1
|
Komatsu S, Nishiuchi T, Furuya T, Tani M. Millmeter-wave irradiation regulates mRNA-expression and the ubiquitin-proteasome system in wheat exposed to flooding stress. J Proteomics 2024; 294:105073. [PMID: 38218429 DOI: 10.1016/j.jprot.2024.105073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
The irradiation with millimeter-wave (MMW) of wheat seeds promotes root growth under flooding stress; however, its role is not completely clarified. Nuclear proteomics was performed, to reveal the role of MMW irradiation in enhancing flooding tolerance. The purity of nuclear fractions purified from roots was verified. Histone, which is a protein marker for nuclear-purification efficiency, was enriched; and cytosolic ascorbate peroxidase was reduced in the nuclear fraction. The principal-component analysis of proteome displayed that the irradiation of seeds affected nuclear proteins in roots grown under flooding stress. Proteins detected using proteomic analysis were verified using immunoblot analysis. Histone H3 accumulated under flooding stress; however, it decreased to the control level by irradiation. Whereas the ubiquitin accumulated in roots grown under stress when seeds were irradiated. These results suggest that MMW irradiation improves wheat-root growth under flooding stress through the regulation of mRNA-expression level and the ubiquitin-proteasome system. SIGNIFICANCE: To reveal the role of millimeter-wave irradiation in enhancing flooding tolerance in wheat, nuclear proteomics was performed. The principal-component analysis of proteome displayed that irradiation of seeds affected nuclear proteins in roots grown under flooding stress. Proteins detected using proteomic analysis were verified using immunoblot analysis. Histone H3 accumulated under flooding stress; however, it decreased to the control level with irradiation. Whereas the ubiquitin accumulated in roots grown under stress when seeds were irradiated. These results suggest that millimeter-wave irradiation improves wheat-root growth under flooding stress through the regulation of mRNA-expression level and the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Department of Applied Chemistry and Food Science, Fukui University of Technology, Fukui 910-8505, Japan.
| | - Takumi Nishiuchi
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa 920-8640, Japan
| | - Takashi Furuya
- Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan
| | - Masahiko Tani
- Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan
| |
Collapse
|
2
|
Kausar R, Nishiuchi T, Komatsu S. Proteomic and molecular analyses to understand the promotive effect of safranal on soybean growth under salt stress. J Proteomics 2024; 294:105072. [PMID: 38218428 DOI: 10.1016/j.jprot.2024.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Safranal is a free radical scavenger and useful as an antioxidant molecule; however, its promotive role in soybean is not explored. Salt stress decreased soybean growth and safranal improved it even if under salt stress. To study the positive mechanism of safranal on soybean growth, a proteomic approach was used. According to functional categorization, oppositely changed proteins were further confirmed using biochemical techniques. Actin and calcium-dependent protein kinase decreased in soybean root and hypocotyl, respectively, under salt stress and increased with safranal application. Xyloglucan endotransglucosylase/ hydrolase increased in soybean root under salt stress but decreased with safranal application. Peroxidase increased under salt stress and further enhanced by safranal application in soybean root. Actin, RuvB-like helicase, and protein kinase domain-containing protein were upregulated under salt stress and further enhanced by safranal application under salt stress. Dynamin GTPase was downregulated under salt stress but recovered with safranal application under salt stress. Glutathione peroxidase and PfkB domain-containing protein were upregulated by safranal application under salt stress in soybean root. These results suggest that safranal improves soybean growth through the regulation of cell wall and nuclear proteins along with reactive‑oxygen species scavenging system. Furthermore, it might promote salt-stress tolerance through the regulation of membrane proteins involved in endocytosis and post-Golgi trafficking. SIGNIFICANCE: To study the positive mechanism of safranal on soybean growth, a proteomic approach was used. According to functional categorization, oppositely changed proteins were further confirmed using biochemical techniques. Actin and calcium-dependent protein kinase decreased in soybean root and hypocotyl, respectively, under salt stress and increased with safranal application. Xyloglucan endotransglucosylase/ hydrolase increased in soybean root under salt stress but decreased with safranal application. Peroxidase increased under salt stress and further enhanced by safranal application in soybean root. Actin, RuvB-like helicase, and protein kinase domain-containing protein were upregulated under salt stress and further enhanced by safranal application under salt stress. Dynamin GTPase was downregulated under salt stress but recovered with safranal application under salt stress. Glutathione peroxidase and PfkB domain-containing protein were upregulated by safranal application under salt stress in soybean root. These results suggest that safranal improves soybean growth through the regulation of cell wall and nuclear proteins along with reactive‑oxygen species scavenging system. Furthermore, it might promote salt-stress tolerance through the regulation of membrane proteins involved in endocytosis and post-Golgi trafficking.
