1
|
Kołodziejska R, Tafelska-Kaczmarek A, Pawluk M, Sergot K, Pisarska L, Woźniak A, Pawluk H. Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer. Curr Issues Mol Biol 2024; 46:7668-7685. [PMID: 39057095 PMCID: PMC11275341 DOI: 10.3390/cimb46070454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this review is to provide experimental evidence for the programmed-death activity of Ashwagandha (Withania somnifera) in the anti-cancer therapy of breast cancer. The literature search was conducted using online electronic databases (Google Scholar, PubMed, Scopus). Collection schedule data for the review article covered the years 2004-2024. Ashwagandha active substances, especially Withaferin A (WA), are the most promising anti-cancer compounds. WS exerts its effect on breast cancer cells by inducing programmed cell death, especially apoptosis, at the molecular level. Ashwagandha has been found to possess a potential for treating breast cancer, especially estrogen receptor/progesterone receptor (ER/PR)-positive and triple-negative breast cancer.
Collapse
Affiliation(s)
- Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland;
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Krzysztof Sergot
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland;
| | - Lucyna Pisarska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| |
Collapse
|
2
|
Bhattacharya A, Chauhan P, Singh SP, Narayan S, Bajpai RK, Dwivedi A, Mishra A. Bacillus tequilensis influences metabolite production in tomato and restores soil microbial diversity during Fusarium oxysporum infection. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:592-601. [PMID: 38682466 DOI: 10.1111/plb.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/08/2024] [Indexed: 05/01/2024]
Abstract
This study evaluates cellular damage, metabolite profiling, and defence-related gene expression in tomato plants and soil microflora during Fusarium wilt disease after treatment with B. tequilensis PBE-1. Histochemical analysis showed that PBE-1 was the primary line of defence through lignin deposition and reduced cell damage. GC-MS revealed that PBE-1 treatment ameliorated stress caused by F. oxysporum infection. PBE-1 also improved transpiration, photosynthesis, and stomatal conductance in tomato. qRT-PCR suggested that the defence-related genes FLS2, SERK, NOS, WRKYT, NHO, SAUR, and MYC2, which spread infection, were highly upregulated during F. oxysporum infection, but either downregulated or expressed normally in PBE-1 + P treated plants. This indicates that the plant not only perceives the bio-control agent as a non-pathogen entity but its presence in normal metabolism and gene expression within the host plant is maintained. The study further corroborated findings that application of PBE-1 does not cause ecological disturbances in the rhizosphere. Activity of soil microflora across four treatments, measured by Average Well Colour Development (AWCD), showed continuous increases from weeks 1 to 4 post-pathogen infection, with distinct substrate usage patterns like tannic and fumaric acids impacting microbial energy source utilization and diversity. Principal Component Analysis (PCA) and diversity indices like McIntosh, Shannon, and Simpson further illustrated significant microbial community shifts over the study period. In conclusion, our findings demonstrate that B. tequilensis PBE-1 is an ideal bio-agent for field application during Fusarium wilt disease management in tomato.
