1
|
Júnior REM, Pedersen ASB, Ferreira RM, de Asevedo GH, Mendes GL, Ribeiro K, Maioli TU, de Faria AMC, Brunialti-Godard AL. Behavioral changes and transcriptional regulation of mesolimbic dopaminergic genes in a mouse model of binge eating disorder by diet intermittent access. J Nutr Biochem 2024:109784. [PMID: 39426552 DOI: 10.1016/j.jnutbio.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/02/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Binge Eating Disorder (BED) is among the most prevalent eating disorders worldwide. It is characterized by recurrent episodes of excessive consumption of palatable foods in short periods, accompanied by a sense of loss of control and distress around the episode, which tends to worsen over time. The mesolimbic dopaminergic system influences on reinforcement and reward-seeking behaviors is implicated in the disorder's pathogenesis. Animal models that replicate the clinical conditions observed in humans, including the disorder progression, are essential for understanding the underlying physiological mechanisms of BED. This study aimed to evaluate binge eating behavior induced by intermittent High Sugar and Butter (HSB) diet access in mice, their phenotypes, transcriptional regulation of mesolimbic dopaminergic system genes, and behavior. Thus, mice were subdivided into three groups: CHOW (maintenance diet only), HSB-i (maintenance diet with thrice-weekly access to HSB), and HSB (continuous access to HSB). Animals were subjected to marble-burying and light-dark box behavioral tests, and transcriptional regulation was evaluated by RT-qPCR. The results indicated that the HSB-i group established a feeding pattern of significantly more kilocalories on days when HSB was available and reduced intake on non-HSB days similar to human binge eating. Over time, binge episodes intensified, potentially indicating a tolerance effect. Additionally, these animals behave differently towards preferring the HSB diet and exhibited altered transcriptional regulation of the Drd1, Slc6a3, and Lrrk2 genes. Our study provides a mouse model that reflects human BED, showing a progression in binge episodes and mesolimbic dopamine pathway involvement, suggesting targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Renato Elias Moreira Júnior
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Agatha Sondertoft Braga Pedersen
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raquel Mary Ferreira
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme Henrique de Asevedo
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grazielle Laudares Mendes
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karine Ribeiro
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Caetano de Faria
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lúcia Brunialti-Godard
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Chen X, Ai C, Liu Z, Wang G. Neuroimaging studies of resting-state functional magnetic resonance imaging in eating disorders. BMC Med Imaging 2024; 24:265. [PMID: 39375605 PMCID: PMC11460144 DOI: 10.1186/s12880-024-01432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
Eating disorders (EDs), including anorexia nervosa (AN), bulimia nervosa (BN), binge-eating disorder (BED), and pica, are psychobehavioral conditions characterized by abnormal eating behaviors and an excessive preoccupation with weight and body shape. This review examines changes in brain regions and functional connectivity in ED patients over the past decade (2013-2023) using resting-state functional magnetic resonance imaging (rs-fMRI). Key findings highlight alterations in brain networks such as the default mode network (DMN), central executive network (CEN), and emotion regulation network (ERN). In individuals with AN, there is reduced functional connectivity in areas associated with facial information processing and social cognition, alongside increased connectivity in regions linked to sensory stimulation, aesthetic judgment, and social anxiety. Conversely, BED patients show diminished connectivity in the dorsal anterior cingulate cortex within the salience network and increased connectivity in the posterior cingulate cortex and medial prefrontal cortex within the DMN. These findings suggest that rs-fMRI could serve as a valuable biomarker for assessing brain function and predicting treatment outcomes in EDs, paving the way for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Xiong Chen
- Capital Medical University, Beijing Anding Hospital, Beijing Key Laboratory of Diagnosis and Treatment of Mental Disorders, National Clinical Medical Research Center for Mental Disorders, Beijing, 100088, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Chunqi Ai
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhongchun Liu
- RenMin Hospital of Wuhan University, Wuhan, 430060, China
| | - Gang Wang
- Capital Medical University, Beijing Anding Hospital, Beijing Key Laboratory of Diagnosis and Treatment of Mental Disorders, National Clinical Medical Research Center for Mental Disorders, Beijing, 100088, China.
| |
Collapse
|
3
|
Sanz-Martos AB, Roca M, Ruiz-Gayo M, Del Olmo N. Tributyrin reverses the deleterious effect of saturated fat on working memory and synaptic plasticity in juvenile mice: differential effects in males and females. Eur J Pharmacol 2024; 977:176726. [PMID: 38852700 DOI: 10.1016/j.ejphar.2024.176726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Short-chain fatty acids, such as butyric acid, derived from the intestinal fermentation of dietary fiber, have been proposed as a treatment for certain pathologies of the central nervous system. Our research group has shown that tributyrin (TB), a butyric acid prodrug, reverses deficits in spatial memory and modulates hippocampal synaptic plasticity. In the present work, diets enriched in either saturated (SOLF; Saturated OiL-enriched Food) or unsaturated (UOLF; Unsaturated OiL-enriched Food) fat were supplied during either 2 h or 8 weeks to 5-week-old male and female mice undergoing a treatment schedule with TB. After the dietary treatment, spatial learning and memory (SLM) was assessed in both the Y-maze and the eight-arm radial maze (RAM). Hippocampal expression of genes involved in glutamatergic transmission as well as synaptic plasticity (long-term potentiation -LTP- and long-term depression -LTD-) were also analyzed. Our results show that 2 h of SOLF intake impaired LTP as well as the performance in the Y-Maze in juvenile male mice whereas no effect was found in females. Moreover, TB reversed both effects in SLM and LTP in males. In the case of chronic intake, both SOLF and UOLF deteriorated SLM measured in the RAM in both sexes whereas TB only reversed LTP impairment induced by SOLF in male mice. These results suggest that TB may have a potentially beneficial influence on learning and memory processes, contingent upon the type of diet and the sex of the individuals.
