1
|
Gao T, Dang W, Jiang Z, Jiang Y. Exploring the Missing link between vitamin D and autism spectrum disorder: Scientific evidence and new perspectives. Heliyon 2024; 10:e36572. [PMID: 39281535 PMCID: PMC11401093 DOI: 10.1016/j.heliyon.2024.e36572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Aim This study aims to address the key question of the causal relationship between serum levels of 25-hydroxyvitamin D (vitamin D) and autism spectrum disorders (ASD). Methods Publicly available Genome-Wide Association Study (GWAS) datasets were used to conduct the bidirectional Two-sample MR analyses using methods including inverse-variance weighted (IVW), weighted median, MR-Egger regression, simple mode, MR-PRESSO test, Steiger filtering, and weighted mode, followed by BWMR for validation. Results The MR analysis indicated that there was no causal relationship between Vitamin D as the exposure and ASD as the outcome in the positive direction of the MR analysis (IVW: OR = 0.984, 95 % CI: 0.821-1.18, P = 0.866). The subsequent BWMR validation stage yielded consistent results (OR = 0.984, 95 % CI 0.829-1.20, P = 0.994). Notably, in the reverse MR analysis with ASD as the exposure and Vitamin D as the outcome, the results suggested that the occurrence of ASD could lead to decreased Vitamin D levels (IVW: OR = 0.976, 95 % CI: 0.961-0.990, P = 0.000855), with BWMR findings in the validation stage confirming the discovery phase (OR = 0.975, 95 % CI: 0.958-0.991, P = 0.00297). For the positive MR analysis, no pleiotropy was detected in the instrumental variables. Similarly, no pleiotropy or heterogeneity was detected in the instrumental variables for the reverse MR analysis. Sensitivity analysis using the leave-one-out approach for both positive and reverse instrumental variables suggested that the MR analysis results were robust. Conclusion Through the discovery and validation analysis process, we can confidently assert that there is no causative link between Vitamin D and ASD, and that supplementing Vitamin D is not expected to provide effective improvement for patients with ASD. Our study significantly advances a new perspective in ASD research and has a positive impact on medication guidance for patients with ASD.
Collapse
Affiliation(s)
- Tianci Gao
- College of Clinical Medicine, Jiamusi University, Hei longJiang Province, China
| | - Wenjun Dang
- Jiamusi College, HeiLongJiang University of Chinese Medicine, Hei longJiang Province, China
| | - Zhimei Jiang
- College of Rehabilitation Medicine, Jiamusi University, Hei longJiang Province, China
- Child Neurological Rehabilitation Key Laboratory of Heilongjiang province, China
| | - Yuwei Jiang
- College of Rehabilitation Medicine, Jiamusi University, Hei longJiang Province, China
- Child Neurological Rehabilitation Key Laboratory of Heilongjiang province, China
| |
Collapse
|
2
|
Zarimeidani F, Rahmati R, Mostafavi M, Darvishi M, Khodadadi S, Mohammadi M, Shamlou F, Bakhtiyari S, Alipourfard I. Gut Microbiota and Autism Spectrum Disorder: A Neuroinflammatory Mediated Mechanism of Pathogenesis? Inflammation 2024:10.1007/s10753-024-02061-y. [PMID: 39093342 DOI: 10.1007/s10753-024-02061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social communication and behavior, frequently accompanied by restricted and repetitive patterns of interests or activities. The gut microbiota has been implicated in the etiology of ASD due to its impact on the bidirectional communication pathway known as the gut-brain axis. However, the precise involvement of the gut microbiota in the causation of ASD is unclear. This study critically examines recent evidence to rationalize a probable mechanism in which gut microbiota symbiosis can induce neuroinflammation through intermediator cytokines and metabolites. To develop ASD, loss of the integrity of the intestinal barrier, activation of microglia, and dysregulation of neurotransmitters are caused by neural inflammatory factors. It has emphasized the potential role of neuroinflammatory intermediates linked to gut microbiota alterations in individuals with ASD. Specifically, cytokines like brain-derived neurotrophic factor, calprotectin, eotaxin, and some metabolites and microRNAs have been considered etiological biomarkers. We have also overviewed how probiotic trials may be used as a therapeutic strategy in ASD to reestablish a healthy balance in the gut microbiota. Evidence indicates neuroinflammation induced by dysregulated gut microbiota in ASD, yet there is little clarity based on analysis of the circulating immune profile. It deems the repair of microbiota load would lower inflammatory chaos in the GI tract, correct neuroinflammatory mediators, and modulate the neurotransmitters to attenuate autism. The interaction between the gut and the brain, along with alterations in microbiota and neuroinflammatory biomarkers, serves as a foundational background for understanding the etiology, diagnosis, prognosis, and treatment of autism spectrum disorder.