Collapse
Affiliation(s)
- Rehana Kausar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| | - Takumi Nishiuchi
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa 920-8640, Japan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
3
|
Komatsu S, Hamada K, Furuya T, Nishiuchi T, Tani M. Membrane Proteomics to Understand Enhancement Effects of Millimeter-Wave Irradiation on Wheat Root under Flooding Stress. Int J Mol Sci 2023; 24:ijms24109014. [PMID: 37240359 DOI: 10.3390/ijms24109014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Millimeter-wave irradiation of wheat seeds enhances the growth of roots under flooding stress, but its mechanism is not clearly understood. To understand the role of millimeter-wave irradiation on root-growth enhancement, membrane proteomics was performed. Membrane fractions purified from wheat roots were evaluated for purity. H+-ATPase and calnexin, which are protein markers for membrane-purification efficiency, were enriched in a membrane fraction. A principal-component analysis of the proteomic results indicated that the millimeter-wave irradiation of seeds affects membrane proteins in grown roots. Proteins identified using proteomic analysis were confirmed using immunoblot or polymerase chain reaction analyses. The abundance of cellulose synthetase, which is a plasma-membrane protein, decreased under flooding stress; however, it increased with millimeter-wave irradiation. On the other hand, the abundance of calnexin and V-ATPase, which are proteins in the endoplasmic reticulum and vacuolar, increased under flooding stress; however, it decreased with millimeter-wave irradiation. Furthermore, NADH dehydrogenase, which is found in mitochondria membranes, was upregulated due to flooding stress but downregulated following millimeter-wave irradiation even under flooding stress. The ATP content showed a similar trend toward change in NADH dehydrogenase expression. These results suggest that millimeter-wave irradiation improves the root growth of wheat via the transitions of proteins in the plasma membrane, endoplasmic reticulum, vacuolar, and mitochondria.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Kazuna Hamada
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Takashi Furuya
- Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan
| | - Takumi Nishiuchi
- Institute for Gene Research, Kanazawa University, Kanazawa 920-8640, Japan
| | - Masahiko Tani
- Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan
| |
Collapse
|
4
|
Petrova N, Mokshina N. Using FIBexDB for In-Depth Analysis of Flax Lectin Gene Expression in Response to Fusarium oxysporum Infection. PLANTS 2022; 11:plants11020163. [PMID: 35050051 PMCID: PMC8779086 DOI: 10.3390/plants11020163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Plant proteins with lectin domains play an essential role in plant immunity modulation, but among a plurality of lectins recruited by plants, only a few members have been functionally characterized. For the analysis of flax lectin gene expression, we used FIBexDB, which includes an efficient algorithm for flax gene expression analysis combining gene clustering and coexpression network analysis. We analyzed the lectin gene expression in various flax tissues, including root tips infected with Fusarium oxysporum. Two pools of lectin genes were revealed: downregulated and upregulated during the infection. Lectins with suppressed gene expression are associated with protein biosynthesis (Calreticulin family), cell wall biosynthesis (galactose-binding lectin family) and cytoskeleton functioning (Malectin family). Among the upregulated lectin genes were those encoding lectins from the Hevein, Nictaba, and GNA families. The main participants from each group are discussed. A list of lectin genes, the expression of which can determine the resistance of flax, is proposed, for example, the genes encoding amaranthins. We demonstrate that FIBexDB is an efficient tool both for the visualization of data, and for searching for the general patterns of lectin genes that may play an essential role in normal plant development and defense.