Collapse
Affiliation(s)
- Ana Belén Sanz-Martos
- Department of Psychobiology, School of Psychology, UNED, C/ Juan del Rosal 10, 28040, Madrid, Spain.
| | - María Roca
- Department of Psychobiology, School of Psychology, UNED, C/ Juan del Rosal 10, 28040, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, 28668, Madrid, Spain
| | - Nuria Del Olmo
- Department of Psychobiology, School of Psychology, UNED, C/ Juan del Rosal 10, 28040, Madrid, Spain
| |
Collapse
|
4
|
Weydmann G, Miguel PM, Hakim N, Dubé L, Silveira PP, Bizarro L. How are overweight and obesity associated with reinforcement learning deficits? A systematic review. Appetite 2024; 193:107123. [PMID: 37992896 DOI: 10.1016/j.appet.2023.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Reinforcement learning (RL) refers to the ability to learn stimulus-response or response-outcome associations relevant to the acquisition of behavioral repertoire and adaptation to the environment. Research data from correlational and case-control studies have shown that obesity is associated with impairments in RL. The aim of the present study was to systematically review how obesity and overweight are associated with RL performance. More specifically, the relationship between high body mass index (BMI) and task performance was explored through the analysis of specific RL processes associated with different physiological, computational, and behavioral manifestations. Our systematic analyses indicate that obesity might be associated with impairments in the use of aversive outcomes to change ongoing behavior, as revealed by results involving instrumental negative reinforcement and extinction/reversal learning, but further research needs to be conducted to confirm this association. Hypotheses regarding how obesity might be associated with altered RL were discussed.
Collapse
Affiliation(s)
- Gibson Weydmann
- Department of Psychology, Universidade Federal Do Rio Grande Do Sul (UFRGS), 2600 Ramiro Barcelos, Postal Code 90035-003, Porto Alegre, Brazil; Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, 3801 University, Postal Code H3A 2B4, Montreal, Quebec, Canada.
| | - Patricia Maidana Miguel
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, 3801 University, Postal Code H3A 2B4, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, 1033 Pine Ave W, Postal Code H3A 1A1, Montreal, Quebec, Canada
| | - Nour Hakim
- Department of Psychology, University of Toronto, 100 George Street, Postal Code M1C 1A4, Toronto, Ontario, Canada; Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, 1001 Sherbrooke, Postal Code H3A 1G5, Montreal, Quebec, Canada
| | - Laurette Dubé
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, 1001 Sherbrooke, Postal Code H3A 1G5, Montreal, Quebec, Canada
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, 3801 University, Postal Code H3A 2B4, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, 1033 Pine Ave W, Postal Code H3A 1A1, Montreal, Quebec, Canada
| | - Lisiane Bizarro
- Department of Psychology, Universidade Federal Do Rio Grande Do Sul (UFRGS), 2600 Ramiro Barcelos, Postal Code 90035-003, Porto Alegre, Brazil
| |
Collapse
|
5
|
Arriagada-Diaz J, Flores-Muñoz C, Gómez-Soto B, Labraña-Allende M, Mattar-Araos M, Prado-Vega L, Hinostroza F, Gajardo I, Guerra-Fernández MJ, Bevilacqua JA, Cárdenas AM, Bitoun M, Ardiles AO, Gonzalez-Jamett AM. A centronuclear myopathy-causing mutation in dynamin-2 disrupts neuronal morphology and excitatory synaptic transmission in a murine model of the disease. Neuropathol Appl Neurobiol 2023; 49:e12918. [PMID: 37317811 DOI: 10.1111/nan.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/30/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
AIMS Dynamin-2 is a large GTPase, a member of the dynamin superfamily that regulates membrane remodelling and cytoskeleton dynamics. Mutations in the dynamin-2 gene (DNM2) cause autosomal dominant centronuclear myopathy (CNM), a congenital neuromuscular disorder characterised by progressive weakness and atrophy of the skeletal muscles. Cognitive defects have been reported in some DNM2-linked CNM patients suggesting that these mutations can also affect the central nervous system (CNS). Here we studied how a dynamin-2 CNM-causing mutation influences the CNS function. METHODS Heterozygous mice harbouring the p.R465W mutation in the dynamin-2 gene (HTZ), the most common causing autosomal dominant CNM, were used as disease model. We evaluated dendritic arborisation and spine density in hippocampal cultured neurons, analysed excitatory synaptic transmission by electrophysiological field recordings in hippocampal slices, and evaluated cognitive function by performing behavioural tests. RESULTS HTZ hippocampal neurons exhibited reduced dendritic arborisation and lower spine density than WT neurons, which was reversed by transfecting an interference RNA against the dynamin-2 mutant allele. Additionally, HTZ mice showed defective hippocampal excitatory synaptic transmission and reduced recognition memory compared to the WT condition. CONCLUSION Our findings suggest that the dynamin-2 p.R465W mutation perturbs the synaptic and cognitive function in a CNM mouse model and support the idea that this GTPase plays a key role in regulating neuronal morphology and excitatory synaptic transmission in the hippocampus.
Collapse
Affiliation(s)
- Jorge Arriagada-Diaz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Magister en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Bárbara Gómez-Soto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Magister en Ciencias Médicas, Mención Biología Celular y Molecular, Universidad de Valparaíso, Valparaíso, Chile
| | - Marjorie Labraña-Allende
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Magister en Ciencias Médicas, Mención Biología Celular y Molecular, Universidad de Valparaíso, Valparaíso, Chile
| | - Michelle Mattar-Araos
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Prado-Vega
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Magister en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule, CIEAM, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
- Escuela de Química y Farmacia, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Ivana Gajardo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Jorge A Bevilacqua
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Marc Bitoun
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, F-75013, France
| | - Alvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Estudios en Salud, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| | - Arlek M Gonzalez-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
6
|
Gangal H, Xie X, Huang Z, Cheng Y, Wang X, Lu J, Zhuang X, Essoh A, Huang Y, Chen R, Smith LN, Smith RJ, Wang J. Drug reinforcement impairs cognitive flexibility by inhibiting striatal cholinergic neurons. Nat Commun 2023; 14:3886. [PMID: 37391566 PMCID: PMC10313783 DOI: 10.1038/s41467-023-39623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Addictive substance use impairs cognitive flexibility, with unclear underlying mechanisms. The reinforcement of substance use is mediated by the striatal direct-pathway medium spiny neurons (dMSNs) that project to the substantia nigra pars reticulata (SNr). Cognitive flexibility is mediated by striatal cholinergic interneurons (CINs), which receive extensive striatal inhibition. Here, we hypothesized that increased dMSN activity induced by substance use inhibits CINs, reducing cognitive flexibility. We found that cocaine administration in rodents caused long-lasting potentiation of local inhibitory dMSN-to-CIN transmission and decreased CIN firing in the dorsomedial striatum (DMS), a brain region critical for cognitive flexibility. Moreover, chemogenetic and time-locked optogenetic inhibition of DMS CINs suppressed flexibility of goal-directed behavior in instrumental reversal learning tasks. Notably, rabies-mediated tracing and physiological studies showed that SNr-projecting dMSNs, which mediate reinforcement, sent axonal collaterals to inhibit DMS CINs, which mediate flexibility. Our findings demonstrate that the local inhibitory dMSN-to-CIN circuit mediates the reinforcement-induced deficits in cognitive flexibility.