Collapse
Affiliation(s)
- Fatemeh Zarimeidani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahem Rahmati
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Darvishi
- School of Aerospace and Subaquatic Medicine, Infectious Diseases & Tropical Medicine Research Center (IDTMC), AJA University of Medical Sciences, Tehran, Iran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Shamlou
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Salar Bakhtiyari
- Feinberg Cardiovascular and Renal Research Institute, North Western University, Chicago. Illinois, USA
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcin Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
3
|
Korteniemi J, Karlsson L, Aatsinki A. Systematic Review: Autism Spectrum Disorder and the Gut Microbiota. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2024; 22:242-251. [PMID: 38680985 PMCID: PMC11046714 DOI: 10.1176/appi.focus.24022008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Objective Autism spectrum disorders (ASD) are a varying group of disorders characterized by deficiency in social interaction and restrictive patterns of behavior and interests. While there are several studies focusing on the neuro-psychiatric pathogenesis of ASD, its etiology remains unclear. The role of gut-brain-axis in ASD has been studied increasingly and a correlation between symptoms and the composition of gut microbiota has been documented in various works. Despite this, the significance of individual microbes and their function is still widely unknown. This work aims to elucidate the current knowledge of the interrelations between ASD and the gut microbiota in children based on scientific evidence. Methods This is a systematic review done by a literature search focusing on the main findings concerning the gut microbiota composition, interventions targeting the gut microbiota, and possible mechanisms explaining the results in children aged between 2 and 18 years of age. Results Most studies in this review found significant differences between microbial communities, while there was notable variation in results regarding diversity indices or taxonomic level abundance. The most consistent results regarding taxa differences in ASD children's gut microbiota were higher levels of Proteobacteria, Actinobacteria and Sutterella compared to controls. Conclusion These results show that the gut microbiota of children with ASD is altered compared to one of neurotypically developed children. More research is needed to discover whether some of these features could be used as potential biomarkers for ASD and how the gut microbiota could be targeted in therapeutical interventions.Appeared originally in Acta Psychiatr Scand 2023;148:242-254.
Collapse
Affiliation(s)
- Jenni Korteniemi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, Psychiatry, University of Turku, Turku, Finland (Korteniemi, Karlsson, Aatsinki); Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland (Karlsson, Aatsinki); Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, Turku, Finland (Karlsson)
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, Psychiatry, University of Turku, Turku, Finland (Korteniemi, Karlsson, Aatsinki); Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland (Karlsson, Aatsinki); Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, Turku, Finland (Karlsson)
| | - Anna Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, Psychiatry, University of Turku, Turku, Finland (Korteniemi, Karlsson, Aatsinki); Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland (Karlsson, Aatsinki); Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, Turku, Finland (Karlsson)
| |
Collapse
|
4
|
Li H, Guo W, Li S, Sun B, Li N, Xie D, Dong Z, Luo D, Chen W, Fu W, Zheng J, Zhu J. Alteration of the gut microbiota profile in children with autism spectrum disorder in China. Front Microbiol 2024; 14:1326870. [PMID: 38420215 PMCID: PMC10899803 DOI: 10.3389/fmicb.2023.1326870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 03/02/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is associated with alterations in the gut microbiome. However, there are few studies on gut microbiota of children with ASD in China, and there is a lack of consensus on the changes of bacterial species. Purpose Autism spectrum disorder (ASD) is associated with alterations in the gut microbiome. However, there are few studies on gut microbiota of children with ASD in China, and there is a lack of consensus on the changes of bacterial species. Methods We used 16S rRNA sequencing to analyze ASD children (2 to 12 years), HC (2 to 12 years). Results Our findings showed that the α-diversity, composition, and relative abundance of gut microbiota in the ASD group were significantly different from those in the HC groups. Compared with the HC group, the α-diversity in the ASD group was significantly decreased. At the genus level, the relative abundance of g_Faecalibacterium, g_Blautia, g_Eubacterium_eligens_group, g_Parasutterella, g_Lachnospiraceae_NK4A136_group and g_Veillonella in ASD group was significantly increased than that in HC groups, while the relative abundance of g_Prevotella 9 and g_Agathobacter was significantly decreased than that in HC groups. In addition, KEGG pathway analysis showed that the microbial functional abnormalities in ASD patients were mainly concentrated in metabolic pathways related to fatty acid, amino acid metabolism and aromatic compound metabolism, and were partially involved in neurotransmitter metabolism. Conclusion This study revealed the characteristics of gut microbiota of Chinese children with ASD and provided further evidence of gut microbial dysbiosis in ASD.
Collapse
Affiliation(s)
- Hui Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wei Guo
- Stroke Center, Puyang People's Hospital, Puyang, China
| | - Sijie Li
- Department of Pediatrics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Bishao Sun
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ningshan Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dongjing Xie
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zongming Dong
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dan Luo
- Department of Neurology, Yunyang People's Hospital, Yunyang, China
| | - Wei Chen
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weihua Fu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jingzhen Zhu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Mathew NE, McCaffrey D, Walker AK, Mallitt KA, Masi A, Morris MJ, Ooi CY. The search for gastrointestinal inflammation in autism: a systematic review and meta-analysis of non-invasive gastrointestinal markers. Mol Autism 2024; 15:4. [PMID: 38233886 PMCID: PMC10795298 DOI: 10.1186/s13229-023-00575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/04/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Gastrointestinal symptoms and inflammatory gastrointestinal diseases exist at higher rates in the autistic population. It is not clear however whether autism is associated with elevated gastrointestinal inflammation as studies examining non-invasive faecal biomarkers report conflicting findings. To understand the research landscape and identify gaps, we performed a systematic review and meta-analysis of studies measuring non-invasive markers of gastrointestinal inflammation in autistic and non-autistic samples. Our examination focused on faecal biomarkers as sampling is non-invasive and these markers are a direct reflection of inflammatory processes in the gastrointestinal tract. METHODS We extracted data from case-control studies examining faecal markers of gastrointestinal inflammation. We searched PubMed, Embase, Cochrane CENTRAL, CINAHL, PsycINFO, Web of Science Core Collection and Epistemonikos and forward and backwards citations of included studies published up to April 14, 2023 (PROSPERO CRD42022369279). RESULTS There were few studies examining faecal markers of gastrointestinal inflammation in the autistic population, and many established markers have not been studied. Meta-analyses of studies examining calprotectin (n = 9) and lactoferrin (n = 3) were carried out. A total of 508 autistic children and adolescents and 397 non-autistic children and adolescents were included in the meta-analysis of calprotectin studies which found no significant group differences (ROM: 1.30 [0.91, 1.86]). Estimated differences in calprotectin were lower in studies with siblings and studies which did not exclude non-autistic controls with gastrointestinal symptoms. A total of 139 autistic participants and 75 non-autistic controls were included in the meta-analysis of lactoferrin studies which found no significant group differences (ROM: 1.27 [0.79, 2.04]). LIMITATIONS All studies included in this systematic review and meta-analysis examined children and adolescents. Many studies included non-autistic controls with gastrointestinal symptoms which limit the validity of their findings. The majority of studies of gastrointestinal inflammation focused on children under 12 with few studies including adolescent participants. Most studies that included participants aged four or under did not account for the impact of age on calprotectin levels. Future studies should screen for relevant confounders, include larger samples and explore gastrointestinal inflammation in autistic adolescents and adults. CONCLUSIONS There is no evidence to suggest higher levels of gastrointestinal inflammation as measured by calprotectin and lactoferrin are present in autistic children and adolescents at the population level. Preliminary evidence suggests however that higher calprotectin levels may be present in a subset of autistic participants, who may be clinically characterised by more severe gastrointestinal symptoms and higher levels of autistic traits.
