1
|
Wolters SM, Laibach N, Riekötter J, Roelfs KU, Müller B, Eirich J, Twyman RM, Finkemeier I, Prüfer D, Schulze Gronover C. The interaction networks of small rubber particle proteins in the latex of Taraxacum koksaghyz reveal diverse functions in stress responses and secondary metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1498737. [PMID: 39735776 PMCID: PMC11671276 DOI: 10.3389/fpls.2024.1498737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/31/2024]
Abstract
The Russian dandelion (Taraxacum koksaghyz) is a promising source of natural rubber (NR). The synthesis of NR takes place on the surface of organelles known as rubber particles, which are found in latex - the cytoplasm of specialized cells known as laticifers. As well as the enzymes directly responsible for NR synthesis, the rubber particles also contain small rubber particle proteins (SRPPs), the most abundant of which are SRPP3, 4 and 5. These three proteins support NR synthesis by maintaining rubber particle stability. We used homology-based searches to identify the whole TkSRPP gene family and qPCR to create their spatial expression profiles. Affinity enrichment-mass spectrometry was applied to identify TkSRPP3/4/5 protein interaction partners in T. koksaghyz latex and selected interaction partners were analyzed using qPCR, confocal laser scanning microscopy and heterologous expression in yeast. We identified 17 SRPP-like sequences in the T. koksaghyz genome, including three apparent pseudogenes, 10 paralogs arranged as an inverted repeat in a cluster with TkSRPP3/4/5, and one separate gene (TkSRPP6). Their sequence diversity and different expression profiles indicated distinct functions and the latex interactomes obtained for TkSRPP3/4/5 suggested that TkSRPP4 is a promiscuous hub protein that binds many partners from different compartments, whereas TkSRPP3 and 5 have more focused interactomes. Two interactors shared by TkSRPP3/4/5 (TkSRPP6 and TkUGT80B1) were chosen for independent validation and detailed characterization. TkUGT80B1 triterpenoid glycosylating activity provided first evidence for triterpenoid saponin synthesis in T. koksaghyz latex. Based on its identified interaction partners, TkSRPP4 appears to play a special role in the endoplasmic reticulum, interacting with lipidmodifying enzymes that may facilitate rubber particle formation. TkSRPP5 appears to be involved in GTPase-dependent signaling and TkSRPP3 may act as part of a kinase signaling cascade, with roles in stress tolerance. TkSRPP interaction with TkUGT80B1 draws a new connection between TkSRPPs and triterpenoid saponin synthesis in T. koksaghyz latex. Our data contribute to the functional differentiation between TkSRPP paralogs and demonstrate unexpected interactions that will help to further elucidate the network of proteins linking TkSRPPs, stress responses and NR biosynthesis within the cellular complexity of latex.
Collapse
Affiliation(s)
- Silva Melissa Wolters
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Natalie Laibach
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Jenny Riekötter
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Kai-Uwe Roelfs
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Boje Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | |
Collapse
|
2
|
Nie Z, Kang G, Yan D, Qin H, Yang L, Zeng R. Downregulation of HbFPS1 affects rubber biosynthesis of Hevea brasiliensis suffering from tapping panel dryness. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:504-520. [PMID: 36524729 PMCID: PMC10107253 DOI: 10.1111/tpj.16063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Tapping panel dryness (TPD) is a century-old problem that has plagued the natural rubber production of Hevea brasiliensis. TPD may result from self-protective mechanisms of H. brasiliensis in response to stresses such as excessive hormone stimulation and mechanical wounding (bark tapping). It has been hypothesized that TPD impairs rubber biosynthesis; however, the underlying mechanisms remain poorly understood. In the present study, we firstly verified that TPD-affected rubber trees exhibited lower rubber biosynthesis activity and greater rubber molecular weight compared to healthy rubber trees. We then demonstrated that HbFPS1, a key gene of rubber biosynthesis, and its expression products were downregulated in the latex of TPD-affected rubber trees, as revealed by transcriptome sequencing and iTRAQ-based proteome analysis. We further discovered that the farnesyl diphosphate synthase HbFPS1 could be recruited to small rubber particles by HbSRPP1 through protein-protein interactions to catalyze farnesyl diphosphate (FPP) synthesis and facilitate rubber biosynthesis initiation. FPP content in the latex of TPD-affected rubber trees was significantly decreased with the downregulation of HbFPS1, ultimately resulting in abnormal development of rubber particles, decreased rubber biosynthesis activity, and increased rubber molecular weight. Upstream regulator assays indicated that a novel regulator, MYB2-like, may be an important regulator of downregulation of HbFPS1 in the latex of TPD-affected rubber trees. Our findings not only provide new directions for studying the molecular events involved in rubber biosynthesis and TPD syndrome and contribute to rubber management strategies, but also broaden our knowledge of plant isoprenoid metabolism and its regulatory networks.