Collapse
Affiliation(s)
- Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yifeng Cheng
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jiayi Lu
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xiaowen Zhuang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Amanda Essoh
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yufei Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Rachel J Smith
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Bourdy R, Befort K. The Role of the Endocannabinoid System in Binge Eating Disorder. Int J Mol Sci 2023; 24:ijms24119574. [PMID: 37298525 DOI: 10.3390/ijms24119574] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Eating disorders are multifactorial disorders that involve maladaptive feeding behaviors. Binge eating disorder (BED), the most prevalent of these in both men and women, is characterized by recurrent episodes of eating large amounts of food in a short period of time, with a subjective loss of control over eating behavior. BED modulates the brain reward circuit in humans and animal models, which involves the dynamic regulation of the dopamine circuitry. The endocannabinoid system plays a major role in the regulation of food intake, both centrally and in the periphery. Pharmacological approaches together with research using genetically modified animals have strongly highlighted a predominant role of the endocannabinoid system in feeding behaviors, with the specific modulation of addictive-like eating behaviors. The purpose of the present review is to summarize our current knowledge on the neurobiology of BED in humans and animal models and to highlight the specific role of the endocannabinoid system in the development and maintenance of BED. A proposed model for a better understanding of the underlying mechanisms involving the endocannabinoid system is discussed. Future research will be necessary to develop more specific treatment strategies to reduce BED symptoms.
Collapse
Affiliation(s)
- Romain Bourdy
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, UMR7364, CNRS, 12 Rue Goethe, 67000 Strasbourg, France
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, UMR7364, CNRS, 12 Rue Goethe, 67000 Strasbourg, France
| |
Collapse
|
8
|
Horton AL, Campbell EJ, Aumann TD, O'Brien KR, Lawrence AJ, Brown RM. Addiction-like behaviour towards high-fat high-sugar food predicts relapse propensity in both obesity prone and obesity resistant C57BL/6 J mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110654. [PMID: 36209772 DOI: 10.1016/j.pnpbp.2022.110654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/11/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
Abstract
Compulsive overeating of palatable food is thought to underlie some forms of obesity. Similarities are often observed in the behavioural symptomology and the neuropathophysiology underlying substance use disorder and compulsive overeating. As such, preclinical animal models which assess addiction-like behaviour towards food may assist the understanding of the neurobiology underlying overeating behaviour. Further, the relationship between these behaviours and the propensity for diet-induced obesity warrants examination. In this study we investigated the relationship between the propensity for diet-induced obesity (DIO) and addiction-like behaviour towards highly palatable food in C57BL/6 J mice as measured by a 3-criteria model. We also examined the extent to which performance on this 3-criteria model predicted two key hallmark features of addiction - resistance to extinction and relapse propensity (as measured by reinstatement of lever pressing). C57BL/6 J mice were allowed free access to a palatable diet for 8 weeks then separated by weight gain into DIO-prone and DIO-resistant subgroups. Access to palatable food was then restricted to daily operant self-administration sessions whereby addiction-like behaviour towards a high-fat high-sugar food reward was assessed using a 3-criteria model similar to that used to assess addiction-like behaviour towards drugs of abuse. In contrast to findings in rats, no difference in addiction-like behaviour towards food was observed between obesity prone (OP) and obesity resistant (OR) mice. Similarly, principal components analysis found no distinct patterns in the relationship between addiction-like behaviours across treatment groups. This suggests that the strain and species of rodent may be critical for studying the mechanisms underlying pathological overconsumption. Further analysis revealed that the extent of performance on the 3-criteria model correlated with the propensity for C57BL/6 J mice to both extinguish food seeking behaviour and "relapse" after a period of withdrawal. This finding was evident across all groups, regardless of DIO. Collectively, these data validate the 3-criteria model as a robust model to comprehensively assess food addiction-like behaviour in mice, regardless of prior food intake history.
Collapse
Affiliation(s)
- Anna L Horton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, VIC, Australia; Florey Department of Neuroscience & Mental Health, University of Melbourne, VIC, Australia
| | - Erin J Campbell
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia; Florey Department of Neuroscience & Mental Health, University of Melbourne, VIC, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Timothy D Aumann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Katrina R O'Brien
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia; Florey Department of Neuroscience & Mental Health, University of Melbourne, VIC, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, VIC, Australia; Florey Department of Neuroscience & Mental Health, University of Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Behavioral tests used in the evaluation of learning and memory in experimental animals. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2022. [DOI: 10.30621/jbachs.1017172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Zheng Y, Habes M, Gonzales M, Pomponio R, Nasrallah I, Khan S, Vaughan DE, Davatzikos C, Seshadri S, Launer L, Sorond F, Sedaghat S, Wainwright D, Baccarelli A, Sidney S, Bryan N, Greenland P, Lloyd-Jones D, Yaffe K, Hou L. Mid-life epigenetic age, neuroimaging brain age, and cognitive function: coronary artery risk development in young adults (CARDIA) study. Aging (Albany NY) 2022; 14:1691-1712. [PMID: 35220276 PMCID: PMC8908939 DOI: 10.18632/aging.203918] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
Abstract
The proportion of aging populations affected by dementia is increasing. There is an urgent need to identify biological aging markers in mid-life before symptoms of age-related dementia present for early intervention to delay the cognitive decline and the onset of dementia. In this cohort study involving 1,676 healthy participants (mean age 40) with up to 15 years of follow up, we evaluated the associations between cognitive function and two classes of novel biological aging markers: blood-based epigenetic aging and neuroimaging-based brain aging. Both accelerated epigenetic aging and brain aging were prospectively associated with worse cognitive outcomes. Specifically, every year faster epigenetic or brain aging was on average associated with 0.19-0.28 higher (worse) Stroop score, 0.04-0.05 lower (worse) RAVLT score, and 0.23-0.45 lower (worse) DSST (all false-discovery-rate-adjusted p <0.05). While epigenetic aging is a more stable biomarker with strong long-term predictive performance for cognitive function, brain aging biomarker may change more dynamically in temporal association with cognitive decline. The combined model using epigenetic and brain aging markers achieved the highest accuracy (AUC: 0.68, p<0.001) in predicting global cognitive function status. Accelerated epigenetic age and brain age at midlife may aid timely identification of individuals at risk for accelerated cognitive decline and promote the development of interventions to preserve optimal functioning across the lifespan.