Collapse
Affiliation(s)
- Nisha E Mathew
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
| | - Delyse McCaffrey
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia
| | - Adam K Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3800, Australia
| | - Kylie-Ann Mallitt
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anne Masi
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia
| | - Margaret J Morris
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Chee Y Ooi
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia.
- Department of Gastroenterology, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia.
| |
Collapse
|
6
|
Korteniemi J, Karlsson L, Aatsinki A. Systematic review: Autism spectrum disorder and the gut microbiota. Acta Psychiatr Scand 2023; 148:242-254. [PMID: 37395517 DOI: 10.1111/acps.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/02/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVE Autism spectrum disorders (ASD) are a varying group of disorders characterized by deficiency in social interaction and restrictive patterns of behavior and interests. While there are several studies focusing on the neuropsychiatric pathogenesis of ASD, its etiology remains unclear. The role of gut-brain-axis in ASD has been studied increasingly and a correlation between symptoms and the composition of gut microbiota has been documented in various works. Despite this, the significance of individual microbes and their function is still widely unknown. This work aims to elucidate the current knowledge of the interrelations between ASD and the gut microbiota in children based on scientific evidence. METHODS This is a systematic review done by a literature search focusing on the main findings concerning the gut microbiota composition, interventions targeting the gut microbiota, and possible mechanisms explaining the results in children aged between 2 and 18 years of age. RESULTS Most studies in this review found significant differences between microbial communities, while there was notable variation in results regarding diversity indices or taxonomic level abundance. The most consistent results regarding taxa differences in ASD children's gut microbiota were higher levels of Proteobacteria, Actinobacteria and Sutterella compared to controls. CONCLUSION These results show that the gut microbiota of children with ASD is altered compared to one of neurotypically developed children. More research is needed to discover whether some of these features could be used as potential biomarkers for ASD and how the gut microbiota could be targeted in therapeutical interventions.
Collapse
Affiliation(s)
- Jenni Korteniemi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, Psychiatry, University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, Psychiatry, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Anna Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, Psychiatry, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| |
Collapse
|
7
|
Levkova M, Chervenkov T, Pancheva R. Genus-Level Analysis of Gut Microbiota in Children with Autism Spectrum Disorder: A Mini Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1103. [PMID: 37508600 PMCID: PMC10377934 DOI: 10.3390/children10071103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Autism is a global health problem, probably due to a combination of genetic and environmental factors. There is emerging data that the gut microbiome of autistic children differs from the one of typically developing children and it is important to know which bacterial genera may be related to autism. We searched different databases using specific keywords and inclusion criteria and identified the top ten bacterial genera from the selected articles that were significantly different between the studied patients and control subjects studied. A total of 34 studies that met the inclusion criteria were identified. The genera Bacteroides, Bifidobacterium, Clostridium, Coprococcus, Faecalibacterium, Lachnospira, Prevotella, Ruminococcus, Streptococcus, and Blautia exhibited the most substantial data indicating that their fluctuations in the gastrointestinal tract could be linked to the etiology of autism. It is probable that autism symptoms are influenced by both increased levels of harmful bacteria and decreased levels of beneficial bacteria. Interestingly, these genera demonstrated varying patterns of increased or decreased levels across different articles. To validate and eliminate the sources of this fluctuation, further research is needed. Consequently, future investigations on the causes of autism should prioritize the examination of the bacterial genera discussed in this publication.
Collapse
Affiliation(s)
- Mariya Levkova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, 9000 Varna, Bulgaria
- Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, 9000 Varna, Bulgaria
| | - Trifon Chervenkov
- Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, 9000 Varna, Bulgaria
- Laboratory of Clinical Immunology, St. Marina Hospital, Hristo Smirnenski Blv 1, 9000 Varna, Bulgaria
| | - Rouzha Pancheva
- Department of Hygiene and Epidemiology, Medical University Varna, Marin Drinov Str 55, 9000 Varna, Bulgaria
| |
Collapse
|
8
|
Magni G, Riboldi B, Ceruti S. Modulation of Glial Cell Functions by the Gut-Brain Axis: A Role in Neurodegenerative Disorders and Pain Transmission. Cells 2023; 12:1612. [PMID: 37371082 DOI: 10.3390/cells12121612] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Studies on host microbiota and their interactions with the central nervous system (CNS) have grown considerably in the last decade. Indeed, it has been widely demonstrated that dysregulations of the bidirectional gut-brain crosstalk are involved in the development of several pathological conditions, including chronic pain. In addition, the activation of central and peripheral glial cells is also implicated in the pathogenesis and progression of pain and other neurodegenerative disorders. Recent preclinical findings suggest that the gut microbiota plays a pivotal role in regulating glial maturation, morphology and function, possibly through the action of different microbial metabolites, including the most studied short-chain fatty acids (SCFAs). Moreover, altered microbiota composition has been reported in CNS disorders characterized by glial cell activation. In this review, we discuss recent studies showing the role of the gut microbiota and the effects of its depletion in modulating the morphology and function of glial cells (microglia and astrocytes), and we hypothesize a possible role for glia-microbiota interactions in the development and maintenance of chronic pain.