Collapse
Affiliation(s)
- Zhiyi Nie
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber treesMinistry of Agriculture and Rural Affairs of the People's Republic of China, Chinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
- Key Laboratory of Materials Engineering for High Performance Natural Rubber, Hainnan ProvinceChinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
| | - Guijuan Kang
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber treesMinistry of Agriculture and Rural Affairs of the People's Republic of China, Chinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
- Key Laboratory of Materials Engineering for High Performance Natural Rubber, Hainnan ProvinceChinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
| | - Dong Yan
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber treesMinistry of Agriculture and Rural Affairs of the People's Republic of China, Chinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
| | - Huaide Qin
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber treesMinistry of Agriculture and Rural Affairs of the People's Republic of China, Chinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
- Key Laboratory of Materials Engineering for High Performance Natural Rubber, Hainnan ProvinceChinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
| | - Lifu Yang
- Institute of Scientific and Technical InformationChinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
| | - Rizhong Zeng
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber treesMinistry of Agriculture and Rural Affairs of the People's Republic of China, Chinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
- Key Laboratory of Materials Engineering for High Performance Natural Rubber, Hainnan ProvinceChinese Academy of Tropical Agricultural SciencesHaikou571101HainanChina
| |
Collapse
|
3
|
Guo Y, Bao K, Han D, Wu X, Li S, Dong Y, Zhang J. Study on in vitro NR biosynthesis by rapid quantitative determination of substrate depletion. J Biotechnol 2023; 361:80-88. [PMID: 36435303 DOI: 10.1016/j.jbiotec.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
A convenient and nonradioactive method for quantifying in vitro NR biosynthesis is presented that is based upon the quantitation of substrate depletion by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). NR oligomers could be in vitro biosynthesized with the enzyme source from Hevea brasiliensis (Hevea) or Taraxacum kok-saghyz (TKS) by exogenous monomers (IPP) and initiators (FPP). The IPP incorporation rate and FPP consumption rate were 62.24% and 51.14% respectively when the washed rubber particles (WRP) of Hevea was the enzyme source. The IPP incorporation rate and the FPP consumption rate were 74.49% and 95.90% respectively when the sediment bottom fraction (BF) of Hevea was the enzyme source. The in vitro NR biosynthesis can be divided into two stages:(1) the initiation reaction of FPP, which occurs more in BF, and (2) the growth reaction of IPP, which occurs more in WRP. In addition, the IPP incorporation and FPP consumption rates were 59.39% and 34.15% respectively when the BF of TKS was selected as an enzyme source.
Collapse
Affiliation(s)
- Yuwen Guo
- Center of Advanced Elastomer Materials, College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Kexu Bao
- Center of Advanced Elastomer Materials, College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Dongli Han
- Center of Advanced Elastomer Materials, College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Energy Conservation and Resource Utilization Engineering Research Center of Elastomer Materials, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xiaohui Wu
- Center of Advanced Elastomer Materials, College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Energy Conservation and Resource Utilization Engineering Research Center of Elastomer Materials, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, PR China; Center of Advanced Elastomer Engineering Research, Beijing, Beijing University of Chemical Technology, 100029, PR China
| | - Shuangbing Li
- Zibo Nevc Advanced Vehicle Materials Technology Innovation Center, Shandong, 255000, PR China
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jichuan Zhang
- Center of Advanced Elastomer Materials, College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Energy Conservation and Resource Utilization Engineering Research Center of Elastomer Materials, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, PR China; Center of Advanced Elastomer Engineering Research, Beijing, Beijing University of Chemical Technology, 100029, PR China.
