1
|
Florean M, Schultz H, Wurlitzer J, O'Connor SE, Köllner TG. Independent evolution of plant natural products: Formation of benzoxazinoids in Consolida orientalis (Ranunculaceae). J Biol Chem 2025; 301:108019. [PMID: 39608711 PMCID: PMC11742589 DOI: 10.1016/j.jbc.2024.108019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Benzoxazinoids (BXDs) are important defense compounds produced by a number of species from different, evolutionarily unrelated plant families. While BXD biosynthesis has been extensively studied in the grasses (monocots) and core eudicots, the mechanism of BXD synthesis in the basal eudicots is still unclear. We used an integrated metabolomics and transcriptomics approach to elucidate the BXD pathway in Consolida orientalis, a Ranunculaceae species known to produce the BXD DIBOA-Glc. Overexpression of candidate genes in Nicotiana benthamiana identified a flavin-dependent monooxygenase (CoBX2-3) and two cytochrome P450 enzymes (CoBX4 and CoBX5) that catalyze the oxidation steps that transform indole into DIBOA. Co-expression of CoBx2-3, CoBx4, and CoBx5 with the previously described indole synthase gene CoBx1 and the UDP-glucosyltransferase gene CoBx8 in N. benthamiana resulted in the reconstitution of a fully active BXD pathway. The fact that CoBX2-3, CoBX4, and CoBX5 are not phylogenetically related to their counterparts in the grasses and core eudicots suggests independent evolution of benzoxazinoid biosynthesis in these three angiosperm lineages.
Collapse
Affiliation(s)
- Matilde Florean
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Jena, Germany
| | - Hedwig Schultz
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Jena, Germany
| | - Jens Wurlitzer
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Jena, Germany
| | - Sarah E O'Connor
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Jena, Germany.
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Jena, Germany.
| |
Collapse
|
2
|
Aggarwal PR, Mehanathan M, Choudhary P. Exploring genetics and genomics trends to understand the link between secondary metabolic genes and agronomic traits in cereals under stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154379. [PMID: 39549316 DOI: 10.1016/j.jplph.2024.154379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
The plant metabolome is considered an important interface between the genome and its phenome, where it plays a significant role in regulating plant growth in response to various environmental cues. A wide array of specialized metabolites is produced by plants, which are essential for mediating environmental interactions and their adaptation. Notably, enhanced accumulation of these specialized metabolites, particularly plant secondary metabolites (PSMs), is a part of the chemical defense response that is directly linked to improved stress tolerance. Therefore, exploring the genetic diversity underlying the immense variation of the secondary metabolite pool could unravel the adaptation mechanisms in plants against different environmental stresses. The post-genomic profiling platforms have enabled the exploration of the link between metabolic diversity and important agronomic traits. The current review focuses on the major achievements and future challenges associated with plant secondary metabolite (PSM) research in graminaceous crops using advanced omics approaches. Given this, we briefly summarize different strategies adopted to explore the genetic diversity and evolution of PSMs in cereal crops. Further, we have discussed the recent technological advancements to integrate multi-omics approaches linking the metabolome diversity with the genome, transcriptome, and proteome of these crops under stress. Combining these data with phenomics (the omics of phenotypes) provides a holistic view of how plants respond to stress. Next, we outlined the genetic manipulation studies performed so far in cereals to engineer secondary metabolic pathways for enhanced stress tolerance. In summary, our review provides new insight into developing genetic and genomic trends in exploring the secondary metabolite diversity in graminaceous crops and discusses how this information can be utilized in designing strategies to generate future stress-resilient crops.
Collapse
Affiliation(s)
- Pooja R Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Muthamilarasan Mehanathan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Choudhary
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
3
|
Xu X, Zhang C, Lai C, Zhang Z, Wu J, Su Q, Gan Y, Zhang Z, Chen Y, Guo R, Lin Y, Lai Z. Genome-Wide Identification and Expression Analysis of Bx Involved in Benzoxazinoids Biosynthesis Revealed the Roles of DIMBOA during Early Somatic Embryogenesis in Dimocarpus longan Lour. PLANTS (BASEL, SWITZERLAND) 2024; 13:1373. [PMID: 38794443 PMCID: PMC11125010 DOI: 10.3390/plants13101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Benzoxazinoids (BXs) are tryptophan-derived indole metabolites and play a role in various physiological processes, such as auxin metabolism. Auxin is essential in the process of somatic embryogenesis (SE) in plants. In this study, we used bioinformatics, transcriptome data, exogenous treatment experiments, and qPCR analysis to study the evolutionary pattern of Bx genes in green plants, the regulatory mechanism of DlBx genes during early SE, and the effect of 2,4-dihydroxy-7-methoxy-1,4-benzoxazine-3-one (DIMBOA) on the early SE in Dimocarpus longan Lour. The results showed that 27 putative DlBxs were identified in the longan genome; the Bx genes evolved independently in monocots and dicots, and the main way of gene duplication for the DlBx was tandem duplication (TD) and the DlBx were strongly constrained by purification selection during evolution. The transcriptome data indicated varying expression levels of DlBx during longan early SE, and most DlBxs responded to light, temperature, drought stress, and 2,4-dichlorophenoxyacetic acid (2,4-D) treatment; qRT-PCR results showed DlBx1, DlBx6g and DlBx6h were responsive to auxin, and treatment with 0.1mg/L DIMBOA for 9 days significantly upregulated the expression levels of DlBx1, DlBx3g, DlBx6c, DlBx6f, DlB6h, DlBx7d, DlBx8, and DlBx9b. The correlation analysis showed a significantly negative correlation between the expression level of DlBx1 and the endogenous IAA contents; DIMBOA significantly promoted the early SE and significantly changed the endogenous IAA content, and the IAA content increased significantly at the 9th day and decreased significantly at the 13th day. Therefore, the results suggested that DIMBOA indirectly promote the early SE by changing the endogenous IAA content via affecting the expression level of DlBx1 and hydrogen peroxide (H2O2) content in longan.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.X.); (C.Z.); (C.L.); (Z.Z.); (J.W.); (Q.S.); (Y.G.); (Z.Z.); (Y.C.); (R.G.); (Y.L.)
| |
Collapse
|
4
|
Florean M, Luck K, Hong B, Nakamura Y, O’Connor SE, Köllner TG. Reinventing metabolic pathways: Independent evolution of benzoxazinoids in flowering plants. Proc Natl Acad Sci U S A 2023; 120:e2307981120. [PMID: 37812727 PMCID: PMC10589660 DOI: 10.1073/pnas.2307981120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/30/2023] [Indexed: 10/11/2023] Open
Abstract
Benzoxazinoids (BXDs) form a class of indole-derived specialized plant metabolites with broad antimicrobial and antifeedant properties. Unlike most specialized metabolites, which are typically lineage-specific, BXDs occur sporadically in a number of distantly related plant orders. This observation suggests that BXD biosynthesis arose independently numerous times in the plant kingdom. However, although decades of research in the grasses have led to the elucidation of the BXD pathway in the monocots, the biosynthesis of BXDs in eudicots is unknown. Here, we used a metabolomic and transcriptomic-guided approach, in combination with pathway reconstitution in Nicotiana benthamiana, to identify and characterize the BXD biosynthetic pathways from both Aphelandra squarrosa and Lamium galeobdolon, two phylogenetically distant eudicot species. We show that BXD biosynthesis in A. squarrosa and L. galeobdolon utilize a dual-function flavin-containing monooxygenase in place of two distinct cytochrome P450s, as is the case in the grasses. In addition, we identified evolutionarily unrelated cytochrome P450s, a 2-oxoglutarate-dependent dioxygenase, a UDP-glucosyltransferase, and a methyltransferase that were also recruited into these BXD biosynthetic pathways. Our findings constitute the discovery of BXD pathways in eudicots. Moreover, the biosynthetic enzymes of these pathways clearly demonstrate that BXDs independently arose in the plant kingdom at least three times. The heterogeneous pool of identified BXD enzymes represents a remarkable example of metabolic plasticity, in which BXDs are synthesized according to a similar chemical logic, but with an entirely different set of metabolic enzymes.
Collapse
Affiliation(s)
- Matilde Florean
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| | - Katrin Luck
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| | - Benke Hong
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| | - Yoko Nakamura
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| | - Sarah E. O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| | - Tobias G. Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| |
Collapse
|
5
|
Kumari M, Naidu S, Kumari B, Singh IK, Singh A. Comparative transcriptome analysis of Zea mays upon mechanical wounding. Mol Biol Rep 2023; 50:5319-5343. [PMID: 37155015 DOI: 10.1007/s11033-023-08429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Mechanical wounding (MW) is mainly caused due to high wind, sand, heavy rains and insect infestation, leading to damage to crop plants and an increase in the incidences of pathogen infection. Plants respond to MW by altering expression of genes, proteins, and metabolites that help them to cope up with the stress. METHODS AND RESULTS In order to characterize maize transcriptome in response to mechanical wounding, a microarray analysis was executed. The study revealed 407 differentially expressed genes (DEGs) (134 upregulated and 273 downregulated). The upregulated genes were engaged in protein synthesis, transcription regulation, phytohormone signaling-mediated by salicylic acid, auxin, jasmonates, biotic and abiotic stress including bacterial, insect, salt and endoplasmic reticulum stress, cellular transport, on the other hand downregulated genes were involved in primary metabolism, developmental processes, protein modification, catalytic activity, DNA repair pathways, and cell cycle. CONCLUSION The transcriptome data present here can be further utilized for understanding inducible transcriptional response during mechanical injury and their purpose in biotic and abiotic stress tolerance. Furthermore, future study concentrating on the functional characterization of the selected key genes (Bowman Bird trypsin inhibitor, NBS-LRR-like protein, Receptor-like protein kinase-like, probable LRR receptor-like ser/thr-protein kinase, Cytochrome P450 84A1, leucoanthocyanidin dioxygenase, jasmonate O-methyltransferase) and utilizing them for genetic engineering for crop improvement is strongly recommended.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
| | - Shrishti Naidu
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
| | - Babita Kumari
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Department of Botany, North-Eastern Hill University, Shillong, India
| | - Indrakant K Singh
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India.
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India.
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India.
