1
|
Mistry V, Chandwani S, Amaresan N, Kaushik D, Krishnamurthy R, Sharma A. Seed bacterization with siderophore-producing bacteria: a strategy to enhance growth and alkaloid content in Catharanthus roseus. World J Microbiol Biotechnol 2025; 41:42. [PMID: 39831919 DOI: 10.1007/s11274-025-04257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Catharanthus roseus is a medicinal plant widely known for producing monoterpenoid indole alkaloids (MIAs), including therapeutic compounds such as vinblastine and vincristine, which are crucial for cancer treatment. However, the naturally low concentration of these alkaloids in plant tissues poses a significant challenge for large-scale production. This study explores the application of siderophore-producing bacteria for seed bacterization of Catharanthus roseus to enhance the production of MIAs, including vindoline, catharanthine, and vinblastine. Utilizing High-Performance Liquid Chromatography (HPLC), we observed a significant increase in the concentration of these alkaloids in bacterized plants compared to controls. FTIR spectra of treated plants showed strong correlations with standard alkaloid mixtures, confirming higher alkaloid accumulation. Our findings demonstrate that bacterial siderophores play a vital role in optimizing iron uptake, which is crucial for secondary metabolite biosynthesis. This research highlights the potential of using microbial biotechnology to improve the yield of valuable pharmaceutical compounds in medicinal plants. Enhancing the biosynthetic pathways of MIAs offers a sustainable and efficient strategy for boosting the production of key therapeutic alkaloids in Catharanthus roseus, paving the way for advanced biotechnological applications in plant-based drug production.
Collapse
Affiliation(s)
- Vyoma Mistry
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Gopal-Vidyanagar, Maliba Campus, Surat, 394350, India
| | - Sapna Chandwani
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Gopal-Vidyanagar, Maliba Campus, Surat, 394350, India
| | - Natarajan Amaresan
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Gopal-Vidyanagar, Maliba Campus, Surat, 394350, India
| | - Deepti Kaushik
- Department of Business and Management, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Ramar Krishnamurthy
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Gopal-Vidyanagar, Maliba Campus, Surat, 394350, India
| | - Abhishek Sharma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
2
|
Zai X, Cordovez V, Zhu F, Zhao M, Diao X, Zhang F, Raaijmakers JM, Song C. C4 cereal and biofuel crop microbiomes. Trends Microbiol 2024; 32:1119-1131. [PMID: 38772810 DOI: 10.1016/j.tim.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/23/2024]
Abstract
Microbiomes provide multiple life-support functions for plants, including nutrient acquisition and tolerance to abiotic and biotic stresses. Considering the importance of C4 cereal and biofuel crops for food security under climate change conditions, more attention has been given recently to C4 plant microbiome assembly and functions. Here, we review the current status of C4 cereal and biofuel crop microbiome research with a focus on beneficial microbial traits for crop growth and health. We highlight the importance of environmental factors and plant genetics in C4 crop microbiome assembly and pinpoint current knowledge gaps. Finally, we discuss the potential of foxtail millet as a C4 model species and outline future perspectives of C4 plant microbiome research.
Collapse
Affiliation(s)
- Xiaoyu Zai
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China; National Observation and Research Station of Agriculture Green Development, 057250 Quzhou, Hebei, China
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
| | - Feng Zhu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 050021 Shijiazhuang, China
| | - Meicheng Zhao
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 050021 Shijiazhuang, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China; National Observation and Research Station of Agriculture Green Development, 057250 Quzhou, Hebei, China
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands; Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Chunxu Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China; National Observation and Research Station of Agriculture Green Development, 057250 Quzhou, Hebei, China.
| |
Collapse
|
3
|
Xu X, Zhang C, Lai C, Zhang Z, Wu J, Su Q, Gan Y, Zhang Z, Chen Y, Guo R, Lin Y, Lai Z. Genome-Wide Identification and Expression Analysis of Bx Involved in Benzoxazinoids Biosynthesis Revealed the Roles of DIMBOA during Early Somatic Embryogenesis in Dimocarpus longan Lour. PLANTS (BASEL, SWITZERLAND) 2024; 13:1373. [PMID: 38794443 PMCID: PMC11125010 DOI: 10.3390/plants13101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Benzoxazinoids (BXs) are tryptophan-derived indole metabolites and play a role in various physiological processes, such as auxin metabolism. Auxin is essential in the process of somatic embryogenesis (SE) in plants. In this study, we used bioinformatics, transcriptome data, exogenous treatment experiments, and qPCR analysis to study the evolutionary pattern of Bx genes in green plants, the regulatory mechanism of DlBx genes during early SE, and the effect of 2,4-dihydroxy-7-methoxy-1,4-benzoxazine-3-one (DIMBOA) on the early SE in Dimocarpus longan Lour. The results showed that 27 putative DlBxs were identified in the longan genome; the Bx genes evolved independently in monocots and dicots, and the main way of gene duplication for the DlBx was tandem duplication (TD) and the DlBx were strongly constrained by purification selection during evolution. The transcriptome data indicated varying expression levels of DlBx during longan early SE, and most DlBxs responded to light, temperature, drought stress, and 2,4-dichlorophenoxyacetic acid (2,4-D) treatment; qRT-PCR results showed DlBx1, DlBx6g and DlBx6h were responsive to auxin, and treatment with 0.1mg/L DIMBOA for 9 days significantly upregulated the expression levels of DlBx1, DlBx3g, DlBx6c, DlBx6f, DlB6h, DlBx7d, DlBx8, and DlBx9b. The correlation analysis showed a significantly negative correlation between the expression level of DlBx1 and the endogenous IAA contents; DIMBOA significantly promoted the early SE and significantly changed the endogenous IAA content, and the IAA content increased significantly at the 9th day and decreased significantly at the 13th day. Therefore, the results suggested that DIMBOA indirectly promote the early SE by changing the endogenous IAA content via affecting the expression level of DlBx1 and hydrogen peroxide (H2O2) content in longan.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.X.); (C.Z.); (C.L.); (Z.Z.); (J.W.); (Q.S.); (Y.G.); (Z.Z.); (Y.C.); (R.G.); (Y.L.)
| |
Collapse
|
4
|
Fu K, Schardl CL, Cook D, Cao X, Ling N, He C, Wu D, Xue L, Li Y, Shi Z. Multiomics Reveals Mechanisms of Alternaria oxytropis Inhibiting Pathogenic Fungi in Oxytropis ochrocephala. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2397-2409. [PMID: 38230662 DOI: 10.1021/acs.jafc.3c09049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Endophytic fungi can benefit the host plant and increase the plant resistance. Now, there is no in-depth study of how Alternaria oxytropis (A. oxytropis) is enhancing the ability of inhibiting pathogenic fungi in Oxytropis ochrocephala (O. ochrocephala). In this study, the fungal community and metabolites associated with endophyte-infected (EI) and endophyte-free (EF) O. ochrocephala were compared by multiomics. The fungal community indicated that there was more A. oxytropis, less phylum Ascomycota, and less genera Leptosphaeria, Colletotrichum, and Comoclathris in the EI group. As metabolic biomarkers, the levels of swainsonine and apigenin-7-O-glucoside-4-O-rutinoside were significantly increased in the EI group. Through in vitro validation experiments, swainsonine and apigenin-7-O-glucoside-4-O-rutinoside can dramatically suppress the growth of pathogenic fungi Leptosphaeria sclerotioides and Colletotrichum americae-borealis by increasing the level of oxidative stress. This work suggested that O. ochrocephala containing A. oxytropis could increase the resistance to fungal diseases by markedly enhancing the content of metabolites inhibiting pathogenic fungi.
Collapse
Affiliation(s)
- Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Daniel Cook
- Poisonous Plant Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 1150 East 1400 North, Logan, Utah 84341, United States
| | - Xuanli Cao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ning Ling
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Chunyu He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Dandan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Longhai Xue
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yanzhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
García-García AL, Hernández D, Santana-Mayor Á, Jiménez-Arias D, Boto A. TBS-pyrrole as an "universal" reference to quantify artemisinin and structurally-diverse natural products in plants extracts by NMR. FRONTIERS IN PLANT SCIENCE 2023; 14:1255512. [PMID: 37841619 PMCID: PMC10570554 DOI: 10.3389/fpls.2023.1255512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023]
Abstract
The commercial production of artemisinin and other valuable bioactive natural products depends on their plant sources, which may provide variable amounts of the compound depending on plant variety, the period of the year, abiotic stress and other factors. Therefore, it requires a method for large-scale, low-cost natural product quantification. The standard HPLC and UHPLC methods are accurate but the analysis are costly and require different optimization for structurally-diverse products. An alternative method using NMR with TBS-pyrrole as a novel "universal" reference affords a simple, fast method to quantify many different products. The method is shown with antimalarial artemisinin, whose yield using conventional and novel extraction procedures was determined by standard UHPLC-MS procedures and by our NMR protocol, with similar quantification results. The novel reference compound does not interfere with artemisinin or extract signals, only needs a small amount of the extract, is accurate and operationally simple, and a large volume of samples can be processed in little time. Moreover, bioactive terpenes, steroids, alkaloids, aromatic compounds, and quinones, among others, were quantified in a model vegetal extract with this "universal" reference with excellent accuracy.
Collapse
Affiliation(s)
- Ana L. García-García
- Grupo de Síntesis de Fármacos y Compuestos Bioactivos, Instituto de Productos Naturales y Agrobiología del Consejo Superior de Investigaciones Científicas (CSIC), La Laguna, Spain
- Programa de Doctorado de Química e Ingeniería Química, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Dácil Hernández
- Grupo de Síntesis de Fármacos y Compuestos Bioactivos, Instituto de Productos Naturales y Agrobiología del Consejo Superior de Investigaciones Científicas (CSIC), La Laguna, Spain
| | - Álvaro Santana-Mayor
- Fundación Canaria General de la Universidad de La Laguna, Edificio Servicios Generales de Apoyo a la Investigación (SEGAI), San Cristóbal de La Laguna, Spain
| | - David Jiménez-Arias
- Isoplexis-Centro de Agricultura Sustentável e Tecnologia Alimentar, Universidade da Madeira, Funchal, Portugal
- Instituto Canario de Investigaciones Agrarias, La Laguna, Spain
| | - Alicia Boto
- Grupo de Síntesis de Fármacos y Compuestos Bioactivos, Instituto de Productos Naturales y Agrobiología del Consejo Superior de Investigaciones Científicas (CSIC), La Laguna, Spain
| |
Collapse
|
6
|
Escudero-Martinez C, Bulgarelli D. Engineering the Crop Microbiota Through Host Genetics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:257-277. [PMID: 37196364 DOI: 10.1146/annurev-phyto-021621-121447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The microbiota populating the plant-soil continuum defines an untapped resource for sustainable crop production. The host plant is a driver for the taxonomic composition and function of these microbial communities. In this review, we illustrate how the host genetic determinants of the microbiota have been shaped by plant domestication and crop diversification. We discuss how the heritable component of microbiota recruitment may represent, at least partially, a selection for microbial functions underpinning the growth, development, and health of their host plants and how the magnitude of this heritability is influenced by the environment. We illustrate how host-microbiota interactions can be treated as an external quantitative trait and review recent studies associating crop genetics with microbiota-based quantitative traits. We also explore the results of reductionist approaches, including synthetic microbial communities, to establish causal relationships between microbiota and plant phenotypes. Lastly, we propose strategies to integrate microbiota manipulation into crop selection programs. Although a detailed understanding of when and how heritability for microbiota composition can be deployed for breeding purposes is still lacking, we argue that advances in crop genomics are likely to accelerate wider applications of plant-microbiota interactions in agriculture.