| |
Collapse
|
4
|
Downregulation of Squalene Synthase Broadly Impacts Isoprenoid Biosynthesis in Guayule. Metabolites 2022; 12:metabo12040303. [PMID: 35448489 PMCID: PMC9030042 DOI: 10.3390/metabo12040303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Production of natural rubber by Parthenium argentaum (guayule) requires increased yield for economic sustainability. An RNAi gene silencing strategy was used to engineer isoprenoid biosynthesis by downregulation of squalene synthase (SQS), such that the pool of farnesyl diphosphate (FPP) substrate might instead be available to initiate natural rubber synthesis. Downregulation of SQS resulted in significantly reduced squalene and slightly increased rubber, but not in the same tissues nor to the same extent, partially due to an apparent negative feedback regulatory mechanism that downregulated mevalonate pathway isoprenoid production, presumably associated with excess geranyl pyrophosphate levels. A detailed metabolomics analysis of isoprenoid production in guayule revealed significant differences in metabolism in different tissues, including in active mevalonate and methylerythritol phosphate pathways in stem tissue, where rubber and squalene accumulate. New insights and strategies for engineering isoprenoid production in guayule were identified.
Collapse
|
5
|
Qu L, Li HL, Guo D, Wang Y, Zhu JH, Yin LY, Peng SQ. HbWRKY27, a group IIe WRKY transcription factor, positively regulates HbFPS1 expression in Hevea brasiliensis. Sci Rep 2020; 10:20639. [PMID: 33244131 PMCID: PMC7692525 DOI: 10.1038/s41598-020-77805-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/17/2020] [Indexed: 11/09/2022] Open
Abstract
Farnesyl pyrophosphate synthase (FPS) is a key enzyme that catalyzes the formation of farnesyl pyrophosphate, the main initiator for rubber chain initiation in Hevea brasiliensis Muell. Arg. The transcriptional regulatory mechanisms of the FPS gene still not well understood. Here, a WRKY transcription factor designated HbWRKY27 was obtained by screening the latex cDNA library applied the HbFPS1 promoter as bait. HbWRKY27 interacted with the HbFPS1 promoter was further identified by individual Y1H and EMSA assays. HbWRKY27 belongs to group IIe WRKY subfamily which contains a typical WRKY domain and C-X5-CX23-HXH motif. HbWRKY27 was localized to the nucleus. HbWRKY27 predominantly accumulated in latex. HbWRKY27 was up-regulated in latex by ethrel, salicylic acid, abscisic acid, and methyl jasmonate treatment. Transient expression of HbWRKY27 led to increasing the activity of the HbFPS1 promoter in tobacco plant, suggesting that HbWRKY27 positively regulates the HbFPS1 expression. Taken together, an upstream transcription factor of the key natural rubber biosynthesis gene HbFPS1 was identified and this study will provide novel transcriptional regulatory mechanisms of the FPS gene in Hevea brasiliensis.
Collapse
Affiliation(s)
- Long Qu
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, No.4 Xueyuan Road, Haikou, 571101, China
| | - Hui-Liang Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, No.4 Xueyuan Road, Haikou, 571101, China
| | - Dong Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, No.4 Xueyuan Road, Haikou, 571101, China
| | - Ying Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, No.4 Xueyuan Road, Haikou, 571101, China
| | - Jia-Hong Zhu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, No.4 Xueyuan Road, Haikou, 571101, China
| | - Li-Yan Yin
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Shi-Qing Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, No.4 Xueyuan Road, Haikou, 571101, China.
