. For the caged intruder these temperature increases were 1.4 ± 0.2, 0.8 ± 0.1, 1.0 ± 0.1°C, respectively, with the increase in BAT temperature being significantly greater (P < 0.01) than the increases in body and brain. The initial 5-min slope of the BAT temperature record (0.18 ± 0.02°C/min) was significantly greater (P < 0.01) than the corresponding value for body (0.10 ± 0.01°C/min) and brain (0.09 ± 0.02°C/min). Tail artery pulse amplitude fell acutely when the intruder rat was introduced, possibly contributing to the increases in body and brain temperature. Prior blockade of β3 adrenoceptors (SR59230A 10 mg/kg ip) significantly reduced the amplitude of each temperature increase. Intruder-evoked increases in BAT temperature were similar in resident rats maintained at 11°C for 3 days. In the caged intruder situation there is no bodily contact between the rats, so the stimulus is psychological rather than physical. Our study thus demonstrates that BAT thermogenesis contributes to increases in body and brain temperature occurring during emotional hyperthermia.
Collapse
Affiliation(s)
- Mazher Mohammed
- Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
23
|
Parent MB, Darling JN, Henderson YO. Remembering to eat: hippocampal regulation of meal onset. Am J Physiol Regul Integr Comp Physiol 2014; 306:R701-13. [PMID: 24573183 DOI: 10.1152/ajpregu.00496.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A wide variety of species, including vertebrate and invertebrates, consume food in bouts (i.e., meals). Decades of research suggest that different mechanisms regulate meal initiation (when to start eating) versus meal termination (how much to eat in a meal, also known as satiety). There is a very limited understanding of the mechanisms that regulate meal onset and the duration of the postprandial intermeal interval (ppIMI). In the present review, we examine issues involved in measuring meal onset and some of the limited available evidence regarding how it is regulated. Then, we describe our recent work indicating that dorsal hippocampal neurons inhibit meal onset during the ppIMI and describe the processes that may be involved in this. We also synthesize recent evidence, including evidence from our laboratory, suggesting that overeating impairs hippocampal functioning and that impaired hippocampal functioning, in turn, contributes to the development and/or maintenance of diet-induced obesity. Finally, we identify critical questions and challenges for future research investigating neural controls of meal onset.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Jenna N Darling
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| | - Yoko O Henderson
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| |
Collapse
|