Collapse
Affiliation(s)
- A Bhattacharya
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - P Chauhan
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- School of Sciences, P P Savani University, Surat, Gujarat, India
| | - S P Singh
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - S Narayan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, India
| | - R K Bajpai
- Ex Director Research Services, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - A Dwivedi
- Photobiology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - A Mishra
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Giri VP, Pandey S, Shukla P, Gupta SC, Srivastava M, Rao CV, Shukla SV, Dwivedi A, Mishra A. Facile Fabrication of Sandalwood Oil-Based Nanoemulsion to Intensify the Fatty Acid Composition in Burned and Rough Skin. ACS OMEGA 2024; 9:6305-6315. [PMID: 38371762 PMCID: PMC10870268 DOI: 10.1021/acsomega.3c03811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 02/20/2024]
Abstract
The restoration process of burned and rough skin takes a long time and remains a critical challenge. It can be repaired through a combination of proper care, hydration, and topical therapies. In this study, a novel nanoemulsion was synthesized through the high-energy ultrasonication method. A total of five nanoemulsions (NE1-5) were prepared with varying concentrations of sandalwood oil, a nonionic surfactant (polysorbate 80), and water. Among them, NE3 had a number of appropriate physicochemical characteristics, such as physiological pH (5.58 ± 0.09), refractive index (∼1.34), electrical conductivity (115 ± 0.23 mS cm-1), and transmittance (∼96.5%), which were suitable for skin care applications. The NE3 had a strong surface potential of -18.5 ± 0.15 mV and a hydrodynamic size of 61.99 ± 0.22 nm with a polydispersity index of 0.204. The structural integrity and a distinct droplet size range between 50 and 100 nm were confirmed by transmission electron microscopic analysis. The skin regeneration and restoration abilities of synthesized nanoemulsions were examined by conducting an in vivo study on Sprague-Dawley rats. Exposure to NE3 significantly increased the healing process in burned skin as compared to untreated control and nonemulsified sandalwood oil. In another set of experiments, the NE3-treated rough skin became softer, smoother, and less scaly than all other treatments. Enhanced fatty acids, i.e., palmitic acid, stearic acid, and cholesterol, were recorded in NE3-supplemented burned and rough skin compared to the untreated control. The NE3 had outstanding compatibility with key components of skincare products without any stability issues. Its biocompatibility with the cellular system was established by the negligible generation of reactive oxygen species (ROS) and a lack of genotoxicity. Considering these results, NE3 can be used in cosmetic products such as creams, lotions, and serums, allowing industries to achieve improved product formulations and provide better healthcare benefits to humanity.
Collapse
Affiliation(s)
- Ved Prakash Giri
- Microbial
Technology Division, CSIR-National Botanical
Research Institute, Lucknow 226001, India
| | - Shipra Pandey
- Microbial
Technology Division, CSIR-National Botanical
Research Institute, Lucknow 226001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pallavi Shukla
- Microbial
Technology Division, CSIR-National Botanical
Research Institute, Lucknow 226001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sateesh Chandra Gupta
- Pharmacology
Division, CSIR-National Botanical Research
Institute, Lucknow 226001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manjoosha Srivastava
- Phytochemistry
Division, CSIR-National Botanical Research
Institute, Lucknow 226001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chandana Venkateswara Rao
- Pharmacology
Division, CSIR-National Botanical Research
Institute, Lucknow 226001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Ashish Dwivedi
- Photobiology
Division, CSIR-Indian Institute of Toxicology
Research, Lucknow 226001, India
| | - Aradhana Mishra
- Microbial
Technology Division, CSIR-National Botanical
Research Institute, Lucknow 226001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Bhowmick S, Rai G, Mishra SK, Bisht N, Chauhan PS. Bio-stimulants from medicinally and nutritionally significant plant extracts mitigate drought adversities in Zea mays through enhanced physiological, biochemical, and antioxidant activities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108396. [PMID: 38310727 DOI: 10.1016/j.plaphy.2024.108396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/06/2024]
Abstract
Drought stress poses a substantial threat to global plant productivity amid increasing population and rising agricultural demand. To overcome this problem, the utilization of organic plant growth ingredients aligns with the emphasis on eco-friendly farming practices. Therefore, the present study aimed to assess the influence of 30 botanical extracts on seed germination, seedling vigor, and subsequent maize plant growth under normal and water deficit conditions. Specifically, eight extracts showed significant enhancement in agronomical parameters (ranging from ∼2 % to ∼ 183 %) and photosynthetic pigments (ranging from ∼21 % to ∼ 195 %) of seedlings under drought conditions. Extended tests on maize in a greenhouse setting confirmed that the application of six extracts viz Moringa oleifera leaf (MLE), bark (MBE), Terminalia arjuna leaf (ALE), bark (ABE), Aegel marmelos leaf (BLE), and Phyllanthus niruri leaf (AmLE) improved plant growth and drought tolerance, as evident in improved physio-biochemical parameters. GC-MS analysis of the selected extracts unveiled a total of 51 bioactive compounds, including sugars, sugar alcohols, organic acids, and amino acids, and might be playing pivotal roles in plant acclimatization to drought stress. In conclusion, MLE, MBE, BLE, and ABE extracts exhibit significant potential for enhancing seedling establishment and growth in maize under both normal and water deficit conditions.