Collapse
Affiliation(s)
- Giulia Magni
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milan, Italy
| | - Benedetta Riboldi
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milan, Italy
| | - Stefania Ceruti
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milan, Italy
| |
Collapse
|
9
|
Jiang H, Bao J, Xing Y, Cao G, Li X, Chen Q. Metabolomic and metagenomic analyses of the Chinese mitten crab Eriocheir sinensis after challenge with Metschnikowia bicuspidata. Front Microbiol 2022; 13:990737. [PMID: 36212869 PMCID: PMC9538530 DOI: 10.3389/fmicb.2022.990737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Milky disease caused by Metschnikowia bicuspidata fungus has significantly harmed the Chinese mitten crab Eriocheir sinensis aquaculture industry. However, the effect of M. bicuspidata infection on the metabolism and intestinal flora of the crab remains unclear. In this study, we aimed to explore the changes in the metabolism and intestinal flora E. sinensis after 48 h of infection with M. bicuspidata, using metabolomic and metagenomic analyses. Metabolomic analysis results revealed 420 significantly different metabolites between the infected and control groups, and these metabolites were enriched in 58 metabolic pathways. M. bicuspidata infection decreased the levels of metabolites related to amino acid biosynthesis, the tricarboxylic acid cycle, as well as lysine, histidine, linolenic, arachidonic, and linoleic acid metabolism. These results indicated that M. bicuspidata infection significantly affected the energy metabolism, growth, and immunity of E. sinensis. The results of metagenomic analysis showed that the anaerobes and ascomycetes populations significantly increased and decreased, respectively, after M. bicuspidata infection. These changes in intestinal flora significantly upregulated metabolic and synthetic pathways while downregulating immunity-related pathways. The results of integrated metabolomic and metagenomic analyses showed that 55 differentially expressed genes and 28 operational taxonomic units were correlated with 420 differential metabolites. Thus, the intestinal flora changes caused by M. bicuspidata infection also affected the metabolites. This study provides novel insights into the metabolic-and intestinal microflora-based effects of M. bicuspidata infection in E. sinensis, as well as a theoretical basis for the interaction between fungi and crustaceans.
Collapse
Affiliation(s)
- Hongbo Jiang
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Jie Bao
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuenan Xing
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Gangnan Cao
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiaodong Li
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Qijun Chen,
| |
Collapse
|
10
|
Syromyatnikov M, Nesterova E, Gladkikh M, Smirnova Y, Gryaznova M, Popov V. Characteristics of the Gut Bacterial Composition in People of Different Nationalities and Religions. Microorganisms 2022; 10:microorganisms10091866. [PMID: 36144468 PMCID: PMC9501501 DOI: 10.3390/microorganisms10091866] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
High-throughput sequencing has made it possible to extensively study the human gut microbiota. The links between the human gut microbiome and ethnicity, religion, and race remain rather poorly understood. In this review, data on the relationship between gut microbiota composition and the nationality of people and their religion were generalized. The unique gut microbiome of a healthy European (including Slavic nationality) is characterized by the dominance of the phyla Firmicutes, Bacteroidota, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia. Among the African population, the typical members of the microbiota are Bacteroides and Prevotella. The gut microbiome of Asians is very diverse and rich in members of the genera Prevotella, Bacteroides Lactobacillus, Faecalibacterium, Ruminococcus, Subdoligranulum, Coprococcus, Collinsella, Megasphaera, Bifidobacterium, and Phascolarctobacterium. Among Buddhists and Muslims, the Prevotella enterotype is characteristic of the gut microbiome, while other representatives of religions, including Christians, have the Bacteroides enterotype. Most likely, the gut microbiota of people of different nationalities and religions are influenced by food preferences. The review also considers the influences of pathologies such as obesity, Crohn’s disease, cancer, diabetes, etc., on the bacterial composition of the guts of people of different nationalities.
Collapse
Affiliation(s)
- Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Correspondence:
| | - Ekaterina Nesterova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Maria Gladkikh
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Vasily Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| |
Collapse
|
11
|
Chichlowski M, Cotter J, Fawkes N, Pandey N. Feed your microbiome and improve sleep, stress resilience, and cognition. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The brain and gut are connected both physically and biochemically. The gut-brain axis includes the central nervous system, neuroendocrine and neuroimmune systems, the enteric nervous system and vagus nerve, and the gut microbiome. It can influence brain function and even behavior, suggesting that dietary interventions may help enhance and protect mental health and cognitive performance. This review focuses on the role of the microbiome and its metabolites in sleep regulation, neurodegenerative disorders, mechanisms of stress, and mood. It also provides examples of nutritional interventions which can restore healthy gut microbiota and aid with risk reduction and management of many disorders related to mental and cognitive health. Evidence suggests a shift in the gut microbiota towards a balanced composition could be a target to maintain brain health, reduce stress and improve quality of life.