Collapse
Affiliation(s)
| | - Davide Bulgarelli
- Plant Sciences, School of Life Sciences, University of Dundee, Dundee, United Kingdom; ,
| |
Collapse
|
7
|
Sugiyama A. Application of plant specialized metabolites to modulate soil microbiota. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:123-133. [PMID: 38250293 PMCID: PMC10797516 DOI: 10.5511/plantbiotechnology.23.0227a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/27/2023] [Indexed: 01/23/2024]
Abstract
Plant specialized metabolites (PSMs) are considerably diverse compounds with multifaceted roles in the adaptation of plants to various abiotic and biotic stresses. PSMs are frequently secreted into the rhizosphere, a small region around the roots, where they facilitate interactions between plants and soil microorganisms. PSMs shape the host-specific rhizosphere microbial communities that potentially influence plant growth and tolerance to adverse conditions. Plant mutants defective in PSM biosynthesis contribute to reveal the roles of each PSM in plant-microbiota interactions in the rhizosphere. Recently, various approaches have been used to directly supply PSMs to soil by in vitro methods or through addition in pots with plants. This review focuses on the feasibility of the direct PSM application methods to reveal rhizospheric plant-microbiota interactions and discusses the possibility of applying the knowledge gained to future engineering of rhizospheric traits.
Collapse
Affiliation(s)
- Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
8
|
Ishikawa E, Kanai S, Sue M. Detection of a novel intramolecular rearrangement during gramine biosynthesis in barley using stable isotope-labeled tryptophan. Biochem Biophys Rep 2023; 34:101439. [PMID: 36843643 PMCID: PMC9950820 DOI: 10.1016/j.bbrep.2023.101439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Plants accumulate various secondary metabolites, and the biosynthetic reactions responsible for their scaffold construction are the key steps that characterize their structural categories. Gramine, an indole alkaloid, is a defensive secondary metabolite biosynthesized in barley (Hordeum vulgare) from tryptophan (Trp) via aminomethylindole (AMI). While the two sequential N-methylation steps following the formation of AMI have already been characterized both genetically and enzymatically, the step preceding AMI formation, which includes the Trp side chain-shortening, has not yet been revealed. To gain further insight into these biosynthetic reactions, barley seedlings were fed Trp labeled with stable isotopes (13C and 15N) at various positions, and the isotope incorporation into gramine was analyzed by liquid chromatography/mass spectrometry. Significant increases in the abundance of isotopic gramine were detected in experimental sets in which Trp was labeled at either the indole ring, the β-carbon, or the amino group, whereas the isotopolog composition was not affected by α-carbon-labeled Trp. Although absorbed Trp presumably undergoes transamination in plants, this reaction did not seem to be related to gramine productivity. The data indicated that AMI directly inherited the amino group from Trp, while the α-carbon was removed, suggesting that the Trp-AMI conversion includes a novel intramolecular rearrangement reaction. The results of this study provide novel insights into scaffold formation in plant secondary-metabolite synthesis.
Collapse
|
9
|
Dangol A, Shavit R, Yaakov B, Strickler SR, Jander G, Tzin V. Characterizing serotonin biosynthesis in Setaria viridis leaves and its effect on aphids. PLANT MOLECULAR BIOLOGY 2022; 109:533-549. [PMID: 35020104 DOI: 10.1007/s11103-021-01239-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
A combined transcriptomic and metabolic analysis of Setaria viridis leaves responding to aphid infestation was used to identify genes related to serotonin biosynthesis. Setaria viridis (green foxtail), a short life-cycle C4 plant in the Poaceae family, is the wild ancestor of Setaria italica (foxtail millet), a resilient crop that provides good yields in dry and marginal land. Although S. viridis has been studied extensively in the last decade, the molecular mechanisms of insect resistance in this species remain under-investigated. To address this issue, we performed a metabolic analysis of S. viridis and discovered that these plants accumulate the tryptophan-derived compounds tryptamine and serotonin. To elucidate the defensive functions of serotonin, Rhophalosiphum padi (bird cherry-oat aphids) were exposed to this compound, either by exogenous application to the plant medium or with artificial diet bioassays. In both cases, exposure to serotonin increased aphid mortality. To identify genes that are involved in serotonin biosynthesis, we conducted a transcriptome analysis and identified several predicted S. viridis tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H) genes. Two candidate genes were ectopically expressed in Nicotiana tabacum, where SvTDC1 (Sevir.6G066200) had tryptophan decarboxylase activity, and SvT5H1 (Sevir.8G219600) had tryptamine hydroxylase activity. Moreover, the function of the SvTDC1 gene was validated using virus-induced gene silencing in S. italica, which caused a reduction in serotonin levels. This study provides the first evidence of serotonin biosynthesis in Setaria leaves. The biosynthesis of serotonin may play an important role in defense responses and could prove to be useful for developing more pest-tolerant Setaria italica cultivars.
Collapse
Affiliation(s)
- Anuma Dangol
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | | | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel.
| |
Collapse
|
10
|
Radchenko EE, Abdullaev RA, Anisimova IN. Genetic Resources of Cereal Crops for Aphid Resistance. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111490. [PMID: 35684263 PMCID: PMC9182920 DOI: 10.3390/plants11111490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 05/19/2023]
Abstract
The genetic resources of cereal crops in terms of resistance to aphids are reviewed. Phytosanitary destabilization led to a significant increase in the harmfulness of this group of insects. The breeding of resistant plant genotypes is a radical, the cheapest, and environmentally safe way of pest control. The genetic homogeneity of crops hastens the adaptive microevolution of harmful organisms. Both major and minor aphid resistance genes of cereal plants interact with insects differentially. Therefore, rational breeding envisages the expansion of the genetic diversity of cultivated varieties. The possibilities of replenishing the stock of effective resistance genes by studying the collection of cultivated cereals, introgression, and creating mutant forms are considered. The interaction of insects with plants is subject to the gene-for-gene relationship. Plant resistance genes are characterized by close linkage and multiple allelism. The realizing plant genotype depends on the phytophage biotype. Information about the mechanisms of constitutional and induced plant resistance is discussed. Resistance genes differ in terms of stability of expression. The duration of the period when varieties remain resistant is not related either to its phenotypic manifestation or to the number of resistance genes. One explanation for the phenomenon of durable resistance is the association of the virulence mutation with pest viability.
Collapse
|
11
|
Wu D, Jiang B, Ye CY, Timko MP, Fan L. Horizontal transfer and evolution of the biosynthetic gene cluster for benzoxazinoids in plants. PLANT COMMUNICATIONS 2022; 3:100320. [PMID: 35576160 PMCID: PMC9251436 DOI: 10.1016/j.xplc.2022.100320] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 05/11/2023]
Abstract
Benzoxazinoids are a class of protective and allelopathic plant secondary metabolites that have been identified in multiple grass species and are encoded by the Bx biosynthetic gene cluster (BGC) in maize. Data mining of 41 high-quality grass genomes identified complete Bx clusters (containing genes Bx1-Bx5 and Bx8) in three genera (Zea, Echinochloa, and Dichanthelium) of Panicoideae and partial clusters in Triticeae. The Bx cluster probably originated from gene duplication and chromosomal translocation of native homologs of Bx genes. An ancient Bx cluster that included additional Bx genes (e.g., Bx6) is presumed to have been present in ancestral Panicoideae. The ancient Bx cluster was putatively gained by the Triticeae ancestor via horizontal transfer (HT) from the ancestral Panicoideae and later separated into multiple segments on different chromosomes. Bx6 appears to have been under less constrained selection compared with the Bx cluster during the evolution of Panicoideae, as evidenced by the fact that it was translocated away from the Bx cluster in Zea mays, moved to other chromosomes in Echinochloa, and even lost in Dichanthelium. Further investigations indicate that purifying selection and polyploidization have shaped the evolutionary trajectory of Bx clusters in the grass family. This study provides the first candidate case of HT of a BGC between plants and sheds new light on the evolution of BGCs.
Collapse
Affiliation(s)
- Dongya Wu
- Hainan Institute of Zhejiang University, Yonyou Industrial Park, Sanya 572025, China; Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Bowen Jiang
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Chu-Yu Ye
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Longjiang Fan
- Hainan Institute of Zhejiang University, Yonyou Industrial Park, Sanya 572025, China; Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Maver M, Escudero-Martinez C, Abbott J, Morris J, Hedley PE, Mimmo T, Bulgarelli D. Applications of the indole-alkaloid gramine modulate the assembly of individual members of the barley rhizosphere microbiota. PeerJ 2021; 9:e12498. [PMID: 34900424 PMCID: PMC8614190 DOI: 10.7717/peerj.12498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
Microbial communities proliferating at the root-soil interface, collectively referred to as the rhizosphere microbiota, represent an untapped beneficial resource for plant growth, development and health. Integral to a rational manipulation of the microbiota for sustainable agriculture is the identification of the molecular determinants of these communities. In plants, biosynthesis of allelochemicals is centre stage in defining inter-organismal relationships in the environment. Intriguingly, this process has been moulded by domestication and breeding selection. The indole-alkaloid gramine, whose occurrence in barley (Hordeum vulgare L.) is widespread among wild genotypes but has been counter selected in several modern varieties, is a paradigmatic example of this phenomenon. This prompted us to investigate how exogenous applications of gramine impacted on the rhizosphere microbiota of two, gramine-free, elite barley varieties grown in a reference agricultural soil. High throughput 16S rRNA gene amplicon sequencing revealed that applications of gramine interfere with the proliferation of a subset of soil microbes with a relatively broad phylogenetic assignment. Strikingly, growth of these bacteria appeared to be rescued by barley plants in a genotype- and dosage-independent manner. In parallel, we discovered that host recruitment cues can interfere with the impact of gramine application in a host genotype-dependent manner. Interestingly, this latter effect displayed a bias for members of the phyla Proteobacteria. These initial observations indicate that gramine can act as a determinant of the prokaryotic communities inhabiting the root-soil interface.
Collapse
Affiliation(s)
- Mauro Maver
- Plant Sciences, School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.,Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | | | - James Abbott
- Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Pete E Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.,Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Davide Bulgarelli
- Plant Sciences, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
13
|
Abramov A, Hoffmann T, Stark TD, Zheng L, Lenk S, Hammerl R, Lanzl T, Dawid C, Schön CC, Schwab W, Gierl A, Frey M. Engineering of benzoxazinoid biosynthesis in Arabidopsis thaliana: Metabolic and physiological challenges. PHYTOCHEMISTRY 2021; 192:112947. [PMID: 34534712 DOI: 10.1016/j.phytochem.2021.112947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Plant specialised metabolites constitute a layer of chemical defence. Classes of the defence compounds are often restricted to a certain taxon of plants, e.g. benzoxazinoids (BX) are characteristically detected in grasses. BXs confer wide-range defence by controlling herbivores and microbial pathogens and are allelopathic compounds. In the crops maize, wheat and rye high concentrations of BXs are synthesised at an early developmental stage. By transfer of six Bx-genes (Bx1 to Bx5 and Bx8) it was possible to establish the biosynthesis of 2,4-dihydroxy-1,4-benzoxazin-3-one glucoside (GDIBOA) in a concentration of up to 143 nmol/g dry weight in Arabidopsis thaliana. Our results indicate that inefficient channeling of substrates along the pathway and metabolisation of intermediates in host plants might be a general drawback for transgenic establishment of specialised metabolite biosynthesis pathways. As a consequence, BX levels required for defence are not obtained in Arabidopsis. We could show that indolin-2-one (ION), the first specific intermediate, is phytotoxic and is metabolised by hydroxylation and glycosylation by a wide spectrum of plants. In Arabidopsis, metabolic stress due to the enrichment of ION leads to elevated levels of salicylic acid (SA) and in addition to its intrinsic phytotoxicity, ION affects plant morphology indirectly via SA. We could show that Bx3 has a crucial role in the evolution of the pathway, first based on its impact on flux into the pathway and, second by C3-hydroxylation of the phytotoxic ION. Thereby BX3 interferes with a supposedly generic detoxification system towards the non-specific intermediate.