Collapse
Affiliation(s)
- Shiuly Bhowmick
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Gauri Rai
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Shashank Kumar Mishra
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
5
|
Gupta A, Singh GD, Gautam A, Tripathi T, Taneja AK, Singh BN, Roy R, Sidhu OP, Panda SK, Bhatt A. Unraveling Compositional Study, Chemometric Analysis, and Cell-Based Antioxidant Potential of Selective High Nutraceutical Value Amaranth Cultivars Using a GC-MS and NMR-Based Metabolomics Approach. ACS OMEGA 2023; 8:47573-47584. [PMID: 38144049 PMCID: PMC10733922 DOI: 10.1021/acsomega.3c05597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 12/26/2023]
Abstract
Amaranthus (family Amaranthaceae) is a potentially nutritious pseudocereal also known as a functional food owing to its high nutritional quality grains especially rich in essential amino acids. Emerging study, however, unambiguously indicates that apart from essential nutrients like protein, other phytochemicals present in amaranth seeds provide excellent health benefits. Squalene is one such phytonutrient found in Amaranthus seeds, which is also its largest vegetal source. In this research work, GC-MS and NMR spectroscopy-based metabolomics have been utilized for the compositional analysis of Amaranthus seeds coupled with a multivariate data set. Investigation of nonpolar and polar seed extracts of six different cultivars of amaranth identified 47 primary and secondary metabolites. One-way ANOVA showed significant quantitative metabolic variations in different cultivars of amaranth. Multivariate principal component analysis of both the GC-MS and NMR analyzed data broadly classified in two groups showed significant variations in the polar (lysine, arginine, GABA, and myoinositol) and nonpolar (squalene, tryptophan, and alkylated phenols, which are potential nutraceutical agents) metabolites. The squalene content estimated using HPLC varied significantly (1.61 to 4.72 mg g-1 seed dry weight) among six different cultivars. Positive correlations were found among the cellular antioxidant activity and squalene content. Cultivar AM-3 having the maximum squalene content showed the highest antioxidant activity evaluated on the cellular level over human embryonic kidney cells, clearly revealing potent intercellular reactive oxygen species scavenging capacity and strong membrane lipid peroxidation inhibition potential. Oxidative stress markers such as MDA, SOD, GSH, and CAT levels in cells further corroborated the research work. The study also indicated high concentrations of lysine (80.49 mg g-1 dry seeds) in AM-2, squalene (0.47% by weight) in AM-3, and 2,4-di-tert-butyl phenol (18.64% peak area) and myoinositol (79.07 mg g-1 dry seeds) in AM-5. This novel comparative metabolomic study successfully profiles the nutrient composition of amaranth cultivars and provides the opportunity for the development of nutraceuticals and natural antioxidants from this functional food.