Collapse
Affiliation(s)
- Maciej Chichlowski
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN 47712, USA
| | - Jack Cotter
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, SL1 3UH Slough, UK
| | - Neil Fawkes
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, SL1 3UH Slough, UK
| | - Neeraj Pandey
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, SL1 3UH Slough, UK
| |
Collapse
|
12
|
Menees KB, Otero BA, Tansey MG. Microbiome influences on neuro-immune interactions in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:25-57. [PMID: 36427957 DOI: 10.1016/bs.irn.2022.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mounting evidence points to a role for the gut microbiome in a wide range of central nervous system diseases and disorders including depression, multiple sclerosis, Alzheimer's disease, Parkinson's disease, and autism spectrum disorder. Moreover, immune system involvement has also been implicated in these diseases, specifically with inflammation being central to their pathogenesis. In addition to the reported changes in gut microbiome composition and altered immune states in many neurological diseases, how the microbiome and the immune system interact to influence disease onset and progression has recently garnered much attention. This chapter provides a review of the literature related to gut microbiome influences on neuro-immune interactions with a particular focus on neurological diseases. Gut microbiome-derived mediators, including short-chain fatty acids and other metabolites, lipopolysaccharide, and neurotransmitters, and their impact on neuro-immune interactions as well as routes by which these interactions may occur are also discussed.
Collapse
Affiliation(s)
- Kelly B Menees
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Brittney A Otero
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Malú Gámez Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States; Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States.
| |
Collapse
|
13
|
Novel role of peroxisome proliferator activated receptor-α in valproic acid rat model of autism: Mechanistic study of risperidone and metformin monotherapy versus combination. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110522. [PMID: 35131336 DOI: 10.1016/j.pnpbp.2022.110522] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder of heterogenous etiology exhibiting a challenge in understanding its exact neuro-pathophysiology. Recently, peroxisome proliferator activated receptor (PPAR)-α activation was found to play a fundamental role in neuroprotection and improving autistic-like-behaviors in experimental animal models of ASD through alleviating neuroinflammation, oxidative-stress, astrocyte reactivity, tauopathy in addition to its favorable role in metabolic regulation, thus attracting attention as a possible target in treatment of ASD. This study aimed to investigate the role of PPAR-α, astrocytic dysfunction and tauopathy in ASD and detect the possible neuroprotective effects of metformin (MET), through PPAR-α activation, and risperidone (RIS) either monotherapy or in combination in alleviating autistic-like-changes at behavioral and neurobiological levels in male Wistar rats. Pregnant female Wistar rats received valproic-acid (VPA) to induce autistic-like-behavioral and neurobiological alterations in their offspring. Chronic intra-peritoneal MET (100 mg/kg/day) and RIS (1 mg/kg/day) either monotherapy or in combination started from postnatal day (PND) 24 till PND61 (38 days). Prenatal VPA exposure simulated the autistic core behaviors associated with neurochemical and histopathological neurodevelopmental degenerative changes. Both MET and RIS either monotherapy or in combination were able to reverse these changes. The effect of MET was comparable to RIS. Moreover, MET was able to alleviate the RIS induced weight gain and improve cognitive functions highlighting its promising adjunctive role in alleviating ASD pathophysiology. Our study highlighted the favorable effects of MET and RIS both in monotherapy and in combination in alleviating the autistic-like-changes and proposed PPAR-α activation along with restoring astrocytes homeostasis as promising targets in novel therapeutic strategies in ASD.
Collapse
|
14
|
Bairamian D, Sha S, Rolhion N, Sokol H, Dorothée G, Lemere CA, Krantic S. Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer's disease. Mol Neurodegener 2022; 17:19. [PMID: 35248147 PMCID: PMC8898063 DOI: 10.1186/s13024-022-00522-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve. MAIN MESSAGES The putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer's disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction. CONCLUSIONS There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation.
Collapse
Affiliation(s)
- Diane Bairamian
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Sha Sha
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
| | - Nathalie Rolhion
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Microbiota, Gut and Inflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
- Paris Center for Microbiome Medicine, PaCeMM, FHU, Paris, France
| | - Harry Sokol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Microbiota, Gut and Inflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
- Paris Center for Microbiome Medicine, PaCeMM, FHU, Paris, France
- Gastroenterology Department, AP-HP, Saint Antoine Hospital, F-75012 Paris, France
- INRAE Micalis & AgroParisTech, Jouy en Josas, France
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Cynthia A. Lemere
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115 USA
| | - Slavica Krantic
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
| |
Collapse
|
15
|
CRISPR-Cas Systems in Gut Microbiome of Children with Autism Spectrum Disorders. Life (Basel) 2022; 12:life12030367. [PMID: 35330117 PMCID: PMC8955288 DOI: 10.3390/life12030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
The human gut microbiome is associated with various diseases, including autism spectrum disorders (ASD). Variations of the taxonomical composition in the gut microbiome of children with ASD have been observed repeatedly. However, features and parameters of the microbiome CRISPR-Cas systems in ASD have not been investigated yet. Here, we demonstrate such an analysis in order to describe the overall changes in the microbiome CRISPR-Cas systems during ASD as well as to reveal their potential to be used in diagnostics and therapy. For the systems identification, we used a combination of the publicly available tools suited for completed genomes with subsequent filtrations. In the considered data, the microbiomes of children with ASD contained fewer arrays per Gb of assembly than the control group, but the arrays included more spacers on average. CRISPR arrays from the microbiomes of children with ASD differed from the control group neither in the fractions of spacers with protospacers from known genomes, nor in the sets of known bacteriophages providing protospacers. Almost all bacterial protospacers of the gut microbiome systems for both children with ASD and the healthy ones were located in prophage islands, leaving no room for the systems to participate in the interspecies competition.
