1
|
Kawada K, Saito T, Onoda S, Inayama T, Takahashi I, Seto Y, Nomura T, Sasaki Y, Asami T, Yajima S, Ito S. Synthesis of Carlactone Derivatives to Develop a Novel Inhibitor of Strigolactone Biosynthesis. ACS OMEGA 2023; 8:13855-13862. [PMID: 37091382 PMCID: PMC10116532 DOI: 10.1021/acsomega.3c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Strigolactones (SLs), phytohormones that inhibit shoot branching in plants, promote the germination of root-parasitic plants, such as Striga spp. and Orobanche spp., which drastically reduces the crop yield. Therefore, reducing SL production via chemical treatment may increase the crop yield. To design specific inhibitors, it is valid to utilize the substrate structure of the target proteins as lead compounds. In this study, we focused on Os900, a rice enzyme that oxidizes the SL precursor carlactone (CL) to 4-deoxyorobanchol (4DO), and synthesized 10 CL derivatives. The effects of the synthesized CL derivatives on SL biosynthesis were evaluated by the Os900 enzyme assay in vitro and by measuring 4DO levels in rice root exudates. We identified some CL derivatives that inhibited SL biosynthesis in vitro and in vivo.
Collapse
Affiliation(s)
- Kojiro Kawada
- Department
of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
- Graduate
School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tatsuo Saito
- Department
of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Satoshi Onoda
- Department
of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takuma Inayama
- Department
of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Ikuo Takahashi
- Graduate
School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshiya Seto
- Department
of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1
Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Takahito Nomura
- Center
for Bioscience Research and Education, Utsunomiya
University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Yasuyuki Sasaki
- Department
of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tadao Asami
- Graduate
School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shunsuke Yajima
- Department
of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shinsaku Ito
- Department
of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
- . Phone: +81-3-5477-2460
| |
Collapse
|
2
|
Wakabayashi T, Ishiwa S, Shida K, Motonami N, Suzuki H, Takikawa H, Mizutani M, Sugimoto Y. Identification and characterization of sorgomol synthase in sorghum strigolactone biosynthesis. PLANT PHYSIOLOGY 2021; 185:902-913. [PMID: 33793911 PMCID: PMC8133691 DOI: 10.1093/plphys/kiaa113] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/09/2020] [Indexed: 05/10/2023]
Abstract
Strigolactones (SLs), first identified as germination stimulants for root parasitic weeds, act as endogenous phytohormones regulating shoot branching and as root-derived signal molecules mediating symbiotic communications in the rhizosphere. Canonical SLs typically have an ABCD ring system and can be classified into orobanchol- and strigol-type based on the C-ring stereochemistry. Their simplest structures are 4-deoxyorobanchol (4DO) and 5-deoxystrigol (5DS), respectively. Diverse canonical SLs are chemically modified with one or more hydroxy or acetoxy groups introduced into the A- and/or B-ring of these simplest structures, but the biochemical mechanisms behind this structural diversity remain largely unexplored. Sorgomol in sorghum (Sorghum bicolor [L.] Moench) is a strigol-type SL with a hydroxy group at C-9 of 5DS. In this study, we characterized sorgomol synthase. Microsomal fractions prepared from a high-sorgomol-producing cultivar of sorghum, Sudax, were shown to convert 5DS to sorgomol. A comparative transcriptome analysis identified SbCYP728B subfamily as candidate genes encoding sorgomol synthase. Recombinant SbCYP728B35 catalyzed the conversion of 5DS to sorgomol in vitro. Substrate specificity revealed that the C-8bS configuration in the C-ring of 5DS stereoisomers was essential for this reaction. The overexpression of SbCYP728B35 in Lotus japonicus hairy roots, which produce 5DS as an endogenous SL, also resulted in the conversion of 5DS to sorgomol. Furthermore, SbCYP728B35 expression was not detected in nonsorgomol-producing cultivar, Abu70, suggesting that this gene is responsible for sorgomol production in sorghum. Identification of the mechanism modifying parental 5DS of strigol-type SLs provides insights on how plants biosynthesize diverse SLs.
Collapse
Affiliation(s)
- Takatoshi Wakabayashi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Shunsuke Ishiwa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kasumi Shida
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Noriko Motonami
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba, 292-0818, Japan
| | - Hirosato Takikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Author for communication:
| |
Collapse
|
3
|
Ueno K, Wakabayashi T, Sugimoto Y. Isolation and Identification of Naturally Occurring Strigolactones. Methods Mol Biol 2021; 2309:13-23. [PMID: 34028675 DOI: 10.1007/978-1-0716-1429-7_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The accurate structure determination of strigolactones (SLs) that are produced by plants leads to the precise understanding of the biosynthesis and functions of their molecules. SLs need to be isolated and purified from the plant roots or root exudates in a hydroponic solution using appropriate methods in order to determine the structures. In this chapter, we describe a small-scale extraction method for chromatographic analysis of known SLs and a large-scale purification method for isolation of unknown SLs, together with methods for the hydroponic culture of plants and collection of root exudates. Finally, we present spectroscopic data that are helpful in identifying SLs.