Collapse
|
5
|
Subcellular Proteomics to Understand Promotive Effect of Plant-Derived Smoke Solution on Soybean Root. Proteomes 2021; 9:proteomes9040039. [PMID: 34698284 PMCID: PMC8544748 DOI: 10.3390/proteomes9040039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Plant-derived smoke solution enhances soybean root growth; however, its mechanism is not clearly understood. Subcellular proteomics techniques were used for underlying roles of plant-derived smoke solution on soybean root growth. The fractions of membrane and nucleus were purified and evaluated for purity. ATPase and histone were enriched in the fractions of membrane and nucleus, respectively. Principal component analysis of proteomic results indicated that the plant-derived smoke solution affected the proteins in the membrane and nucleus. The proteins in the membrane and nucleus mainly increased and decreased, respectively, by the treatment of plant-derived smoke solution compared with control. In the proteins in the plasma membrane, ATPase increased, which was confirmed by immunoblot analysis, and ATP contents increased through the treatment of plant-derived smoke solution. Additionally, although the nuclear proteins mainly decreased, the expression of RNA polymerase II was up-regulated through the treatment of plant-derived smoke solution. These results indicate that plant-derived smoke solution enhanced soybean root growth through the transcriptional promotion with RNA polymerase II expression and the energy production with ATPase accumulation.
Collapse
|
6
|
Komatsu S, Yamaguchi H, Hitachi K, Tsuchida K, Kono Y, Nishimura M. Proteomic and Biochemical Analyses of the Mechanism of Tolerance in Mutant Soybean Responding to Flooding Stress. Int J Mol Sci 2021; 22:9046. [PMID: 34445752 PMCID: PMC8396653 DOI: 10.3390/ijms22169046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
To investigate the mechanism of flooding tolerance of soybean, flooding-tolerant mutants derived from gamma-ray irradiated soybean were crossed with parent cultivar Enrei for removal of other factors besides the genes related to flooding tolerance in primary generated mutant soybean. Although the growth of the wild type was significantly suppressed by flooding compared with the non-flooding condition, that of the mutant lines was better than that of the wild type even if it was treated with flooding. A two-day-old mutant line was subjected to flooding for 2 days and proteins were analyzed using a gel-free/label-free proteomic technique. Oppositely changed proteins in abundance between the wild type and mutant line under flooding stress were associated in endoplasmic reticulum according to gene-ontology categorization. Immunoblot analysis confirmed that calnexin accumulation increased in both the wild type and mutant line; however, calreticulin accumulated in only the mutant line under flooding stress. Furthermore, although glycoproteins in the wild type decreased by flooding compared with the non-flooding condition, those in the mutant line increased even if it was under flooding stress. Alcohol dehydrogenase accumulated in the wild type and mutant line; however, this enzyme activity significantly increased and mildly increased in the wild type and mutant line, respectively, under flooding stress compared with the non-flooding condition. Cell death increased and decreased in the wild type and mutant line, respectively, by flooding stress. These results suggest that the regulation of cell death through the fermentation system and glycoprotein folding might be an important factor for the acquisition of flooding tolerance in mutant soybean.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan;
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Yuhi Kono
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Joetsu 943-0193, Japan;
| | - Minoru Nishimura
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| |
Collapse
|
7
|
Xie X, Yan Y, Liu T, Chen J, Huang M, Wang L, Chen M, Li X. Data-independent acquisition proteomic analysis of biochemical factors in rice seedlings following treatment with chitosan oligosaccharides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104681. [PMID: 32980063 DOI: 10.1016/j.pestbp.2020.104681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Chitosan oligosaccharides (COS) can elicit plant immunity and defence responses in rice plants, but exactly how this promotes plant growth remains largely unknown. Herein, we explored the effects of 0.5 mg/L COS on plant growth promotion in rice seedlings by measuring root and stem length, investigating biochemical factors in whole plants via proteomic analysis, and confirming upregulated and downregulated genes by real-time quantitative PCR. Pathway enrichment results showed that COS promoted root and stem growth, and stimulated metabolic (biosynthetic and catabolic processes) and photosynthesis in rice plants during the seedling stage. Expression levels of genes related to chlorophyll a-b binding, RNA binding, catabolic processes and calcium ion binding were upregulated following COS treatment. Furthermore, comparative analysis indicated that numerous proteins involved in the biosynthesis, metabolic (catabolic) processes and photosynthesis pathways were upregulated. The findings indicate that COS may upregulate calcium ion binding, photosynthesis, RNA binding, and catabolism proteins associated with plant growth during the rice seedling stage.