| |
Collapse
|
6
|
Men X, Wang F, Chen GQ, Zhang HB, Xian M. Biosynthesis of Natural Rubber: Current State and Perspectives. Int J Mol Sci 2018; 20:E50. [PMID: 30583567 PMCID: PMC6337083 DOI: 10.3390/ijms20010050] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Natural rubber is a kind of indispensable biopolymers with great use and strategic importance in human society. However, its production relies almost exclusively on rubber-producing plants Hevea brasiliensis, which have high requirements for growth conditions, and the mechanism of natural rubber biosynthesis remains largely unknown. In the past two decades, details of the rubber chain polymerization and proteins involved in natural rubber biosynthesis have been investigated intensively. Meanwhile, omics and other advanced biotechnologies bring new insight into rubber production and development of new rubber-producing plants. This review summarizes the achievements of the past two decades in understanding the biosynthesis of natural rubber, especially the massive information obtained from the omics analyses. Possibilities of natural rubber biosynthesis in vitro or in genetically engineered microorganisms are also discussed.
Collapse
Affiliation(s)
- Xiao Men
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| | - Fan Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guo-Qiang Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| | - Hai-Bo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| |
Collapse
|
7
|
Wu C, Lan L, Li Y, Nie Z, Zeng R. The relationship between latex metabolism gene expression with rubber yield and related traits in Hevea brasiliensis. BMC Genomics 2018; 19:897. [PMID: 30526485 PMCID: PMC6288877 DOI: 10.1186/s12864-018-5242-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 11/12/2018] [Indexed: 11/20/2022] Open
Abstract
Background Expression patterns of many laticifer-specific gens are closely correlative with rubber yield of Hevea brasiliensis (para rubber tree). To unveil the mechanisms underlying the rubber yield, transcript levels of nine major latex metabolism-related genes, i.e., HMG-CoA synthase (HMGS), HMG-CoA reductase (HMGR), diphosphomevalonate decarboxylase (PMD), farnesyl diphosphate synthase (FPS), cis-prenyltransferase (CPT), rubber elongation factor (REF), small rubber particle protein (SRPP), dihydroxyacid dehydratase (DHAD) and actin depolymerizing factor (ADF), were dertermined, and the relationship between rubber yield with their expression levels was analysed. Results Except HbHMGR1, HbPMD and HbDHAD, most of these genes were predominantly expressed in latex, and bark tapping markedly elevated the transcript abundance of the analyzed genes, with the 7th tapping producing the greatest expression levels. Both ethephon (ETH) and methyl jasmonate (MeJA) stimulation greatly induced the expression levels of the examined genes, at least at one time point, except HbDHAD, which was unresponsive to MeJA. The genes’ expression levels, as well as the rubber yields and two yield characteristics differed significantly among the different genotypes examined. Additionally, the latex and dry rubber yields increased gradually but the dry rubber content did not. Rubber yields and/or yield characteristics were significantly positively correlated with HbCPT, HbFPS, HbHMGS, HbHMGR1 and HbDHAD expression levels, negatively correlated with that of HbREF, but not significantly correlated with HbPMD, HbSRPP and HbADF expression levels. In addition, during rubber production, significantly positive correlations existed between the expression level of HbPMD and the levels of HbREF and HbHMGR1, between HbSRPP and the levels of HbHMGS and HbHMGR1, and between HbADF and HbFPS. Conclusions The up-regulation of these genes might be related to the latex production of rubber trees under the stress of bark tapping and latex metabolism. The various correlations among the genes implied that there are differences in their synergic interactions. Thus, these nine genes might be related to rubber yield and yield-related traits in H. brasiliensis, and this work increases our understanding of their complex functions and how they are expressed in both high-and medium-yield rubber tree varieties and low-yield wild rubber tree germplasm. Electronic supplementary material The online version of this article (10.1186/s12864-018-5242-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chuntai Wu
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, 571737, People's Republic of China
| | - Li Lan
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, 571737, People's Republic of China.,College of Agriculture, Hainan University, Haikou, 570228, China
| | - Yu Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, 571737, People's Republic of China
| | - Zhiyi Nie
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, 571737, People's Republic of China
| | - Rizhong Zeng
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, 571737, People's Republic of China.