Collapse
Affiliation(s)
- Kotomi Ueno
- Faculty of Agriculture, Tottori University, Koyama, Tottori, Japan
| | | | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, Nada, Kobe, Japan.
| |
Collapse
|
4
|
Triflumizole as a Novel Lead Compound for Strigolactone Biosynthesis Inhibitor. Molecules 2020; 25:molecules25235525. [PMID: 33255720 PMCID: PMC7728069 DOI: 10.3390/molecules25235525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Strigolactones (SLs) are carotenoid-derived plant hormones involved in the development of various plants. SLs also stimulate seed germination of the root parasitic plants, Striga spp. and Orobanche spp., which reduce crop yield. Therefore, regulating SL biosynthesis may lessen the damage of root parasitic plants. Biosynthetic inhibitors effectively control biological processes by targeted regulation of biologically active compounds. In addition, biosynthetic inhibitors regulate endogenous levels in developmental stage- and tissue-specific manners. To date, although some chemicals have been found as SL biosynthesis inhibitor, these are derived from only three lead chemicals. In this study, to find a novel lead chemical for SL biosynthesis inhibitor, 27 nitrogen-containing heterocyclic derivatives were screened for inhibition of SL biosynthesis. Triflumizole most effectively reduced the levels of rice SL, 4-deoxyorobanchol (4DO), in root exudates. In addition, triflumizole inhibited endogenous 4DO biosynthesis in rice roots by inhibiting the enzymatic activity of Os900, a rice enzyme that converts the SL intermediate carlactone to 4DO. A Striga germination assay revealed that triflumizole-treated rice displayed a reduced level of germination stimulation for Striga. These results identify triflumizole as a novel lead compound for inhibition of SL biosynthesis.
Collapse
|
5
|
Zhao B, Wu TT, Ma SS, Jiang DJ, Bie XM, Sui N, Zhang XS, Wang F. TaD27-B gene controls the tiller number in hexaploid wheat. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:513-525. [PMID: 31350929 PMCID: PMC6953239 DOI: 10.1111/pbi.13220] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/13/2019] [Accepted: 07/24/2019] [Indexed: 05/05/2023]
Abstract
Tillering is a significant agronomic trait in wheat which shapes plant architecture and yield. Strigolactones (SLs) function in inhibiting axillary bud outgrowth. The roles of SLs in the regulation of bud outgrowth have been described in model plant species, including rice and Arabidopsis. However, the role of SLs genes in wheat remains elusive due to the size and complexity of the wheat genomes. In this study, TaD27 genes in wheat, orthologs of rice D27 encoding an enzyme involved in SLs biosynthesis, were identified. TaD27-RNAi wheat plants had more tillers, and TaD27-B-OE wheat plants had fewer tillers. Germination bioassay of Orobanche confirmed the SLs was deficient in TaD27-RNAi and excessive in TaD27-B-OE wheat plants. Moreover, application of exogenous GR24 or TIS108 could mediate the axillary bud outgrowth of TaD27-RNAi and TaD27-B-OE in the hydroponic culture, suggesting that TaD27-B plays critical roles in regulating wheat tiller number by participating in SLs biosynthesis. Unlike rice D27, plant height was not affected in the transgenic wheat plants. Transcription and gene coexpression network analysis showed that a number of genes are involved in the SLs signalling pathway and axillary bud development. Our results indicate that TaD27-B is a key factor in the regulation of tiller number in wheat.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandongChina
| | - Ting Ting Wu
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandongChina
| | - Shan Shan Ma
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandongChina
| | - Deng Ji Jiang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandongChina
| | - Xiao Min Bie
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandongChina
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant StressCollege of Life ScienceShandong Normal UniversityJinanChina
| | - Xian Sheng Zhang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandongChina
| | - Fang Wang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandongChina
| |
Collapse
|
6
|
Nakamura H, Hirabayashi K, Miyakawa T, Kikuzato K, Hu W, Xu Y, Jiang K, Takahashi I, Niiyama R, Dohmae N, Tanokura M, Asami T. Triazole Ureas Covalently Bind to Strigolactone Receptor and Antagonize Strigolactone Responses. MOLECULAR PLANT 2019; 12:44-58. [PMID: 30391752 DOI: 10.1016/j.molp.2018.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 05/20/2023]
Abstract
Strigolactones, a class of plant hormones with multiple functions, mediate plant-plant and plant-microorganism communications in the rhizosphere. In this study, we developed potent strigolactone antagonists, which covalently bind to the strigolactone receptor D14, by preparing an array of triazole urea compounds. Using yeast two-hybrid and rice-tillering assays, we identified a triazole urea compound KK094 as a potent inhibitor of strigolactone receptors. Liquid chromatography-tandem mass spectrometry analysis and X-ray crystallography revealed that KK094 was hydrolyzed by D14, and that a reaction product of this degradation covalently binds to the Ser residue of the catalytic triad of D14. Furthermore, we identified two triazole urea compounds KK052 and KK073, whose effects on D14-D53/D14-SLR1 complex formation were opposite due to the absence (KK052) or presence (KK073) of a trifluoromethyl group on their phenyl ring. These results demonstrate that triazole urea compounds are potentially powerful tools for agricultural application and may be useful for the elucidation of the complicated mechanism underlying strigolactone perception.