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, New Delhi, India.
| |
Collapse
|
6
|
Singh M, Daehler CC. Meta-analytic evidence that allelopathy may increase the success and impact of invasive grasses. PeerJ 2023; 11:e14858. [PMID: 36846446 PMCID: PMC9951799 DOI: 10.7717/peerj.14858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/16/2023] [Indexed: 02/23/2023] Open
Abstract
Background In the grass family, a disproportionate number of species have been designated as being invasive. Various growth traits have been proposed to explain the invasiveness of grasses; however, the possibility that allelopathy gives invasive grasses a competitive advantage has attracted relatively little attention. Recent research has isolated plant allelochemicals that are mostly specific to the grass family that can breakdown into relatively stable, toxic byproducts. Methods We conducted a meta-analysis of studies on grass allelopathy to test three prominent hypotheses from invasion biology and competition theory: (1) on native recipients, non-native grasses will have a significantly more negative effect compared to native grasses (Novel Weapons Hypothesis); (2) among native grasses, their effect on non-native recipients will be significantly more negative compared to their effect on native recipients (Biotic Resistance Hypothesis); and (3) allelopathic impacts will increase with phylogenetic distance (Phylogenetic Distance Hypothesis). From 23 studies, we gathered a dataset of 524 observed effect sizes (delta log response ratios) measuring the allelopathic impact of grasses on growth and germination of recipient species, and we used non-linear mixed-effects Bayesian modeling to test the hypotheses. Results We found support for the Novel Weapons Hypothesis: on native recipients, non-native grasses were twice as suppressive as native grasses (22% vs 11%, respectively). The Phylogenetic Distance Hypothesis was supported by our finding of a significant correlation between phylogenetic distance and allelopathic impact. The Biotic Resistance Hypothesis was not supported. Overall, this meta-analysis adds to the evidence that allelochemicals may commonly contribute to successful or high impact invasions in the grass family. Increased awareness of the role of allelopathy in soil legacy effects associated with grass invasions may improve restoration outcomes through implementation of allelopathy-informed restoration practices. Examples of allelopathy-informed practices, and the knowledge needed to utilize them effectively, are discussed, including the use of activated carbon to neutralize allelochemicals and modify the soil microbial community.
Collapse
|
7
|
Singh G, Agrawal H, Bednarek P. Specialized metabolites as versatile tools in shaping plant-microbe associations. MOLECULAR PLANT 2023; 16:122-144. [PMID: 36503863 DOI: 10.1016/j.molp.2022.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Plants are rich repository of a large number of chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes including responses against changing abiotic conditions and interactions with various co-existing organisms. One of the strikingly affirmed functions of these specialized metabolites is their involvement in plants' life-long interactions with complex multi-kingdom microbiomes including both beneficial and harmful microorganisms. Recent developments in genomic and molecular biology tools not only help to generate well-curated information about regulatory and structural components of biosynthetic pathways of plant specialized metabolites but also to create and screen mutant lines defective in their synthesis. In this review, we have comprehensively surveyed the function of these specialized metabolites and discussed recent research findings demonstrating the responses of various microbes on tested mutant lines having defective biosynthesis of particular metabolites. In addition, we attempt to provide key clues about the impact of these metabolites on the assembly of the plant microbiome by summarizing the major findings of recent comparative metagenomic analyses of available mutant lines under customized and natural microbial niches. Subsequently, we delineate benchmark initiatives that aim to engineer or manipulate the biosynthetic pathways to produce specialized metabolites in heterologous systems but also to diversify their immune function. While denoting the function of these metabolites, we also discuss the critical bottlenecks associated with understanding and exploiting their function in improving plant adaptation to the environment.
Collapse
Affiliation(s)
- Gopal Singh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Himani Agrawal
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
8
|
Akkoyunlu A, Dulger G. Chemical Composition and In Vitro Antimicrobial, Antioxidant, and Antiproliferative Studies of the Lamium galeobdolon L. (L.) Essential Oil. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Nordin E, Steffensen SK, Laursen BB, Andersson SO, Johansson JE, Åman P, Hallmans G, Borre M, Stærk D, Hanhineva K, Fomsgaard IS, Landberg R. An inverse association between plasma benzoxazinoid metabolites and PSA after rye intake in men with prostate cancer revealed with a new method. Sci Rep 2022; 12:5260. [PMID: 35347164 PMCID: PMC8960836 DOI: 10.1038/s41598-022-08856-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/11/2022] [Indexed: 11/12/2022] Open
Abstract
Prostate cancer (PC) is a common cancer among men, and preventive strategies are warranted. Benzoxazinoids (BXs) in rye have shown potential against PC in vitro but human studies are lacking. The aim was to establish a quantitative method for analysis of BXs and investigate their plasma levels after a whole grain/bran rye vs refined wheat intervention, as well as exploring their association with PSA, in men with PC. A quantitative method for analysis of 22 BXs, including novel metabolites identified by mass spectrometry and NMR, was established, and applied to plasma samples from a randomized crossover study where patients with indolent PC (n = 17) consumed 485 g whole grain rye/rye bran or fiber supplemented refined wheat daily for 6 wk. Most BXs were significantly higher in plasma after rye (0.3–19.4 nmol/L in plasma) vs. refined wheat (0.05–2.9 nmol/L) intake. HBOA-glc, 2-HHPAA, HBOA-glcA, 2-HPAA-glcA were inversely correlated to PSA in plasma (p < 0.04). To conclude, BXs in plasma, including metabolites not previously analyzed, were quantified. BX metabolites were significantly higher after rye vs refined wheat consumption. Four BX-related metabolites were inversely associated with PSA, which merits further investigation.
Collapse
Affiliation(s)
- Elise Nordin
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 39, Gothenburg, Sweden.
| | - Stine K Steffensen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark.
| | - Bente B Laursen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Sven-Olof Andersson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jan-Erik Johansson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Per Åman
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, Uppsala, Sweden
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Michael Borre
- Department of Urology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Dan Stærk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Kati Hanhineva
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 39, Gothenburg, Sweden.,Department of Life Technologies, Food Chemistry and Food Development Unit, 20520, Turku, Finland.,School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland
| | - Inge S Fomsgaard
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark.
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 39, Gothenburg, Sweden. .,Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
10
|
Zhang YM, Su Y, Dai ZW, Lu M, Sun W, Yang W, Wu SS, Wan ZT, Wan HH, Zhai J. Integration of the metabolome and transcriptome reveals indigo biosynthesis in Phaius flavus flowers under freezing treatment. PeerJ 2022; 10:e13106. [PMID: 35310166 PMCID: PMC8929171 DOI: 10.7717/peerj.13106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
Background Indigo-containing plant tissues change blue after a freezing treatment, which is accompanied by changes in indigo and its related compounds. Phaius flavus is one of the few monocot plants containing indigo. The change to blue after freezing was described to explore the biosynthesis of indigo in P. flavus. Methods In this study, we surveyed the dynamic change of P. flavus flower metabolomics and transcriptomics. Results The non-targeted metabolomics and targeted metabolomics results revealed a total of 98 different metabolites, the contents of indole, indican, indigo, and indirubin were significantly different after the change to blue from the freezing treatment. A transcriptome analysis screened ten different genes related to indigo upstream biosynthesis, including three anthranilate synthase genes, two phosphoribosyl-anthranilate isomerase genes, one indole-3-glycerolphosphate synthase gene, five tryptophan synthase genes. In addition, we further candidate 37 cytochrome P450 enzyme genes, one uridine diphosphate glucosyltransferase gene, and 24 β-D-glucosidase genes were screened that may have participated in the downstream biosynthesis of indigo. This study explained the changes of indigo-related compounds at the metabolic level and gene expression level during the process of P. flavus under freezing and provided new insights for increasing the production of indigo-related compounds in P. flavus. In addition, transcriptome sequencing provides the basis for functional verification of the indigo biosynthesis key genes in P. flavus.
Collapse
Affiliation(s)
- Yi-Ming Zhang
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fuzhou, China
| | - Yong Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhong-wu Dai
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fuzhou, China
| | - Meng Lu
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fuzhou, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sha-Sha Wu
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fuzhou, China
| | - Zhi-Ting Wan
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fuzhou, China
| | - Hui-Hua Wan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junwen Zhai
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fuzhou, China
| |
Collapse
|
11
|
Abramov A, Hoffmann T, Stark TD, Zheng L, Lenk S, Hammerl R, Lanzl T, Dawid C, Schön CC, Schwab W, Gierl A, Frey M. Engineering of benzoxazinoid biosynthesis in Arabidopsis thaliana: Metabolic and physiological challenges. PHYTOCHEMISTRY 2021; 192:112947. [PMID: 34534712 DOI: 10.1016/j.phytochem.2021.112947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Plant specialised metabolites constitute a layer of chemical defence. Classes of the defence compounds are often restricted to a certain taxon of plants, e.g. benzoxazinoids (BX) are characteristically detected in grasses. BXs confer wide-range defence by controlling herbivores and microbial pathogens and are allelopathic compounds. In the crops maize, wheat and rye high concentrations of BXs are synthesised at an early developmental stage. By transfer of six Bx-genes (Bx1 to Bx5 and Bx8) it was possible to establish the biosynthesis of 2,4-dihydroxy-1,4-benzoxazin-3-one glucoside (GDIBOA) in a concentration of up to 143 nmol/g dry weight in Arabidopsis thaliana. Our results indicate that inefficient channeling of substrates along the pathway and metabolisation of intermediates in host plants might be a general drawback for transgenic establishment of specialised metabolite biosynthesis pathways. As a consequence, BX levels required for defence are not obtained in Arabidopsis. We could show that indolin-2-one (ION), the first specific intermediate, is phytotoxic and is metabolised by hydroxylation and glycosylation by a wide spectrum of plants. In Arabidopsis, metabolic stress due to the enrichment of ION leads to elevated levels of salicylic acid (SA) and in addition to its intrinsic phytotoxicity, ION affects plant morphology indirectly via SA. We could show that Bx3 has a crucial role in the evolution of the pathway, first based on its impact on flux into the pathway and, second by C3-hydroxylation of the phytotoxic ION. Thereby BX3 interferes with a supposedly generic detoxification system towards the non-specific intermediate.