| |
Collapse
|
8
|
Hathwaik U, Lin JT, McMahan C. Molecular species of triacylglycerols in the rubber particles of Parthenium argentatum and Hevea brasiliensis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Dormán G, Nakamura H, Pulsipher A, Prestwich GD. The Life of Pi Star: Exploring the Exciting and Forbidden Worlds of the Benzophenone Photophore. Chem Rev 2016; 116:15284-15398. [PMID: 27983805 DOI: 10.1021/acs.chemrev.6b00342] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widespread applications of benzophenone (BP) photochemistry in biological chemistry, bioorganic chemistry, and material science have been prominent in both academic and industrial research. BP photophores have unique photochemical properties: upon n-π* excitation at 365 nm, a biradicaloid triplet state is formed reversibly, which can abstract a hydrogen atom from accessible C-H bonds; the radicals subsequently recombine, creating a stable covalent C-C bond. This light-directed covalent attachment process is exploited in many different ways: (i) binding/contact site mapping of ligand (or protein)-protein interactions; (ii) identification of molecular targets and interactome mapping; (iii) proteome profiling; (iv) bioconjugation and site-directed modification of biopolymers; (v) surface grafting and immobilization. BP photochemistry also has many practical advantages, including low reactivity toward water, stability in ambient light, and the convenient excitation at 365 nm. In addition, several BP-containing building blocks and reagents are commercially available. In this review, we explore the "forbidden" (transitions) and excitation-activated world of photoinduced covalent attachment of BP photophores by touring a colorful palette of recent examples. In this exploration, we will see the pros and cons of using BP photophores, and we hope that both novice and expert photolabelers will enjoy and be inspired by the breadth and depth of possibilities.
Collapse
Affiliation(s)
- György Dormán
- Targetex llc , Dunakeszi H-2120, Hungary.,Faculty of Pharmacy, University of Szeged , Szeged H-6720, Hungary
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , Yokohama 226-8503, Japan
| | - Abigail Pulsipher
- GlycoMira Therapeutics, Inc. , Salt Lake City, Utah 84108, United States.,Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| | - Glenn D Prestwich
- Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| |
Collapse
|
10
|
Collins-Silva J, Nural AT, Skaggs A, Scott D, Hathwaik U, Woolsey R, Schegg K, McMahan C, Whalen M, Cornish K, Shintani D. Altered levels of the Taraxacum kok-saghyz (Russian dandelion) small rubber particle protein, TkSRPP3, result in qualitative and quantitative changes in rubber metabolism. PHYTOCHEMISTRY 2012; 79:46-56. [PMID: 22609069 DOI: 10.1016/j.phytochem.2012.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 03/15/2012] [Accepted: 04/24/2012] [Indexed: 05/20/2023]
Abstract
Several proteins have been identified and implicated in natural rubber biosynthesis, one of which, the small rubber particle protein (SRPP), was originally identified in Hevea brasiliensis as an abundant protein associated with cytosolic vesicles known as rubber particles. While previous in vitro studies suggest that SRPP plays a role in rubber biosynthesis, in vivo evidence is lacking to support this hypothesis. To address this issue, a transgene approach was taken in Taraxacum kok-saghyz (Russian dandelion or Tk) to determine if altered SRPP levels would influence rubber biosynthesis. Three dandelion SRPPs were found to be highly abundant on dandelion rubber particles. The most abundant particle associated SRPP, TkSRPP3, showed temporal and spatial patterns of expression consistent with patterns of natural rubber accumulation in dandelion. To confirm its role in rubber biosynthesis, TkSRPP3 expression was altered in Russian dandelion using over-expression and RNAi methods. While TkSRPP3 over-expressing lines had slightly higher levels of rubber in their roots, relative to the control, TkSRPP3 RNAi lines showed significant decreases in root rubber content and produced dramatically lower molecular weight rubber than the control line. Not only do results here provide in vivo evidence of TkSRPP proteins affecting the amount of rubber in dandelion root, but they also suggest a function in regulating the molecular weight of the cis-1, 4-polyisoprene polymer.