Collapse
Affiliation(s)
- Annie Gupta
- CSIR−National
Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226 001, India
| | | | - Arti Gautam
- CSIR−National
Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226 001, India
| | - Tusha Tripathi
- CSIR−National
Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226 001, India
| | - Amit Kumar Taneja
- Jiangxi
Fushine Pharmaceutical Co., Ltd., Jingdezhen 245608, People's Republic of China
| | - Brahma N Singh
- CSIR−National
Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226 001, India
| | - Raja Roy
- Centre
of Biomedical Research, Formerly Known as Centre of Biomedical Magnetic
Resonance, Sanjay Gandhi Postgraduate Institute
of Medical Sciences Campus, Raebareli Road, Lucknow, UP 226014, India
| | - Om P. Sidhu
- CSIR−National
Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226 001, India
| | - Sunil Kumar Panda
- Menovo
Pharmaceuticals Limited, Shanghai 200000, People's
Republic of China
| | - Arun Bhatt
- Department
of Crop Improvement, VCSG Uttarakhand University
of Horticulture & Forestry, Ranichauri, Tehri Garhwal, Uttarakhand 249199, India
| |
Collapse
|
6
|
Shinde S, Balasubramaniam AK, Mulay V, Saste G, Girme A, Hingorani L. Recent Advancements in Extraction Techniques of Ashwagandha ( Withania somnifera) with Insights on Phytochemicals, Structural Significance, Pharmacology, and Current Trends in Food Applications. ACS OMEGA 2023; 8:40982-41003. [PMID: 37970011 PMCID: PMC10633886 DOI: 10.1021/acsomega.3c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 11/17/2023]
Abstract
Ashwagandha, also known as Withania somnifera (WS), is an ayurvedic botanical plant with numerous applications in dietary supplements and traditional medicines worldwide. Due to the restorative qualities of its roots, WS has potent therapeutic value in traditional Indian (Ayurvedic, Unani, Siddha) and modern medicine recognized as the "Indian ginseng". The presence of phytochemical bioactive compounds such as withanolides, withanosides, alkaloids, flavonoids, and phenolic compounds has an important role in the therapeutic and nutritional properties of WS. Thus, the choice of WS plant part and extraction solvents, with conventional and modern techniques, plays a role in establishing WS as a potential nutraceutical product. WS has recently made its way into food supplements and products, such as baked goods, juices, beverages, sweets, and dairy items. The review aims to cover the key perspectives about WS in terms of plant description, phytochemistry, structural significance, and earlier reported extraction methodologies along with the analytical and pharmacological landscape in the area. It also attempts to iterate the key limitations and further insights into extraction techniques and bioactive standardization with the regulatory framework. It presents a key to the future development of prospective applications in foods such as food supplements or functional foods.
Collapse
Affiliation(s)
- Sunil Shinde
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | | | - Vallabh Mulay
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Ganesh Saste
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Aboli Girme
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Lal Hingorani
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| |
Collapse
|
7
|
Macharia JM, Káposztás Z, Bence RL. Medicinal Characteristics of Withania somnifera L. in Colorectal Cancer Management. Pharmaceuticals (Basel) 2023; 16:915. [PMID: 37513827 PMCID: PMC10384768 DOI: 10.3390/ph16070915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Research into tumorigenic pathways can aid in the development of more efficient cancer therapies and provide insight into the physiological regulatory mechanisms employed by rapidly proliferating cancer cells. Due to the severe side effects of cancer chemotherapeutic medications, plant chemicals and their analogues are now explored more frequently for the treatment and prevention of colorectal cancer (CRC), opening the stage for new phytotherapeutic strategies that are considered effective and safe substitutes. Our study aimed to evaluate the medicinal properties of Withania somnifera L. and its safety applications in CRC management. Important databases were rigorously searched for relevant literature, and only 82 full-text publications matched the inclusion requirements from a massive collection of 10,002 titles and abstracts. W. somnifera L. contains a high concentration of active plant-based compounds. The pharmacological activity of the plant from our study has been demonstrated to exert antiproliferation, upregulation of apoptosis, decrease in oxidative stress, downregulation of cyclooxygenase-2 (COX-2), induction of targeted cytotoxic effects on cancerous cells, and exertion of both antiangiogenesis and antimigratory effects. We advise further research before recommending W. somnifera L. for clinical use to identify the optimal concentrations required to elicit beneficial effects in CRC management in humans, singly or in combination.