Collapse
Affiliation(s)
- Aleksej Abramov
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, 85354, Freising, Germany
| | - Thomas Hoffmann
- Associate Professorship of Biotechnology of Natural Products, Technical University of Munich, Liesel-Beckmann Str. 1, 85354, Freising, Germany
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner Str. 34, 85354, Freising, Germany
| | - Linlin Zheng
- Chair of Genetics, Technical University of Munich, Emil-Ramann Str. 8, 85354, Freising, Germany
| | - Stefan Lenk
- Chair of Genetics, Technical University of Munich, Emil-Ramann Str. 8, 85354, Freising, Germany
| | - Richard Hammerl
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner Str. 34, 85354, Freising, Germany
| | - Tobias Lanzl
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, 85354, Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner Str. 34, 85354, Freising, Germany
| | - Chris-Carolin Schön
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, 85354, Freising, Germany
| | - Wilfried Schwab
- Associate Professorship of Biotechnology of Natural Products, Technical University of Munich, Liesel-Beckmann Str. 1, 85354, Freising, Germany
| | - Alfons Gierl
- Chair of Genetics, Technical University of Munich, Emil-Ramann Str. 8, 85354, Freising, Germany
| | - Monika Frey
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, 85354, Freising, Germany.
| |
Collapse
|
12
|
Bharadwaj R, Kumar SR, Sharma A, Sathishkumar R. Plant Metabolic Gene Clusters: Evolution, Organization, and Their Applications in Synthetic Biology. FRONTIERS IN PLANT SCIENCE 2021; 12:697318. [PMID: 34490002 PMCID: PMC8418127 DOI: 10.3389/fpls.2021.697318] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/05/2021] [Indexed: 05/21/2023]
Abstract
Plants are a remarkable source of high-value specialized metabolites having significant physiological and ecological functions. Genes responsible for synthesizing specialized metabolites are often clustered together for a coordinated expression, which is commonly observed in bacteria and filamentous fungi. Similar to prokaryotic gene clustering, plants do have gene clusters encoding enzymes involved in the biosynthesis of specialized metabolites. More than 20 gene clusters involved in the biosynthesis of diverse metabolites have been identified across the plant kingdom. Recent studies demonstrate that gene clusters are evolved through gene duplications and neofunctionalization of primary metabolic pathway genes. Often, these clusters are tightly regulated at nucleosome level. The prevalence of gene clusters related to specialized metabolites offers an attractive possibility of an untapped source of highly useful biomolecules. Accordingly, the identification and functional characterization of novel biosynthetic pathways in plants need to be worked out. In this review, we summarize insights into the evolution of gene clusters and discuss the organization and importance of specific gene clusters in the biosynthesis of specialized metabolites. Regulatory mechanisms which operate in some of the important gene clusters have also been briefly described. Finally, we highlight the importance of gene clusters to develop future metabolic engineering or synthetic biology strategies for the heterologous production of novel metabolites.
Collapse
Affiliation(s)
- Revuru Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Sarma R. Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, Querétaro, Mexico
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
13
|
Singh A, Dilkes B, Sela H, Tzin V. The Effectiveness of Physical and Chemical Defense Responses of Wild Emmer Wheat Against Aphids Depends on Leaf Position and Genotype. FRONTIERS IN PLANT SCIENCE 2021; 12:667820. [PMID: 34262579 PMCID: PMC8273356 DOI: 10.3389/fpls.2021.667820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/19/2021] [Indexed: 05/15/2023]
Abstract
The bird cherry-oat aphid (Rhopalosiphum padi) is one of the most destructive insect pests in wheat production. To reduce aphid damage, wheat plants have evolved various chemical and physical defense mechanisms. Although these mechanisms have been frequently reported, much less is known about their effectiveness. The tetraploid wild emmer wheat (WEW; Triticum turgidum ssp. dicoccoides), one of the progenitors of domesticated wheat, possesses untapped resources from its numerous desirable traits, including insect resistance. The goal of this research was to determine the effectiveness of trichomes (physical defense) and benzoxazinoids (BXDs; chemical defense) in aphid resistance by exploiting the natural diversity of WEW. We integrated a large dataset composed of trichome density and BXD abundance across wheat genotypes, different leaf positions, conditions (constitutive and aphid-induced), and tissues (whole leaf and phloem sap). First, we evaluated aphid reproduction on 203 wheat accessions and found large variation in this trait. Then, we chose eight WEW genotypes and one domesticated durum wheat cultivar for detailed quantification of the defense mechanisms across three leaves. We discovered that these defense mechanisms are influenced by both leaf position and genotype, where aphid reproduction was the highest on leaf-1 (the oldest), and trichome density was the lowest. We compared the changes in trichome density and BXD levels upon aphid infestation and found only minor changes relative to untreated plants. This suggests that the defense mechanisms in the whole leaf are primarily anticipatory and unlikely to contribute to aphid-induced defense. Next, we quantified BXD levels in the phloem sap and detected a significant induction of two compounds upon aphid infestation. Moreover, evaluating aphid feeding patterns showed that aphids prefer to feed on the oldest leaf. These findings revealed the dynamic response at the whole leaf and phloem levels that altered aphid feeding and reproduction. Overall, they suggested that trichomes and the BXD 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA) levels are the main factors determining aphid resistance, while trichomes are more effective than BXDs. Accessions from the WEW germplasm, rich with trichomes and BXDs, can be used as new genetic sources to improve the resistance of elite wheat cultivars.
Collapse
Affiliation(s)
- Anuradha Singh
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Hanan Sela
- The Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv, Israel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
14
|
Bhattarai B, Steffensen SK, Gregersen PL, Kristensen HL, Fomsgaard IS. Stepwise mass spectrometry-based approach for confirming the presence of benzoxazinoids in herbs and vegetables. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:283-297. [PMID: 32688439 DOI: 10.1002/pca.2973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Benzoxazinoids (BXs) are plant phytochemicals that have both defensive properties in plants and therapeutic effects in humans. The presence of BXs has been largely studied in the Poaceae family (monocots). To study the presence or absence of BXs in dicotyledons and monocotyledons outside the Poaceae family, parts of 24 plant species at several growth stages were selected for analysis, some of which were already known to contain BXs. OBJECTIVES To devise a stepwise mass spectrometry-based approach for confirming the presence of BXs in plant samples, and to use the method to explore the status of BXs in selected plant species. EXPERIMENTAL Plant samples were extracted using accelerated solvent extraction and analysed using triple-quadrupole liquid chromatography-mass spectrometry. RESULTS The use of different columns, double mass transitions, and ion ratios proved to be a robust tool for confirming the presence of BXs in different plant species. By this method, the presence of BXs was confirmed in three of the 24 species. Double-hexose forms of BXs, which have not been reported before in dicotyledons, were confirmed to be present in the dicotyledon plants Acanthus mollis and Lamium galeobdolon, and the presence of BXs in the seeds of Consolida orientalis is reported for the first time here. High concentrations of BXs were found in the aerial parts of Acanthus mollis and Lamium galeobdolon, at 20 and 32 μmol/g plant dry weight, respectively. CONCLUSIONS The stepwise approach described in this work confirmed the presence of BXs in new samples.
Collapse
Affiliation(s)
- Bina Bhattarai
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | - Per L Gregersen
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | | |
Collapse
|
15
|
Dudek B, Warskulat AC, Vogel H, Wielsch N, Menezes RC, Hupfer Y, Paetz C, Gebauer-Jung S, Svatoš A, Schneider B. An Integrated-Omics/Chemistry Approach Unravels Enzymatic and Spontaneous Steps to Form Flavoalkaloidal Nudicaulin Pigments in Flowers of Papaver nudicaule L. Int J Mol Sci 2021; 22:ijms22084129. [PMID: 33923591 PMCID: PMC8073789 DOI: 10.3390/ijms22084129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Flower colour is an important trait for plants to attract pollinators and ensure their reproductive success. Among yellow flower pigments, the nudicaulins in Papaver nudicaule L. (Iceland poppy) are unique due to their rarity and unparalleled flavoalkaloid structure. Nudicaulins are derived from pelargonidin glycoside and indole, products of the flavonoid and indole/tryptophan biosynthetic pathway, respectively. To gain insight into the molecular and chemical basis of nudicaulin biosynthesis, we combined transcriptome, differential gel electrophoresis (DIGE)-based proteome, and ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS)-based metabolome data of P. nudicaule petals with chemical investigations. We identified candidate genes and proteins for all biosynthetic steps as well as some key metabolites across five stages of petal development. Candidate genes of amino acid biosynthesis showed a relatively stable expression throughout petal development, whereas most candidate genes of flavonoid biosynthesis showed increasing expression during development followed by downregulation in the final stage. Notably, gene candidates of indole-3-glycerol-phosphate lyase (IGL), sharing characteristic sequence motifs with known plant IGL genes, were co-expressed with flavonoid biosynthesis genes, and are probably providing free indole. The fusion of indole with pelargonidin glycosides was retraced synthetically and promoted by high precursor concentrations, an excess of indole, and a specific glycosylation pattern of pelargonidin. Thus, nudicaulin biosynthesis combines the enzymatic steps of two different pathways with a spontaneous fusion of indole and pelargonidin glycoside under precisely tuned reaction conditions.
Collapse
|
16
|
Xu D, Xie Y, Guo H, Zeng W, Xiong H, Zhao L, Gu J, Zhao S, Ding Y, Liu L. Transcriptome Analysis Reveals a Potential Role of Benzoxazinoid in Regulating Stem Elongation in the Wheat Mutant qd. Front Genet 2021; 12:623861. [PMID: 33633784 PMCID: PMC7900560 DOI: 10.3389/fgene.2021.623861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
The stems of cereal crops provide both mechanical support for lodging resistance and a nutrient supply for reproductive organs. Elongation, which is considered a critical phase for yield determination in winter wheat (Triticum aestivum L.), begins from the first node detectable to anthesis. Previously, we characterized a heavy ion beam triggered wheat mutant qd, which exhibited an altered stem elongation pattern without affecting mature plant height. In this study, we further analyzed mutant stem developmental characteristics by using transcriptome data. More than 40.87 Mb of clean reads including at least 36.61 Mb of unique mapped reads were obtained for each biological sample in this project. We utilized our transcriptome data to identify 124,971 genes. Among these genes, 4,340 differentially expressed genes (DEG) were identified between the qd and wild-type (WT) plants. Compared to their WT counterparts, qd plants expressed 2,462 DEGs with downregulated expression levels and 1878 DEGs with upregulated expression levels. Using DEXSeq, we identified 2,391 counting bins corresponding to 1,148 genes, and 289 of them were also found in the DEG analysis, demonstrating differences between qd and WT. The 5,199 differentially expressed genes between qd and WT were employed for GO and KEGG analyses. Biological processes, including protein-DNA complex subunit organization, protein-DNA complex assembly, nucleosome organization, nucleosome assembly, and chromatin assembly, were significantly enriched by GO analysis. However, only benzoxazinoid biosynthesis pathway-associated genes were enriched by KEGG analysis. Genes encoding the benzoxazinoid biosynthesis enzymes Bx1, Bx3, Bx4, Bx5, and Bx8_9 were confirmed to be differentially expressed between qd and WT. Our results suggest that benzoxazinoids could play critical roles in regulating the stem elongation phenotype of qd.