Collapse
|
16
|
Gu Y, Han Y, Ren S, Zhang B, Zhao Y, Wang X, Zhang S, Qin J. Correlation among gut microbiota, fecal metabolites and autism-like behavior in an adolescent valproic acid-induced rat autism model. Behav Brain Res 2022; 417:113580. [PMID: 34555431 DOI: 10.1016/j.bbr.2021.113580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022]
Abstract
This study aims to understand the relationship between fecal metabolites and gut microbiota in an adolescent valproic acid-induced rat autism model (VPA-exposed offspring). We analyzed the fecal samples of VPA-exposed offspring using 16S rRNA gene sequencing and untargeted metabolomics. Autism-like behavior was evaluated by a three-chamber sociability test and a self-grooming test. Based on these data, we analyzed the association among fecal metabolites, gut microbiota and autism-like behavior. Behavioral tests showed that VPA-exposed offspring displayed typical autism-like behavior. Forty-nine named differential fecal metabolites and 14 enriched KEGG pathways were identified between the VPA and control groups. Five fecal metabolites may be used as characteristic metabolites. The richness and diversity of gut microbiota did not differ between the two groups, while the overall composition of gut microbiota was significantly different. Candidatus_Saccharimonas, Desulfovibrio, [Eubacterium]_xylanophilum_group and Ruminococcus_2 were the characteristic genera of VPA-exposed offspring. Correlation analysis revealed a tight relationship among gut microbiota, fecal metabolites and autistic behavior in VPA-exposed offspring. This study illustrates that specific alterations in gut microbiota and fecal metabolites may be regarded as characteristics of VPA-exposed offspring. The characteristic gut microbiota and fecal metabolites as well as their relationship may play a crucial role in autism-like behavior caused by prenatal exposure to VPA.
Collapse
Affiliation(s)
- Youyu Gu
- Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China
| | - Ying Han
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| | - Shimeng Ren
- Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China
| | - Bi Zhang
- Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China
| | - Yihan Zhao
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Xiaoxi Wang
- Neuroscience Research Institute, Peking University, Beijing 100191, China
| | - Shaobin Zhang
- Beijing Gutgene Technology Co. Ltd, Beijing 100085, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
17
|
Spichak S, Donoso F, Moloney GM, Gunnigle E, Brown JM, Codagnone M, Dinan TG, Cryan JF. Microbially-derived short-chain fatty acids impact astrocyte gene expression in a sex-specific manner. Brain Behav Immun Health 2021; 16:100318. [PMID: 34589808 PMCID: PMC8474187 DOI: 10.1016/j.bbih.2021.100318] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023] Open
Abstract
Recent investigations in neuroscience implicate the role of microbial-derived metabolites, such as short-chain fatty acids (SCFAs) in brain health and disease. The SCFAs acetate, propionate and butyrate have pleiotropic effects within the nervous system. They are crucial for the maturation of the brain's innate immune cells, the microglia, and modulate other glial cells through the aryl-hydrocarbon receptor. Investigations in preclinical and clinical models find that SCFAs exert neuroprotective and antidepressant affects, while also modulating the stress response and satiety. However, many investigations thus far have not assessed the impact of sex on SCFA activity. Our novel investigation tested the impact of physiologically relevant doses of SCFAs on male and female primary cortical astrocytes. We find that butyrate (0–25 μM) correlates with increased Bdnf and Pgc1-α expression, implicating histone-deacetylase inhibitor pathways. Intriguingly, this effect is only seen in females. We also find that acetate (0–1500 μM) correlates with increased Ahr and Gfap expression in males only, suggesting immune modulatory pathways. In males, propionate (0–35 μM) correlates with increased Il-22 expression, further suggesting immunomodulatory actions. These findings show a novel sex-dependent impact of acetate and butyrate, but not propionate on astrocyte gene expression.
Collapse
Affiliation(s)
- Simon Spichak
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Francisco Donoso
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Eoin Gunnigle
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Jillian M Brown
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Martin Codagnone
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Chen LL, Abbaspour A, Mkoma GF, Bulik CM, Rück C, Djurfeldt D. Gut Microbiota in Psychiatric Disorders: A Systematic Review. Psychosom Med 2021; 83:679-692. [PMID: 34117156 PMCID: PMC8428865 DOI: 10.1097/psy.0000000000000959] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/04/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This systematic review sought to comprehensively summarize gut microbiota research in psychiatric disorders following PRISMA guidelines. METHODS Literature searches were performed on databases using keywords involving gut microbiota and psychiatric disorders. Articles in English with human participants up until February 13, 2020, were reviewed. Risk of bias was assessed using a modified Newcastle-Ottawa Scale for microbiota studies. RESULTS Sixty-nine of 4231 identified studies met the inclusion criteria for extraction. In most studies, gut microbiota composition differed between individuals with psychiatric disorders and healthy controls; however, limited consistency was observed in the taxonomic profiles. At the genus level, the most replicated findings were higher abundance of Bifidobacterium and lower abundance of Roseburia and Faecalibacterium among patients with psychiatric disorders. CONCLUSIONS Gut bacteria that produce short-chain fatty acids, such as Roseburia and Faecalibacterium, could be less abundant in patients with psychiatric disorders, whereas commensal genera, for example, Bifidobacterium, might be more abundant compared with healthy controls. However, most included studies were hampered by methodological shortcomings including small sample size, unclear diagnostics, failure to address confounding factors, and inadequate bioinformatic processing, which might contribute to inconsistent results. Based on our findings, we provide recommendations to improve quality and comparability of future microbiota studies in psychiatry.