Collapse
Affiliation(s)
- John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, Vörösmarty Mihály Str. 4, 7621 Pécs, Hungary
| | - Zsolt Káposztás
- Faculty of Health Science, University of Pẻcs, 7621 Pécs, Hungary
| | - Raposa L Bence
- Faculty of Health Science, University of Pẻcs, 7621 Pécs, Hungary
| |
Collapse
|
8
|
Germann AT, Nakielski A, Dietsch M, Petzel T, Moser D, Triesch S, Westhoff P, Axmann IM. A systematic overexpression approach reveals native targets to increase squalene production in Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2023; 14:1024981. [PMID: 37324717 PMCID: PMC10266222 DOI: 10.3389/fpls.2023.1024981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Cyanobacteria are a promising platform for the production of the triterpene squalene (C30), a precursor for all plant and animal sterols, and a highly attractive intermediate towards triterpenoids, a large group of secondary plant metabolites. Synechocystis sp. PCC 6803 natively produces squalene from CO2 through the MEP pathway. Based on the predictions of a constraint-based metabolic model, we took a systematic overexpression approach to quantify native Synechocystis gene's impact on squalene production in a squalene-hopene cyclase gene knock-out strain (Δshc). Our in silico analysis revealed an increased flux through the Calvin-Benson-Bassham cycle in the Δshc mutant compared to the wildtype, including the pentose phosphate pathway, as well as lower glycolysis, while the tricarboxylic acid cycle predicted to be downregulated. Further, all enzymes of the MEP pathway and terpenoid synthesis, as well as enzymes from the central carbon metabolism, Gap2, Tpi and PyrK, were predicted to positively contribute to squalene production upon their overexpression. Each identified target gene was integrated into the genome of Synechocystis Δshc under the control of the rhamnose-inducible promoter Prha. Squalene production was increased in an inducer concentration dependent manner through the overexpression of most predicted genes, which are genes of the MEP pathway, ispH, ispE, and idi, leading to the greatest improvements. Moreover, we were able to overexpress the native squalene synthase gene (sqs) in Synechocystis Δshc, which reached the highest production titer of 13.72 mg l-1 reported for squalene in Synechocystis sp. PCC 6803 so far, thereby providing a promising and sustainable platform for triterpene production.
Collapse
Affiliation(s)
- Anna T. Germann
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Nakielski
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maximilian Dietsch
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tim Petzel
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Moser
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Sebastian Triesch
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Philipp Westhoff
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
9
|
Biodiversity, Biochemical Profiling, and Pharmaco-Commercial Applications of Withania somnifera: A Review. Molecules 2023; 28:molecules28031208. [PMID: 36770874 PMCID: PMC9921868 DOI: 10.3390/molecules28031208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Withania somnifera L. Dunal (Ashwagandha), a key medicinal plant native to India, is used globally to manage various ailments. This review focuses on the traditional uses, botany, phytochemistry, and pharmacological advances of its plant-derived constituents. It has been reported that at least 62 crucial and 48 inferior primary and secondary metabolites are present in the W. somnifera leaves, and 29 among these found in its roots and leaves are chiefly steroidal compounds, steroidal lactones, alkaloids, amino acids, etc. In addition, the whole shrub parts possess various medicinal activities such as anti-leukotriene, antineoplastic, analgesic, anti-oxidant, immunostimulatory, and rejuvenating properties, mainly observed by in vitro demonstration. However, the course of its medical use remains unknown. This review provides a comprehensive understanding of W. somnifera, which will be useful for mechanism studies and potential medical applications of W. somnifera, as well as for the development of a rational quality control system for W. somnifera as a therapeutic material in the future.