Collapse
Affiliation(s)
- Daxing Xu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yongdun Xie
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Huijun Guo
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Weiwei Zeng
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Hongchun Xiong
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Linshu Zhao
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Jiayu Gu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Shirong Zhao
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yuping Ding
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Luxiang Liu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| |
Collapse
|
17
|
Schandry N, Becker C. Allelopathic Plants: Models for Studying Plant-Interkingdom Interactions. TRENDS IN PLANT SCIENCE 2020; 25:176-185. [PMID: 31837955 DOI: 10.1016/j.tplants.2019.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 05/24/2023]
Abstract
Allelopathy is a biochemical interaction between plants in which a donor plant releases secondary metabolites, allelochemicals, that are detrimental to the growth of its neighbours. Traditionally considered as bilateral interactions between two plants, allelopathy has recently emerged as a cross-kingdom process that can influence and be modulated by the other organisms in the plant's environment. Here, we review the current knowledge on plant-interkingdom interactions, with a particular focus on benzoxazinoids. We highlight how allelochemical-producing plants influence not only their plant neighbours but also insects, fungi, and bacteria that live on or around them. We discuss challenges that need to be overcome to study chemical plant-interkingdom interactions, and we propose experimental approaches to address how biotic and chemical processes impact plant health.
Collapse
Affiliation(s)
- Niklas Schandry
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Institute of Genetics, Faculty of Biology, Biocenter Martinsried, LMU Munich, 82152 Martinsried-Planegg, Germany.
| |
Collapse
|
18
|
de Sousa G, Lima WG, Dos Santos FJ, Macías FA, Molinillo JMG, Teixeira-Neto RG, de Siqueira JM, da Silva ES. Toxicity and Anti-promastigote Activity of Benzoxazinoid Analogs Against Leishmania (Viannia) braziliensis and Leishmania (Leishmania) infantum. Adv Pharm Bull 2019; 10:119-124. [PMID: 32002370 PMCID: PMC6983991 DOI: 10.15171/apb.2020.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/25/2019] [Accepted: 09/02/2019] [Indexed: 11/12/2022] Open
Abstract
Purpose: Here, we aim to evaluate the antileishmanial activity of compounds with a benzoxazinoid (BX) skeleton, previously synthesized by our group, against Leishmania (Viannia) braziliensis and Leishmania (Leishmania) infantum promastigotes.
Methods: Anti-promastigote activity, as well as cytotoxicity, were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assays. The selectivity index (SI) for each compound was calculated using a ratio of the cytotoxicity of compounds and the geometric mean (GM) of antileishmanial concentrations to each species tested. The comparisons between groups were carried out using a t test or analysis of variance (one-way ANOVA). A P value of less than 0.05 was considered significant.
Results: All the compounds tested were active, with IC50 falling between 92±6.19 µg/mL and 238±6.57 µg/mL for L. braziliensis, and 89±6.43 µg/mL and 188±3.58 µg/mL against L. infantum. Bex2, Bex3, Pyr1, Pyr2, and Pyr4 were compounds that showed activity similar to the drug Glucantime®, exhibited low cytotoxicity against splenic hamster cells (CC50 raging between >400 and 105.7±2.26 µg/mL) and had favorable selectivity indices (SI 1.12 to 3.96).
Conclusion: The analogs in question are promising prototypes for the pharmaceutical development of novel, safer and more effective leishmanicidal agents.
Collapse
Affiliation(s)
- Gilberto de Sousa
- Laboratório de Parasitologia e Doenças Parasitárias, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Divinopolis, MG, Brazil
| | - William Gustavo Lima
- Laboratório de Microbiologia Médica, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Divinopolis, MG, Brazil
| | - Flávio José Dos Santos
- Laboratório de Farmacognosia/Química de Produtos Naturais, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Divinopolis, MG, Brazil
| | - Francisco A Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus CEIA3, School of Science, University of Cadiz, Puerto Real (Cádiz), Spain
| | - José María González Molinillo
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus CEIA3, School of Science, University of Cadiz, Puerto Real (Cádiz), Spain
| | - Rafael Gonçalves Teixeira-Neto
- Laboratório de Parasitologia e Doenças Parasitárias, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Divinopolis, MG, Brazil
| | - João Máximo de Siqueira
- Laboratório de Farmacognosia/Química de Produtos Naturais, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Divinopolis, MG, Brazil
| | - Eduardo Sérgio da Silva
- Laboratório de Parasitologia e Doenças Parasitárias, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Divinopolis, MG, Brazil
| |
Collapse
|
19
|
Hannemann L, Lucaciu CR, Sharma S, Rattei T, Mayer KFX, Gierl A, Frey M. A promiscuous beta-glucosidase is involved in benzoxazinoid deglycosylation in Lamium galeobdolon. PHYTOCHEMISTRY 2018; 156:224-233. [PMID: 30336442 DOI: 10.1016/j.phytochem.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/27/2018] [Accepted: 10/10/2018] [Indexed: 05/28/2023]
Abstract
In the plant kingdom beta-glucosidases (BGLUs) of the glycosidase hydrolase family 1 have essential function in primary metabolism and are particularly employed in secondary metabolism. They are essential for activation in two-component defence systems based on stabilisation of reactive compounds by glycosylation. Based on de novo assembly we isolated and functionally characterised BGLUs expressed in leaves of Lamium galeobdolon (LgGLUs). LgGLU1 could be assigned to hydrolysis of the benzoxazinoid GDIBOA (2,4-dihydroxy-1,4-benzoxazin-3-one glucoside). Within the Lamiaceae L. galeobdolon is distinguished by the presence GDIBOA in addition to the more common iridoid harpagide. Although LgGLU1 proved to be promiscuous with respect to accepted substrates, harpagide hydrolysis was not detected. Benzoxazinoids are characteristic defence compounds of the Poales but are also found in some unrelated dicots. The benzoxazinoid specific BGLUs have recently been identified for the grasses maize, wheat, rye and the Ranunculaceae Consolida orientalis. All enzymes share a general substrate ambiguity but differ in detailed substrate pattern. The isolation of the second dicot GDIBOA glucosidase LgGLU1 allowed it to analyse the phylogenetic relation of the distinct BGLUs also within dicots. The data revealed long periods of independent sequence evolution before speciation.
Collapse
Affiliation(s)
- Laura Hannemann
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckmann-Str. 2, D-85354, Freising, Germany.
| | - Calin Rares Lucaciu
- Division of Computational Systems Biology, University of Vienna, Althanstr. 14 A-1090, Vienna, Austria.
| | - Sapna Sharma
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.
| | - Thomas Rattei
- Division of Computational Systems Biology, University of Vienna, Althanstr. 14 A-1090, Vienna, Austria.
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany; School of Life Sciences, Technical University Munich, Germany.
| | - Alfons Gierl
- Chair of Genetics, Technical University of Munich, Emil-Ramann-Str. 8, D-85354, Freising, Germany.
| | - Monika Frey
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckmann-Str. 2, D-85354, Freising, Germany.
| |
Collapse
|
20
|
de Bruijn WJC, Gruppen H, Vincken JP. Structure and biosynthesis of benzoxazinoids: Plant defence metabolites with potential as antimicrobial scaffolds. PHYTOCHEMISTRY 2018; 155:233-243. [PMID: 30218957 DOI: 10.1016/j.phytochem.2018.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Benzoxazinoids, comprising the classes of benzoxazinones and benzoxazolinones, are a set of specialised metabolites produced by the plant family Poaceae (formerly Gramineae), and some dicots. The family Poaceae in particular contains several important crops like maize and wheat. Benzoxazinoids play a role in allelopathy and as defence compounds against (micro)biological threats. The effectivity of benzoxazinones in these functionalities is largely imposed by the subclasses (determined by N substituent). In this review, we provide an overview of all currently known natural benzoxazinoids and a summary of the current state of knowledge of their biosynthesis. We also evaluated their antimicrobial activity based on minimum inhibitory concentration (MIC) values reported in literature. Monomeric natural benzoxazinoids seem to lack potency as antimicrobial agents. The 1,4-benzoxazin-3-one backbone, however, has been shown to be a potential scaffold for designing new antimicrobial compounds. This has been demonstrated by a number of studies that report potent activity of synthetic derivatives of 1,4-benzoxazin-3-one, which possess MIC values down to 6.25 μg mL-1 against pathogenic fungi (e.g. C. albicans) and 16 μg mL-1 against bacteria (e.g. S. aureus and E. coli). Observations on the structural requirements for allelopathy, insecticidal, and antimicrobial activity suggest that they are not necessarily conferred by similar mechanisms.