Collapse
Affiliation(s)
- Hidemitsu Nakamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kei Hirabayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Miyakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ko Kikuzato
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Wenqian Hu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuqun Xu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ruri Niiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Masaru Tanokura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
7
|
Hasegawa S, Tsutsumi T, Fukushima S, Okabe Y, Saito J, Katayama M, Shindo M, Yamada Y, Shimomura K, Yoneyama K, Akiyama K, Aoki K, Ariizumi T, Ezura H, Yamaguchi S, Umehara M. Low Infection of Phelipanche aegyptiaca in Micro-Tom Mutants Deficient in CAROTENOIDCLEAVAGE DIOXYGENASE 8. Int J Mol Sci 2018; 19:E2645. [PMID: 30200620 PMCID: PMC6163878 DOI: 10.3390/ijms19092645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/02/2022] Open
Abstract
Strigolactones (SLs), a group of plant hormones, induce germination of root-parasitic plants and inhibit shoot branching in many plants. Shoot branching is an important trait that affects the number and quality of flowers and fruits. Root-parasitic plants, such as Phelipanche spp., infect tomato roots and cause economic damage in Europe and North Africa-hence why resistant tomato cultivars are needed. In this study, we found carotenoid cleavage dioxygenase 8-defective mutants of Micro-Tom tomato (slccd8) by the "targeting induced local lesions in genomes" (TILLING) method. The mutants showed excess branching, which was suppressed by exogenously applied SL. Grafting shoot scions of the slccd8 mutants onto wild-type (WT) rootstocks restored normal branching in the scions. The levels of endogenous orobanchol and solanacol in WT were enough detectable, whereas that in the slccd8 mutants were below the detection limit of quantification analysis. Accordingly, root exudates of the slccd8 mutants hardly stimulated seed germination of root parasitic plants. In addition, SL deficiency did not critically affect the fruit traits of Micro-Tom. Using a rhizotron system, we also found that Phelipanche aegyptiaca infection was lower in the slccd8 mutants than in wild-type Micro-Tom because of the low germination. We propose that the slccd8 mutants might be useful as new tomato lines resistant to P. aegyptiaca.
Collapse
Affiliation(s)
- Shoko Hasegawa
- Graduate School of Life Sciences, Toyo University, Itakura-machi, Ora-gun, Gunma 374-0193, Japan.
| | - Takuya Tsutsumi
- Department of Applied Biosciences, Toyo University, Itakura-machi, Ora-gun, Gunma 374-0193, Japan.
| | - Shunsuke Fukushima
- Department of Applied Biosciences, Toyo University, Itakura-machi, Ora-gun, Gunma 374-0193, Japan.
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | - Junna Saito
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Mina Katayama
- College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Masato Shindo
- Graduate School of Life Sciences, Toyo University, Itakura-machi, Ora-gun, Gunma 374-0193, Japan.
| | - Yusuke Yamada
- Graduate School of Life Sciences, Toyo University, Itakura-machi, Ora-gun, Gunma 374-0193, Japan.
| | - Koichiro Shimomura
- Graduate School of Life Sciences, Toyo University, Itakura-machi, Ora-gun, Gunma 374-0193, Japan.
| | - Kaori Yoneyama
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| | - Kohki Akiyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | - Shinjiro Yamaguchi
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | - Mikihisa Umehara
- Graduate School of Life Sciences, Toyo University, Itakura-machi, Ora-gun, Gunma 374-0193, Japan.
- Department of Applied Biosciences, Toyo University, Itakura-machi, Ora-gun, Gunma 374-0193, Japan.
| |
Collapse
|
8
|
Shindo M, Shimomura K, Yamaguchi S, Umehara M. Upregulation of DWARF27 is associated with increased strigolactone levels under sulfur deficiency in rice. PLANT DIRECT 2018; 2:e00050. [PMID: 31245716 PMCID: PMC6508544 DOI: 10.1002/pld3.50] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/14/2018] [Accepted: 03/05/2018] [Indexed: 05/09/2023]
Abstract
Plants produce strigolactones (SLs) in roots in response to nitrogen or phosphate deficiency. To evaluate SL levels under other mineral deficiencies in rice, we cultivated rice seedlings in hydroponic media without nitrogen, phosphorus, potassium, sulfur, calcium, magnesium, and iron. Tiller bud outgrowth was stimulated under calcium deficiency because of low SL levels. SL levels increased under sulfur deficiency, in addition to phosphate, and nitrogen deficiencies. To explore which genes are key regulators of SL production under sulfur deficiency, we analyzed the expression of SL-related genes in sulfur-sufficient and sulfur-deficient conditions. An SL biosynthesis gene, DWARF27 (D27), was strongly expressed under sulfur deficiency, and its expression was decreased by sulfur supply. The levels of D10, D17, and OsMAX1 transcripts did not differ between sulfur-sufficient and sulfur-deficient conditions. These results suggest that the increased SL levels under sulfur deficiency are due to a high expression of D27. A combination of nitrogen, phosphorus, and sulfur deficiencies had no additive synergistic effect on SL production. Under combined phosphorus and sulfur deficiency, the expression levels of most SL biosynthesis genes were elevated. The number of tiller buds in the d27 mutant was higher than in the wild type, but lower than in other d mutants. Under sulfur deficiency, the chlorophyll content of d27 was lower than those of other d mutants. These results indicate that D27 plays an important role in adaptation to sulfur deficiency in rice.