Collapse
|
10
|
Bacillus Consortia Modulate Transcriptional and Metabolic Machinery of Arabidopsis Plants for Salt Tolerance. Curr Microbiol 2023; 80:77. [PMID: 36652029 DOI: 10.1007/s00284-023-03187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/07/2023] [Indexed: 01/19/2023]
Abstract
Rhizobacteria that are helpful to plants can lessen the impacts of salt stress, and they may hold promise for the development of sustainable agriculture in the future. The present study was intended to explicate consortia of salt-tolerant plant-beneficial rhizobacteria for the amelioration of salinity stress in Arabidopsis plants. Inoculation with both the consortia positively influenced the growth of plants as indicated by total chlorophyll content, MDA content, and antioxidant enzyme activities under stressful conditions. Both the multi-trait consortia altered the expression profiles of stress-related genes including CSD1, CAT1, Wrky, Ein, Etr, and ACO. Furthermore, the metabolomic analysis indicated that inoculated plants modulated the metabolic profiles to stimulate physiological and biochemical responses in Arabidopsis plants to mitigate salt stress. Our study affirms that the consortia of salt-tolerant bacterial strains modulate the transcriptional as well as metabolic machinery of plants to protect them from salinity stress. Nevertheless, the findings of this study revealed that consortia are composed of salt-tolerant bacterial strains viz. Bacillus safensis NBRI 12M, B. subtilis NBRI 28B, and B. subtilis NBRI 33N demonstrated significant improvement in Arabidopsis plants under saline stress conditions.
Collapse
|
11
|
Ahmad F, Nadeem H. Mass Spectroscopy as an Analytical Tool to Harness the Production of Secondary Plant Metabolites: The Way Forward for Drug Discovery. Methods Mol Biol 2023; 2575:77-103. [PMID: 36301472 DOI: 10.1007/978-1-0716-2716-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The molecular map of diverse biological molecules linked with structure, function, signaling, and regulation within a cell can be elucidated using an analytically demanding omic approach. The latest trend of using "metabolomics" technologies has explained the natural phenomenon of opening a new avenue to understand and enhance bioactive compounds' production. Examination of sequenced plant genomes has revealed that a considerable portion of these encodes genes of secondary metabolism. In addition to genetic and molecular tools developed in the current era, the ever-increasing knowledge about plant metabolism's biochemistry has initiated an approach for wisely designed, more productive genetic engineering of plant secondary metabolism for improved defense systems and enhanced biosynthesis of beneficial metabolites. Secondary plant metabolites are natural products synthesized by plants that are not directly involved with their average growth and development but play a vital role in plant defense mechanisms. Plant secondary metabolites are classified into four major classes: terpenoids, phenolic compounds, alkaloids, and sulfur-containing compounds. More than 200,000 secondary metabolites are synthesized by plants having a unique and complex structure. Secondary plant metabolites are well characterized and quantified by omics approaches and therefore used by humans in different sectors such as agriculture, pharmaceuticals, chemical industries, and biofuel. The aim is to establish metabolomics as a comprehensive and dynamic model of diverse biological molecules for biomarkers and drug discovery. In this chapter, we aim to illustrate the role of metabolomic technology, precisely liquid chromatography-mass spectrometry, capillary electrophoresis mass spectrometry, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy, specifically as a research tool in the production and identification of novel bioactive compounds for drug discovery and to obtain a unified insight of secondary metabolism in plants.