Collapse
Affiliation(s)
- Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Harry Gruppen
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
21
|
Zeng L, Watanabe N, Yang Z. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea ( Camellia sinensis) to safely and effectively improve tea aroma. Crit Rev Food Sci Nutr 2018; 59:2321-2334. [PMID: 30277806 DOI: 10.1080/10408398.2018.1506907] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolite formation is a biochemical and physiological feature of plants developed as an environmental response during the evolutionary process. These metabolites help defend plants against environmental stresses, but are also important quality components in crops. Utilizing the stress response to improve natural quality components in plants has attracted increasing research interest. Tea, which is processed by the tender shoots or leaves of tea plant (Camellia sinensis (L.) O. Kuntze), is the second most popular beverage worldwide after water. Aroma is an important factor affecting tea character and quality. The defense responses of tea leaves against various stresses during preharvest (tea growth process) and postharvest (tea manufacturing) processing can result in aroma formation. Herein, we summarize recent investigations into the biosyntheses of several characteristic aroma compounds prevalent in teas and derived from volatile fatty acid derivatives, terpenes, and phenylpropanoids/benzenoids. Several key aroma synthetic genes from tea leaves have been isolated, cloned, sequenced, and functionally characterized. Biotic stress (such as tea green leafhopper attack) and abiotic stress (such as light, temperature, and wounding) could enhance the expression of aroma synthetic genes, resulting in the abundant accumulation of characteristic aroma compounds in tea leaves. Understanding the specific relationships between characteristic aroma compounds and stresses is key to improving tea quality safely and effectively.
Collapse
Affiliation(s)
- Lanting Zeng
- a Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences , Guangzhou , China.,b College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Naoharu Watanabe
- c Graduate School of Science and Technology, Shizuoka University , Naka-ku, Hamamatsu , Japan
| | - Ziyin Yang
- a Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences , Guangzhou , China.,b College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
22
|
Are wild and cultivated flowers served in restaurants or sold by local producers in Denmark safe for the consumer? Food Chem Toxicol 2018; 120:129-142. [DOI: 10.1016/j.fct.2018.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/08/2018] [Accepted: 07/03/2018] [Indexed: 11/18/2022]
|
23
|
Plant Protection by Benzoxazinoids—Recent Insights into Biosynthesis and Function. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080143] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Benzoxazinoids (BXs) are secondary metabolites present in many Poaceae including the major crops maize, wheat, and rye. In contrast to other potentially toxic secondary metabolites, BXs have not been targets of counter selection during breeding and the effect of BXs on insects, microbes, and neighbouring plants has been recognised. A broad knowledge about the mode of action and metabolisation in target organisms including herbivorous insects, aphids, and plants has been gathered in the last decades. BX biosynthesis has been elucidated on a molecular level in crop cereals. Recent advances, mainly made by investigations in maize, uncovered a significant diversity in the composition of BXs within one species. The pattern can be specific for single plant lines and dynamic changes triggered by biotic and abiotic stresses were observed. Single BXs might be toxic, repelling, attractive, and even growth-promoting for insects, depending on the particular species. BXs delivered into the soil influence plant and microbial communities. Furthermore, BXs can possibly be used as signalling molecules within the plant. In this review we intend to give an overview of the current data on the biosynthesis, structure, and function of BXs, beyond their characterisation as mere phytotoxins.
Collapse
|
24
|
Powell JJ, Carere J, Sablok G, Fitzgerald TL, Stiller J, Colgrave ML, Gardiner DM, Manners JM, Vogel JP, Henry RJ, Kazan K. Transcriptome analysis of Brachypodium during fungal pathogen infection reveals both shared and distinct defense responses with wheat. Sci Rep 2017; 7:17212. [PMID: 29222453 PMCID: PMC5722949 DOI: 10.1038/s41598-017-17454-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/26/2017] [Indexed: 11/09/2022] Open
Abstract
Fusarium crown rot (FCR) of wheat and barley, predominantly caused by the fungal pathogen Fusarium pseudograminearum, is a disease of economic significance. The quantitative nature of FCR resistance within cultivated wheat germplasm has significantly limited breeding efforts to enhanced FCR resistance in wheat. In this study, we characterized the molecular responses of Brachypodium distachyon (Brachypodium hereafter) to F. pseudograminearum infection using RNA-seq to determine whether Brachypodium can be exploited as a model system towards better understanding of F. pseudograminearum-wheat interaction. The transcriptional response to infection in Brachypodium was strikingly similar to that previously reported in wheat, both in shared expression patterns of wheat homologs of Brachypodium genes and functional overlap revealed through comparative gene ontology analysis in both species. Metabolites produced by various biosynthetic pathways induced in both wheat and Brachypodium were quantified, revealing a high degree of overlap between these two species in metabolic response to infection but also showed Brachypodium does not produce certain defence-related metabolites found in wheat. Functional analyses of candidate genes identified in this study will improve our understanding of resistance mechanisms and may lead to the development of new strategies to protect cereal crops from pathogen infection.
Collapse
Affiliation(s)
- Jonathan J Powell
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia.
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, St Lucia, 4067, Queensland, Australia.
| | - Jason Carere
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - Gaurav Sablok
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Sydney, Australia
| | - Timothy L Fitzgerald
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - Jiri Stiller
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - Michelle L Colgrave
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - John M Manners
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Black Mountain, Australian Capital Territory, 2601, Australia
| | - John P Vogel
- Joint Genome Institute, United States Department of Energy, Walnut Creek, CA, 94598, USA
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, St Lucia, 4067, Queensland, Australia
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, Queensland, 4067, Australia.
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, St Lucia, 4067, Queensland, Australia.
| |
Collapse
|
25
|
Tanwir F, Dionisio G, Adhikari KB, Fomsgaard IS, Gregersen PL. Biosynthesis and chemical transformation of benzoxazinoids in rye during seed germination and the identification of a rye Bx6-like gene. PHYTOCHEMISTRY 2017; 140:95-107. [PMID: 28472715 DOI: 10.1016/j.phytochem.2017.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Benzoxazinoids are secondary metabolites with plant defense properties and possible health-promoting effects in humans. In this study, the transcriptional activity of ScBx genes (ScBx1-ScBx5; ScBx6-like), involved in benzoxazinoid biosynthesis, was analyzed during germination and early seedling development in rye. Our results showed that ScBx genes had highest levels of expression at 24-30 h after germination, followed by a decrease at later stages. For ScBx1-ScBx5 genes expression was higher in shoots compared with root tissues and vice versa for ScBx6-like gene transcripts. Moreover, methylated forms of benzoxazinoids accumulated in roots rather than in shoots during seedling development, in particular reaching high levels of HMBOA-glc in roots. Chemical profiles of benzoxazinoid accumulation in the developing seedling reflected the combined effects of de novo biosynthesis of the compounds as well as the turnover of compounds either pre-stored in the embryo or de novo biosynthesized. Bioinformatic analysis, together with the differential distribution of ScBx6-like transcripts in root and shoot tissues, suggested the presence of a ZmBx6 homolog encoding a 2-oxoglutarate dependent dehydrogenase in rye. The ScBx6-like cDNA was expressed in E. coli for functional characterization in vitro. LC-MS/MS analysis showed that the purified enzyme was responsible for the oxidation of DIBOA-glc into TRIBOA-glc, strongly suggesting the ScBX6-like enzyme in rye to be a functional ortholog of maize ZmBX6.
Collapse
Affiliation(s)
- Fariha Tanwir
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Giuseppe Dionisio
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | | | | - Per L Gregersen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark.
| |
Collapse
|
26
|
Pedersen HA, Steffensen SK, Heinrichson K, Fomsgaard IS. Biphenyl Columns Provide Good Separation of the Glucosides of DIMBOA and DIM2BOA. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydroxamic acids are important defense compounds in cereals and have been subject to extensive research. Two important hydroxamic acids in maize are 2-β-D-glucopyranosyloxy-4-hydroxy-7-methoxy-2 H-1,4-benzoxazin-3(4 H)-one (DIMBOA-glc) and its 8-methoxylated derivative (DIM2BOA-glc). The compounds are typically reported as resolved by mass spectrometry rather than chromatography, with DIM2BOA-glc quantified relative to DIMBOA-glc. Biphenyl HPLC columns, however, allow good separation of the two compounds at both the analytical and semi-preparative scale, enabling both isolation and absolute quantitation of both compounds. In combination with established sample treatment and chromatographic methods, biphenyl chromatography thus promises new possibilities for resolving benzoxazinoid glucosides.
Collapse
Affiliation(s)
- Hans Albert Pedersen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, DK-4200, Denmark
| | | | - Kirsten Heinrichson
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, DK-4200, Denmark
| | - Inge S. Fomsgaard
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, DK-4200, Denmark
| |
Collapse
|
27
|
Pedersen HA, Heinrichson K, Fomsgaard IS. Alterations of the Benzoxazinoid Profiles of Uninjured Maize Seedlings During Freezing, Storage, and Lyophilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4103-4110. [PMID: 28457134 DOI: 10.1021/acs.jafc.7b01158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Benzoxazinoids are highly studied compounds due to their biological activity and presence in several cereals. They include compound classes such as hydroxamic acids and lactams and usually occur as inactive glucosides in unstressed plants. Injury to the plant causes enzymatic hydrolysis of the inactive glucosides to the biologically active hydroxamic acid and lactam aglucones. The hydroxamic acids further undergo spontaneous hydrolysis to benzoxazolinones in aqueous solution. Extraction methods that do not cause immediate inactivation of enzymes result in accumulation of aglucones in samples. Using HPLC-MS to profile benzoxazinoids in maize seedlings subjected to several sample preparation techniques, we have found that hydroxamic acid aglucones and benzoxazolinones are present in uninjured maize seedlings, but that the benxozazinoid profile varies depending on sample treatment, potentially underrepresenting the glucoside content and overrepresenting the aglucone and benzoxazolinone content.