Collapse
|
19
|
Tonhajzerova I, Ondrejka I, Ferencova N, Bujnakova I, Grendar M, Olexova LB, Hrtanek I, Visnovcova Z. Alternations in the Cardiovascular Autonomic Regulation and Growth Factors in Autism. Physiol Res 2021; 70:551-561. [PMID: 34062079 DOI: 10.33549/physiolres.934662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Autism spectrum disorder (ASD) represents a serious neurodevelopmental disorder associated with autonomic nervous system dysregulation. The aim was to study complex cardiovascular autonomic regulation using heart rate variability (HRV) and systolic blood pressure variability (SBPV) linear/non-linear analysis at rest and during orthostasis, and to assess plasma levels of epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) in autistic children. Twenty-five ASD boys and 25 age and gender-matched children at the age 7-15 years were examined. After venous blood taking, continuous ECG and blood pressure biosignals were recorded at rest and during orthostasis. Evaluated parameters: RR intervals, high- and low-frequency band of HRV spectral analysis (HF-HRV, LF-HRV), symbolic dynamics parameters 0V%, 1V%, 2LV%, 2UV%, low- and high-frequency band of SBPV (LF-SBPV, HF-SBPV), systolic, diastolic, mean blood pressure, EGF, VEGF plasma levels. RR intervals were significantly shortened and the HF-HRV, LF-SBPV, HF-SBPV parameters were significantly lower at rest, the HF-HRV and LF-SBPV remained lower during orthostasis in autistic children compared to controls (p<0.05). EGF plasma levels were significantly lower in ASD compared to controls (p=0.046). No significant differences were found in remaining parameters. Our study revealed tachycardia, cardiovagal underactivity, and blunted sympathetic vasomotor regulation at rest and during orthostasis in autistic children. Additionally, complex heart rate dynamics are similar in autistic children than controls. Furthermore, EGF was reduced in autistic children without significant correlations with any autonomic parameters. We suggest that the abnormal complex cardiovascular reflex control could contribute to understanding the pathway linking autonomic features and autism.
Collapse
Affiliation(s)
- I Tonhajzerova
- Biomedical Center Martin JFM CU, Mala Hora, Martin, Slovak Republic
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ye J, Wang H, Cui L, Chu S, Chen N. The progress of chemokines and chemokine receptors in autism spectrum disorders. Brain Res Bull 2021; 174:268-280. [PMID: 34077795 DOI: 10.1016/j.brainresbull.2021.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders and the main symptoms of ASD are impairments in social communication and abnormal behavioral patterns. Studies have shown that immune dysfunction and neuroinflammation play a key role in ASD patients and experimental models. Chemokines are groups of small proteins that regulate cell migration and mediate inflammation responses via binding to chemokine receptors. Thus, chemokines/chemokine receptors may be involved in neurodevelopmental disorders and associated with ASD. In this review, we summarize the research progress of chemokine aberrations in ASD and also review the recent progress of clinical treatment of ASD and pharmacological research related to chemokines/chemokine receptors. This review highlights the possible connection between chemokines/chemokine receptors and ASD, and provides novel potential targets for drug discovery of ASD.
Collapse
Affiliation(s)
- Junrui Ye
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hongyun Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Liyuan Cui
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
21
|
Chandra S, Alam MT, Dey J, Sasidharan BCP, Ray U, Srivastava AK, Gandhi S, Tripathi PP. Healthy Gut, Healthy Brain: The Gut Microbiome in Neurodegenerative Disorders. Curr Top Med Chem 2021; 20:1142-1153. [PMID: 32282304 DOI: 10.2174/1568026620666200413091101] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/12/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The central nervous system (CNS) known to regulate the physiological conditions of human body, also itself gets dynamically regulated by both the physiological as well as pathological conditions of the body. These conditions get changed quite often, and often involve changes introduced into the gut microbiota which, as studies are revealing, directly modulate the CNS via a crosstalk. This cross-talk between the gut microbiota and CNS, i.e., the gut-brain axis (GBA), plays a major role in the pathogenesis of many neurodegenerative disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and Huntington's disease (HD). OBJECTIVE We aim to discuss how gut microbiota, through GBA, regulate neurodegenerative disorders such as PD, AD, ALS, MS and HD. METHODS In this review, we have discussed the present understanding of the role played by the gut microbiota in neurodegenerative disorders and emphasized the probable therapeutic approaches being explored to treat them. RESULTS In the first part, we introduce the GBA and its relevance, followed by the changes occurring in the GBA during neurodegenerative disorders and then further discuss its role in the pathogenesis of these diseases. Finally, we discuss its applications in possible therapeutics of these diseases and the current research improvements being made to better investigate this interaction. CONCLUSION We concluded that alterations in the intestinal microbiota modulate various activities that could potentially lead to CNS disorders through interactions via the GBA.
Collapse
Affiliation(s)
- Sreyashi Chandra
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Md Tanjim Alam
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India
| | - Jhilik Dey
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Baby C Pulikkaparambil Sasidharan
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology (CUSAT), Kochi, India.,Inter-University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology (CUSAT), Kochi, India
| | - Upasana Ray
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit K Srivastava
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, India
| | - Prem P Tripathi
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
22
|
Borsom EM, Lee K, Cope EK. Do the Bugs in Your Gut Eat Your Memories? Relationship between Gut Microbiota and Alzheimer's Disease. Brain Sci 2020; 10:E814. [PMID: 33153085 PMCID: PMC7693835 DOI: 10.3390/brainsci10110814] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023] Open
Abstract
The human microbiota is composed of trillions of microbial cells inhabiting the oral cavity, skin, gastrointestinal (GI) tract, airways, and reproductive organs. The gut microbiota is composed of dynamic communities of microorganisms that communicate bidirectionally with the brain via cytokines, neurotransmitters, hormones, and secondary metabolites, known as the gut microbiota-brain axis. The gut microbiota-brain axis is suspected to be involved in the development of neurological diseases, including Alzheimer's disease (AD), Parkinson's disease, and Autism Spectrum Disorder. AD is an irreversible, neurodegenerative disease of the central nervous system (CNS), characterized by amyloid-β plaques, neurofibrillary tangles, and neuroinflammation. Microglia and astrocytes, the resident immune cells of the CNS, play an integral role in AD development, as neuroinflammation is a driving factor of disease severity. The gut microbiota-brain axis is a novel target for Alzheimer's disease therapeutics to modulate critical neuroimmune and metabolic pathways. Potential therapeutics include probiotics, prebiotics, fecal microbiota transplantation, and dietary intervention. This review summarizes our current understanding of the role of the gut microbiota-brain axis and neuroinflammation in the onset and development of Alzheimer's disease, limitations of current research, and potential for gut microbiota-brain axis targeted therapies.