Collapse
Affiliation(s)
- Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| | - Hera Nadeem
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
12
|
Gowtham HG, Murali M, Singh SB, Shivamallu C, Pradeep S, Shivakumar CS, Anandan S, Thampy A, Achar RR, Silina E, Stupin V, Ortega-Castro J, Frau J, Flores-Holguín N, Amruthesh KN, Kollur SP, Glossman-Mitnik D. Phytoconstituents of Withania somnifera unveiled Ashwagandhanolide as a potential drug targeting breast cancer: Investigations through computational, molecular docking and conceptual DFT studies. PLoS One 2022; 17:e0275432. [PMID: 36201520 PMCID: PMC9536605 DOI: 10.1371/journal.pone.0275432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is the second most common malignancy in females worldwide and poses a great challenge that necessitates the identification of novel therapeutic agents from several sources. This research aimed to study the molecular docking and molecular dynamics simulations of four proteins (such as PDB: 6CBZ, 1FDW, 5GWK and 2WTT) with the selected phytochemicals from Withania somnifera to identify the potential inhibitors for breast cancer. The molecular docking result showed that among 44 compounds, two of them, Ashwagandhanolide and Withanolide sulfoxide have the potential to inhibit estrogen receptor alpha (ERα), 17-beta-hydroxysteroid -dehydrogenase type 1 (17β-HSD1), topoisomerase II alpha (TOP2A) and p73 tetramerization domain that are expressed during breast cancer. The molecular dynamics (MD) simulations results suggested that Ashwagandhanolide remained inside the binding cavity of four targeted proteins and contributed favorably towards forming a stable protein-ligand complex throughout the simulation. Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties confirmed that Ashwagandhanolide is hydrophobic and has moderate intestinal permeability, good intestinal absorption, and poor skin permeability. The compound has a relatively low VDss value (-1.652) and can be transported across ABC transporter and good central nervous system (CNS) permeability but did not easily cross the blood-brain barrier (BBB). This compound does not possess any mutagenicity, hepatotoxicity and skin sensitization. Based on the results obtained, the present study highlights the anticancer potential of Ashwagandhanolide, a compound from W. somnifera. Furthermore, in vitro and in vivo studies are necessary to perform before clinical trials to prove the potentiality of Ashwagandhanolide.
Collapse
Affiliation(s)
| | - Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | | | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - C. S. Shivakumar
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, India
| | - Satish Anandan
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, India
| | - Anjana Thampy
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ekaterina Silina
- Department of Human Pathology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | | | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, Palma de Malllorca, Spain
| | - Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chih, México
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Shiva Prasad Kollur
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), University of the South Pacific, Laucala Campus, Suva, Fiji
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysore, Karnataka, India
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chih, México
| |
Collapse
|
13
|
Exploring the industrial importance of a miracle herb Withania somnifera (L.) Dunal: Authentication through chemical profiling, in vitro studies and computational analyses. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Chauhan P, Bhattacharya A, Giri VP, Singh SP, Gupta SC, Verma P, Dwivedi A, Rajput LS, Mishra A. Bacillus subtilis suppresses the charcoal rot disease by inducing defence responses and physiological attributes in soybean. Arch Microbiol 2022; 204:266. [PMID: 35437612 DOI: 10.1007/s00203-022-02876-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 11/02/2022]
Abstract
Endophytes can induce the defence responses and modulates physiological attributes in host plants during pathogen attacks. In the present study, 127 bacterial endophytes (BEs) were isolated from different parts of healthy soybean plant. Among them, two BEs (M-2 and M-4) resulted a significant antagonistic property against Macrophomina phaseolina, causes charcoal rot disease in soybean. The antagonistic potential was evaluated through dual culture plate assay, where M-4 expressed higher antifungal activity than M-2 against M. phaseolina. The M-4 produces cell wall degrading enzymes viz. cellulase (145.71 ± 1.34 μgmL-1), chitinase (0.168 ± 0.0009 unitmL-1) and β,1-3 endoglucanase (162.14 ± 2.5 μgmL-1), which helps in cell wall disintegration of pathogens. Additionally, M-4 also can produce siderophores, indole-3-acetic acid (IAA) (17.03 ± 1.10 μgmL-1) and had a phosphate solubilization potential (19.89 ± 0.26 μgmL-1). Further, GC-MS profiling of M-4 has been carried out to demonstrate the production of lipophilic secondary metabolites which efficiently suppress the M. phaseolina defensive compounds under co-culture conditions. Bio-efficacy study of M-4 strain shown a significant reduction in disease incidence around 60 and 80% in resistant and susceptible varieties of soybean, respectively. The inoculation of M-4 potentially enhances the physiological attributes and triggers various defence responsive enzymes viz. superoxide dismutase (SOD), phenol peroxidase (PPO), peroxidase (PO) and catalase (CAT). The histopathological study also confirmed that M-4 can reduce the persistence of microsclerotia in root and shoot tissue. Conclusively, M-4 revealed as an efficient biocontrol agent that can uses multifaceted measures for charcoal rot disease management, by suppress the M. phaseolina infection and enhance the physiological attributes of soybean.