Collapse
Affiliation(s)
- Hans Albert Pedersen
- Department of Agroecology, Aarhus University , Forsøgsvej 1, Flakkebjerg, DK-4200 Slagelse, Denmark
| | - Kirsten Heinrichson
- Department of Agroecology, Aarhus University , Forsøgsvej 1, Flakkebjerg, DK-4200 Slagelse, Denmark
| | - Inge S Fomsgaard
- Department of Agroecology, Aarhus University , Forsøgsvej 1, Flakkebjerg, DK-4200 Slagelse, Denmark
| |
Collapse
|
28
|
Groszyk J, Kowalczyk M, Yanushevska Y, Stochmal A, Rakoczy-Trojanowska M, Orczyk W. Identification and VIGS-based characterization of Bx1 ortholog in rye (Secale cereale L.). PLoS One 2017; 12:e0171506. [PMID: 28234909 PMCID: PMC5325281 DOI: 10.1371/journal.pone.0171506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/21/2017] [Indexed: 12/28/2022] Open
Abstract
The first step of the benzoxazinoid (BX) synthesis pathway is catalyzed by an enzyme with indole-3-glycerol phosphate lyase activity encoded by 3 genes, Bx1, TSA and Igl. A gene highly homologous to maize and wheat Bx1 has been identified in rye. The goal of the study was to analyze the gene and to experimentally verify its role in the rye BX biosynthesis pathway as a rye ortholog of the Bx1 gene. Expression of the gene showed peak values 3 days after imbibition (dai) and at 21 dai it was undetectable. Changes of the BX content in leaves were highly correlated with the expression pattern until 21 dai. In plants older than 21 dai despite the undetectable expression of the analyzed gene there was still low accumulation of BXs. Function of the gene was verified by correlating its native expression and virus-induced silencing with BX accumulation. Barley stripe mosaic virus (BSMV)-based vectors were used to induce transcriptional (TGS) and posttranscriptional (PTGS) silencing of the analyzed gene. Both strategies (PTGS and TGS) significantly reduced the transcript level of the analyzed gene, and this was highly correlated with lowered BX content. Inoculation with virus-based vectors specifically induced expression of the analyzed gene, indicating up-regulation by biotic stressors. This is the first report of using the BSMV-based system for functional analysis of rye gene. The findings prove that the analyzed gene is a rye ortholog of the Bx1 gene. Its expression is developmentally regulated and is strongly induced by biotic stress. Stable accumulation of BXs in plants older than 21 dai associated with undetectable expression of ScBx1 indicates that the function of the ScBx1 in the BX biosynthesis is redundant with another gene. We anticipate that the unknown gene is a putative ortholog of the Igl, which still remains to be identified in rye.
Collapse
Affiliation(s)
- Jolanta Groszyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute – National Research Institute, Blonie, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation State Research Institute, Pulawy, Poland
| | - Yuliya Yanushevska
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute – National Research Institute, Blonie, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation State Research Institute, Pulawy, Poland
| | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Waclaw Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute – National Research Institute, Blonie, Poland
- * E-mail:
| |
Collapse
|
29
|
Nomura T. Function and application of a non-ester-hydrolyzing carboxylesterase discovered in tulip. Biosci Biotechnol Biochem 2017; 81:81-94. [DOI: 10.1080/09168451.2016.1240608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Plants have evolved secondary metabolite biosynthetic pathways of immense rich diversity. The genes encoding enzymes for secondary metabolite biosynthesis have evolved through gene duplication followed by neofunctionalization, thereby generating functional diversity. Emerging evidence demonstrates that some of those enzymes catalyze reactions entirely different from those usually catalyzed by other members of the same family; e.g. transacylation catalyzed by an enzyme similar to a hydrolytic enzyme. Tuliposide-converting enzyme (TCE), which we recently discovered from tulip, catalyzes the conversion of major defensive secondary metabolites, tuliposides, to antimicrobial tulipalins. The TCEs belong to the carboxylesterase family in the α/β-hydrolase fold superfamily, and specifically catalyze intramolecular transesterification, but not hydrolysis. This non-ester-hydrolyzing carboxylesterase is an example of an enzyme showing catalytic properties that are unpredictable from its primary structure. This review describes the biochemical and physiological aspects of tulipalin biogenesis, and the diverse functions of plant carboxylesterases in the α/β-hydrolase fold superfamily.
Collapse
Affiliation(s)
- Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Japan
| |
Collapse
|
30
|
Wouters FC, Blanchette B, Gershenzon J, Vassão DG. Plant defense and herbivore counter-defense: benzoxazinoids and insect herbivores. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2016; 15:1127-1151. [PMID: 27932939 DOI: 10.1007/s11101-016-9481-9481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/21/2016] [Indexed: 05/28/2023]
Abstract
Benzoxazinoids are a class of indole-derived plant chemical defenses comprising compounds with a 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one skeleton and their derivatives. These phytochemicals are widespread in grasses, including important cereal crops such as maize, wheat and rye, as well as a few dicot species, and display a wide range of antifeedant, insecticidal, antimicrobial, and allelopathic activities. Although their overall effects against insect herbivores are frequently reported, much less is known about how their modes of action specifically influence insect physiology. The present review summarizes the biological activities of benzoxazinoids on chewing, piercing-sucking, and root insect herbivores. We show how within-plant distribution modulates the exposure of different herbivore feeding guilds to these defenses, and how benzoxazinoids may act as toxins, feeding deterrents and digestibility-reducing compounds under different conditions. In addition, recent results on the metabolism of benzoxazinoids by insects and their consequences for plant-herbivore interactions are addressed, as well as directions for future research.
Collapse
Affiliation(s)
- Felipe C Wouters
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Blair Blanchette
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Daniel G Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
31
|
Zeng L, Zhou Y, Gui J, Fu X, Mei X, Zhen Y, Ye T, Du B, Dong F, Watanabe N, Yang Z. Formation of Volatile Tea Constituent Indole During the Oolong Tea Manufacturing Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5011-9. [PMID: 27263428 DOI: 10.1021/acs.jafc.6b01742] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Indole is a characteristic volatile constituent in oolong tea. Our previous study indicated that indole was mostly accumulated at the turn over stage of oolong tea manufacturing process. However, formation of indole in tea leaves remains unknown. In this study, one tryptophan synthase α-subunit (TSA) and three tryptophan synthase β-subunits (TSBs) from tea leaves were isolated, cloned, sequenced, and functionally characterized. Combination of CsTSA and CsTSB2 recombinant protein produced in Escherichia coli exhibited the ability of transformation from indole-3-glycerol phosphate to indole. CsTSB2 was highly expressed during the turn over process of oolong tea. Continuous mechanical damage, simulating the turn over process, significantly enhanced the expression level of CsTSB2 and amount of indole. These suggested that accumulation of indole in oolong tea was due to the activation of CsTSB2 by continuous wounding stress from the turn over process. Black teas contain much less indole, although wounding stress is also involved in the manufacturing process. Stable isotope labeling indicated that tea leaf cell disruption from the rolling process of black tea did not lead to the conversion of indole, but terminated the synthesis of indole. Our study provided evidence concerning formation of indole in tea leaves for the first time.
Collapse
Affiliation(s)
- Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences , No.19A Yuquan Road, Beijing 100049, China
| | - Ying Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723, Tianhe District, Guangzhou 510650, China
| | - Jiadong Gui
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences , No.19A Yuquan Road, Beijing 100049, China
| | - Xiumin Fu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723, Tianhe District, Guangzhou 510650, China
| | - Xin Mei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723, Tianhe District, Guangzhou 510650, China
| | - Yunpeng Zhen
- Waters Technologies (Shanghai) Ltd. , No. 1000 Jinhai Road, Shanghai 201203, China
| | - Tingxiang Ye
- Waters Technologies (Shanghai) Ltd. , No. 1000 Jinhai Road, Shanghai 201203, China
| | - Bing Du
- College of Food, South China Agricultural University , Wushan Road, Tianhe District, Guangzhou 510642, China
- Juxiangyuan Health Food (Zhongshan) Co.,Ltd. , No. 13, Yandong Second Road, Torch Development Zone, Zhongshan 528400, China
| | - Fang Dong
- Guangdong Food and Drug Vocational College , Longdongbei Road 321, Tianhe District, Guangzhou 510520, China
| | - Naoharu Watanabe
- Graduate School of Science and Technology, Shizuoka University , 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences , No.19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
32
|
Wouters FC, Blanchette B, Gershenzon J, Vassão DG. Plant defense and herbivore counter-defense: benzoxazinoids and insect herbivores. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2016; 15:1127-1151. [PMID: 27932939 PMCID: PMC5106503 DOI: 10.1007/s11101-016-9481-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/21/2016] [Indexed: 05/19/2023]
Abstract
Benzoxazinoids are a class of indole-derived plant chemical defenses comprising compounds with a 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one skeleton and their derivatives. These phytochemicals are widespread in grasses, including important cereal crops such as maize, wheat and rye, as well as a few dicot species, and display a wide range of antifeedant, insecticidal, antimicrobial, and allelopathic activities. Although their overall effects against insect herbivores are frequently reported, much less is known about how their modes of action specifically influence insect physiology. The present review summarizes the biological activities of benzoxazinoids on chewing, piercing-sucking, and root insect herbivores. We show how within-plant distribution modulates the exposure of different herbivore feeding guilds to these defenses, and how benzoxazinoids may act as toxins, feeding deterrents and digestibility-reducing compounds under different conditions. In addition, recent results on the metabolism of benzoxazinoids by insects and their consequences for plant-herbivore interactions are addressed, as well as directions for future research.
Collapse
Affiliation(s)
- Felipe C. Wouters
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Blair Blanchette
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Daniel G. Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
33
|
Minami Y, Sarangi BK, Thul ST. Transcriptome analysis for identification of indigo biosynthesis pathway genes in Polygonum tinctorium. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Zheng L, McMullen MD, Bauer E, Schön CC, Gierl A, Frey M. Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3917-30. [PMID: 25969552 PMCID: PMC4473990 DOI: 10.1093/jxb/erv192] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Benzoxazinoids represent preformed protective and allelopathic compounds. The main benzoxazinoid in maize (Zea mays L.) is 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA). DIMBOA confers resistance to herbivores and microbes. Protective concentrations are found predominantly in young plantlets. We made use of the genetic diversity present in the maize nested association mapping (NAM) panel to identify lines with significant benzoxazinoid concentrations at later developmental stages. At 24 d after imbibition (dai), only three lines, including Mo17, showed effective DIMBOA concentrations of 1.5mM or more; B73, by contrast, had low a DIMBOA content. Mapping studies based on Mo17 and B73 were performed to reveal mechanisms that influence the DIMBOA level in 24 dai plants. A major quantitative trait locus mapped to the Bx gene cluster located on the short arm of chromosome 4, which encodes the DIMBOA biosynthetic genes. Mo17 was distinguished from all other NAM lines by high transcriptional expression of the Bx1 gene at later developmental stages. Bx1 encodes the signature enzyme of the pathway. In Mo17×B73 hybrids at 24 dai, only the Mo17 Bx1 allele transcript was detected. A 3.9kb cis-element, termed DICE (distal cis-element), that is located in the Bx gene cluster approximately 140 kb upstream of Bx1, was required for high Bx1 transcript levels during later developmental stages in Mo17. The DICE region was a hotspot of meiotic recombination. Genetic analysis revealed that high 24 dai DIMBOA concentrations were not strictly dependent on high Bx1 transcript levels. However, constitutive expression of Bx1 in transgenics increased DIMBOA levels at 24 dai, corroborating a correlation between DIMBOA content and Bx1 transcription.