Collapse
Affiliation(s)
- Aleksej Abramov
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, 85354, Freising, Germany
| | - Thomas Hoffmann
- Associate Professorship of Biotechnology of Natural Products, Technical University of Munich, Liesel-Beckmann Str. 1, 85354, Freising, Germany
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner Str. 34, 85354, Freising, Germany
| | - Linlin Zheng
- Chair of Genetics, Technical University of Munich, Emil-Ramann Str. 8, 85354, Freising, Germany
| | - Stefan Lenk
- Chair of Genetics, Technical University of Munich, Emil-Ramann Str. 8, 85354, Freising, Germany
| | - Richard Hammerl
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner Str. 34, 85354, Freising, Germany
| | - Tobias Lanzl
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, 85354, Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner Str. 34, 85354, Freising, Germany
| | - Chris-Carolin Schön
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, 85354, Freising, Germany
| | - Wilfried Schwab
- Associate Professorship of Biotechnology of Natural Products, Technical University of Munich, Liesel-Beckmann Str. 1, 85354, Freising, Germany
| | - Alfons Gierl
- Chair of Genetics, Technical University of Munich, Emil-Ramann Str. 8, 85354, Freising, Germany
| | - Monika Frey
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, 85354, Freising, Germany.
| |
Collapse
|
14
|
Singh A, Singh S, Singh R, Kumar S, Singh SK, Singh IK. Dynamics of Zea mays transcriptome in response to a polyphagous herbivore, Spodoptera litura. Funct Integr Genomics 2021; 21:571-592. [PMID: 34415472 DOI: 10.1007/s10142-021-00796-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/17/2021] [Accepted: 07/02/2021] [Indexed: 12/01/2022]
Abstract
Zea mays defense response is well-crafted according to the physical and chemical weapons utilized by their invaders during the coevolutionary period. Maize plants employ diversified defense strategies and alter the spatiotemporal distribution of several classes of defensive compounds to affect insect herbivore performance. However, only little knowledge is available about the defense orchestration of maize in response to Spodoptera litura, a voracious Noctuidae pest. In order to decipher the defense status of Zea mays (African tall variety) against S. litura, a comparative feeding bioassay was executed, which revealed reduced performance of the herbivore on maize. In order to understand the molecular mechanism behind maize tolerance against S. litura, a microarray-based genome-wide expression analysis was performed. The comparative analysis displayed 792 differentially expressed genes (DEGs), wherein 357 genes were upregulated and 435 genes were downregulated at fold change ≥ 2 and p value ≤ 0.05. The upregulated genes were identified and categorized as defense-related, oxidative stress-related, transcription regulatory genes, protein synthesis genes, phytohormone-related, and primary and secondary metabolism-related. In contrast, downregulated genes were mainly associated with plant growth and development, indicating a balance of growth and defense response and utilization of a highly evolved C-diversion response were noticed. Maize plants showed better tolerance against herbivory and maintained its fitness using a combinatorial strategy. This peculiar response of Zea mays against S. litura offers an excellent possibility of managing polyphagous pests by spicing up the plant's defensive response with tolerance mechanism.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi-110007, India.
| | - Sujata Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, Delhi-110019, India
| | - Ragini Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi-110007, India
| | - Sumit Kumar
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, Delhi-110019, India
| | - Sanjay Kumar Singh
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, Delhi-110019, India. .,DBC i4 Centre, Deshbandhu College, University of Delhi, Kalkaji, Delhi-110019, India.
| |
Collapse
|
15
|
Schütz V, Frindte K, Cui J, Zhang P, Hacquard S, Schulze-Lefert P, Knief C, Schulz M, Dörmann P. Differential Impact of Plant Secondary Metabolites on the Soil Microbiota. Front Microbiol 2021; 12:666010. [PMID: 34122379 PMCID: PMC8195599 DOI: 10.3389/fmicb.2021.666010] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/27/2021] [Indexed: 11/28/2022] Open
Abstract
Plant metabolites can shape the microbial community composition in the soil. Two indole metabolites, benzoxazolinone (BOA) and gramine, produced by different Gramineae species, and quercetin, a flavonoid synthesized by many dicot species, were studied for their impacts on the community structure of field soil bacteria. The three plant metabolites were directly added to agricultural soil over a period of 28 days. Alterations in bacterial composition were monitored by next generation sequencing of 16S rRNA gene PCR products and phospholipid fatty acid analysis. Treatment of the soil with the plant metabolites altered the community composition from phylum to amplicon sequence variant (ASV) level. Alpha diversity was significantly reduced by BOA or quercetin, but not by gramine. BOA treatment caused a decrease of the relative abundance of 11 ASVs, while only 10 ASVs were increased. Gramine or quercetin treatment resulted in the increase in relative abundance of many more ASVs (33 or 38, respectively), most of them belonging to the Proteobacteria. Isolation and characterization of cultivable bacteria indicated an enrichment in Pseudarthrobacter or Pseudomonas strains under BOA/quercetin or BOA/gramine treatments, respectively. Therefore, the effects of the treatments on soil bacteria were characteristic for each metabolite, with BOA exerting a predominantly inhibitory effect, with only few genera being able to proliferate, while gramine and quercetin caused the proliferation of many potentially beneficial strains. As a consequence, BOA or gramine biosynthesis, which have evolved in different barley species, is accompanied with the association of distinct bacterial communities in the soil, presumably after mutual adaptation during evolution.
Collapse
Affiliation(s)
- Vadim Schütz
- Institute of Molecular Physiology and Biotechnology of Plants, Bonn, Germany
| | - Katharina Frindte
- Institute of Crop Science and Resource Conservation, Molecular Biology of the Rhizosphere, Bonn, Germany
| | - Jiaxin Cui
- Institute of Molecular Physiology and Biotechnology of Plants, Bonn, Germany
| | - Pengfan Zhang
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | - Claudia Knief
- Institute of Crop Science and Resource Conservation, Molecular Biology of the Rhizosphere, Bonn, Germany
| | - Margot Schulz
- Institute of Molecular Physiology and Biotechnology of Plants, Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, Bonn, Germany
| |
Collapse
|
16
|
Gyan NM, Yaakov B, Weinblum N, Singh A, Cna’ani A, Ben-Zeev S, Saranga Y, Tzin V. Variation Between Three Eragrostis tef Accessions in Defense Responses to Rhopalosiphum padi Aphid Infestation. FRONTIERS IN PLANT SCIENCE 2020; 11:598483. [PMID: 33363559 PMCID: PMC7752923 DOI: 10.3389/fpls.2020.598483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/09/2020] [Indexed: 05/12/2023]
Abstract
Tef (Eragrostis tef), a staple crop that originated in the Horn of Africa, has been introduced to multiple countries over the last several decades. Crop cultivation in new geographic regions raises questions regarding the molecular basis for biotic stress responses. In this study, we aimed to classify the insect abundance on tef crop in Israel, and to elucidate its chemical and physical defense mechanisms in response to insect feeding. To discover the main pests of tef in the Mediterranean climate, we conducted an insect field survey on three selected accessions named RTC-144, RTC-405, and RTC-406, and discovered that the most abundant insect order is Hemiptera. We compared the differences in Rhopalosiphum padi (Hemiptera; Aphididae) aphid performance, preference, and feeding behavior between the three accessions. While the number of aphid progeny was lower on RTC-406 than on the other two, the aphid olfactory assay indicated that the aphids tended to be repelled from the RTC-144 accession. To highlight the variation in defense responses, we investigated the physical and chemical mechanisms. As a physical barrier, the density of non-granular trichomes was evaluated, in which a higher number of trichomes on the RTC-406 than on the other accessions was observed. This was negatively correlated with aphid performance. To determine chemical responses, the volatile and central metabolite profiles were measured upon aphid attack for 4 days. The volatile analysis exposed a rich and dynamic metabolic profile, and the central metabolism profile indicated that tef plants adjust their sugars and organic and amino acid levels. Overall, we found that the tef plants possess similar defense responses as other Poaceae family species, while the non-volatile deterrent compounds are yet to be characterized. A transcriptomic time-series analysis of a selected accession RTC-144 infested with aphids revealed a massive alteration of genes related to specialized metabolism that potentially synthesize non-volatile toxic compounds. This is the first report to reveal the variation in the defense mechanisms of tef plants. These findings can facilitate the discovery of insect-resistance genes leading to enhanced yield in tef and other cereal crops.
Collapse
Affiliation(s)
- Nathan M. Gyan
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Nati Weinblum
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Anuradha Singh
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Alon Cna’ani
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Shiran Ben-Zeev
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yehoshua Saranga
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| |
Collapse
|
17
|
Benzoxazinoids Biosynthesis in Rye (Secale cereale L.) Is Affected by Low Temperature. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Benzoxazinoids (BXs) are specialized metabolites with protective properties that are synthesized predominantly by Poaceae species, including rye (Secale cereale). Among factors known to influence BXs production, prolonged low temperature has not been studied previously. In this study, the influence of cultivation at 4 °C, which is essential for vernalization, on the concentration of BXs (HBOA, DIBOA, GDIBOA, DIMBOA, GDIMBOA, and MBOA) and the expression level of genes involved in the BX biosynthesis pathway (ScBx1–ScBx5 and ScIgl) in three rye inbred lines was investigated. After cultivation for seven weeks at 4 °C, the expression level of all analyzed genes and BX concentrations had decreased compared with those at the initiation of treatment (21 days after germination) in control and cold-treated plants. At this time point, the decrease in BX concentrations and gene expression was lower in cold-treated plants than in untreated plants. In contrast, at 77 days after germination, the gene expression levels and BX concentrations in untreated plants had generally increased. Investigation of the vernalization impact on rye BXs accumulation, as well as on Bx gene expression, may aid with determination of the most suitable winter lines and cultivars of rye for cultivation and breeding purposes.
Collapse
|
18
|
Achhami BB, Reddy GVP, Sherman JD, Peterson RKD, Weaver DK. Antixenosis, Antibiosis, and Potential Yield Compensatory Response in Barley Cultivars Exposed to Wheat Stem Sawfly (Hymenoptera: Cephidae) Under Field Conditions. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:9. [PMID: 32960968 PMCID: PMC7508298 DOI: 10.1093/jisesa/ieaa091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Wheat stem sawfly, Cephus cinctus Norton, is an economically serious pest of cereals grown in North America. Barley cultivars were previously planted as resistant crops in rotations to manage C. cinctus, but due to increasing levels of injury to this crop, this is no longer a valid management tactic in Montana. Therefore, we aimed to understand antixenosis (behavioral preference), antibiosis (mortality), and potential yield compensation (increased productivity in response to stem injuries) in barley exposed to C. cinctus. We examined these traits in eight barley cultivars. Antixenosis was assessed by counting number of eggs per stem and antibiosis was assessed by counting infested stems, dead larvae, and stems cut by mature larvae. Potential yield compensation was evaluated by comparing grain yield from three categories of stem infestation: 1) uninfested, 2) infested with dead larva, and 3) infested cut by mature larva at crop maturity. We found the greatest number of eggs per infested stem (1.80 ± 0.04), the highest proportion of infested stems (0.63 ± 0.01), and the highest proportion of cut stems (0.33 ± 0.01) in 'Hockett'. Seven out of eight cultivars had greater grain weight for infested stems than for uninfested stems. These cultivars may have compensatory responses to larval feeding injury. Overall, these barley cultivars contain varying levels of antixenosis, antibiosis, and differing levels of yield compensation. Our results provide foundational knowledge on barley traits that will provide a framework to further develop C. cinctus resistant or tolerant barley cultivars.