Collapse
Affiliation(s)
- Masato Shindo
- Graduate School of Life SciencesToyo UniversityGunmaJapan
| | | | | | | |
Collapse
|
9
|
Bao YZ, Yao ZQ, Cao XL, Peng JF, Xu Y, Chen MX, Zhao SF. Transcriptome analysis of Phelipanche aegyptiaca seed germination mechanisms stimulated by fluridone, TIS108, and GR24. PLoS One 2017; 12:e0187539. [PMID: 29099877 PMCID: PMC5669479 DOI: 10.1371/journal.pone.0187539] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/20/2017] [Indexed: 01/29/2023] Open
Abstract
P. aegyptiaca is one of the most destructive root parasitic plants worldwide, causing serious damage to many crop species. Under natural conditions P. aegyptiaca seeds must be conditioned and then stimulated by host root exudates before germinating. However, preliminary experiments indicated that TIS108 (a triazole-type inhibitor of strigolactone) and fluridone (FL, an inhibitor of carotenoid-biosynthesis) both stimulated the germination of P. aegyptiaca seeds without a water preconditioning step (i.e. unconditioned seeds). The objective of this study was to use deep RNA sequencing to learn more about the mechanisms by which TIS108 and FL stimulate the germination of unconditioned P. aegyptiaca seeds. Deep RNA sequencing was performed to compare the mechanisms of germination in the following treatments: (i) unconditioned P. aegyptiaca seeds with no other treatment, (ii) unconditioned seeds treated with 100 mg/L TIS108, (iii) unconditioned seeds treated with 100 mg/L FL + 100 mg/L GA3, (iv) conditioned seeds treated with sterile water, and (v) conditioned seeds treated with 0.03 mg/L GR24. The de novo assembled transcriptome was used to analyze transcriptional dynamics during seed germination. The key gene categories involved in germination were also identified. The results showed that only 119 differentially expressed genes were identified in the conditioned treatment vs TIS108 treatment. This indicated that the vast majority of conditions for germination were met during the conditioning stage. Abscisic acid (ABA) and gibberellic acid (GA) played important roles during P. aegyptiaca germination. The common pathway of TIS108, FL+GA3, and GR24 in stimulating P. aegyptiaca germination was the simultaneous reduction in ABA concentrations and increase GA concentrations. These results could potentially aid the identification of more compounds that are capable of stimulating P. aegyptiaca germination. Some potential target sites of TIS108 were also identified in our transcriptome data. The results of this experiment suggest that TIS108 and FL+GA3 could be used to control P. aegyptiaca through suicidal germination.
Collapse
Affiliation(s)
- Ya Zhou Bao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Shihezi, China
| | - Zhao Qun Yao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Shihezi, China
| | - Xiao Lei Cao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Shihezi, China
| | - Jin Feng Peng
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Shihezi, China
| | - Ying Xu
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Shihezi, China
| | - Mei Xiu Chen
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Shihezi, China
| | - Si Feng Zhao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Shihezi, China
- * E-mail:
| |
Collapse
|
10
|
Vurro M, Prandi C, Baroccio F. Strigolactones: how far is their commercial use for agricultural purposes? PEST MANAGEMENT SCIENCE 2016; 72:2026-2034. [PMID: 26869010 DOI: 10.1002/ps.4254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 05/08/2023]
Abstract
Strigolactones are a class of natural and synthetic compounds that in the past decade have been exciting the scientific community not only for their intriguing biological properties but also for their potential applications in agriculture. These applications range from their use as hormones to modify and/or manage plant architecture, to their use as stimulants to induce seed germination of parasitic weeds and thus control their infestation by a reduced seed bank, to their use as 'biostimulants' of plant root colonisation by arbuscular mycorrhizal fungi, improving plant nutritional capabilities, to other still unknown effects on microbial soil communities. More recently, these compounds have also been attracting the interest of agrochemical companies. In spite of their biological attractiveness, practical applications are still greatly hampered by the low product yields obtainable by plant root exudates, by the costs of their synthesis, by the lack of knowledge of their off-target effects and by the not yet specified or properly identified legislation that could regulate the use of these compounds, depending on the agricultural purposes. The aim of this article is to discuss, in the light of current knowledge, the different scenarios that might play out in the near future with regard to the practical application of strigolactones. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maurizio Vurro
- Institute of Sciences of Food Production, National Research Council, Bari, Italy.