Collapse
Affiliation(s)
- Yinan Zheng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mohamad Habes
- Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitzi Gonzales
- Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Raymond Pomponio
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ilya Nasrallah
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sadiya Khan
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Douglas E. Vaughan
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sudha Seshadri
- Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Lenore Launer
- Laboratory of Epidemiology and Population Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Farzaneh Sorond
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sanaz Sedaghat
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Derek Wainwright
- Departments of Neurological Surgery, Medicine-Hematology and Oncology, Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Stephen Sidney
- Kaiser Permanente Division of Research, Oakland, CA 94612, USA
| | - Nick Bryan
- Department of Diagnostic Medicine, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Donald Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kristine Yaffe
- Departments of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
- Department of Neurology University of California, San Francisco, CA 94143, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, CA 94143, USA
- San Francisco VA Medical Center, San Francisco, CA 94143, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Harry GJ, McBride S, Witchey SK, Mhaouty-Kodja S, Trembleau A, Bridge M, Bencsik A. Roadbumps at the Crossroads of Integrating Behavioral and In Vitro Approaches for Neurotoxicity Assessment. FRONTIERS IN TOXICOLOGY 2022; 4:812863. [PMID: 35295216 PMCID: PMC8915899 DOI: 10.3389/ftox.2022.812863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
With the appreciation that behavior represents the integration and complexity of the nervous system, neurobehavioral phenotyping and assessment has seen a renaissance over the last couple of decades, resulting in a robust database on rodent performance within various testing paradigms, possible associations with human disorders, and therapeutic interventions. The interchange of data across behavior and other test modalities and multiple model systems has advanced our understanding of fundamental biology and mechanisms associated with normal functions and alterations in the nervous system. While there is a demonstrated value and power of neurobehavioral assessments for examining alterations due to genetic manipulations, maternal factors, early development environment, the applied use of behavior to assess environmental neurotoxicity continues to come under question as to whether behavior represents a sensitive endpoint for assessment. Why is rodent behavior a sensitive tool to the neuroscientist and yet, not when used in pre-clinical or chemical neurotoxicity studies? Applying new paradigms and evidence on the biological basis of behavior to neurobehavioral testing requires expertise and refinement of how such experiments are conducted to minimize variability and maximize information. This review presents relevant issues of methods used to conduct such test, sources of variability, experimental design, data analysis, interpretation, and reporting. It presents beneficial and critical limitations as they translate to the in vivo environment and considers the need to integrate across disciplines for the best value. It proposes that a refinement of behavioral assessments and understanding of subtle pronounced differences will facilitate the integration of data obtained across multiple approaches and to address issues of translation.
Collapse
Affiliation(s)
- G. Jean Harry
- Neurotoxicology Group, Molecular Toxicology Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sandra McBride
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Shannah K. Witchey
- Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Paris, France
| | - Alain Trembleau
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Matthew Bridge
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Anna Bencsik
- Anses Laboratoire de Lyon, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université de Lyon 1, Lyon, France
| |
Collapse
|
12
|
Abstract
OBJECTIVE Binge eating, a core diagnostic symptom in binge eating disorder and bulimia nervosa, increases the risk of multiple physiological and psychiatric disorders. The neurotransmitter dopamine is involved in food craving, decision making, executive functioning, and impulsivity personality trait; all of which contribute to the development and maintenance of binge eating. The objective of this paper is to review the associations of dopamine levels/activities, dopamine regulator (e.g., dopamine transporter, degrading enzymes) levels/activities, and dopamine receptor availability/affinity with binge eating. METHODS A literature search was conducted in PubMed and PsycINFO to obtain human and animal studies published since 2010. RESULTS A total of 31 studies (25 human, six animal) were included. Among the human studies, there were 12 case-control studies, eight randomized controlled trials, and five cross-sectional studies. Studies used neuroimaging (e.g., positron emission tomography), genetic, and pharmacological (e.g., dopamine transporter inhibitor) techniques to describe or compare dopamine levels/activities, dopamine transporter levels/activities, dopamine degrading enzyme (e.g., catechol-O-methyltransferase) levels/activities, and dopamine receptor (e.g., D1, D2) availability/affinity among participants with and without binge eating. Most human and animal studies supported an altered dopaminergic state in binge eating (26/31, 83.9%); however, results were divergent regarding whether the altered state was hyperdopaminergic (9/26, 34.6%) or hypodopaminergic (17/26, 65.4%). The mixed findings may be partially explained by the variability in sample characteristics, study design, diagnosis criteria, and neuroimaging/genetic/pharmacological techniques used. However, it is possible that instead of being mutually exclusive, the hyperdopaminergic and hypodopaminergic state may co-exist, but in different stages of binge eating or in different individual genotypes. CONCLUSIONS For future studies to clarify the inconsistent findings, a homogenous sample that controls for confounders that may influence dopamine levels (e.g., psychiatric diseases) is preferable. Longitudinal studies are needed to evaluate whether the hyper- and hypo-dopaminergic states co-exist in different stages of binge eating or co-exist in individual phenotypes. Binge eating is characterized by eating a large amount of food in a short time and a feeling of difficulty to stop while eating. Binge eating is the defining symptom of binge eating disorder and bulimia nervosa, both of which are associated with serious health consequences. Studies have identified several psychological risk factors of binge eating, including a strong desire for food, impaired cognitive skills, and distinct personality traits (e.g., quick action without careful thinking). However, the physiological markers of binge eating remain unclear. Dopamine is a neurotransmitter that is heavily involved in feeding behavior, human motivation, cognitive ability, and personality. Therefore, dopamine is believed to play a critical role in binge eating. This review synthesized study findings related to the levels and activities of dopamine, dopamine regulators, and dopamine receptors in the context of binge eating. The primary finding is that most studies that used neuroimaging, genetic, or drug techniques found an altered dopaminergic state related to binge eating. However, the literature is inconsistent concerning the direction of the alteration. Considering the mixed findings and the limitations in study design, future studies, especially those that include repeated measurements, are needed to clarify the role of dopamine in binge eating.