Collapse
Affiliation(s)
- Xin Xie
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Yunlong Yan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Tao Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jun Chen
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Maoxi Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Li Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Meiqing Chen
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
8
|
Ha HJ, Subburaj S, Kim YS, Kim JB, Kang SY, Lee GJ. Molecular Characterization and Identification of Calnexin 1 As a Radiation Biomarker from Tradescantia BNL4430. PLANTS 2020; 9:plants9030387. [PMID: 32245094 PMCID: PMC7154805 DOI: 10.3390/plants9030387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/09/2023]
Abstract
Calnexin (CNX) is an integral membrane protein that functions as a chaperone in the endoplasmic reticulum for the correct folding of proteins under stress conditions, rendering organisms tolerant under adverse conditions. Studies have investigated the cytogenetic effects of gamma irradiation (Ɣ-IR) on plants, but information on the molecular response under Ɣ-IR remains limited. Previously, we constructed a cDNA library of an irradiation-sensitive bioindicator plant, Tradescantia BNL4430 (T-4430) under Ɣ-IR, in which the Calnexin-1 gene was highly upregulated at 50 mGy treatment. TrCNX1 encodes a 61.4 kDa protein with conserved signature motifs similar to already reported CNX1s. TrCNX1 expression was evaluated by semiquantitative reverse transcriptase PCR and quantitative real-time PCR and was ubiquitously expressed in various tissues and highly upregulated in flower petals under 50 mGy Ɣ-IR stress. The protective function of TrCNX1 was investigated by overexpression of TrCNX1 in an Escherichia coli BL21(DE3) heterologous system. Using plate assay, we showed that TrCNX1 increased the viability of E. coli transformants under both UV-B and Ɣ-IR compared with the control, demonstrating that TrCNX1 functions under irradiation stress. TrCNX1 may enhance irradiation stress tolerance in crops and act as a radio marker gene to monitor the effects of radiation.
Collapse
Affiliation(s)
- Hye-Jeong Ha
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (H.-J.H.); (S.S.); (Y.-S.K.)
| | - Saminathan Subburaj
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (H.-J.H.); (S.S.); (Y.-S.K.)
| | - Young-Sun Kim
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (H.-J.H.); (S.S.); (Y.-S.K.)
- Devision of Environmental Science, Daegu University, Gyungsan 38453, Korea
| | - Jin-Baek Kim
- Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk 580-185, Korea; (J.-B.K.); (S.-Y.K.)
| | - Si-Yong Kang
- Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk 580-185, Korea; (J.-B.K.); (S.-Y.K.)
| | - Geung-Joo Lee
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (H.-J.H.); (S.S.); (Y.-S.K.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-821-5734; Fax: +82-42-823-1382
| |
Collapse
|
9
|
Hashimoto T, Mustafa G, Nishiuchi T, Komatsu S. Comparative Analysis of the Effect of Inorganic and Organic Chemicals with Silver Nanoparticles on Soybean under Flooding Stress. Int J Mol Sci 2020; 21:E1300. [PMID: 32075105 PMCID: PMC7072913 DOI: 10.3390/ijms21041300] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Extensive utilization of silver nanoparticles (NPs) in agricultural products results in their interaction with other chemicals in the environment. To study the combined effects of silver NPs with nicotinic acid and potassium nitrate (KNO3), a gel-free/label-free proteomic technique was used. Root length/weight and hypocotyl length/weight of soybean were enhanced by silver NPs mixed with nicotinic acid and KNO3. Out of a total 6340 identified proteins, 351 proteins were significantly changed, out of which 247 and 104 proteins increased and decreased, respectively. Differentially changed proteins were predominantly associated with protein degradation and synthesis according to the functional categorization. Protein-degradation-related proteins mainly consisted of the proteasome degradation pathway. The cell death was significantly higher in the root tips of soybean under the combined treatment compared to flooding stress. Accumulation of calnexin/calreticulin and glycoproteins was significantly increased under flooding with silver NPs, nicotinic acid, and KNO3. Growth of soybean seedlings with silver NPs, nicotinic acid, and KNO3 was improved under flooding stress. These results suggest that the combined mixture of silver NPs, nicotinic acid, and KNO3 causes positive effects on soybean seedling by regulating the protein quality control for the mis-folded proteins in the endoplasmic reticulum. Therefore, it might improve the growth of soybean under flooding stress.
Collapse
Affiliation(s)
- Takuya Hashimoto
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan; (T.H.); (G.M.)
| | - Ghazala Mustafa
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan; (T.H.); (G.M.)