Collapse
Affiliation(s)
- Buddhi B Achhami
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT
| | - Gadi V P Reddy
- Western Triangle Agricultural Research Center, Conrad, MT
- USDA ARS-Southern Insect Management Research Unit, Stoneville, MS
| | - Jamie D Sherman
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT
| | - Robert K D Peterson
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT
| | - David K Weaver
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT
| |
Collapse
|
19
|
Alegria Terrazas R, Balbirnie-Cumming K, Morris J, Hedley PE, Russell J, Paterson E, Baggs EM, Fridman E, Bulgarelli D. A footprint of plant eco-geographic adaptation on the composition of the barley rhizosphere bacterial microbiota. Sci Rep 2020; 10:12916. [PMID: 32737353 PMCID: PMC7395104 DOI: 10.1038/s41598-020-69672-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
The microbiota thriving in the rhizosphere, the thin layer of soil surrounding plant roots, plays a critical role in plant’s adaptation to the environment. Domestication and breeding selection have progressively differentiated the microbiota of modern crops from the ones of their wild ancestors. However, the impact of eco-geographical constraints faced by domesticated plants and crop wild relatives on recruitment and maintenance of the rhizosphere microbiota remains to be fully elucidated. Here we performed a comparative 16S rRNA gene survey of the rhizosphere of 4 domesticated and 20 wild barley (Hordeum vulgare) genotypes grown in an agricultural soil under controlled environmental conditions. We demonstrated the enrichment of individual bacteria mirrored the distinct eco-geographical constraints faced by their host plants. Unexpectedly, Elite varieties exerted a stronger genotype effect on the rhizosphere microbiota when compared with wild barley genotypes adapted to desert environments with a preferential enrichment for members of Actinobacteria. Finally, in wild barley genotypes, we discovered a limited, but significant, correlation between microbiota diversity and host genomic diversity. Our results revealed a footprint of the host’s adaptation to the environment on the assembly of the bacteria thriving at the root–soil interface. In the tested conditions, this recruitment cue layered atop of the distinct evolutionary trajectories of wild and domesticated plants and, at least in part, is encoded by the barley genome. This knowledge will be critical to design experimental approaches aimed at elucidating the recruitment cues of the barley microbiota across a range of soil types.
Collapse
Affiliation(s)
| | | | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
| | - Pete E Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
| | - Joanne Russell
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
| | - Eric Paterson
- Ecological Sciences, The James Hutton Institute, Aberdeen, UK
| | - Elizabeth M Baggs
- Global Academy of Agriculture and Food Security, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Eyal Fridman
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Davide Bulgarelli
- Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
20
|
Feng K, Cui L, Wang L, Shan D, Tong W, Deng P, Yan Z, Wang M, Zhan H, Wu X, He W, Zhou X, Ji J, Zhang G, Mao L, Karafiátová M, Šimková H, Doležel J, Du X, Zhao S, Luo M, Han D, Zhang C, Kang Z, Appels R, Edwards D, Nie X, Weining S. The improved assembly of 7DL chromosome provides insight into the structure and evolution of bread wheat. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:732-742. [PMID: 31471988 PMCID: PMC7004910 DOI: 10.1111/pbi.13240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/27/2019] [Accepted: 08/15/2019] [Indexed: 05/03/2023]
Abstract
Wheat is one of the most important staple crops worldwide and also an excellent model species for crop evolution and polyploidization studies. The breakthrough of sequencing the bread wheat genome and progenitor genomes lays the foundation to decipher the complexity of wheat origin and evolutionary process as well as the genetic consequences of polyploidization. In this study, we sequenced 3286 BACs from chromosome 7DL of bread wheat cv. Chinese Spring and integrated the unmapped contigs from IWGSC v1 and available PacBio sequences to close gaps present in the 7DL assembly. In total, 8043 out of 12 825 gaps, representing 3 491 264 bp, were closed. We then used the improved assembly of 7DL to perform comparative genomic analysis of bread wheat (Ta7DL) and its D donor, Aegilops tauschii (At7DL), to identify domestication signatures. Results showed a strong syntenic relationship between Ta7DL and At7DL, although some small rearrangements were detected at the distal regions. A total of 53 genes appear to be lost genes during wheat polyploidization, with 23% (12 genes) as RGA (disease resistance gene analogue). Furthermore, 86 positively selected genes (PSGs) were identified, considered to be domestication-related candidates. Finally, overlapping of QTLs obtained from GWAS analysis and PSGs indicated that TraesCS7D02G321000 may be one of the domestication genes involved in grain morphology. This study provides comparative information on the sequence, structure and organization between bread wheat and Ae. tauschii from the perspective of the 7DL chromosome, which contribute to better understanding of the evolution of wheat, and supports wheat crop improvement.
Collapse
Affiliation(s)
- Kewei Feng
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxiChina
| | - Licao Cui
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxiChina
- College of Bioscience and EngineeringJiangxi Agricultural UniversityNanchangJiangxiChina
| | - Le Wang
- Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
| | - Dai Shan
- BGI GenomicsBGI‐ShenzhenShenzhenChina
| | - Wei Tong
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxiChina
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhaogui Yan
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
| | - Mengxing Wang
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxiChina
| | - Haoshuang Zhan
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaotong Wu
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxiChina
| | | | | | | | | | - Long Mao
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureThe National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Miroslava Karafiátová
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic
| | - Xianghong Du
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxiChina
| | - Shancen Zhao
- BGI Institute of Applied AgricultureBGI‐ShenzhenShenzhenChina
| | - Ming‐Cheng Luo
- Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxiChina
| | - Chi Zhang
- BGI GenomicsBGI‐ShenzhenShenzhenChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Rudi Appels
- State Agriculture Biotechnology CentreSchool of Veterinary and Life SciencesAustralia Export Grains Innovation CentreMurdoch UniversityPerthWAAustralia
| | - David Edwards
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaPerthWAAustralia
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxiChina
| | - Song Weining
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
21
|
Hunter CT, Block AK, Christensen SA, Li QB, Rering C, Alborn HT. Setaria viridis as a model for translational genetic studies of jasmonic acid-related insect defenses in Zea mays. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110329. [PMID: 31928686 DOI: 10.1016/j.plantsci.2019.110329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Little is known regarding insect defense pathways in Setaria viridis (setaria), a model system for panicoid grasses, including Zea mays (maize). It is thus of interest to compare insect herbivory responses of setaria and maize. Here we use metabolic, phylogenetic, and gene expression analyses to measure a subset of jasmonic acid (JA)-related defense responses to leaf-chewing caterpillars. Phylogenetic comparisons of known defense-related maize genes were used to identify putative orthologs in setaria, and candidates were tested by quantitative PCR to determine transcriptional responses to insect challenge. Our findings show that while much of the core JA-related metabolic and genetic responses appear conserved between setaria and maize, production of downstream secondary metabolites such as benzoxazinoids and herbivore-induced plant volatiles are dissimilar. This diversity of chemical defenses and gene families involved in secondary metabolism among grasses presents new opportunities for cross species engineering. The high degree of genetic similarity and ease of orthologous gene identification between setaria and maize make setaria an excellent species for translational genetic studies, but the species specificity of downstream insect defense chemistry makes some pathways unamenable to cross-species comparisons.
Collapse
Affiliation(s)
- Charles T Hunter
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA.
| | - Anna K Block
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA
| | - Shawn A Christensen
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA
| | - Qin-Bao Li
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA
| | - Caitlin Rering
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA
| | - Hans T Alborn
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA
| |
Collapse
|
22
|
Shavit R, Batyrshina ZS, Dotan N, Tzin V. Cereal aphids differently affect benzoxazinoid levels in durum wheat. PLoS One 2018; 13:e0208103. [PMID: 30507950 PMCID: PMC6277073 DOI: 10.1371/journal.pone.0208103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
Aphids are major pests in cereal crops that cause direct and indirect damage leading to yield reduction. Despite the fact that wheat provides 20% of the world’s caloric and protein diet, its metabolic responses to aphid attack, in general, and specifically its production of benzoxazinoid defense compounds are poorly understood. The objective of this study was to compare the metabolic diversity of durum wheat seedlings (Triticum turgidum ssp. durum) under attack by three different cereal aphids: i) the English grain aphid (Sitobion avenae Fabricius), ii) the bird cherry-oat aphid (Rhopalosiphum padi L.), and iii) the greenbug aphid (Schizaphis graminum Rondani), which are some of the most destructive aphid species to wheat. Insect progeny bioassays and metabolic analyses using chromatography/Q-Exactive/mass spectrometry non-targeted metabolomics and a targeted benzoxazinoid profile were performed on infested leaves. The insect bioassays revealed that the plants were susceptible to S. graminum, resistant to S. avenae, and mildly resistant to R. padi. The metabolic analyses of benzoxazinoids suggested that the predominant metabolites DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin- 3-one) and its glycosylated form DIMBOA-glucoside (Glc) were significantly induced upon both S. avenae, and R. padi aphid feeding. However, the levels of the benzoxazinoid metabolite HDMBOA-Glc (2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside) were enhanced due to the feeding of S. avenae and S. graminum aphids, to which Svevo was the most resistant and the most susceptible, respectively. The results showed a partial correlation between the induction of benzoxazinoids and aphid reproduction. Overall, our observations revealed diverse metabolic responses of wheat seedlings to cereal aphid feeding.
Collapse
Affiliation(s)
- Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Zhaniya S. Batyrshina
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Nitsan Dotan
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
23
|
Hannemann L, Lucaciu CR, Sharma S, Rattei T, Mayer KFX, Gierl A, Frey M. A promiscuous beta-glucosidase is involved in benzoxazinoid deglycosylation in Lamium galeobdolon. PHYTOCHEMISTRY 2018; 156:224-233. [PMID: 30336442 DOI: 10.1016/j.phytochem.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/27/2018] [Accepted: 10/10/2018] [Indexed: 05/28/2023]
Abstract
In the plant kingdom beta-glucosidases (BGLUs) of the glycosidase hydrolase family 1 have essential function in primary metabolism and are particularly employed in secondary metabolism. They are essential for activation in two-component defence systems based on stabilisation of reactive compounds by glycosylation. Based on de novo assembly we isolated and functionally characterised BGLUs expressed in leaves of Lamium galeobdolon (LgGLUs). LgGLU1 could be assigned to hydrolysis of the benzoxazinoid GDIBOA (2,4-dihydroxy-1,4-benzoxazin-3-one glucoside). Within the Lamiaceae L. galeobdolon is distinguished by the presence GDIBOA in addition to the more common iridoid harpagide. Although LgGLU1 proved to be promiscuous with respect to accepted substrates, harpagide hydrolysis was not detected. Benzoxazinoids are characteristic defence compounds of the Poales but are also found in some unrelated dicots. The benzoxazinoid specific BGLUs have recently been identified for the grasses maize, wheat, rye and the Ranunculaceae Consolida orientalis. All enzymes share a general substrate ambiguity but differ in detailed substrate pattern. The isolation of the second dicot GDIBOA glucosidase LgGLU1 allowed it to analyse the phylogenetic relation of the distinct BGLUs also within dicots. The data revealed long periods of independent sequence evolution before speciation.
Collapse
Affiliation(s)
- Laura Hannemann
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckmann-Str. 2, D-85354, Freising, Germany.
| | - Calin Rares Lucaciu
- Division of Computational Systems Biology, University of Vienna, Althanstr. 14 A-1090, Vienna, Austria.
| | - Sapna Sharma
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.
| | - Thomas Rattei
- Division of Computational Systems Biology, University of Vienna, Althanstr. 14 A-1090, Vienna, Austria.
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany; School of Life Sciences, Technical University Munich, Germany.
| | - Alfons Gierl
- Chair of Genetics, Technical University of Munich, Emil-Ramann-Str. 8, D-85354, Freising, Germany.
| | - Monika Frey
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckmann-Str. 2, D-85354, Freising, Germany.
| |
Collapse
|
24
|
de Bruijn WJC, Gruppen H, Vincken JP. Structure and biosynthesis of benzoxazinoids: Plant defence metabolites with potential as antimicrobial scaffolds. PHYTOCHEMISTRY 2018; 155:233-243. [PMID: 30218957 DOI: 10.1016/j.phytochem.2018.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Benzoxazinoids, comprising the classes of benzoxazinones and benzoxazolinones, are a set of specialised metabolites produced by the plant family Poaceae (formerly Gramineae), and some dicots. The family Poaceae in particular contains several important crops like maize and wheat. Benzoxazinoids play a role in allelopathy and as defence compounds against (micro)biological threats. The effectivity of benzoxazinones in these functionalities is largely imposed by the subclasses (determined by N substituent). In this review, we provide an overview of all currently known natural benzoxazinoids and a summary of the current state of knowledge of their biosynthesis. We also evaluated their antimicrobial activity based on minimum inhibitory concentration (MIC) values reported in literature. Monomeric natural benzoxazinoids seem to lack potency as antimicrobial agents. The 1,4-benzoxazin-3-one backbone, however, has been shown to be a potential scaffold for designing new antimicrobial compounds. This has been demonstrated by a number of studies that report potent activity of synthetic derivatives of 1,4-benzoxazin-3-one, which possess MIC values down to 6.25 μg mL-1 against pathogenic fungi (e.g. C. albicans) and 16 μg mL-1 against bacteria (e.g. S. aureus and E. coli). Observations on the structural requirements for allelopathy, insecticidal, and antimicrobial activity suggest that they are not necessarily conferred by similar mechanisms.