Collapse
Affiliation(s)
- Jillian Collins-Silva
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ponciano G, McMahan CM, Xie W, Lazo GR, Coffelt TA, Collins-Silva J, Nural-Taban A, Gollery M, Shintani DK, Whalen MC. Transcriptome and gene expression analysis in cold-acclimated guayule (Parthenium argentatum) rubber-producing tissue. PHYTOCHEMISTRY 2012; 79:57-66. [PMID: 22608127 DOI: 10.1016/j.phytochem.2012.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 03/02/2012] [Accepted: 04/18/2012] [Indexed: 06/01/2023]
Abstract
Natural rubber biosynthesis in guayule (Parthenium argentatum Gray) is associated with moderately cold night temperatures. To begin to dissect the molecular events triggered by cold temperatures that govern rubber synthesis induction in guayule, the transcriptome of bark tissue, where rubber is produced, was investigated. A total of 11,748 quality expressed sequence tags (ESTs) were obtained. The vast majority of ESTs encoded proteins that are similar to stress-related proteins, whereas those encoding rubber biosynthesis-related proteins comprised just over one percent of the ESTs. Sequence information derived from the ESTs was used to design primers for quantitative analysis of the expression of genes that encode selected enzymes and proteins with potential impact on rubber biosynthesis in field-grown guayule plants, including 3-hydroxy-3-methylglutaryl-CoA synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, farnesyl pyrophosphate synthase, squalene synthase, small rubber particle protein, allene oxide synthase, and cis-prenyl transferase. Gene expression was studied for field-grown plants during the normal course of seasonal variation in temperature (monthly average maximum 41.7 °C to minimum 0 °C, from November 2005 through March 2007) and rubber transferase enzymatic activity was also evaluated. Levels of gene expression did not correlate with air temperatures nor with rubber transferase activity. Interestingly, a sudden increase in night temperature 10 days before harvest took place in advance of the highest CPT gene expression level.
Collapse
Affiliation(s)
- Grisel Ponciano
- Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Rubber biosynthesis in plants is a fascinating biochemical system, which evolved at the dawn of the dicotyledoneae and is present in at least four of the dictolydonous superorders. Rubber biosynthesis is catalyzed by a membrane complex in a monolayer membrane envelope, requires two distinct substrates and a divalent cation cofactor, and produces a high-molecular-weight isoprenoid polymer. A solid understanding of this system underpins valuable papers in the literature. However, the published literature is rife with unreliable reports in which the investigators have fallen into traps created by the current incomplete understanding of the biochemistry of rubber synthesis. In this chapter, we attempt to guide both new and more established researchers around these pitfalls.
Collapse
|
13
|
Chiang CK, Xie W, McMahan C, Puskas JE. UNRAVELING THE MYSTERY OF NATURAL RUBBER BIOSYNTHESIS. PART I: INVESTIGATION OF THE COMPOSITION AND GROWTH OF IN VITRO NATURAL RUBBER USING HIGH RESOLUTION SIZE EXCLUSION CHROMATOGRAPHY. RUBBER CHEMISTRY AND TECHNOLOGY 2011. [DOI: 10.5254/1.3570528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Monitoring the growth of in vitro natural rubber was accomplished by high resolution size exclusion chromatography, SEC. Washed rubber particles isolated from H. brasiliensis latex, containing the rubber transferase enzyme, were used to catalyze the polymerization of synthetic isopentenyl pyrophosphate monomer in the presence of farnesyl pyrophosphate initiator. The high-resolution SEC was able to detect the formation of new rubber. Changes in the low molecular weight fraction were also detected. Gravimetric analysis revealed ∼30% mass gain after the in vitro synthesis. The overall gel content was found to be reduced, which further supported the formation of new rubber. This is the first report that utilizes high-resolution SEC to monitor the in vitro NR growth without the use of radiolabeling.
Collapse
Affiliation(s)
| | | | | | - Judit E. Puskas
- 1Department Of Polymer Science, University Of Akron, Akron, OH
| |
Collapse
|
14
|
|