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Takumi Nishiuchi
- Institute for Gene Research, Kanazawa University, Kanazawa 920-8640, Japan;
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan; (T.H.); (G.M.)
| |
Collapse
|
10
|
Shi J, Chen Y, Xu Y, Ji D, Chen C, Xie C. Differential Proteomic Analysis by iTRAQ Reveals the Mechanism of Pyropia haitanensis Responding to High Temperature Stress. Sci Rep 2017; 7:44734. [PMID: 28303955 PMCID: PMC5356179 DOI: 10.1038/srep44734] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/13/2017] [Indexed: 01/10/2023] Open
Abstract
Global warming increases sea temperature and leads to high temperature stress, which affects the yield and quality of Pyropia haitanensis. To understand the molecular mechanisms underlying high temperature stress in a high temperature tolerance strain Z-61, the iTRAQ technique was employed to reveal the global proteomic response of Z-61 under different durations of high temperature stress. We identified 151 differentially expressed proteins and classified them into 11 functional categories. The 4 major categories of these are protein synthesis and degradation, photosynthesis, defense response, and energy and carbohydrate metabolism. These findings indicated that photosynthesis, protein synthesis, and secondary metabolism are inhibited by heat to limit damage to a repairable level. As time progresses, misfolded proteins and ROS accumulate and lead to the up-regulation of molecular chaperones, proteases, and antioxidant systems. Furthermore, to cope with cells injured by heat, PCD works to remove them. Additionally, sulfur assimilation and cytoskeletons play essential roles in maintaining cellular and redox homeostasis. These processes are based on signal transduction in the phosphoinositide pathway and multiple ways to supply energy. Conclusively, Z-61 establishes a new steady-state balance of metabolic processes and survives under higher temperature stress.
Collapse
Affiliation(s)
- Jianzhi Shi
- Fisheries College, Jimei University, Xiamen 361021, P. R. of China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, P. R. of China
| | - Yuting Chen
- Fisheries College, Jimei University, Xiamen 361021, P. R. of China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, P. R. of China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen 361021, P. R. of China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, P. R. of China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen 361021, P. R. of China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, P. R. of China
| | - Changsheng Chen
- Fisheries College, Jimei University, Xiamen 361021, P. R. of China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, P. R. of China
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen 361021, P. R. of China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, P. R. of China
| |
Collapse
|
11
|
Wang X, Komatsu S. Gel-Free/Label-Free Proteomic Analysis of Endoplasmic Reticulum Proteins in Soybean Root Tips under Flooding and Drought Stresses. J Proteome Res 2016; 15:2211-27. [PMID: 27224218 DOI: 10.1021/acs.jproteome.6b00190] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Soybean is a widely cultivated crop; however, it is sensitive to flooding and drought stresses. The adverse environmental cues cause the endoplasmic reticulum (ER) stress due to accumulation of unfolded or misfolded proteins. To investigate the mechanisms in response to flooding and drought stresses, ER proteomics was performed in soybean root tips. The enzyme activity of NADH cytochrome c reductase was two-fold higher in the ER than other fractions, indicating that the ER was isolated with high purity. Protein abundance of ribosomal proteins was decreased under both stresses compared to control condition; however, the percentage of increased ribosomes was two-fold higher in flooding compared to drought. The ER proteins related to protein glycosylation and signaling were in response to both stresses. Compared to control condition, calnexin was decreased under both stresses; however, protein disulfide isomerase-like proteins and heat shock proteins were markedly decreased under flooding and drought conditions, respectively. Furthermore, fewer glycoproteins and higher levels of cytosolic calcium were identified under both stresses compared to control condition. These results suggest that reduced accumulation of glycoproteins in response to both stresses might be due to dysfunction of protein folding through calnexin/calreticulin cycle. Additionally, the increased cytosolic calcium levels induced by flooding and drought stresses might disturb the ER environment for proper protein folding in soybean root tips.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| |
Collapse
|
12
|