| | | | - Francesca Baroccio
- Central Inspectorate for Quality Control and Antifraud of Foodstuff and Agricultural Products, Laboratory of Rome, Ministry of Agriculture Food and Forestry, Rome, Italy
| |
Collapse
|
11
|
Takahashi I, Fukui K, Asami T. Chemical modification of a phenoxyfuranone-type strigolactone mimic for selective effects on rice tillering or Striga hermonthica seed germination. PEST MANAGEMENT SCIENCE 2016; 72:2048-2053. [PMID: 26929041 DOI: 10.1002/ps.4265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/24/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND We previously reported that a series of phenoxyfuranone compounds, designated 'debranones', mimic strigolactone (SL) activity. 4-Bromodebranone (4BD) is a functionally selective SL mimic that reduces the number of shoot branches on rice more potently than GR24, a typical synthetic SL analogue, but does not induce seed germination in the root-parasitic plant Striga hermonthica. To enhance the selective activity of debranones in stimulating the seed germination of root-parasitic plants, we prepared several analogues of 4BD in which the chlorine atom was substituted with an H atom at the o-, m- or p-position on the phenyl ring (designated 2-, 3-, or 4-chlorodebranone, respectively) or had a bicyclic group instead of the phenyl ring. We evaluated the biological activities of the compounds with rice tillering assays and S. hermonthica seed germination assays. RESULTS Both assays showed that the substituent position affected debranone efficiency, and among the monochlorodebranones, 2-chlorodebranone was more effective than the other two isomers in both assays. When the activities of the bicyclic debranones were compared in the same two assays, one was more active than GR24 in the rice tillering assay. This debranone also stimulated the germination of S. hermonthica seeds. Thus, some debranone derivatives induced the germination of S. hermonthica seeds, although their activities were still ∼1/20 that of GR24. CONCLUSION These results strongly suggest that further and rigorous structure-activity relationship studies of the debranones will identify derivatives that more potently stimulate the suicidal germination of S. hermonthica seeds. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kosuke Fukui
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
12
|
Mashita O, Koishihara H, Fukui K, Nakamura H, Asami T. Discovery and identification of 2-methoxy-1-naphthaldehyde as a novel strigolactone-signaling inhibitor. JOURNAL OF PESTICIDE SCIENCE 2016; 41:71-78. [PMID: 30363101 PMCID: PMC6140645 DOI: 10.1584/jpestics.d16-028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 04/29/2016] [Indexed: 05/20/2023]
Abstract
Knowledge about strigolactone biosynthesis and signaling is increasing and the crystal structure of strigolactone receptor protein D14 has been resolved. Although a variety of strigolactone biosynthesis inhibitors and strigolactone agonists are known, no inhibitors of strigolactone signaling have been reported. Here, we conducted virtual screening in silico to identify chemical regulators that inhibit SL reception. We used LigandScout to analyze a pharmacophore model based on structural information about D14 protein and complex D14-D-OH (a hydrolysis product of strigolactone formed by D14). We identified a candidate compound, XM-47, and confirmed that it inhibits D14-SLR1 and D14-D53 interactions. A possible product of XM-47 hydrolysis, 2-methoxy-1-naphthaldehyde (2-MN), inhibits D14-SLR1 and D14-D53 interactions and restores the growth of rice tillering buds suppressed by strigolactone.
Collapse
Affiliation(s)
- Okishi Mashita
- Department of Applied Biological Chemistry, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Hikaru Koishihara
- Department of Applied Biological Chemistry, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Kosuke Fukui
- Department of Applied Biological Chemistry, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Hidemitsu Nakamura
- Department of Applied Biological Chemistry, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Xu Y, Miyakawa T, Nakamura H, Nakamura A, Imamura Y, Asami T, Tanokura M. Structural basis of unique ligand specificity of KAI2-like protein from parasitic weed Striga hermonthica. Sci Rep 2016; 6:31386. [PMID: 27507097 PMCID: PMC4979206 DOI: 10.1038/srep31386] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/20/2016] [Indexed: 11/16/2022] Open
Abstract
The perception of two plant germination inducers, karrikins and strigolactones, are mediated by the proteins KAI2 and D14. Recently, KAI2-type proteins from parasitic weeds, which are possibly related to seed germination induced by strigolactone, have been classified into three clades characterized by different responses to karrikin/strigolactone. Here we characterized a karrikin-binding protein in Striga (ShKAI2iB) that belongs to intermediate-evolving KAI2 and provided the structural bases for its karrikin-binding specificity. Binding assays showed that ShKAI2iB bound karrikins but not strigolactone, differing from other KAI2 and D14. The crystal structures of ShKAI2iB and ShKAI2iB-karrikin complex revealed obvious structural differences in a helix located at the entry of its ligand-binding cavity. This results in a smaller closed pocket, which is also the major cause of ShKAI2iB’s specificity of binding karrikin. Our structural study also revealed that a few non-conserved amino acids led to the distinct ligand-binding profile of ShKAI2iB, suggesting that the evolution of KAI2 resulted in its diverse functions.