Collapse
Affiliation(s)
- Yang Yu
- School of Nursing, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Renee Miller
- Brain and Cognitive Sciences, University of Rochester, 303F Meliora Hall, Rochester, NY 14627 USA
| | - Susan W. Groth
- School of Nursing, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| |
Collapse
|
13
|
Vaseghi S, Arjmandi-Rad S, Eskandari M, Ebrahimnejad M, Kholghi G, Zarrindast MR. Modulating role of serotonergic signaling in sleep and memory. Pharmacol Rep 2021; 74:1-26. [PMID: 34743316 DOI: 10.1007/s43440-021-00339-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Serotonin is an important neurotransmitter with various receptors and wide-range effects on physiological processes and cognitive functions including sleep, learning, and memory. In this review study, we aimed to discuss the role of serotonergic receptors in modulating sleep-wake cycle, and learning and memory function. Furthermore, we mentioned to sleep deprivation, its effects on memory function, and the potential interaction with serotonin. Although there are thousands of research articles focusing on the relationship between sleep and serotonin; however, the pattern of serotonergic function in sleep deprivation is inconsistent and it seems that serotonin has not a certain role in the effects of sleep deprivation on memory function. Also, we found that the injection type of serotonergic agents (systemic or local), the doses of these drugs (dose-dependent effects), and up- or down-regulation of serotonergic receptors during training with various memory tasks are important issues that can be involved in the effects of serotonergic signaling on sleep-wake cycle, memory function, and sleep deprivation-induced memory impairments. This comprehensive review was conducted in the PubMed, Scopus, and ScienceDirect databases in June and July 2021, by searching keywords sleep, sleep deprivation, memory, and serotonin.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Peng X, Shi X, Huang J, Zhang S, Yan Y, Ma D, Xu W, Xu W, Dong K, Tao J, Li M, Yang Y. Exendin-4 Improves Cognitive Function of Diabetic Mice via Increasing Brain Insulin Synthesis. Curr Alzheimer Res 2021; 18:546-557. [PMID: 34587885 DOI: 10.2174/1567205018666210929150004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Type 2 diabetes(T2D) patients are more prone to develop Alzheimer's disease (AD). We have previously shown that Glucagon-like peptide-1 receptor agon- ist exendin-4 (Ex-4) reduces tau hyperphosphorylation in T2D animals through upregulating in- sulin signaling, and peripheral injected Ex-4 increases insulin levels in the T2D brain. This study aims to further clarify whether the elevated insulin in the brain is produced by nerve cells under the action of Ex-4. METHODS The neuronal cell line-HT22 was treated with Ex-4 under high glucose or normal cultiva- tion, and the number of insulin-positive cells as well as the expression levels of insulin synthesis-re- lated genes were examined. The db/db mice were treated with a peripheral injection of Ex-4 and/or intracerebroventricular (ICV) injection of siRNA to inhibit the expression of insulin synthesis-relat- ed genes and the behavior tests were carried on. Finally, plasma glucose, cerebrospinal fluid (CSF) glucose, CSF insulin, phosphorylation of tau, phosphorylation of AKT and GSK-3β of db/db mice were detected. RESULTS We found that Ex-4 promoted the expression of insulin synthesis-related genes and in- duced an obvious increase of insulin-positive HT-22 neuronal cells in a high glucose environment. Peripheral injection of Ex-4 improved the cognitive function of db/db mice and increased brain in- sulin levels which activated brain insulin signaling and subsequently alleviated tau hyperphosphory- lation. However, when siRNA-neurod1 was injected to block insulin synthesis, the cognitive func- tion of db/db mice was not improved under the action of Ex-4 anymore. Moreover, the brain in- sulin levels dropped to an extremely low level, and the phosphorylation level of tau increased signi- ficantly. CONCLUSION This study demonstrated that Ex-4 improved cognition function by promoting brain in- sulin synthesis followed by the activation of brain insulin signaling and alleviation of tau hyper- phosphorylation.
Collapse
Affiliation(s)
- Xuemin Peng
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei. China
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei. China
| | - Jiaojiao Huang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei. China
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei. China
| | - Yongli Yan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei. China
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei. China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei. China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei. China
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei. China
| | - Jing Tao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei. China
| | - Mengni Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei. China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei. China
| |
Collapse
|
15
|
Waltmann M, Herzog N, Horstmann A, Deserno L. Loss of control over eating: A systematic review of task based research into impulsive and compulsive processes in binge eating. Neurosci Biobehav Rev 2021; 129:330-350. [PMID: 34280427 DOI: 10.1016/j.neubiorev.2021.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/26/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022]
Abstract
Recurring episodes of excessive food intake in binge eating disorder can be understood through the lens of behavioral control systems: patients repeat maladaptive behaviors against their explicit intent. Self-report measures show enhanced impulsivity and compulsivity in binge eating (BE) but are agnostic as to the processes that might lead to impulsive and compulsive behavior in the moment. Task-based neurocognitive investigations can tap into those processes. In this systematic review, we synthesize neurocognitive research on behavioral impulsivity and compulsivity in BE in humans and animals, published between 2010-2020. Findings on impulsivity are heterogeneous. Findings on compulsivity are sparse but comparatively consistent, indicating an imbalance of goal-directed and habitual control as well as deficits in reversal learning. We urge researchers to address heterogeneity related to mood states and the temporal dynamics of symptoms, to systematically differentiate contributions of body weight and BE, and to ascertain the validity and reliability of tasks. Moreover, we propose to further scrutinize the compulsivity findings to unravel the computational mechanisms of a potential reinforcement learning deficit.