Ghatak A, Chaturvedi P, Nagler M, Roustan V, Lyon D, Bachmann G, Postl W, Schröfl A, Desai N, Varshney RK, Weckwerth W. Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet). J Proteomics 2016; 143:122-135. [DOI: 10.1016/j.jprot.2016.02.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/21/2016] [Accepted: 02/26/2016] [Indexed: 01/07/2023]
|
13
|
Latef AAHA, Jan S, Abd‐Allah EF, Rashid B, John R, Ahmad P. Soybean under abiotic stress. PLANT‐ENVIRONMENT INTERACTION 2016:28-42. [DOI: 10.1002/9781119081005.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Yin X, Komatsu S. Quantitative proteomics of nuclear phosphoproteins in the root tip of soybean during the initial stages of flooding stress. J Proteomics 2015; 119:183-95. [PMID: 25724727 DOI: 10.1016/j.jprot.2015.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 12/28/2022]
Abstract
Soybean is sensitive to flooding stress, which has affected many proteins in roots. To identify the upstream events controlling the regulation of flooding-responsive proteins, nuclear phosphoproteomics of soybean-root tip was performed. Nuclei were isolated from the root tip of 2-day-old soybeans treated with flooding for 3h. The purity of nuclear fractions was confirmed by Western blotting and enzyme-activity assays for subcellular-specific enzymes. Phosphopeptides in the fractions were enriched and analyzed using gel-free proteomic technique. Fourteen phosphoproteins significantly changed in root tip in response to flooding stress. Of these phosphoproteins, 10 proteins including 5 protein synthesis-related proteins were predicted to be localized in the nucleus. In particular, zinc finger/BTB domain-containing protein 47, glycine-rich protein, and rRNA processing protein Rrp5, which are related to abscisic acid (ABA) response, were clearly phosphorylated in response to flooding stress. The mRNA expression levels of these nuclear phosphoproteins were down-regulated in root tip exposed to flooding stress with ABA. In addition, the fresh weight of soybean decreased under flooding stress with ABA, although the fresh weight of plant increased during the initial stage of flooding stress. These results suggest that ABA may affect the flooding response of early-stage soybean through the regulation of nuclear-localized phosphoproteins. BIOLOGICAL SIGNIFICANCE This study reported nuclear phosphoprotein analysis of root tip under initial flooding stress using gel-free quantitative proteomics. The main findings of this study are as follows: (i) Fourteen nuclear phosphoproteins in soybean root tip cells were significantly changed in the initial stages of flooding stress; (ii) Zinc finger protein, glycine-rich protein, and Rrp5 were phosphorylated in the nuclei of root tip in response to flooding; and (iii) The mRNA expression levels of these genes were down-regulated by ABA under flooding conditions. These results suggest that ABA may be involved in the initial responses of early-stage soybean to flooding stress by altering the phosphorylation of nuclear-localized phosphoproteins. This study provides not only the nuclear phosphoproteomic analysis but also the molecular mechanism underlying the initial flooding responsive nuclear phosphoproteins functions in the root tip of soybean.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
15
|
Garcia de la Garma J, Fernandez-Garcia N, Bardisi E, Pallol B, Asensio-Rubio JS, Bru R, Olmos E. New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system. THE NEW PHYTOLOGIST 2015; 205:216-39. [PMID: 25187269 DOI: 10.1111/nph.12997] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/14/2014] [Indexed: 05/19/2023]
Abstract
In this study, we investigated the cellular and molecular mechanisms that regulate salt acclimation. The main objective was to obtain new insights into the molecular mechanisms that control salt acclimation. Therefore, we carried out a multidisciplinary study using proteomic, transcriptomic, subcellular and physiological techniques. We obtained a Nicotiana tabacum BY-2 cell line acclimated to be grown at 258 mM NaCl as a model for this study. The proteomic and transcriptomic data indicate that the molecular response to stress (chaperones, defence proteins, etc.) is highly induced in these salt-acclimated cells. The subcellular results show that salt induces sodium compartmentalization in the cell vacuoles and seems to be mediated by vesicle trafficking in tobacco salt-acclimated cells. Our results demonstrate that abscisic acid (ABA) and proline metabolism are crucial in the cellular signalling of salt acclimation, probably regulating reactive oxygen species (ROS) production in the mitochondria. ROS may act as a retrograde signal, regulating the cell response. The network of endoplasmic reticulum and Golgi apparatus is highly altered in salt-acclimated cells. The molecular and subcellular analysis suggests that the unfolded protein response is induced in salt-acclimated cells. Finally, we propose that this mechanism may mediate cell death in salt-acclimated cells.