Collapse
Affiliation(s)
- Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Harry Gruppen
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
25
|
Powell JJ, Carere J, Sablok G, Fitzgerald TL, Stiller J, Colgrave ML, Gardiner DM, Manners JM, Vogel JP, Henry RJ, Kazan K. Transcriptome analysis of Brachypodium during fungal pathogen infection reveals both shared and distinct defense responses with wheat. Sci Rep 2017; 7:17212. [PMID: 29222453 PMCID: PMC5722949 DOI: 10.1038/s41598-017-17454-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/26/2017] [Indexed: 11/09/2022] Open
Abstract
Fusarium crown rot (FCR) of wheat and barley, predominantly caused by the fungal pathogen Fusarium pseudograminearum, is a disease of economic significance. The quantitative nature of FCR resistance within cultivated wheat germplasm has significantly limited breeding efforts to enhanced FCR resistance in wheat. In this study, we characterized the molecular responses of Brachypodium distachyon (Brachypodium hereafter) to F. pseudograminearum infection using RNA-seq to determine whether Brachypodium can be exploited as a model system towards better understanding of F. pseudograminearum-wheat interaction. The transcriptional response to infection in Brachypodium was strikingly similar to that previously reported in wheat, both in shared expression patterns of wheat homologs of Brachypodium genes and functional overlap revealed through comparative gene ontology analysis in both species. Metabolites produced by various biosynthetic pathways induced in both wheat and Brachypodium were quantified, revealing a high degree of overlap between these two species in metabolic response to infection but also showed Brachypodium does not produce certain defence-related metabolites found in wheat. Functional analyses of candidate genes identified in this study will improve our understanding of resistance mechanisms and may lead to the development of new strategies to protect cereal crops from pathogen infection.
Collapse
Affiliation(s)
- Jonathan J Powell
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia.
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, St Lucia, 4067, Queensland, Australia.
| | - Jason Carere
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - Gaurav Sablok
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Sydney, Australia
| | - Timothy L Fitzgerald
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - Jiri Stiller
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - Michelle L Colgrave
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - John M Manners
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Black Mountain, Australian Capital Territory, 2601, Australia
| | - John P Vogel
- Joint Genome Institute, United States Department of Energy, Walnut Creek, CA, 94598, USA
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, St Lucia, 4067, Queensland, Australia
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia.
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, St Lucia, 4067, Queensland, Australia.
| |
Collapse
|
26
|
Ube N, Nishizaka M, Ichiyanagi T, Ueno K, Taketa S, Ishihara A. Evolutionary changes in defensive specialized metabolism in the genus Hordeum. PHYTOCHEMISTRY 2017; 141:1-10. [PMID: 28535420 DOI: 10.1016/j.phytochem.2017.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/08/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Plants have developed defensive specialized metabolites over the course of evolution. In the genus Hordeum, which includes the important cereal crop barley, specialized metabolites such as hordatines, benzoxazinones, and gramine have been identified. Hordeum species are classified into four clades, H, Xu, Xa, and I. The presence or absence of defensive specialized metabolites was analyzed in representative Hordeum species that included all of the four clades. In the H clade, Hordeum vulgare accumulated hordatines but not benzoxazinones, whereas H. bulbosum accumulated neither compound. Some accessions in the H clade accumulated gramine. Species in the clades I and Xa accumulated benzoxazinones without hordatines. In H. murinum, a Xu clade species, neither hordatines nor benzoxazinones were detected. Two hitherto undescribed compounds were found to commonly accumulate in H. bulbosum in the H clade and H. murinum in the Xu clade. On the basis of spectroscopic analyses, they were identified as dehydrodimers of feruloylagmatine and were designated murinamides A and B. Radical coupling reactions with feruloylagmatine as a substrate by peroxidase afforded murinamides A and B. These compounds showed antifungal activities against Bipolaris sorokiniana and Fusarium asiaticum, indicating their defensive roles. Because hordatines are also dehydrodimers of hydroxycinnamic acid amides (HCAAs) of agmatine, both the H and Xu clade species are considered to accumulate the same class of compounds. Thus, when the H/Xu clades split from the I/Xa clades during evolution, the defensive metabolites shifted from benzoxazinones to dehydrodimers of agmatine HCAAs plus gramine in the H/Xu clades.
Collapse
Affiliation(s)
- Naoki Ube
- Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan
| | - Miho Nishizaka
- Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan
| | | | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan
| | - Shin Taketa
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Atsushi Ishihara
- Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan.
| |
Collapse
|
27
|
Tanwir F, Dionisio G, Adhikari KB, Fomsgaard IS, Gregersen PL. Biosynthesis and chemical transformation of benzoxazinoids in rye during seed germination and the identification of a rye Bx6-like gene. PHYTOCHEMISTRY 2017; 140:95-107. [PMID: 28472715 DOI: 10.1016/j.phytochem.2017.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Benzoxazinoids are secondary metabolites with plant defense properties and possible health-promoting effects in humans. In this study, the transcriptional activity of ScBx genes (ScBx1-ScBx5; ScBx6-like), involved in benzoxazinoid biosynthesis, was analyzed during germination and early seedling development in rye. Our results showed that ScBx genes had highest levels of expression at 24-30 h after germination, followed by a decrease at later stages. For ScBx1-ScBx5 genes expression was higher in shoots compared with root tissues and vice versa for ScBx6-like gene transcripts. Moreover, methylated forms of benzoxazinoids accumulated in roots rather than in shoots during seedling development, in particular reaching high levels of HMBOA-glc in roots. Chemical profiles of benzoxazinoid accumulation in the developing seedling reflected the combined effects of de novo biosynthesis of the compounds as well as the turnover of compounds either pre-stored in the embryo or de novo biosynthesized. Bioinformatic analysis, together with the differential distribution of ScBx6-like transcripts in root and shoot tissues, suggested the presence of a ZmBx6 homolog encoding a 2-oxoglutarate dependent dehydrogenase in rye. The ScBx6-like cDNA was expressed in E. coli for functional characterization in vitro. LC-MS/MS analysis showed that the purified enzyme was responsible for the oxidation of DIBOA-glc into TRIBOA-glc, strongly suggesting the ScBX6-like enzyme in rye to be a functional ortholog of maize ZmBX6.
Collapse
Affiliation(s)
- Fariha Tanwir
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Giuseppe Dionisio
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | | | | - Per L Gregersen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark.
| |
Collapse
|
28
|
Groszyk J, Kowalczyk M, Yanushevska Y, Stochmal A, Rakoczy-Trojanowska M, Orczyk W. Identification and VIGS-based characterization of Bx1 ortholog in rye (Secale cereale L.). PLoS One 2017; 12:e0171506. [PMID: 28234909 PMCID: PMC5325281 DOI: 10.1371/journal.pone.0171506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/21/2017] [Indexed: 12/28/2022] Open
Abstract
The first step of the benzoxazinoid (BX) synthesis pathway is catalyzed by an enzyme with indole-3-glycerol phosphate lyase activity encoded by 3 genes, Bx1, TSA and Igl. A gene highly homologous to maize and wheat Bx1 has been identified in rye. The goal of the study was to analyze the gene and to experimentally verify its role in the rye BX biosynthesis pathway as a rye ortholog of the Bx1 gene. Expression of the gene showed peak values 3 days after imbibition (dai) and at 21 dai it was undetectable. Changes of the BX content in leaves were highly correlated with the expression pattern until 21 dai. In plants older than 21 dai despite the undetectable expression of the analyzed gene there was still low accumulation of BXs. Function of the gene was verified by correlating its native expression and virus-induced silencing with BX accumulation. Barley stripe mosaic virus (BSMV)-based vectors were used to induce transcriptional (TGS) and posttranscriptional (PTGS) silencing of the analyzed gene. Both strategies (PTGS and TGS) significantly reduced the transcript level of the analyzed gene, and this was highly correlated with lowered BX content. Inoculation with virus-based vectors specifically induced expression of the analyzed gene, indicating up-regulation by biotic stressors. This is the first report of using the BSMV-based system for functional analysis of rye gene. The findings prove that the analyzed gene is a rye ortholog of the Bx1 gene. Its expression is developmentally regulated and is strongly induced by biotic stress. Stable accumulation of BXs in plants older than 21 dai associated with undetectable expression of ScBx1 indicates that the function of the ScBx1 in the BX biosynthesis is redundant with another gene. We anticipate that the unknown gene is a putative ortholog of the Igl, which still remains to be identified in rye.
Collapse
Affiliation(s)
- Jolanta Groszyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute – National Research Institute, Blonie, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation State Research Institute, Pulawy, Poland
| | - Yuliya Yanushevska
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute – National Research Institute, Blonie, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation State Research Institute, Pulawy, Poland
| | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Waclaw Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute – National Research Institute, Blonie, Poland
- * E-mail:
| |
Collapse
|
29
|
Kokubo Y, Nishizaka M, Ube N, Yabuta Y, Tebayashi SI, Ueno K, Taketa S, Ishihara A. Distribution of the tryptophan pathway-derived defensive secondary metabolites gramine and benzoxazinones in Poaceae. Biosci Biotechnol Biochem 2016; 81:431-440. [PMID: 27854190 DOI: 10.1080/09168451.2016.1256758] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The Poaceae is a large taxonomic group consisting of approximately 12,000 species and is classified into 12 subfamilies. Gramine and benzoxazinones (Bxs), which are biosynthesized from the tryptophan pathway, are well-known defensive secondary metabolites in the Poaceae. We analyzed the presence or absence of garamine and Bxs in 64 species in the Poaceae by LC-MS/MS. We found that Hordeum brachyantherum and Hakonechloa macra accumulated gramine, but the presence of gramine was limited to small groups of species. We also detected Bxs in four species in the Pooideae and six species in the Panicoideae. In particular, four species in the Paniceae tribe in Panicoideae accumulaed Bxs, indicating that this tribe is a center of the Bx distribution. Bxs were absent in the subfamilies other than Pooideae and Panicoideae. These findings provide an overview of biased distribution of gramine and Bxs in Poaceae species.