Collapse
MESH Headings
- Alleles
- Base Pairing/genetics
- Benzoxazines/metabolism
- Biosynthetic Pathways/genetics
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Crosses, Genetic
- Gene Expression Regulation, Plant
- Genes, Plant
- Genotype
- Inbreeding
- Multigene Family
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Promoter Regions, Genetic/genetics
- Quantitative Trait Loci
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic
- Seedlings/metabolism
- Transcription, Genetic
- Zea mays/genetics
- Zea mays/growth & development
Collapse
Affiliation(s)
- Linlin Zheng
- Lehrstuhl für Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | | | - Eva Bauer
- Lehrstuhl für Pflanzenzüchtung, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Chris-Carolin Schön
- Lehrstuhl für Pflanzenzüchtung, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Alfons Gierl
- Lehrstuhl für Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Monika Frey
- Lehrstuhl für Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
35
|
Piasecka A, Jedrzejczak-Rey N, Bednarek P. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. THE NEW PHYTOLOGIST 2015; 206:948-964. [PMID: 25659829 DOI: 10.1111/nph.13325] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/09/2015] [Indexed: 05/02/2023]
Abstract
Plant secondary metabolites carry out numerous functions in interactions between plants and a broad range of other organisms. Experimental evidence strongly supports the indispensable contribution of many constitutive and pathogen-inducible phytochemicals to plant innate immunity. Extensive studies on model plant species, particularly Arabidopsis thaliana, have brought significant advances in our understanding of the molecular mechanisms underpinning pathogen-triggered biosynthesis and activation of defensive secondary metabolites. However, despite the proven significance of secondary metabolites in plant response to pathogenic microorganisms, little is known about the precise mechanisms underlying their contribution to plant immunity. This insufficiency concerns information on the dynamics of cellular and subcellular localization of defensive phytochemicals during the encounters with microbial pathogens and precise knowledge on their mode of action. As many secondary metabolites are characterized by their in vitro antimicrobial activity, these compounds were commonly considered to function in plant defense as in planta antibiotics. Strikingly, recent experimental evidence suggests that at least some of these compounds alternatively may be involved in controlling several immune responses that are evolutionarily conserved in the plant kingdom, including callose deposition and programmed cell death.
Collapse
Affiliation(s)
- Anna Piasecka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznan, Poland
| | - Nicolas Jedrzejczak-Rey
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| |
Collapse
|
36
|
Meihls LN, Handrick V, Glauser G, Barbier H, Kaur H, Haribal MM, Lipka AE, Gershenzon J, Buckler ES, Erb M, Köllner TG, Jander G. Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. THE PLANT CELL 2013; 25:2341-55. [PMID: 23898034 PMCID: PMC3723630 DOI: 10.1105/tpc.113.112409] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/04/2013] [Accepted: 06/11/2013] [Indexed: 05/19/2023]
Abstract
Plants differ greatly in their susceptibility to insect herbivory, suggesting both local adaptation and resistance tradeoffs. We used maize (Zea mays) recombinant inbred lines to map a quantitative trait locus (QTL) for the maize leaf aphid (Rhopalosiphum maidis) susceptibility to maize Chromosome 1. Phytochemical analysis revealed that the same locus was also associated with high levels of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) and low levels of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc). In vitro enzyme assays with candidate genes from the region of the QTL identified three O-methyltransferases (Bx10a-c) that convert DIMBOA-Glc to HDMBOA-Glc. Variation in HDMBOA-Glc production was attributed to a natural CACTA family transposon insertion that inactivates Bx10c in maize lines with low HDMBOA-Glc accumulation. When tested with a population of 26 diverse maize inbred lines, R. maidis produced more progeny on those with high HDMBOA-Glc and low DIMBOA-Glc. Although HDMBOA-Glc was more toxic to R. maidis than DIMBOA-Glc in vitro, BX10c activity and the resulting decline of DIMBOA-Glc upon methylation to HDMBOA-Glc were associated with reduced callose deposition as an aphid defense response in vivo. Thus, a natural transposon insertion appears to mediate an ecologically relevant trade-off between the direct toxicity and defense-inducing properties of maize benzoxazinoids.
Collapse
Affiliation(s)
- Lisa N. Meihls
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | | | - Gaetan Glauser
- Institute of Biology, University of Neuchâtel, 2009 Neuchatel, Switzerland
| | - Hugues Barbier
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Harleen Kaur
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Meena M. Haribal
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Alexander E. Lipka
- U.S. Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | | | - Edward S. Buckler
- U.S. Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
- Department of Plant Breeding and Genetics, Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Matthias Erb
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | | | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- Address correspondence to
| |
Collapse
|
37
|
Benzoxazinoids in rye allelopathy - from discovery to application in sustainable weed control and organic farming. J Chem Ecol 2013; 39:154-74. [PMID: 23385365 DOI: 10.1007/s10886-013-0235-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/03/2012] [Accepted: 12/31/2012] [Indexed: 10/27/2022]
Abstract
The allelopathic potency of rye (Secale cereale L.) is due mainly to the presence of phytotoxic benzoxazinones-compounds whose biosynthesis is developmentally regulated, with the highest accumulation in young tissue and a dependency on cultivar and environmental influences. Benzoxazinones can be released from residues of greenhouse-grown rye at levels between 12 and 20 kg/ha, with lower amounts exuded by living plants. In soil, benzoxazinones are subject to a cascade of transformation reactions, and levels in the range 0.5-5 kg/ha have been reported. Starting with the accumulation of less toxic benzoxazolinones, the transformation reactions in soil primarily lead to the production of phenoxazinones, acetamides, and malonamic acids. These reactions are associated with microbial activity in the soil. In addition to benzoxazinones, benzoxazolin-2(3H)-one (BOA) has been investigated for phytotoxic effects in weeds and crops. Exposure to BOA affects transcriptome, proteome, and metabolome patterns of the seedlings, inhibits germination and growth, and can induce death of sensitive species. Differences in the sensitivity of cultivars and ecotypes are due to different species-dependent strategies that have evolved to cope with BOA. These strategies include the rapid activation of detoxification reactions and extrusion of detoxified compounds. In contrast to sensitive ecotypes, tolerant ecotypes are less affected by exposure to BOA. Like the original compounds BOA and MBOA, all exuded detoxification products are converted to phenoxazinones, which can be degraded by several specialized fungi via the Fenton reaction. Because of their selectivity, specific activity, and presumably limited persistence in the soil, benzoxazinoids or rye residues are suitable means for weed control. In fact, rye is one of the best cool season cover crops and widely used because of its excellent weed suppressive potential. Breeding of benzoxazinoid resistant crops and of rye with high benzoxazinoid contents, as well as a better understanding of the soil persistence of phenoxazinones, of the weed resistance against benzoxazinoids, and of how allelopathic interactions are influenced by cultural practices, would provide the means to include allelopathic rye varieties in organic cropping systems for weed control.
Collapse
|
38
|
Hamberger B, Bak S. Plant P450s as versatile drivers for evolution of species-specific chemical diversity. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120426. [PMID: 23297350 DOI: 10.1098/rstb.2012.0426] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The irreversible nature of reactions catalysed by P450s makes these enzymes landmarks in the evolution of plant metabolic pathways. Founding members of P450 families are often associated with general (i.e. primary) metabolic pathways, restricted to single copy or very few representatives, indicative of purifying selection. Recruitment of those and subsequent blooms into multi-member gene families generates genetic raw material for functional diversification, which is an inherent characteristic of specialized (i.e. secondary) metabolism. However, a growing number of highly specialized P450s from not only the CYP71 clan indicate substantial contribution of convergent and divergent evolution to the observed general and specialized metabolite diversity. We will discuss examples of how the genetic and functional diversification of plant P450s drives chemical diversity in light of plant evolution. Even though it is difficult to predict the function or substrate of a P450 based on sequence similarity, grouping with a family or subfamily in phylogenetic trees can indicate association with metabolism of particular classes of compounds. Examples will be given that focus on multi-member gene families of P450s involved in the metabolic routes of four classes of specialized metabolites: cyanogenic glucosides, glucosinolates, mono- to triterpenoids and phenylpropanoids.
Collapse
Affiliation(s)
- Björn Hamberger
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871 Copenhagen, Denmark.
| | | |
Collapse
|
39
|
Schulz M, Marocco A, Tabaglio V. BOA Detoxification of Four Summer Weeds during Germination and Seedling Growth. J Chem Ecol 2012; 38:933-46. [DOI: 10.1007/s10886-012-0136-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/16/2012] [Accepted: 05/04/2012] [Indexed: 12/25/2022]
|
40
|
Dutartre L, Hilliou F, Feyereisen R. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster. BMC Evol Biol 2012; 12:64. [PMID: 22577841 PMCID: PMC3449204 DOI: 10.1186/1471-2148-12-64] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 04/17/2012] [Indexed: 01/25/2023] Open
Abstract
Background The benzoxazinoids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA), are key defense compounds present in major agricultural crops such as maize and wheat. Their biosynthesis involves nine enzymes thought to form a linear pathway leading to the storage of DI(M)BOA as glucoside conjugates. Seven of the genes (Bx1-Bx6 and Bx8) form a cluster at the tip of the short arm of maize chromosome 4 that includes four P450 genes (Bx2-5) belonging to the same CYP71C subfamily. The origin of this cluster is unknown. Results We show that the pathway appeared following several duplications of the TSA gene (α-subunit of tryptophan synthase) and of a Bx2-like ancestral CYP71C gene and the recruitment of Bx8 before the radiation of Poaceae. The origins of Bx6 and Bx7 remain unclear. We demonstrate that the Bx2-like CYP71C ancestor was not committed to the benzoxazinoid pathway and that after duplications the Bx2-Bx5 genes were under positive selection on a few sites and underwent functional divergence, leading to the current specific biochemical properties of the enzymes. The absence of synteny between available Poaceae genomes involving the Bx gene regions is in contrast with the conserved synteny in the TSA gene region. Conclusions These results demonstrate that rearrangements following duplications of an IGL/TSA gene and of a CYP71C gene probably resulted in the clustering of the new copies (Bx1 and Bx2) at the tip of a chromosome in an ancestor of grasses. Clustering favored cosegregation and tip chromosomal location favored gene rearrangements that allowed the further recruitment of genes to the pathway. These events, a founding event and elongation events, may have been the key to the subsequent evolution of the benzoxazinoid biosynthetic cluster.