Collapse
|
23
|
Dan Z, Mao X, Liu Q, Guo M, Zhuang Y, Liu Z, Chen K, Chen J, Xu R, Tang J, Qin L, Gu B, Liu K, Su C, Zhang F, Xia Y, Hu Z, Liu X. Altered gut microbial profile is associated with abnormal metabolism activity of Autism Spectrum Disorder. Gut Microbes 2020; 11:1246-1267. [PMID: 32312186 PMCID: PMC7524265 DOI: 10.1080/19490976.2020.1747329] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a severe neurodevelopmental disorder. To enhance the understanding of the gut microbiota structure in ASD children at different ages as well as the relationship between gut microbiota and fecal metabolites, we first used the 16S rRNA sequencing to evaluate the gut microbial population in a cohort of 143 children aged 2-13 years old. We found that the α-diversity of ASD group showed no significant change with age, while the TD group showed increased α-diversity with age, which indicates that the compositional development of the gut microbiota in ASD varies at different ages in ways that are not consistent with TD group. Recent studies have shown that chronic constipation is one of the most commonly obvious gastrointestinal (GI) symptoms along with ASD core symptoms. To further investigate the potential interaction effects between ASD and GI symptoms, the 30 C-ASD and their aged-matched TD were picked out to perform metagenomics analysis. We observed that C-ASD group displayed decreased diversity, depletion of species of Sutterella, Prevotella, and Bacteroides as well as dysregulation of associated metabolism activities, which may involve in the pathogenesis of C-ASD. Consistent with metagenomic analysis, liquid chromatography-mass spectrometry (LC/MS) revealed some of the differential metabolites between C-ASD and TD group were involved in the metabolic network of neurotransmitters including serotonin, dopamine, histidine, and GABA. Furthermore, we found these differences in metabolites were associated with altered abundance of specific bacteria. The study suggested possible future modalities for ASD intervention through targeting the specific bacteria associated with neurotransmitter metabolism.
Collapse
Affiliation(s)
- Zhou Dan
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuhua Mao
- Department of Clinical Laboratory, Affiliated Yixing People’s Hospital, Jiangsu University, Wuxi, China
| | - Qisha Liu
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Mengchen Guo
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yaoyao Zhuang
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Zhi Liu
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Kun Chen
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Junyu Chen
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Rui Xu
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Junming Tang
- Department of Clinical Laboratory, Affiliated Yixing People’s Hospital, Jiangsu University, Wuxi, China
| | - Lianhong Qin
- Children Growth Center of Bo’ai Homestead in Yixing, Yixing, China
| | - Bing Gu
- Medical Technological College of Xuzhou Medical University, Xuzhou, China
| | - Kangjian Liu
- Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuan Su
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Faming Zhang
- Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xingyin Liu
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,CONTACT Xingyin Liu Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| |
Collapse
|
24
|
Tomova A, Soltys K, Kemenyova P, Karhanek M, Babinska K. The Influence of Food Intake Specificity in Children with Autism on Gut Microbiota. Int J Mol Sci 2020; 21:E2797. [PMID: 32316625 PMCID: PMC7215614 DOI: 10.3390/ijms21082797] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex of neurodevelopmental conditions with increasing incidence. The microbiota of children with ASD is distinct from neurotypical children, their food habits are also different, and it is known that nutrient intake influences microbiota in a specific way. Thus, this study investigates the food habits of children with ASD and their association with the gut microbiota. Children with ASD had their dietary energy intakes similar to controls, but they more often demonstrated food selectivity, which seemed to result in deficiency of micronutrients such as vitamins K, B6, C, iron, cooper, docosahexaenoic and docosapentanoic acid. Using high-throughput sequencing, a DNA library of intestinal microbiota was performed. Core microbiota was similar in children with and without ASD, but Dichelobacter, Nitriliruptor and Constrictibacter were found to be putative markers of ASD. The changes in gut microbiota that we observed in connection to food selectivity, intake of fats and omega-3 in particular, fermented milk products and animal/plant protein consumption had similar character, independent of diagnosis. However, high fibre intake was connected with a decreased α-diversity only in children with ASD. High carbohydrate and fibre intake influenced β-diversity, changing the abundance of Bacteroides and other genera, many of them members of the Clostidiaceae. Modulating food habits of ASD children can influence their gut microbiota composition.
Collapse
Affiliation(s)
- Aleksandra Tomova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; (P.K.); (K.B.)
| | - Katarina Soltys
- Comenius University, Science Park, Comenius University in Bratislava, 841 04 Bratislava, Slovakia;
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Petra Kemenyova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; (P.K.); (K.B.)
| | - Miloslav Karhanek
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia;
| | - Katarina Babinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; (P.K.); (K.B.)
| |
Collapse
|