Collapse
Affiliation(s)
- Yu Kokubo
- a Faculty of Agriculture , Tottori University , Tottori , Japan
| | - Miho Nishizaka
- a Faculty of Agriculture , Tottori University , Tottori , Japan
| | - Naoki Ube
- a Faculty of Agriculture , Tottori University , Tottori , Japan
| | - Yukinori Yabuta
- a Faculty of Agriculture , Tottori University , Tottori , Japan
| | | | - Kotomi Ueno
- a Faculty of Agriculture , Tottori University , Tottori , Japan
| | - Shin Taketa
- c Institute of Plant Science and Resources , Okayama University , Kurashiki , Japan
| | | |
Collapse
|
30
|
da Graça JP, Ueda TE, Janegitz T, Vieira SS, Salvador MC, de Oliveira MCN, Zingaretti SM, Powers SJ, Pickett JA, Birkett MA, Hoffmann-Campo CB. The natural plant stress elicitor cis-jasmone causes cultivar-dependent reduction in growth of the stink bug, Euschistus heros and associated changes in flavonoid concentrations in soybean, Glycine max. PHYTOCHEMISTRY 2016; 131:84-91. [PMID: 27659594 PMCID: PMC5055112 DOI: 10.1016/j.phytochem.2016.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/22/2016] [Accepted: 08/29/2016] [Indexed: 05/12/2023]
Abstract
To test the hypothesis that the plant stress related elicitor cis-jasmone (cJ) provides protection in soybean pods against the seed-sucking stink bug pest, Euschistus heros, the growth of E. heros on cJ-treated pods was investigated using three soybean cultivars differing in insect susceptibility, i.e. BRS 134 (susceptible), IAC 100 (resistant) and Dowling (resistant). E. heros showed reduced weight gain when fed cJ-treated Dowling, whereas no effect on weight gain was observed when fed other treated cultivars. Using analysis of variance, a three factor (cultivar x treatment x time) interaction was observed with concentrations of the flavonoid glycosides daidzin and genistin, and their corresponding aglycones, daidzein and genistein. There were increases in genistein and genistin concentrations in cJ-treated Dowling at 144 and 120 h post treatment, respectively. Higher concentrations of malonyldaidzin and malonylgenistin in Dowling, compared to BRS 134 and IAC 100, were observed independently of time, the highest concentrations being observed in cJ-treated seeds. Levels of glycitin and malonylglycitin were higher in BRS 134 and IAC 100 compared to Dowling. Canonical variate analysis indicated daidzein (in the first two canonical variates) and genistein (in the first only) as important discriminatory variables. These results suggest that cJ treatment leads to an increase in the levels of potentially defensive isoflavonoids in immature soybean seeds, but the negative effect upon E. heros performance is cultivar-dependent.
Collapse
Affiliation(s)
- José P da Graça
- Embrapa Centro Nacional de Pesquisa de Soja, Caixa Postal: 231, CEP. 86001-970, Londrina, PR, Brazil; UNESP Universidade Estadual Paulista, FCAV, Via de Acesso Prof. Paulo Donato Castellane, s/n, CEP. 14884-900, Jaboticabal, SP, Brazil
| | - Tatiana E Ueda
- Embrapa Centro Nacional de Pesquisa de Soja, Caixa Postal: 231, CEP. 86001-970, Londrina, PR, Brazil; UEL Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Caixa Postal 6001, CEP. 86051-980, Londrina, PR, Brazil
| | - Tatiani Janegitz
- Embrapa Centro Nacional de Pesquisa de Soja, Caixa Postal: 231, CEP. 86001-970, Londrina, PR, Brazil; UEM Universidade Estadual de Maringá, Avenida Colombo, 5790, Jardim Universitario, CEP. 87020-900, Maringá, PR, Brazil
| | - Simone S Vieira
- Embrapa Centro Nacional de Pesquisa de Soja, Caixa Postal: 231, CEP. 86001-970, Londrina, PR, Brazil; IAC Instituto Agronômico de Campinas, Av. Barão de Itapura, 1481, Cx. Postal: 28, CEP. 13012-970, Campinas, SP, Brazil
| | - Mariana C Salvador
- Embrapa Centro Nacional de Pesquisa de Soja, Caixa Postal: 231, CEP. 86001-970, Londrina, PR, Brazil; UEL Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Caixa Postal 6001, CEP. 86051-980, Londrina, PR, Brazil
| | - Maria C N de Oliveira
- Embrapa Centro Nacional de Pesquisa de Soja, Caixa Postal: 231, CEP. 86001-970, Londrina, PR, Brazil
| | - Sonia M Zingaretti
- UNAERP Universidade de Ribeirão Preto, Avenida Costábile Romano, Caixa Postal: 2201, CEP. 14096-900, Ribeirão Preto, SP, Brazil
| | - Stephen J Powers
- Computational and Systems Biology Department, Rothamsted Research, Harpenden, Herts. AL5 2JQ, United Kingdom
| | - John A Pickett
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Herts. AL5 2JQ, United Kingdom
| | - Michael A Birkett
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Herts. AL5 2JQ, United Kingdom
| | - Clara B Hoffmann-Campo
- Embrapa Centro Nacional de Pesquisa de Soja, Caixa Postal: 231, CEP. 86001-970, Londrina, PR, Brazil.
| |
Collapse
|
31
|
Kettle AJ, Batley J, Benfield AH, Manners JM, Kazan K, Gardiner DM. Degradation of the benzoxazolinone class of phytoalexins is important for virulence of Fusarium pseudograminearum towards wheat. MOLECULAR PLANT PATHOLOGY 2015; 16:946-62. [PMID: 25727347 PMCID: PMC6638480 DOI: 10.1111/mpp.12250] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Wheat, maize, rye and certain other agriculturally important species in the Poaceae family produce the benzoxazolinone class of phytoalexins on pest and pathogen attack. Benzoxazolinones can inhibit the growth of pathogens. However, certain fungi can actively detoxify these compounds. Despite this, a clear link between the ability to detoxify benzoxazolinones and pathogen virulence has not been shown. Here, through comparative genome analysis of several Fusarium species, we have identified a conserved genomic region around the FDB2 gene encoding an N-malonyltransferase enzyme known to be involved in benzoxazolinone degradation in the maize pathogen Fusarium verticillioides. Expression analyses demonstrated that a cluster of nine genes was responsive to exogenous benzoxazolinone in the important wheat pathogen Fusarium pseudograminearum. The analysis of independent F. pseudograminearum FDB2 knockouts and complementation of the knockout with FDB2 homologues from F. graminearum and F. verticillioides confirmed that the N-malonyltransferase enzyme encoded by this gene is central to the detoxification of benzoxazolinones, and that Fdb2 contributes quantitatively to virulence towards wheat in head blight inoculation assays. This contrasts with previous observations in F. verticillioides, where no effect of FDB2 mutations on pathogen virulence towards maize was observed. Overall, our results demonstrate that the detoxification of benzoxazolinones is a strategy adopted by wheat-infecting F. pseudograminearum to overcome host-derived chemical defences.
Collapse
Affiliation(s)
- Andrew J Kettle
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture Flagship, Queensland Bioscience Precinct, Level 4, 306 Carmody Road, St. Lucia, Brisbane, Qld, 4067, Australia
- School of Agriculture and Food Sciences, University of Queensland, St. Lucia, Brisbane, Qld, 4067, Australia
| | - Jacqueline Batley
- School of Agriculture and Food Sciences, University of Queensland, St. Lucia, Brisbane, Qld, 4067, Australia
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - Aurelie H Benfield
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture Flagship, Queensland Bioscience Precinct, Level 4, 306 Carmody Road, St. Lucia, Brisbane, Qld, 4067, Australia
| | - John M Manners
- CSIRO Agriculture Flagship, Black Mountain, Canberra, ACT, 2601, Australia
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture Flagship, Queensland Bioscience Precinct, Level 4, 306 Carmody Road, St. Lucia, Brisbane, Qld, 4067, Australia
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, St. Lucia, Brisbane, Qld, 4067, Australia
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture Flagship, Queensland Bioscience Precinct, Level 4, 306 Carmody Road, St. Lucia, Brisbane, Qld, 4067, Australia
| |
Collapse
|
32
|
Zheng L, McMullen MD, Bauer E, Schön CC, Gierl A, Frey M. Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3917-30. [PMID: 25969552 PMCID: PMC4473990 DOI: 10.1093/jxb/erv192] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Benzoxazinoids represent preformed protective and allelopathic compounds. The main benzoxazinoid in maize (Zea mays L.) is 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA). DIMBOA confers resistance to herbivores and microbes. Protective concentrations are found predominantly in young plantlets. We made use of the genetic diversity present in the maize nested association mapping (NAM) panel to identify lines with significant benzoxazinoid concentrations at later developmental stages. At 24 d after imbibition (dai), only three lines, including Mo17, showed effective DIMBOA concentrations of 1.5mM or more; B73, by contrast, had low a DIMBOA content. Mapping studies based on Mo17 and B73 were performed to reveal mechanisms that influence the DIMBOA level in 24 dai plants. A major quantitative trait locus mapped to the Bx gene cluster located on the short arm of chromosome 4, which encodes the DIMBOA biosynthetic genes. Mo17 was distinguished from all other NAM lines by high transcriptional expression of the Bx1 gene at later developmental stages. Bx1 encodes the signature enzyme of the pathway. In Mo17×B73 hybrids at 24 dai, only the Mo17 Bx1 allele transcript was detected. A 3.9kb cis-element, termed DICE (distal cis-element), that is located in the Bx gene cluster approximately 140 kb upstream of Bx1, was required for high Bx1 transcript levels during later developmental stages in Mo17. The DICE region was a hotspot of meiotic recombination. Genetic analysis revealed that high 24 dai DIMBOA concentrations were not strictly dependent on high Bx1 transcript levels. However, constitutive expression of Bx1 in transgenics increased DIMBOA levels at 24 dai, corroborating a correlation between DIMBOA content and Bx1 transcription.
Collapse
MESH Headings
- Alleles
- Base Pairing/genetics
- Benzoxazines/metabolism
- Biosynthetic Pathways/genetics
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Crosses, Genetic
- Gene Expression Regulation, Plant
- Genes, Plant
- Genotype
- Inbreeding
- Multigene Family
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Promoter Regions, Genetic/genetics
- Quantitative Trait Loci
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic
- Seedlings/metabolism
- Transcription, Genetic
- Zea mays/genetics
- Zea mays/growth & development
Collapse
Affiliation(s)
- Linlin Zheng
- Lehrstuhl für Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | | | - Eva Bauer
- Lehrstuhl für Pflanzenzüchtung, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Chris-Carolin Schön
- Lehrstuhl für Pflanzenzüchtung, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Alfons Gierl
- Lehrstuhl für Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Monika Frey
- Lehrstuhl für Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
33
|
Adhikari KB, Tanwir F, Gregersen PL, Steffensen SK, Jensen BM, Poulsen LK, Nielsen CH, Høyer S, Borre M, Fomsgaard IS. Benzoxazinoids: Cereal phytochemicals with putative therapeutic and health-protecting properties. Mol Nutr Food Res 2015; 59:1324-38. [DOI: 10.1002/mnfr.201400717] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/23/2014] [Accepted: 01/14/2015] [Indexed: 11/08/2022]
Affiliation(s)
| | - Fariha Tanwir
- Department of Molecular Biology and Genetics; Aarhus University; Slagelse Denmark
| | - Per L. Gregersen
- Department of Molecular Biology and Genetics; Aarhus University; Slagelse Denmark
| | | | | | - Lars K. Poulsen
- Allergy Clinic; Copenhagen University Hospital; Gentofte Denmark
| | - Claus H. Nielsen
- Department of Infectious Medicine and Rheumatology; University of Copenhagen; Rigshospitalet Denmark
| | - Søren Høyer
- Department of Pathology; Aarhus University Hospital; Skejby Denmark
| | - Michael Borre
- Department of Urology; Aarhus University Hospital; Aarhus Denmark
| | | |
Collapse
|
34
|
Bakera B, Makowska B, Groszyk J, Niziołek M, Orczyk W, Bolibok-Brągoszewska H, Hromada-Judycka A, Rakoczy-Trojanowska M. Structural characteristics of ScBx genes controlling the biosynthesis of hydroxamic acids in rye (Secale cereale L.). J Appl Genet 2015; 56:287-98. [PMID: 25666974 PMCID: PMC4543422 DOI: 10.1007/s13353-015-0271-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 11/29/2022]
Abstract
Benzoxazinoids (BX) are major secondary metabolites of gramineous plants that play an important role in disease resistance and allelopathy. They also have many other unique properties including anti-bacterial and anti-fungal activity, and the ability to reduce alfa–amylase activity. The biosynthesis and modification of BX are controlled by the genes Bx1 ÷ Bx10, GT and glu, and the majority of these Bx genes have been mapped in maize, wheat and rye. However, the genetic basis of BX biosynthesis remains largely uncharacterized apart from some data from maize and wheat. The aim of this study was to isolate, sequence and characterize five genes (ScBx1, ScBx2, ScBx3, ScBx4 and ScBx5) encoding enzymes involved in the synthesis of DIBOA, an important defense compound of rye. Using a modified 3D procedure of BAC library screening, seven BAC clones containing all of the ScBx genes were isolated and sequenced. Bioinformatic analyses of the resulting contigs were used to examine the structure and other features of these genes, including their promoters, introns and 3’UTRs. Comparative analysis showed that the ScBx genes are similar to those of other Poaceae species, especially to the TaBx genes. The polymorphisms present both in the coding sequences and non-coding regions of ScBx in relation to other Bx genes are predicted to have an impact on the expression, structure and properties of the encoded proteins.