Collapse
Affiliation(s)
- Yuqun Xu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hidemitsu Nakamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akira Nakamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yusaku Imamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.,Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
14
|
Liu J, He H, Vitali M, Visentin I, Charnikhova T, Haider I, Schubert A, Ruyter-Spira C, Bouwmeester HJ, Lovisolo C, Cardinale F. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. PLANTA 2015; 241:1435-51. [PMID: 25716094 DOI: 10.1007/s00425-015-2266-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 02/10/2015] [Indexed: 05/02/2023]
Abstract
Strigolactone changes and cross talk with ABA unveil a picture of root-specific hormonal dynamics under stress. Strigolactones (SLs) are carotenoid-derived hormones influencing diverse aspects of development and communication with (micro)organisms, and proposed as mediators of environmental stimuli in resource allocation processes; to contribute to adaptive adjustments, therefore, their pathway must be responsive to environmental cues. To investigate the relationship between SLs and abiotic stress in Lotus japonicus, we compared wild-type and SL-depleted plants, and studied SL metabolism in roots stressed osmotically and/or phosphate starved. SL-depleted plants showed increased stomatal conductance, both under normal and stress conditions, and impaired resistance to drought associated with slower stomatal closure in response to abscisic acid (ABA). This confirms that SLs contribute to drought resistance in species other than Arabidopsis. However, we also observed that osmotic stress rapidly and strongly decreased SL concentration in tissues and exudates of wild-type Lotus roots, by acting on the transcription of biosynthetic and transporter-encoding genes and independently of phosphate abundance. Pre-treatment with exogenous SLs inhibited the osmotic stress-induced ABA increase in wild-type roots and down-regulated the transcription of the ABA biosynthetic gene LjNCED2. We propose that a transcriptionally regulated, early SL decrease under osmotic stress is needed (but not sufficient) to allow the physiological increase of ABA in roots. This work shows that SL metabolism and effects on ABA are seemingly opposite in roots and shoots under stress.
Collapse
Affiliation(s)
- Junwei Liu
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo P. Braccini 2, 10095, Grugliasco, TO, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Umehara M, Cao M, Akiyama K, Akatsu T, Seto Y, Hanada A, Li W, Takeda-Kamiya N, Morimoto Y, Yamaguchi S. Structural Requirements of Strigolactones for Shoot Branching Inhibition in Rice and Arabidopsis. ACTA ACUST UNITED AC 2015; 56:1059-72. [DOI: 10.1093/pcp/pcv028] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/15/2015] [Indexed: 01/02/2023]
|
16
|
Fernández-Aparicio M, Kisugi T, Xie X, Rubiales D, Yoneyama K. Low strigolactone root exudation: a novel mechanism of broomrape (Orobanche and Phelipanche spp.) resistance available for faba bean breeding. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7063-71. [PMID: 24974726 DOI: 10.1021/jf5027235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Faba bean yield is severely constrained in the Mediterranean region and Middle East by the parasitic weeds Orobanche crenata, O. foetida, and Phelipanche aegyptiaca. Seed germination of these weeds is triggered upon recognition of host root exudates. Only recently faba bean accessions have been identified with resistance based in low induction of parasitic seed germination, but the underlying mechanism was not identified. Strigolactones are a group of terpenoid lactones involved in the host recognition by parasitic plants. Our LC-MS/MS analysis of root exudates of the susceptible accession Prothabon detected orobanchol, orobanchyl acetate, and a novel germination stimulant. A time course analysis indicated that their concentration increased with plant age. However, low or undetectable amounts of these germination stimulants were detected in root exudates of the resistant lines Quijote and Navio at all plant ages. A time course analysis of seed germination induced by root exudates of each faba bean accession indicated important differences in the ability to stimulate parasitic germination. Results presented here show that resistance to parasitic weeds based on low strigolactone exudation does exist within faba bean germplasm. Therefore, selection for this trait is feasible in a breeding program. The remarkable fact that low induction of germination is similarly operative against O. crenata, O. foetida, and P. aegyptiaca reinforces the value of this resistance.
Collapse
|
17
|
Liu J, Novero M, Charnikhova T, Ferrandino A, Schubert A, Ruyter-Spira C, Bonfante P, Lovisolo C, Bouwmeester HJ, Cardinale F. Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1967-81. [PMID: 23567864 PMCID: PMC3638823 DOI: 10.1093/jxb/ert056] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Strigolactones (SLs) are newly identified hormones that regulate multiple aspects of plant development, infection by parasitic weeds, and mutualistic symbiosis in the roots. In this study, the role of SLs was studied for the first time in the model plant Lotus japonicus using transgenic lines silenced for carotenoid cleavage dioxygenase 7 (LjCCD7), the orthologue of Arabidopsis More Axillary Growth 3. Transgenic LjCCD7-silenced plants displayed reduced height due to shorter internodes, and more branched shoots and roots than the controls, and an increase in total plant biomass, while their root:shoot ratio remained unchanged. Moreover, these lines had longer primary roots, delayed senescence, and reduced flower/pod numbers from the third round of flower and pod setting onwards. Only a mild reduction in determinate nodule numbers and hardly any impact on the colonization by arbuscular mycorrhizal fungi were observed. The results show that the impairment of CCD7 activity in L. japonicus leads to a phenotype linked to SL functions, but with specific features possibly due to the peculiar developmental pattern of this plant species. It is believed that the data also link determinate nodulation, plant reproduction, and senescence to CCD7 function for the first time.