Collapse
|
16
|
Hossain Z, Komatsu S. Potentiality of Soybean Proteomics in Untying the Mechanism of Flood and Drought Stress Tolerance. Proteomes 2014; 2:107-127. [PMID: 28250373 PMCID: PMC5302732 DOI: 10.3390/proteomes2010107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 11/17/2022] Open
Abstract
Dissecting molecular pathways at protein level is essential for comprehensive understanding of plant stress response mechanism. Like other legume crops, soybean, the world's most widely grown seed legume and an inexpensive source of protein and vegetable oil, is also extremely sensitive to abiotic stressors including flood and drought. Irrespective of the kind and severity of the water stress, soybean exhibits a tight control over the carbon metabolism to meet the cells required energy demand for alleviating stress effects. The present review summarizes the major proteomic findings related to changes in soybean proteomes in response to flood and drought stresses to get a clear insight into the complex mechanisms of stress tolerance. Furthermore, advantages and disadvantages of different protein extraction protocols and challenges and future prospects of soybean proteome study are discussed in detail to comprehend the underlying mechanism of water stress acclimation.
Collapse
Affiliation(s)
- Zahed Hossain
- Plant Stress Biology Lab, Department of Botany, West Bengal State University, Kolkata-700126, India.
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
17
|
Komatsu S, Hiraga S, Nouri MZ. Analysis of flooding-responsive proteins localized in the nucleus of soybean root tips. Mol Biol Rep 2014; 41:1127-39. [PMID: 24385303 DOI: 10.1007/s11033-013-2959-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 12/21/2013] [Indexed: 12/11/2022]
Abstract
Flooding stress has negative impact on soybean cultivation as it severely impairs plant growth and development. To examine whether nuclear function is affected in soybean under flooding stress, abundance of nuclear proteins and their mRNA expression were analyzed. Two-day-old soybean seedlings were treated with flooding for 2 days, and nuclear proteins were purified from root tips. Gel-free proteomics analysis identified a total of 39 flooding-responsive proteins, of which abundance of 8 and 31 was increased and decreased, respectively, in soybean root tips. Among these differentially regulated proteins, the mRNA expression levels of five nuclear-localized proteins were further analyzed. The mRNA levels of four proteins, which are splicing factor PWI domain-containing protein, epsilon2-COP, beta-catenin, and clathrin heavy chain decreased under flooding stress, were also down-regulated. In addition, mRNA level of a receptor for activated protein kinase C1(RACK1) was down-regulated, though its protein was accumulated in the soybean nucleus in response to flooding stress. These results suggest that several nuclear-related proteins are decreased at both the protein and mRNA level in the root tips of soybean under flooding stress. Furthermore, RACK1 might have an important role with accumulation in the soybean nucleus under flooding-stress conditions.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba, 305-8518, Japan,
| | | | | |
Collapse
|
18
|
Sarwat M, Naqvi AR. Heterologous expression of rice calnexin (OsCNX) confers drought tolerance in Nicotiana tabacum. Mol Biol Rep 2013; 40:5451-64. [PMID: 23681551 DOI: 10.1007/s11033-013-2643-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 05/07/2013] [Indexed: 12/20/2022]
Abstract
Calnexin (CNX) is an integral membrane protein of endoplasmic reticulum (ER) and is a critical component of ER quality control machinery. It acts as a chaperone and ensures proper folding of newly synthesised glycoproteins. CNX shares a considerable homology with its luminal counterpart calreticulin (CRT). Together, they constitute CNX/CRT cycle which is imperative for proper folding of nascent proteins. CNX deficient organisms develop severe complications because of improper folding of proteins and consequently ER stress. CNX maintains calcium homeostasis by binding to the Ca(2+) which is a central node in various signaling pathways. Phosphorylation of cytoplasmic tail of CNX controls the sarco endoplasmic reticulum calcium ATPase and thus the movement of Ca(2+) in and out of its store-house, i.e. ER. Our studies on Oryza sativa CNX (OsCNX) reveal constitutive expression at various developmental stages and various tissues, thereby proving its requirement throughout the plant development. Further, its expression under various stress conditions gives an insight of the crosstalk existing between ER stress and abiotic stress signaling. This was confirmed by heterologous expression of OsCNX (OsCNX-HE) in tobacco and the OsCNX-HE lines were observed to exhibit better germination under mannitol stress and survival under dehydration stress conditions. The dehydration tolerance conferred by OsCNX appears to be ABA-dependent pathway.