Collapse
Affiliation(s)
- Maria Waltmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, Margarete-Höppel-Platz1, 97080 Würzburg, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1, 04103 Leipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany.
| | - Nadine Herzog
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1, 04103 Leipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Annette Horstmann
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1, 04103 Leipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, Margarete-Höppel-Platz1, 97080 Würzburg, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1, 04103 Leipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany; Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
16
|
Hildebrandt BA, Ahmari SE. Breaking It Down: Investigation of Binge Eating Components in Animal Models to Enhance Translation. Front Psychiatry 2021; 12:728535. [PMID: 34484010 PMCID: PMC8414642 DOI: 10.3389/fpsyt.2021.728535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Binge eating (BE) is a core eating disorder behavior that is present across nearly all eating disorder diagnoses (e. g., bulimia nervosa, binge eating disorder, anorexia nervosa binge/purge subtype), and is also widely present in the general population. Despite the prevalence of BE, limited treatment options exist and there are often high rates of relapse after treatment. There is evidence showing that genetic factors contribute to the heritability of BE and support for biological contributions to BE. However, more work is needed to fully understand neurobiological mechanisms underlying BE. One approach to target this problem is to separate BE into its distinct clinical components that can be more easily modeled using pre-clinical approaches. To date, a variety of animal models for BE have been used in pre-clinical studies; but there have been challenges translating this work to human BE. Here, we review these pre-clinical approaches by breaking them down into three clinically-significant component parts (1) consumption of a large amount of food; (2) food consumption within a short period of time; and (3) loss of control over eating. We propose that this rubric identifies the most frequently used and effective ways to model components of BE behavior using pre-clinical approaches with the strongest clinical relevance. Finally, we discuss how current pre-clinical models have been integrated with techniques using targeted neurobiological approaches and propose ways to improve translation of pre-clinical work to human investigations of BE that could enhance our understanding of BE behavior.
Collapse
Affiliation(s)
- Britny A Hildebrandt
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Susanne E Ahmari
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
You S, Jang M, Kim GH. Mori Cortex Radicis Attenuates High Fat Diet-Induced Cognitive Impairment via an IRS/Akt Signaling Pathway. Nutrients 2020; 12:nu12061851. [PMID: 32575897 PMCID: PMC7353299 DOI: 10.3390/nu12061851] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Present study was conducted to investigate ameliorating effects of Mori Cortex radicis on cognitive impair and neuronal defects in HFD-induced (High Fat Diet-Induced) obese mice. To induce obesity, C57BL/6 mice were fed an HFD for 8 weeks, and then mice were fed the HFD plus Mori Cortex radicis extract (MCR) (100 or 200 mg/kg/day) for 6 weeks. Prior to sacrifice, body weights were measured, and Y-maze test and oral glucose tolerance test were performed. Serum lipid metabolic biomarkers (TG, LDL, and HDL/total cholesterol ratio) and antioxidant enzymes (glutathione, superoxide dismutase, and catalase), malondialdehyde (MDA), and acetylcholinesterase (AChE) levels were measured in brain tissues. The expressions of proteins related to insulin signaling (p-IRS, PI3K, p-Akt, and GLUT4) and neuronal protection (p-Tau, Bcl-2, and Bax) were examined. MCR suppressed weight gain, improved serum lipid metabolic biomarker and glucose tolerance, inhibited AChE levels and MDA production, and restored antioxidant enzyme levels in brain tissue. In addition, MCR induced neuronal protective effects by inhibiting p-Tau expression and increasing Bcl-2/Bax ratio, which was attributed to insulin-induced increases in the expressions p-IRS, PI3K, p-Akt, and GLUT4. These indicate MCR may reduce HFD-induced insulin dysfunction and neuronal damage and suggest MCR be considered a functional material for the prevention of T2DM-associated neuronal disease.
Collapse
Affiliation(s)
- SoHyeon You
- Department of Health Functional Materials, Duksung Women’s University, Seoul 01369, Korea;
| | - Miran Jang
- Department of Food Science, Purdue University, West Lafayette, IN 47906, USA;
| | - Gun-Hee Kim
- Department of Food and Nutrition, Duksung Women’s University, Seoul 01369, Korea
- Correspondence: ; Tel.: +82-2-901-8496; Fax: +82-2-901-8661
| |
Collapse
|
18
|
Anversa RG, Campbell EJ, Ch'ng SS, Gogos A, Lawrence AJ, Brown RM. A model of emotional stress‐induced binge eating in female mice with no history of food restriction. GENES BRAIN AND BEHAVIOR 2019; 19:e12613. [DOI: 10.1111/gbb.12613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Roberta G. Anversa
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division Parkville Melbourne Australia
- The Florey Department of Neuroscience and Mental HealthUniversity of Melbourne Parkville Melbourne Australia
| | - Erin J. Campbell
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division Parkville Melbourne Australia
| | - Sarah S. Ch'ng
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division Parkville Melbourne Australia
| | - Andrea Gogos
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division Parkville Melbourne Australia
- The Florey Department of Neuroscience and Mental HealthUniversity of Melbourne Parkville Melbourne Australia
| | - Andrew J. Lawrence
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division Parkville Melbourne Australia
- The Florey Department of Neuroscience and Mental HealthUniversity of Melbourne Parkville Melbourne Australia
| | - Robyn M. Brown
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division Parkville Melbourne Australia
- The Florey Department of Neuroscience and Mental HealthUniversity of Melbourne Parkville Melbourne Australia
| |
Collapse
|
19
|
Behavioral profile of intermittent vs continuous access to a high fat diet during adolescence. Behav Brain Res 2019; 368:111891. [PMID: 31009646 DOI: 10.1016/j.bbr.2019.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/13/2019] [Accepted: 04/03/2019] [Indexed: 12/28/2022]
Abstract
Over the past few years, the effects of a high-fat diet (HFD) on cognitive functions have been broadly studied as a model of obesity, although no studies have evaluated whether these effects are maintained after the cessation of this diet. In addition, the behavioral effects of having a limited access to an HFD (binge-eating pattern) are mostly unknown, although they dramatically increase the vulnerability to drug use in contrast to having continuous access. Thus, the aim of the present study was to compare the effects of an intermittent versus a continuous exposure to an HFD during adolescence on cognition and anxiety-like behaviors, as well as to study the changes observed after the interruption of this diet. Adolescent male mice received for 40 days a standard diet, an HFD with continuous access or an HFD with sporadic limited access (2 h, three days a week). Two additional groups were fed with intermittent or continuous access to the HFD and withdrawn from this diet 15 days before the behavioral tests. Only the animals with a continuous access to the HFD showed higher circulating leptin levels, increased bodyweight, marked memory and spatial learning deficits, symptoms that disappeared after 15 days of HFD abstinence. Mice that binged on fat only showed hyperlocomotion, which normalized after 15 days of HFD cessation. However, discontinuation of fat, either in a binge or a continuous pattern, led to an increase in anxiety-like behavior. These results highlight that exposure to a high-fat diet during adolescence induces alterations in brain functions, although the way in which this diet is ingested determines the extent of these behavioral changes.