Collapse
Affiliation(s)
- Beata Bakera
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 159 Nowoursynowska Str, 02-776, Warsaw, Poland,
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Boycheva S, Daviet L, Wolfender JL, Fitzpatrick TB. The rise of operon-like gene clusters in plants. TRENDS IN PLANT SCIENCE 2014; 19:447-59. [PMID: 24582794 DOI: 10.1016/j.tplants.2014.01.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/19/2014] [Accepted: 01/30/2014] [Indexed: 05/18/2023]
Abstract
Gene clusters are common features of prokaryotic genomes also present in eukaryotes. Most clustered genes known are involved in the biosynthesis of secondary metabolites. Although horizontal gene transfer is a primary source of prokaryotic gene cluster (operon) formation and has been reported to occur in eukaryotes, the predominant source of cluster formation in eukaryotes appears to arise de novo or through gene duplication followed by neo- and sub-functionalization or translocation. Here we aim to provide an overview of the current knowledge and open questions related to plant gene cluster functioning, assembly, and regulation. We also present potential research approaches and point out the benefits of a better understanding of gene clusters in plants for both fundamental and applied plant science.
Collapse
Affiliation(s)
- Svetlana Boycheva
- Department of Botany and Plant Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Laurent Daviet
- Biotechnology Department, Corporate R&D Division, FIRMENICH SA, 1211 Geneva 4, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
36
|
Discovery of gramine derivatives that inhibit the early stage of EV71 replication in vitro. Molecules 2014; 19:8949-64. [PMID: 24979400 PMCID: PMC6271245 DOI: 10.3390/molecules19078949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 12/12/2022] Open
Abstract
Enterovirus 71 (EV71) is a notable causative agent of hand, foot, and mouth disease in children, which is associated with an increased incidence of severe neurological disease and death, yet there is no specific treatment or vaccine for EV71 infections. In this study, the antiviral activity of gramine and 21 gramine derivatives against EV71 was investigated in cell-based assays. Eighteen derivatives displayed some degree of inhibitory effects against EV71, in that they could effectively inhibit virus-induced cytopathic effects (CPEs), but the anti-EV71 activity of the lead compound gramine was not observed. Studies on the preliminary modes of action showed that these compounds functioned by targeting the early stage of the EV71 lifecycle after viral entry, rather than inactivating the virus directly, inhibiting virus adsorption or affecting viral release from the cells. Among these derivatives, one (compound 4s) containing pyridine and benzothiazole units showed the most potency against EV71. Further studies demonstrated that derivative 4s could profoundly inhibit viral RNA replication, protein synthesis, and virus-induced apoptosis in RD cells. These results indicate that derivative 4s might be a feasible therapeutic agent against EV71 infection and that these gramine derivatives may provide promising lead scaffolds for the further design and synthesis of potential antiviral agents.
Collapse
|
37
|
Cordell GA. Fifty years of alkaloid biosynthesis in Phytochemistry. PHYTOCHEMISTRY 2013; 91:29-51. [PMID: 22721782 DOI: 10.1016/j.phytochem.2012.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/22/2012] [Accepted: 05/10/2012] [Indexed: 05/04/2023]
Abstract
An overview is presented of the studies related to the biosynthesis of alkaloids published in Phytochemistry in the past 50 years.
Collapse
|
38
|
Takos AM, Rook F. Why biosynthetic genes for chemical defense compounds cluster. TRENDS IN PLANT SCIENCE 2012; 17:383-8. [PMID: 22609284 DOI: 10.1016/j.tplants.2012.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/13/2012] [Accepted: 04/15/2012] [Indexed: 05/20/2023]
Abstract
In plants, the genomic clustering of non-homologous genes for the biosynthesis of chemical defense compounds is an emerging theme. Gene clustering is also observed for polymorphic sexual traits under balancing selection, and examples in plants are self-incompatibility and floral dimorphy. The chemical defense pathways organized as gene clusters are self-contained biosynthetic modules under opposing selection pressures and adaptive polymorphisms, often the presence or absence of a functional pathway, are observed in nature. We propose that these antagonistic selection pressures favor closer physical linkage between beneficially interacting alleles as the resulting reduction in recombination maintains a larger fraction of the fitter genotypes. Gene clusters promote the stable inheritance of functional chemical defense pathways in the dynamic ecological context of natural populations.
Collapse
Affiliation(s)
- Adam M Takos
- Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | | |
Collapse
|
39
|
Analysis of alkaloids from different chemical groups by different liquid chromatography methods. OPEN CHEM 2012. [DOI: 10.2478/s11532-012-0037-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractAlkaloids are biologically active compounds widely used as pharmaceuticals and synthesised as secondary methabolites in plants. Many of these compounds are strongly toxic. Therefore, they are often subject of scientific interests and analysis. Since alkaloids — basic compounds appear in aqueous solutions as ionized and unionized forms, they are difficult for chromatographic separation for peak tailing, poor systems efficiency, poor separation and poor column-to-column reproducibility. For this reason it is necessity searching of more suitable chromatographic systems for analysis of the compounds. In this article we present an overview on the separation of selected alkaloids from different chemical groups by liquid chromatography thus indicating the range of useful methods now available for alkaloid analysis. Different selectivity, system efficiency and peaks shape may be achieved in different LC methods separations by use of alternative stationary phases: silica, alumina, chemically bonded stationary phases, cation exchange phases, or by varying nonaqueous or aqueous mobile phase (containing different modifier, different buffers at different pH, ion-pairing or silanol blocker reagents). Developments in TLC (NP and RP systems), HPLC (NP, RP, HILIC, ion-exchange) are presented and the advantages of each method for alkaloids analysis are discussed.
Collapse
|
40
|
Dutartre L, Hilliou F, Feyereisen R. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster. BMC Evol Biol 2012; 12:64. [PMID: 22577841 PMCID: PMC3449204 DOI: 10.1186/1471-2148-12-64] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 04/17/2012] [Indexed: 01/25/2023] Open
Abstract
Background The benzoxazinoids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA), are key defense compounds present in major agricultural crops such as maize and wheat. Their biosynthesis involves nine enzymes thought to form a linear pathway leading to the storage of DI(M)BOA as glucoside conjugates. Seven of the genes (Bx1-Bx6 and Bx8) form a cluster at the tip of the short arm of maize chromosome 4 that includes four P450 genes (Bx2-5) belonging to the same CYP71C subfamily. The origin of this cluster is unknown. Results We show that the pathway appeared following several duplications of the TSA gene (α-subunit of tryptophan synthase) and of a Bx2-like ancestral CYP71C gene and the recruitment of Bx8 before the radiation of Poaceae. The origins of Bx6 and Bx7 remain unclear. We demonstrate that the Bx2-like CYP71C ancestor was not committed to the benzoxazinoid pathway and that after duplications the Bx2-Bx5 genes were under positive selection on a few sites and underwent functional divergence, leading to the current specific biochemical properties of the enzymes. The absence of synteny between available Poaceae genomes involving the Bx gene regions is in contrast with the conserved synteny in the TSA gene region. Conclusions These results demonstrate that rearrangements following duplications of an IGL/TSA gene and of a CYP71C gene probably resulted in the clustering of the new copies (Bx1 and Bx2) at the tip of a chromosome in an ancestor of grasses. Clustering favored cosegregation and tip chromosomal location favored gene rearrangements that allowed the further recruitment of genes to the pathway. These events, a founding event and elongation events, may have been the key to the subsequent evolution of the benzoxazinoid biosynthetic cluster.
Collapse
Affiliation(s)
- Leslie Dutartre
- Institut National de la Recherche Agronomique, UMR Institut Sophia Agrobiotech, Centre National de la Recherche Scientifique, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
| | | | | |
Collapse
|
41
|
Sue M, Nakamura C, Nomura T. Dispersed benzoxazinone gene cluster: molecular characterization and chromosomal localization of glucosyltransferase and glucosidase genes in wheat and rye. PLANT PHYSIOLOGY 2011; 157:985-97. [PMID: 21875895 PMCID: PMC3252142 DOI: 10.1104/pp.111.182378] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Benzoxazinones (Bxs) are major defensive secondary metabolites in wheat (Triticum aestivum), rye (Secale cereale), and maize (Zea mays). Here, we identified full sets of homeologous and paralogous genes encoding Bx glucosyltransferase (GT) and Bx-glucoside glucosidase (Glu) in hexaploid wheat (2n = 6x = 42; AABBDD). Four GT loci (TaGTa-TaGTd) were mapped on chromosomes 7A, 7B (two loci), and 7D, whereas four glu1 loci (Taglu1a-Taglu1d) were on chromosomes 2A, 2B (two loci), and 2D. Transcript levels differed greatly among the four loci; B-genome loci of both TaGT and Taglu1 genes were preferentially transcribed. Catalytic properties of the enzyme encoded by each homeolog/paralog also differed despite high levels of identity among amino acid sequences. The predominant contribution of the B genome to GT and Glu reactions was revealed, as observed previously for the five Bx biosynthetic genes, TaBx1 to TaBx5, which are separately located on homeologous groups 4 and 5 chromosomes. In rye, where the ScBx1 to ScBx5 genes are dispersed to chromosomes 7R and 5R, ScGT and Scglu were located separately on chromosomes 4R and 2R, respectively. The dispersal of Bx-pathway loci to four distinct chromosomes in hexaploid wheat and rye suggests that the clustering of Bx-pathway genes, as found in maize, is not essential for coordinated transcription. On the other hand, barley (Hordeum vulgare) was found to lack the orthologous GT and glu loci like the Bx1 to Bx5 loci despite its close phylogenetic relationship with wheat and rye. These results contribute to our understanding of the evolutionary processes that the Bx-pathway loci have undergone in grasses.
Collapse
|
42
|
Abstract
Operons (clusters of co-regulated genes with related functions) are common features of bacterial genomes. More recently, functional gene clustering has been reported in eukaryotes, from yeasts to filamentous fungi, plants, and animals. Gene clusters can consist of paralogous genes that have most likely arisen by gene duplication. However, there are now many examples of eukaryotic gene clusters that contain functionally related but non-homologous genes and that represent functional gene organizations with operon-like features (physical clustering and co-regulation). These include gene clusters for use of different carbon and nitrogen sources in yeasts, for production of antibiotics, toxins, and virulence determinants in filamentous fungi, for production of defense compounds in plants, and for innate and adaptive immunity in animals (the major histocompatibility locus). The aim of this article is to review features of functional gene clusters in prokaryotes and eukaryotes and the significance of clustering for effective function.