Collapse
Affiliation(s)
- Maryam Sarwat
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | | |
Collapse
|
19
|
Komatsu S, Kuji R, Nanjo Y, Hiraga S, Furukawa K. Comprehensive analysis of endoplasmic reticulum-enriched fraction in root tips of soybean under flooding stress using proteomics techniques. J Proteomics 2012; 77:531-60. [PMID: 23041469 DOI: 10.1016/j.jprot.2012.09.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 09/05/2012] [Accepted: 09/24/2012] [Indexed: 01/12/2023]
Abstract
Flooding is a serious problem for soybean cultivation because it markedly reduces growth and grain yields. Here, 2 proteomics techniques were used to evaluate whether endoplasmic reticulum (ER)-enriched fraction is altered in soybean under flooding stress. Two-day-old soybeans were treated with flooding for 2 days, and rough ER-enriched fraction was then purified from root tips. Flooding-responsive protein of ER-enriched fraction was identified using gel-free and 1D-gel based proteomics techniques, and 117 proteins were increased and 212 proteins were decreased in soybean root tips in response to flooding stress. Among the identified proteins, 111 were functionally categorized as being involved in protein synthesis, post-translational modification, protein folding, protein degradation, and protein activation. Among differentially regulated proteins, the mRNA expression levels of 14 proteins that were predicted to be localized in the ER were analyzed. Notably, 3-ketoacyl-CoA reductase 1 was up-regulated and eight genes related to stress, hormone metabolism, cell wall and DNA repair were down-regulated within 1 day under flooding conditions. In addition, the expression of luminal-binding protein 5 was specifically induced in flood-stressed roots, whereas arabinogalactan protein 2 and methyltransferase PMT2 were down-regulated. Taken together, these results suggest that flooding mainly affects the function of protein synthesis and glycosylation in the ER in root tips of soybean.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, Tsukuba 305-8518, Japan.
| | | | | | | | | |
Collapse
|
20
|
Le DT, Aldrich DL, Valliyodan B, Watanabe Y, Ha CV, Nishiyama R, Guttikonda SK, Quach TN, Gutierrez-Gonzalez JJ, Tran LSP, Nguyen HT. Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions. PLoS One 2012; 7:e46487. [PMID: 23029532 PMCID: PMC3460875 DOI: 10.1371/journal.pone.0046487] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 09/02/2012] [Indexed: 12/16/2022] Open
Abstract
Quantitative RT-PCR can be a very sensitive and powerful technique for measuring differential gene expression. Changes in gene expression induced by abiotic stresses are complex and multifaceted, which make determining stably expressed genes for data normalization difficult. To identify the most suitable reference genes for abiotic stress studies in soybean, 13 candidate genes collected from literature were evaluated for stability of expression under dehydration, high salinity, cold and ABA (abscisic acid) treatments using delta CT and geNorm approaches. Validation of reference genes indicated that the best reference genes are tissue- and stress-dependent. With respect to dehydration treatment, the Fbox/ABC, Fbox/60s gene pairs were found to have the highest expression stability in the root and shoot tissues of soybean seedlings, respectively. Fbox and 60s genes are the most suitable reference genes across dehydrated root and shoot tissues. Under salt stress the ELF1b/IDE and Fbox/ELF1b are the most stably expressed gene pairs in roots and shoots, respectively, while 60s/Fbox is the best gene pair in both tissues. For studying cold stress in roots or shoots, IDE/60s and Fbox/Act27 are good reference gene pairs, respectively. With regard to gene expression analysis under ABA treatment in either roots, shoots or across these tissues, 60s/ELF1b, ELF1b/Fbox and 60s/ELF1b are the most suitable reference genes, respectively. The expression of ELF1b/60s, 60s/Fbox and 60s/Fbox genes was most stable in roots, shoots and both tissues, respectively, under various stresses studied. Among the genes tested, 60s was found to be the best reference gene in different tissues and under various stress conditions. The highly ranked reference genes identified from this study were proved to be capable of detecting subtle differences in expression rates that otherwise would be missed if a less stable reference gene was used.
Collapse
Affiliation(s)
- Dung Tien Le
- Signaling Pathway Research Unit, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Donavan L. Aldrich
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Babu Valliyodan
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Yasuko Watanabe
- Signaling Pathway Research Unit, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Chien Van Ha
- Signaling Pathway Research Unit, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Rie Nishiyama
- Signaling Pathway Research Unit, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Satish K. Guttikonda
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Truyen N. Quach
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Juan J. Gutierrez-Gonzalez
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Henry T. Nguyen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|