Collapse
|
20
|
TouchScreen-based phenotyping: altered stimulus/reward association and lower perseveration to gain a reward in mu opioid receptor knockout mice. Sci Rep 2019; 9:4044. [PMID: 30858487 PMCID: PMC6411729 DOI: 10.1038/s41598-019-40622-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
While the contribution of Mu Opioid Receptors (MORs) to hedonic aspects of reward processing is well-established, the notion that these receptors may also regulate motivation to gain a reward, and possibly other related cognitive dimensions, has been less investigated. The prefrontal cortex (PFC) is a critical site for these processes. Our previous functional magnetic resonance imaging study found alterations of functional connectivity (FC) in reward/aversion networks in MOR knockout mice. Here we pursued voxelwise seed-based FC analyses using the same dataset with a focus on the PFC. We observed significant reduction of PFC FC in mutant mice, predominantly with the nucleus accumbens, supporting the notion of altered reward-driven top-down controls. We tested motivation for palatable food in a classical operant self-administration paradigm, and found delayed performance for mutant mice. We then evaluated motivational and cognitive abilities of MOR knockout mice in TouchScreen-based behavioral tests. Learning was delayed and stimulus/reward association was impaired, suggesting lower hedonic reward value and reduced motivation. Perseverative responses were decreased, while discriminatory behavior and attention were unchanged, indicative of increased inhibitory controls with otherwise intact cognitive performance. Together, our data suggest that MORs contribute to enhance reward-seeking and facilitate perseverative behaviors. The possibility that MOR blockade could reduce maladaptive compulsivity deserves further investigation in addiction and self-control disorder research.
Collapse
|
21
|
LeMon JV, Sisk CL, Klump KL, Johnson AW. Reduced sensitivity to devaluation for instrumental but not consummatory behaviors in binge eating prone rats. Physiol Behav 2019; 206:13-21. [PMID: 30858100 DOI: 10.1016/j.physbeh.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/18/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022]
Abstract
Binge eating is characterized by the consumption of a large amount of palatable food in a short period of time and is a core feature of many eating disorders. Patients with eating disorders are also known to display impairments in inhibitory control, cognition and decision-making, which may promote and maintain binge eating symptomology. In the current study, we examined whether rats that were subsequently characterized as displaying a higher propensity to binge eat would show pre-existing deficits in reinforcer devaluation-a paradigm used to examine decision-making following reductions in the value of a food reinforcer. Female rats were first trained to respond on two levers for the delivery of two food reinforcers (sucrose and maltodextrin solutions). At the test stage, rats were provided 1 h access to one of the two reinforcers to allow for devaluation via sensory specific satiety, immediately followed by an extinction test with both levers. Normal rats typically show reductions in responding on the lever associated with the devalued reinforcer (i.e., intact goal-directed responding). Subsequently, we used intermittent access to palatable food to identify high (BE prone [BEP]; n = 14), intermediate (BE neutral [BEN]; n = 48), and low (BE resistant [BER]; n = 13) phenotypes of binge eating. Prior reinforcer devaluation performance showed BEN and BER rats suppressed responding on the lever associated with the devalued reinforcer while BEP rats did not. This insensitivity to instrumental reinforcer devaluation in BEP rats did not reflect impaired sensory-specific satiety as during a food choice test, BEP rats showed a more robust alteration in food preferences following devaluation. Additionally, across all rats sensory specific satiety was correlated with subsequent intake of palatable food. Collectively, these findings suggest dissociable effects of devaluation procedures on instrumental actions and consummatory behaviors in BEP rats, and may indicate that pre-existing differences in goal-directed behavior and sensory-specific satiety contribute to the propensity to overeat palatable food.
Collapse
Affiliation(s)
- Janelle V LeMon
- Department of Psychology, Michigan State University, 316 Physics Road, East Lansing, MI 48824, USA
| | - Cheryl L Sisk
- Neuroscience Program, Michigan State University, 293 Farm Lane, East Lansing, MI 48824, USA
| | - Kelly L Klump
- Department of Psychology, Michigan State University, 316 Physics Road, East Lansing, MI 48824, USA
| | - Alexander W Johnson
- Department of Psychology, Michigan State University, 316 Physics Road, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, 293 Farm Lane, East Lansing, MI 48824, USA.
| |
Collapse
|
22
|
Assessment of spatial learning and memory in the Barnes maze task in rodents-methodological consideration. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:1-18. [PMID: 30470917 PMCID: PMC6311199 DOI: 10.1007/s00210-018-1589-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/15/2018] [Indexed: 01/01/2023]
Abstract
Among the methods valuable for assessing spatial learning and memory impairments in rodents, the Barnes maze (BM) task deserves special attention. It is based on the assumption that the animal placed into the aversive environment should learn and remember the location of an escape box located below the surface of the platform. Different phases of the task allow to measure spatial learning, memory retrieval, and cognitive flexibility. Herein, we summarize current knowledge about the BM procedure, its variations and critical parameters measured in the task. We highlight confounding factors which should be taken into account when conducting BM task, discussing briefly its advantages and disadvantages. We then propose an extended version of the BM protocol which allows to measure different aspects of spatial learning and memory in rodents. We believe that this review will help to standardize the BM methodology across the laboratories and eventually make the results comparable.