Collapse
Affiliation(s)
- Anne E Osbourn
- Department of Metabolic Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| | | |
Collapse
|
43
|
Frey M, Schullehner K, Dick R, Fiesselmann A, Gierl A. Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. PHYTOCHEMISTRY 2009; 70:1645-51. [PMID: 19577780 DOI: 10.1016/j.phytochem.2009.05.012] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/23/2009] [Accepted: 05/15/2009] [Indexed: 05/02/2023]
Abstract
Benzoxazinoids are secondary metabolites that are effective in defence and allelopathy. They are synthesised in two subfamilies of the Poaceae and sporadically found in single species of the dicots. The biosynthesis is fully elucidated in maize; here the genes encoding the enzymes of the pathway are in physical proximity. This "biosynthetic cluster" might facilitate coordinated gene regulation. Data from Zea mays, Triticum aestivum and Hordeum lechleri suggest that the pathway is of monophyletic origin in the Poaceae. The branchpoint from the primary metabolism (Bx1 gene) can be traced back to duplication and functionalisation of the alpha-subunit of tryptophan synthase (TSA). Modification of the intermediates by consecutive hydroxylation is catalysed by members of a cytochrome P450 enzyme subfamily (Bx2-Bx5). Glucosylation by an UDP-glucosyltransferase (UGT, Bx8, Bx9) is essential for the reduction of autotoxicity of the benzoxazinoids. In some species 2,4-dihydroxy-1,4-benzoxazin-3-one-glucoside (DIBOA-glc) is further modified by the 2-oxoglutarate-dependent dioxygenase BX6 and the O-methyltransferase BX7. In the dicots Aphelandra squarrosa, Consolida orientalis, and Lamium galeobdolon, benzoxazinoid biosynthesis is analogously organised: The branchpoint is established by a homolog of TSA, P450 enzymes catalyse hydroxylations and at least the first hydroxylation reaction is identical in dicots and Poaceae, the toxic aglucon is glucosylated by an UGT. Functionally, TSA and BX1 are indole-glycerolphosphate lyases (IGLs). Igl genes seem to be generally duplicated in angiosperms. Modelling and biochemical characterisation of IGLs reveal that the catalytic properties of the enzyme can easily be modified by mutation. Independent evolution can be assumed for the BX1 function in dicots and Poaceae.
Collapse
Affiliation(s)
- Monika Frey
- Lehrstuhl für Genetik, Technische Universität München, Freising, Germany
| | | | | | | | | |
Collapse
|
44
|
Macías FA, Marín D, Oliveros-Bastidas A, Molinillo JMG. Rediscovering the bioactivity and ecological role of 1,4-benzoxazinones. Nat Prod Rep 2009; 26:478-89. [PMID: 19642418 DOI: 10.1039/b700682a] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compounds of the (2H)-1,4-benzoxazin-3(4H)-one class have attracted the attention of phytochemists since the first isolation of 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA) and 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA). Extensive research has been carried out on the isolation and synthesis of these materials as well as on the dynamics of their degradation in different systems. This has led to the discovery of a wide variety of compounds that are of high interest from the point of view of phytotoxic, antifungal, antimicrobial, and antifeedant effects among others. The potential application of benzoxazinones and their derivatives as leads for natural herbicide models is a topic of current interest. Furthermore, the importance of degradation on the ecological behaviour of benzoxazinone-producing plants is also being realised, and proposals concerning the role of the degradation products in chemical defence mechanisms have been put forward. There is also increasing interest in the improvement of analytical methodologies, and ecotoxicologic effects, toxicity on target and non-target organisms, and degradation kinetics are also being addressed. The development of new phytotoxicity bioassay techniques represents one of the most important breakthroughs in this respect. Moreover, benzoxazinones and some of their derivatives have been employed in the development of pharmaceuticals. The versatility of the benzoxazinone skeleton, in addition to its relative chemical simplicity and accessibility, makes these chemicals amongst the most promising sources of bioactive compounds that are natural in origin.
Collapse
Affiliation(s)
- Francisco A Macías
- Grupo de Alelopatía, Departamento de Química Orgánica, Universidad de Cádiz, Avda. Repiúlica Saharaui, s/n 11510 Puerto Real, Cádiz, Spain.
| | | | | | | |
Collapse
|
45
|
Niemeyer HM. Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: key defense chemicals of cereals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:1677-96. [PMID: 19199602 DOI: 10.1021/jf8034034] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Many cereals accumulate hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one. These benzoxazinoid hydroxamic acids are involved in defense of maize against various lepidopteran pests, most notably the European corn borer, in defense of cereals against various aphid species, and in allelopathy affecting the growth of weeds associated with rye and wheat crops. The role of benzoxazinoid hydroxamic acids in defense against fungal infection is less clear and seems to depend on the nature of the interactions at the plant-fungus interface. Efficient use of benzoxazinoid hydroxamic acids as resistance factors has been limited by the inability to selectively increase their levels at the plant growth stage and the plant tissues where they are mostly needed for a given pest. Although the biosynthesis of benzoxazinoid hydroxamic acids has been elucidated, the genes and mechanisms controlling their differential expression in different plant tissues and along plant ontogeny remain to be unraveled.
Collapse
Affiliation(s)
- Hermann M Niemeyer
- Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| |
Collapse
|
46
|
Schullehner K, Dick R, Vitzthum F, Schwab W, Brandt W, Frey M, Gierl A. Benzoxazinoid biosynthesis in dicot plants. PHYTOCHEMISTRY 2008; 69:2668-77. [PMID: 18929374 DOI: 10.1016/j.phytochem.2008.08.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 08/25/2008] [Accepted: 08/27/2008] [Indexed: 05/25/2023]
Abstract
Benzoxazinoids are common defence compounds of the grasses and are sporadically found in single species of two unrelated orders of the dicots. In the three dicotyledonous species Aphelandra squarrosa, Consolida orientalis and Lamium galeobdolon the main benzoxazinoid aglucon is 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA). While benzoxazinoids in Aphelandra squarrosa are restricted to the root, in Consolida orientalis and Lamium galeobdolon DIBOA is found in all above ground organs of the adult plant in concentrations as high as in the seedling of maize. The initial biosynthetic steps in dicots and monocots seem to be identical. Indole is most probably the first specific intermediate that is oxygenated to indolin-2-one by a cytochrome P450 enzyme. C. orientalis has an active indole-3-glycerolphosphate lyase for indole formation that evolved independently from its orthologous function in maize. The properties and evolution of plant indole-3-glycerolphosphate lyases are discussed.
Collapse
Affiliation(s)
- Katrin Schullehner
- Lehrstuhl für Genetik, Technische Universität München, Am Hochanger 8, 85350 Freising, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Kliebenstein DJ. A role for gene duplication and natural variation of gene expression in the evolution of metabolism. PLoS One 2008; 3:e1838. [PMID: 18350173 PMCID: PMC2263126 DOI: 10.1371/journal.pone.0001838] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 02/19/2008] [Indexed: 11/18/2022] Open
Abstract
Background Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function. Methodology/Principal Findings To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures. Conclusion These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.
Collapse
Affiliation(s)
- Daniel J Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America.
| |
Collapse
|
48
|
Jonczyk R, Schmidt H, Osterrieder A, Fiesselmann A, Schullehner K, Haslbeck M, Sicker D, Hofmann D, Yalpani N, Simmons C, Frey M, Gierl A. Elucidation of the final reactions of DIMBOA-glucoside biosynthesis in maize: characterization of Bx6 and Bx7. PLANT PHYSIOLOGY 2008; 146:1053-63. [PMID: 18192444 PMCID: PMC2259038 DOI: 10.1104/pp.107.111237] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 01/08/2008] [Indexed: 05/18/2023]
Abstract
Benzoxazinoids were identified in the early 1960s as secondary metabolites of the grasses that function as natural pesticides and exhibit allelopathic properties. Benzoxazinoids are synthesized in seedlings and stored as glucosides (glcs); the main aglucone moieties are 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA) and 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA). The genes of DIBOA-glc biosynthesis have previously been isolated and the enzymatic functions characterized. Here, the enzymes for conversion of DIBOA-glc to DIMBOA-glc are identified. DIBOA-glc is the substrate of the dioxygenase BENZOXAZINLESS6 (BX6) and the produced 2,4,7-trihydroxy-2H-1,4-benzoxazin-3-(4H)-one-glc is metabolized by the methyltransferase BX7 to yield DIMBOA-glc. Both enzymes exhibit moderate K(m) values (below 0.4 mm) and k(cat) values of 2.10 s(-1) and 0.25 s(-1), respectively. Although BX6 uses a glucosylated substrate, our localization studies indicate a cytoplasmic localization of the dioxygenase. Bx6 and Bx7 are highest expressed in seedling tissue, a feature shared with the other Bx genes. At present, Bx6 and Bx7 have no close relatives among the members of their respective gene families. Bx6 and Bx7 map to the cluster of Bx genes on the short arm of chromosome 4.
Collapse
Affiliation(s)
- Rafal Jonczyk
- Technische Universität München, Lehrstuhl für Genetik, Freising, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nomura T, Nasuda S, Kawaura K, Ogihara Y, Kato N, Sato F, Kojima T, Toyoda A, Iwamura H, Endo TR. Structures of the three homoeologous loci of wheat benzoxazinone biosynthetic genes TaBx3 and TaBx4 and characterization of their promoter sequences. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:373-381. [PMID: 18040657 DOI: 10.1007/s00122-007-0675-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 11/09/2007] [Indexed: 05/25/2023]
Abstract
Common wheat (2n=6x=42, genome formula AABBDD) accumulates benzoxazinones (Bxs) as defensive compounds. There are five Bx biosynthetic genes (TaBx1-TaBx5), and their homoeologous alleles are located on all three homoeologous chromosomes of the A, B and D genomes. Here the molecular structures of the TaBx3 and TaBx4 loci, both of which are located on chromosomes 5A, 5B and 5D, were revealed by sequencing transformation-competent artificial chromosome (TAC) clones. In all homoeologous chromosomes, TaBx3 existed downstream of TaBx4 in a tail-to-head manner, and the two genes were separated from each other by 9.0 kb in 5A, 7.3 kb in 5B and 11.3 kb in 5D. Among the three homoeologs of TaBx3 and TaBx4, the promoter sequences were less conserved than the coding sequences. The promoter sequences of TaBx3 and TaBx4 were highly similar to those of their respective orthologs in the diploid progenitors of common wheat, but were not similar to those of the maize orthologs. Sequence similarity was found between the TaBx3 and TaBx4 coding sequences, but not between their promoter sequences despite their similar transcription pattern at the seedling stage. Some putative cis-elements were found to be shared by all TaBx3 and TaBx4 promoter regions. These results imply that stage-specific transcription of TaBx3 and TaBx4 is not controlled by global sequence similarity of their promoters but by some essential cis-elements. The promoter activity measured by transient assays in wheat protoplasts was similar among the three homoeologs of TaBx3 and TaBx4 in spite of their differential transcript levels in wheat seedlings.
Collapse
Affiliation(s)
- Taiji Nomura
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nomura T, Ishihara A, Yanagita RC, Endo TR, Iwamura H. Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proc Natl Acad Sci U S A 2005; 102:16490-5. [PMID: 16260753 PMCID: PMC1283429 DOI: 10.1073/pnas.0505156102] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Indexed: 01/04/2023] Open
Abstract
Hexaploid wheat (Triticum aestivum) accumulates benzoxazinones (Bxs) as defensive compounds. Previously, we found that five Bx biosynthetic genes, TaBx1-TaBx5, are located on each of the three genomes (A, B, and D) of hexaploid wheat. In this study, we isolated three homoeologous cDNAs of each TaBx gene to estimate the contribution of individual homoeologous TaBx genes to the biosynthesis of Bxs in hexaploid wheat. We analyzed their transcript levels by homoeolog- or genome-specific quantitative RT-PCR and the catalytic properties of their translation products by kinetic analyses using recombinant TaBX enzymes. The three homoeologs were transcribed differentially, and the ratio of the individual homoeologous transcripts to total homoeologous transcripts also varied with the tissue, i.e., shoots or roots, as well as with the developmental stage. Moreover, the translation products of the three homoeologs had different catalytic properties. Some TaBx homoeologs were efficiently transcribed, but the translation products showed only weak enzymatic activities, which inferred their weak contribution to Bx biosynthesis. Considering the transcript levels and the catalytic properties collectively, we concluded that the homoeologs on the B genome generally contributed the most to the Bx biosynthesis in hexaploid wheat, especially in shoots. In tetraploid wheat and the three diploid progenitors of hexaploid wheat, the respective transcript levels of the TaBx homoeologs were similar in ratio to those observed in hexaploid wheat. This result indicates that the genomic bias in the transcription of the TaBx genes in hexaploid wheat originated in the diploid progenitors and has been retained through the polyploidization.
Collapse
Affiliation(s)
- Taiji Nomura
- Divisions of Applied Biosciences and Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|