Collapse
Affiliation(s)
- Junwei Liu
- Department of Agriculture, Forestry and Food Sciences, University of Turin, via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli 25, 10025 Turin, Italy
| | - Tatsiana Charnikhova
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Alessandra Ferrandino
- Department of Agriculture, Forestry and Food Sciences, University of Turin, via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| | - Andrea Schubert
- Department of Agriculture, Forestry and Food Sciences, University of Turin, via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli 25, 10025 Turin, Italy
| | - Claudio Lovisolo
- Department of Agriculture, Forestry and Food Sciences, University of Turin, via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| | - Harro J. Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Francesca Cardinale
- Department of Agriculture, Forestry and Food Sciences, University of Turin, via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| |
Collapse
|
18
|
Fukui K, Ito S, Asami T. Selective mimics of strigolactone actions and their potential use for controlling damage caused by root parasitic weeds. MOLECULAR PLANT 2013. [PMID: 23204501 DOI: 10.1093/mp/sss138] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Strigolactones (SLs) are a novel class of plant hormones and rhizosphere communication signals, although the molecular mechanisms underlying their activities have not yet been fully determined. Nor is their application in agriculture well developed. The importance of plant hormone agonists has been demonstrated in both basic and applied research, and chemicals that mimic strigolactone functions should greatly facilitate strigolactone research. Here, we report our discovery of a new phenoxyfuranone compound, 4-Br debranone (4BD), that shows similar activity to that of the major strigolactone (SL) analog GR24 in many aspects of a biological assay on plants. 4BD strongly inhibited tiller bud outgrowth in the SL-deficient rice mutant d10 at the same concentration as GR24, with no adverse effects, even during prolonged cultivation. This result was also observed in the Arabidopsis thaliana SL-deficient mutants max1, max3, and max4. However, the application of 4BD to the Arabidopsis SL-insensitive mutant max2 induced no morphological changes in it. The expression of SL biosynthetic genes was also reduced by 4BD treatment, probably via negative feedback regulation. However, in a seed germination assay on Striga hermonthica, a root parasitic plant, 4BD showed far less activity than GR24. These results suggest that 4BD is the first plant-specific strigolactone mimic.
Collapse
Affiliation(s)
- Kosuke Fukui
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
19
|
Vurro M, Yoneyama K. Strigolactones--intriguing biologically active compounds: perspectives for deciphering their biological role and for proposing practical application. PEST MANAGEMENT SCIENCE 2012; 68:664-668. [PMID: 22323399 DOI: 10.1002/ps.3257] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/16/2011] [Accepted: 12/20/2011] [Indexed: 05/31/2023]
Abstract
Strigolactones are a class of bioactive natural metabolites produced by plant roots and released into the rhizosphere. They were discovered as signals indispensable for the induction of germination of seeds of root parasitic weeds, but since then, interestingly, many other biological, physiological and ecological roles have been described. This has suddenly provoked huge scientific interest in these compounds within different research fields. In this short perspective the attention is focused mainly on the ongoing and future research aimed at deciphering the biological roles of strigolactones that could positively affect, more or less directly, the management of parasitic weeds.
Collapse
|
20
|
Ueno K, Nomura S, Muranaka S, Mizutani M, Takikawa H, Sugimoto Y. Ent-2'-epi-Orobanchol and its acetate, as germination stimulants for Striga gesnerioides seeds isolated from cowpea and red clover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10485-90. [PMID: 21899364 DOI: 10.1021/jf2024193] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Striga gesnerioides is a root parasitic weed of economic significance to cowpea (Vigna unguiculata) crops in Western Africa. Seeds of the parasite germinate in response to cowpea root exudates. Germination stimulants for the seeds were isolated from the hydroponic culture filtrate of cowpea, and their structures were unambiguously determined as (-)-(3aR,4R,8bR,2'R)-ent-2'-epi-orobanchol and (+)-(3aR,4R,8bR,2'R)-ent-2'-epi-orobanchyl acetate, on the basis of mass, CD, and (1)H NMR spectra; optical rotatory power; and chromatographic behavior on HPLC. The alcohol was first isolated and identified from the cowpea root exudates, and the acetate may be the same compound that had been previously isolated from the exudates and designated as alectrol. Identity of the stimulants produced by cowpea to those produced by red clover (Trifolium pratense) was confirmed.
Collapse
Affiliation(s)
- Kotomi Ueno
- Graduate School of Agricultural Science, Kobe University , Rokkodai, Nada, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Ueno K, Fujiwara M, Nomura S, Mizutani M, Sasaki M, Takikawa H, Sugimoto Y. Structural requirements of strigolactones for germination induction of Striga gesnerioides seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9226-9231. [PMID: 21819156 DOI: 10.1021/jf202418a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Strigolactones are highly potent germination stimulants for seeds of the parasitic weeds Striga and Orobanche spp. 4-Hydroxy-GR24 and 4-acetoxy-GR24 were prepared and their abilities to induce seed germination of Striga gesnerioides evaluated. Optically active (8bR,2'R)-isomers induced germination, although the racemic diastereomers were inactive. In contrast, the stereoisomer of GR24 with the same configuration induced negligible germination. Some stereoisomers of GR24 and its analogues acted as effective antagonists for induction of seed germination by cowpea root exudates. These results suggest that both an oxygenated substituent at C-4 and the configuration of the tricyclic lactone and the D-ring are essential structural requirements for induction of germination in S. gesnerioides seeds.