Collapse
Affiliation(s)
- Leslie Dutartre
- Institut National de la Recherche Agronomique, UMR Institut Sophia Agrobiotech, Centre National de la Recherche Scientifique, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
| | | | | |
Collapse
|
41
|
Zhuang X, Fiesselmann A, Zhao N, Chen H, Frey M, Chen F. Biosynthesis and emission of insect herbivory-induced volatile indole in rice. PHYTOCHEMISTRY 2012; 73:15-22. [PMID: 22000657 DOI: 10.1016/j.phytochem.2011.08.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/12/2011] [Accepted: 08/30/2011] [Indexed: 05/28/2023]
Abstract
Insect-damaged rice plants emit a complex mixture of volatiles that are highly attractive to parasitic wasps. Indole is one constituent of insect-induced rice volatiles, and is produced in plants by the enzyme indole-3-glycerol phosphate lyase (IGL). The alpha-subunit of tryptophan synthase (TSA) is the IGL that catalyses the conversion of indole-3-glycerol phosphate to indole in the alpha-reaction of tryptophan synthesis; however, TSA is only active in the complex with the beta-subunit of tryptophan synthase and is not capable of producing free indole. In maize a TSA homolog, ZmIgl, is the structural gene responsible for volatile indole biosynthesis. Bioinformatic analysis based on the ZmIgl-sequence indicated that the rice genome contains five homologous genes. Three homologs Os03g58260, Os03g58300 and Os07g08430, have detectable transcript levels in seedling tissue and were expressed in both insect-damaged and control rice plants. Only Os03g58300, however, was up-regulated by insect feeding. Recombinant proteins of the three rice genes were tested for IGL activity. Os03g58300 had a low K(m) for indole-3-glycerol phosphate and a high k(cat), and hence can efficiently produce indole. Os07g08430 exhibited biochemical properties resembling characterized TSAs. In contrast, Os03g58260 was inactive as a monomer. Analysis of Os03g58300 expression and indole emission provides further support that Os03g58300 is the bona fide rice IGL for biosynthesis of indole, in analogy to maize, this gene is termed OsIgl. Phylogenetic analysis showed that the rice genes are localized in two distinct clades together with the maize genes ZmIgl and ZmBx1 (Os03g58300) and ZmTSA (Os03g58260 and Os07g08430). The genes in the two clades have distinct enzyme activities and gene structures in terms of intron/exon organization. These results suggest that OsIgl evolved after the split of monocot and dicot lineages and before the diversification of the Poaceae.
Collapse
Affiliation(s)
- Xiaofeng Zhuang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|
42
|
Chu HY, Wegel E, Osbourn A. From hormones to secondary metabolism: the emergence of metabolic gene clusters in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:66-79. [PMID: 21443624 DOI: 10.1111/j.1365-313x.2011.04503.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gene clusters for the synthesis of secondary metabolites are a common feature of microbial genomes. Well-known examples include clusters for the synthesis of antibiotics in actinomycetes, and also for the synthesis of antibiotics and toxins in filamentous fungi. Until recently it was thought that genes for plant metabolic pathways were not clustered, and this is certainly true in many cases; however, five plant secondary metabolic gene clusters have now been discovered, all of them implicated in synthesis of defence compounds. An obvious assumption might be that these eukaryotic gene clusters have arisen by horizontal gene transfer from microbes, but there is compelling evidence to indicate that this is not the case. This raises intriguing questions about how widespread such clusters are, what the significance of clustering is, why genes for some metabolic pathways are clustered and those for others are not, and how these clusters form. In answering these questions we may hope to learn more about mechanisms of genome plasticity and adaptive evolution in plants. It is noteworthy that for the five plant secondary metabolic gene clusters reported so far, the enzymes for the first committed steps all appear to have been recruited directly or indirectly from primary metabolic pathways involved in hormone synthesis. This may or may not turn out to be a common feature of plant secondary metabolic gene clusters as new clusters emerge.
Collapse
Affiliation(s)
- Hoi Yee Chu
- Department of Metabolic Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
43
|
P450s in plant–insect interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:36-45. [DOI: 10.1016/j.bbapap.2010.09.012] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/22/2022]
|
44
|
Frébortová J, Novák O, Frébort I, Jorda R. Degradation of cytokinins by maize cytokinin dehydrogenase is mediated by free radicals generated by enzymatic oxidation of natural benzoxazinones. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:467-81. [PMID: 19912568 DOI: 10.1111/j.1365-313x.2009.04071.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-one (DIMBOA) was isolated from maize phloem sap as a compound enhancing the degradation of isopentenyl adenine by maize cytokinin dehydrogenase (CKX), after oxidative conversion by either laccase or peroxidase. Laccase and peroxidase catalyze oxidative cleavage of DIMBOA to 4-nitrosoresorcinol-1-monomethyl ether (coniferron), which serves as a weak electron acceptor of CKX. The oxidation of DIMBOA and coniferron generates transitional free radicals that are used by CKX as effective electron acceptors. The function of free radicals in the CKX-catalyzed reaction was also verified with a stable free radical of 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid. Application of exogenous cytokinin to maize seedlings resulted in an enhanced benzoxazinoid content in maize phloem sap. The results indicate a new function for DIMBOA in the metabolism of the cytokinin group of plant hormones.
Collapse
Affiliation(s)
- Jitka Frébortová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University/Institute of Experimental Botany of the Academy of Science, Slechtitelů 11, 783 71 Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
45
|
Abstract
Operons (clusters of co-regulated genes with related functions) are common features of bacterial genomes. More recently, functional gene clustering has been reported in eukaryotes, from yeasts to filamentous fungi, plants, and animals. Gene clusters can consist of paralogous genes that have most likely arisen by gene duplication. However, there are now many examples of eukaryotic gene clusters that contain functionally related but non-homologous genes and that represent functional gene organizations with operon-like features (physical clustering and co-regulation). These include gene clusters for use of different carbon and nitrogen sources in yeasts, for production of antibiotics, toxins, and virulence determinants in filamentous fungi, for production of defense compounds in plants, and for innate and adaptive immunity in animals (the major histocompatibility locus). The aim of this article is to review features of functional gene clusters in prokaryotes and eukaryotes and the significance of clustering for effective function.
Collapse
Affiliation(s)
- Anne E Osbourn
- Department of Metabolic Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| | | |
Collapse
|
46
|
Frey M, Schullehner K, Dick R, Fiesselmann A, Gierl A. Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. PHYTOCHEMISTRY 2009; 70:1645-51. [PMID: 19577780 DOI: 10.1016/j.phytochem.2009.05.012] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/23/2009] [Accepted: 05/15/2009] [Indexed: 05/02/2023]
Abstract
Benzoxazinoids are secondary metabolites that are effective in defence and allelopathy. They are synthesised in two subfamilies of the Poaceae and sporadically found in single species of the dicots. The biosynthesis is fully elucidated in maize; here the genes encoding the enzymes of the pathway are in physical proximity. This "biosynthetic cluster" might facilitate coordinated gene regulation. Data from Zea mays, Triticum aestivum and Hordeum lechleri suggest that the pathway is of monophyletic origin in the Poaceae. The branchpoint from the primary metabolism (Bx1 gene) can be traced back to duplication and functionalisation of the alpha-subunit of tryptophan synthase (TSA). Modification of the intermediates by consecutive hydroxylation is catalysed by members of a cytochrome P450 enzyme subfamily (Bx2-Bx5). Glucosylation by an UDP-glucosyltransferase (UGT, Bx8, Bx9) is essential for the reduction of autotoxicity of the benzoxazinoids. In some species 2,4-dihydroxy-1,4-benzoxazin-3-one-glucoside (DIBOA-glc) is further modified by the 2-oxoglutarate-dependent dioxygenase BX6 and the O-methyltransferase BX7. In the dicots Aphelandra squarrosa, Consolida orientalis, and Lamium galeobdolon, benzoxazinoid biosynthesis is analogously organised: The branchpoint is established by a homolog of TSA, P450 enzymes catalyse hydroxylations and at least the first hydroxylation reaction is identical in dicots and Poaceae, the toxic aglucon is glucosylated by an UGT. Functionally, TSA and BX1 are indole-glycerolphosphate lyases (IGLs). Igl genes seem to be generally duplicated in angiosperms. Modelling and biochemical characterisation of IGLs reveal that the catalytic properties of the enzyme can easily be modified by mutation. Independent evolution can be assumed for the BX1 function in dicots and Poaceae.
Collapse
Affiliation(s)
- Monika Frey
- Lehrstuhl für Genetik, Technische Universität München, Freising, Germany
| | | | | | | | | |
Collapse
|
47
|
Niemeyer HM. Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: key defense chemicals of cereals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:1677-96. [PMID: 19199602 DOI: 10.1021/jf8034034] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Many cereals accumulate hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one. These benzoxazinoid hydroxamic acids are involved in defense of maize against various lepidopteran pests, most notably the European corn borer, in defense of cereals against various aphid species, and in allelopathy affecting the growth of weeds associated with rye and wheat crops. The role of benzoxazinoid hydroxamic acids in defense against fungal infection is less clear and seems to depend on the nature of the interactions at the plant-fungus interface. Efficient use of benzoxazinoid hydroxamic acids as resistance factors has been limited by the inability to selectively increase their levels at the plant growth stage and the plant tissues where they are mostly needed for a given pest. Although the biosynthesis of benzoxazinoid hydroxamic acids has been elucidated, the genes and mechanisms controlling their differential expression in different plant tissues and along plant ontogeny remain to be unraveled.
Collapse
Affiliation(s)
- Hermann M Niemeyer
- Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| |
Collapse
|