Collapse
|
23
|
Vicente MC, Almeida MC, Bícego KC, Carrettiero DC, Gargaglioni LH. Hypercapnic and Hypoxic Respiratory Response During Wakefulness and Sleep in a Streptozotocin Model of Alzheimer's Disease in Rats. J Alzheimers Dis 2018; 65:1159-1174. [PMID: 30124447 DOI: 10.3233/jad-180397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Besides the typical cognitive decline, patients with Alzheimer's disease (AD) develop disorders of the respiratory system, such as sleep apnea, shortness of breath, and arrhythmias. These symptoms are aggravated with the progression of the disease. However, the cause and nature of these disturbances are not well understood. Here, we treated animals with intracerebroventricular streptozotocin (STZ, 2 mg/kg), a drug that has been described to cause Alzheimer-like behavioral and histopathological impairments. We measured ventilation (V̇E), electroencephalography, and electromyography during normocapnia, hypercapnia, and hypoxia in Wistar rats. In addition, we performed western blot analyses for phosphorylated tau, total tau, and amyloid-β (Aβ) peptide in the locus coeruleus (LC), retrotrapezoid nucleus, medullary raphe, pre-Bötzinger/Bötzinger complex, and hippocampus, and evaluated memory and learning acquisition using the Barnes maze. STZ treatment promoted memory and learning deficits and increased the percentage of total wakefulness during normocapnia and hypercapnia due to a reduction in the length of episodes of wakefulness. CO2-drive to breathe during wakefulness was increased by 26% in STZ-treated rats due to an enhanced tidal volume, but no changes in V̇E were observed in room air or hypoxic conditions. The STZ group also showed a 70% increase of Aβ in the LC and no change in tau protein phosphorylation. In addition, no alteration in body temperature was observed. Our findings suggest that AD animals present an increased sensitivity to CO2 during wakefulness, enhanced Aβ in the LC, and sleep disruption.
Collapse
Affiliation(s)
- Mariane C Vicente
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Maria C Almeida
- Center for Natural and Human Sciences; Universidade Federal do ABC (UFABC); São Bernardo do Campo, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Daniel C Carrettiero
- Center for Natural and Human Sciences; Universidade Federal do ABC (UFABC); São Bernardo do Campo, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| |
Collapse
|
24
|
Murphy M, Dijkstra DJ, Duncan JS, Horgan GW, Mercer JG. A spontaneous binge-like eating model in mice using unpredictable once weekly access to palatable diets. Appetite 2018; 126:137-146. [PMID: 29627345 DOI: 10.1016/j.appet.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023]
Abstract
Many pre-clinical models of binge-like eating involve predictable, scheduled, access to a palatable diet high in fat (HF), where access may be preceded by anticipatory behaviour. Here, to introduce spontaneity into the binge-type consumption of palatable diets, mice were allowed 2 h access on a random day once per week and at a random time within an 8 h window either side of the transition from dark phase to light phase. Despite normal intake of a stock diet prior to unpredictable access to HF diet, mice immediately initiated a substantial eating episode when presented with HF diet. Following this consumption, compensatory hypophagia was observed relative to stock diet-fed controls, and cumulative energy intakes converged. There were no effects of HF diet on body weight or body composition over a 12-week period. Binge-like consumption was also observed on unpredictable access to the complete liquid diet, chocolate Ensure, but not with a 10% sucrose solution. Binge-like responses to unpredictable access to HF diet or Ensure were similar in male and female mice, although there were effects of sex on caloric consumption from stock diet in the compensatory period following palatable diet intake, with higher intakes in females. The timing of the 2h access period relative to light phase transition affected intake of palatable diets, but less robustly than the equivalent effect on stock diet intake during the same timed periods - the diurnal patterning of energy intake was diet sensitive. The large spontaneous binge-like consumption on unpredictable access to either solid or liquid palatable diets in mice of either sex offers the potential to combine these attributes with other manipulations where a developing obesity is part of the binge-like eating phenotype.
Collapse
Affiliation(s)
- Michelle Murphy
- University of Aberdeen Rowett Institute, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Dorieka J Dijkstra
- University of Aberdeen Rowett Institute, Foresterhill, Aberdeen, AB25 2ZD, UK; Department of Obstetrics and Gynaecology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacqueline S Duncan
- University of Aberdeen Rowett Institute, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Graham W Horgan
- Biomathematics & Statistics Scotland, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Julian G Mercer
- University of Aberdeen Rowett Institute, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
25
|
Novelle MG, Diéguez C. Food Addiction and Binge Eating: Lessons Learned from Animal Models. Nutrients 2018; 10:E71. [PMID: 29324652 PMCID: PMC5793299 DOI: 10.3390/nu10010071] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/26/2017] [Accepted: 01/09/2018] [Indexed: 01/10/2023] Open
Abstract
The feeding process is required for basic life, influenced by environment cues and tightly regulated according to demands of the internal milieu by regulatory brain circuits. Although eating behaviour cannot be considered "addictive" under normal circumstances, people can become "addicted" to this behaviour, similarly to how some people are addicted to drugs. The symptoms, cravings and causes of "eating addiction" are remarkably similar to those experienced by drug addicts, and both drug-seeking behaviour as eating addiction share the same neural pathways. However, while the drug addiction process has been highly characterised, eating addiction is a nascent field. In fact, there is still a great controversy over the concept of "food addiction". This review aims to summarize the most relevant animal models of "eating addictive behaviour", emphasising binge eating disorder, that could help us to understand the neurobiological mechanisms hidden under this behaviour, and to improve the psychotherapy and pharmacological treatment in patients suffering from these pathologies.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 15786 Santiago de Compostela, Spain.
| | - Carlos Diéguez
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 15786 Santiago de Compostela, Spain.
| |
Collapse
|