Collapse
Affiliation(s)
- Kotomi Ueno
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Ito S, Umehara M, Hanada A, Kitahata N, Hayase H, Yamaguchi S, Asami T. Effects of triazole derivatives on strigolactone levels and growth retardation in rice. PLoS One 2011; 6:e21723. [PMID: 21760901 PMCID: PMC3132747 DOI: 10.1371/journal.pone.0021723] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/06/2011] [Indexed: 01/31/2023] Open
Abstract
We previously discovered a lead compound for strigolactone (SL) biosynthesis inhibitors, TIS13 (2,2-dimethyl-7-phenoxy-4-(1H-1,2,4-triazol-1-yl)heptan-3-ol). Here, we carried out a structure-activity relationship study of TIS13 to discover more potent and specific SL biosynthesis inhibitor because TIS13 has a severe side effect at high concentrations, including retardation of the growth of rice seedlings. TIS108, a new TIS13 derivative, was found to be a more specific SL biosynthesis inhibitor than TIS13. Treatment of rice seedlings with TIS108 reduced SL levels in both roots and root exudates in a concentration-dependent manner and did not reduce plant height. In addition, root exudates of TIS108-treated rice seedlings stimulated Striga germination less than those of control plants. These results suggest that TIS108 has a potential to be applied in the control of root parasitic weeds germination.
Collapse
Affiliation(s)
- Shinsaku Ito
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | | | | | - Nobutaka Kitahata
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Hiroki Hayase
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | | | - Tadao Asami
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
23
|
Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. PLANT & CELL PHYSIOLOGY 2009; 50:1416-24. [PMID: 19542179 DOI: 10.1093/pcp/pcp091] [Citation(s) in RCA: 405] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent studies using highly branched mutants of pea, Arabidopsis and rice have demonstrated that strigolactones, a group of terpenoid lactones, act as a new hormone class, or its biosynthetic precursors, in inhibiting shoot branching. Here, we provide evidence that DWARF14 (D14) inhibits rice tillering and may act as a new compo-nent of the strigolactone-dependent branching inhibition pathway. The d14 mutant exhibits increased shoot branch-ing with reduced plant height like the previously characterized strigolactone-deficient and -insensitive mutants d10 and d3, respectively. The d10-1 d14-1 double mutant is phenotypically indistinguishable from the d10-1 and d14-1 single mutants, consistent with the idea that D10 and D14 function in the same pathway. However, unlike with d10, the d14 branching phenotype could not be rescued by exogenous strigolactones. In addition, the d14 mutant contained a higher level of 2'-epi-5-deoxystrigol than the wild type. Positional cloning revealed that D14 encodes a protein of the alpha/beta-fold hydrolase superfamily, some members of which play a role in metabolism or signaling of plant hormones. We propose that D14 functions downstream of strigolactone synthesis, as a component of hormone signaling or as an enzyme that participates in the conversion of strigolactones to the bioactive form.
Collapse
Affiliation(s)
- Tomotsugu Arite
- Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D. Structure and function of natural and synthetic signalling molecules in parasitic weed germination. PEST MANAGEMENT SCIENCE 2009; 65:478-91. [PMID: 19222046 DOI: 10.1002/ps.1706] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The structures of naturally occurring germination stimulants for seeds of the parasitic weeds Striga spp. and Orobanche spp. are described. The bioactiphore in this strigolactone family of stimulants is deduced from a structure-activity relationship and shown to reside in the CD part of the stimulant molecule. A molecular mechanism for the initial stages of seed germination is proposed. The influence of stereochemistry on the stimulant activity is significant. Combining this molecular information leads to a model for the design of synthetic strigolactones. Nijmegen-1 is a typical example of a highly active, newly designed synthetic stimulant. The occurrence of natural stimulants not belonging to the strigolactone family, such as cotylenin and parthenolide, is briefly described. The biosynthesis of natural strigolactones from beta-carotene is analysed in terms of isolated and predicted stimulants. This scheme will be helpful in the search for new strigolactones from root exudates. Protein fishing experiments to isolate and characterise the receptor protein using biotin-labelled GR 24 are described. A receptor protein of 60 kD was identified by this method. Nijmegen-1 has been tested as a suicidal germination agent in field trials on tobacco infested by Orobanche ramosa L. The preliminary results are highly rewarding. Finally, some future challenges in synthesis are described. These include synthesising new natural and synthetic stimulants and establishing the molecular connection between strigolactones as germination stimulants, as the branching factor for arbuscular mycorrhizal fungi and as an inhibitor of shoot branching.
Collapse
Affiliation(s)
- Binne Zwanenburg
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, AJ Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature 2008; 455:195-200. [PMID: 18690207 DOI: 10.1038/nature07272] [Citation(s) in RCA: 1218] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Accepted: 07/21/2008] [Indexed: 12/18/2022]
Abstract
Shoot branching is a major determinant of plant architecture and is highly regulated by endogenous and environmental cues. Two classes of hormones, auxin and cytokinin, have long been known to have an important involvement in controlling shoot branching. Previous studies using a series of mutants with enhanced shoot branching suggested the existence of a third class of hormone(s) that is derived from carotenoids, but its chemical identity has been unknown. Here we show that levels of strigolactones, a group of terpenoid lactones, are significantly reduced in some of the branching mutants. Furthermore, application of strigolactones inhibits shoot branching in these mutants. Strigolactones were previously found in root exudates acting as communication chemicals with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Thus, we propose that strigolactones act as a new hormone class-or their biosynthetic precursors-in regulating above-ground plant architecture, and also have a function in underground communication with other neighbouring organisms.
Collapse
|