Collapse
Affiliation(s)
- Priyanka Chauhan
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arpita Bhattacharya
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ved Prakash Giri
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Botany, Lucknow University, Hasanganj, Lucknow, 226007, Uttar Pradesh, India
| | - Satyendra Pratap Singh
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Sateesh Chandra Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Phytochemistry Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Pratibha Verma
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashish Dwivedi
- Photobiology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
| | - Laxman Singh Rajput
- Division of Crop Protection, ICAR-Indian Institute of Soybean Research, Indore, 452001, Madhya Pradesh, India
| | - Aradhana Mishra
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Kaur K, Dolker D, Behera S, Pati PK. Critical factors influencing in vitro propagation and modulation of important secondary metabolites in Withania somnifera (L.) dunal. PLANT CELL, TISSUE AND ORGAN CULTURE 2022; 149:41-60. [PMID: 35039702 PMCID: PMC8754361 DOI: 10.1007/s11240-021-02225-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/29/2021] [Indexed: 06/01/2023]
Abstract
Withania somnifera (L.) Dunal is a valuable medicinal plant in the Solanaceae family. It is commonly known as Ashwagandha and is widely distributed around the globe. It has multiple pharmacological properties owing to the existence of diverse secondary metabolites viz., withanolide A, withanolide D, withaferin A, and withanone. It is in great demand in the herbal industry because of its extensive use. In this background, the major challenge lies in the rapid multiplication of elite cultivars of W. somnifera in order to produce genetically and phytoconstituents uniform plant material for pharmaceutical industries. Thus it is necessary to explore various biotechnological approaches for the clonal mass propagation and synthesis of pharmaceutically important constituents in W. somnifera. Though there are several studies on in vitro propagation on W. somnifera, yet many factors that critically influence the in vitro response and withanolides production need to be fine-tuned in the pretext of the existing knowledge. The current review focuses on the advancements and prospects in biotechnological interventions to meet the worldwide demands for W. somnifera and its bioactive compounds. This update on in vitro studies on W. somnifera will be useful to many researchers, entrepreneurs, and herbal industries looking for its in vitro mass multiplication and scientific utilization.
Collapse
Affiliation(s)
- Kuldeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Dechen Dolker
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Shashikanta Behera
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| |
Collapse
|
16
|
Behl A, Mishra A, Sharma GP. A Critical Scientific Review on Withania somnifera, Garcinia cambogia and
Curcumin Supplements: Food Forensics Perspective. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401317666210910114721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Food forensics is an emerging branch that applies scientific knowledge for the verification
and authentication of food supplements. The term “dietary supplement” refers to a diverse
set of preparations that are deemed to be essential for the well-being of the human body.
These supplements consist of various physiologically active substances that produce effects on
the body. However, a major issue with these supplements is that they are neither considered as
medicines nor as a food products. Due to this, such food supplements are prone to adulteration
and counterfeiting. In this review, three widely used supplements, namely Curcuma longa,
Withania somnifera, and Garcinia cambogia supplements, are considered. Chemistry, pharmacology,
and benefits of three are being discussed along with the analytical techniques for their
analysis. Chromatographic techniques are popular for the examination of dietary supplements.
Several such analytical techniques are being used to detect and identify the physiologically active
constituents as well as adulterants in dietary products. This review intends to demonstrate
the overall issues regarding dietary supplements.
Collapse
Affiliation(s)
- Akanksha Behl
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, India
| | - Amarnath Mishra
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, India
| | - G. P. Sharma
- National Food Laboratory,
Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
17
|
Sharifi-Rad J, Quispe C, Ayatollahi SA, Kobarfard F, Staniak M, Stępień A, Czopek K, Sen S, Acharya K, Matthews KR, Sener B, Devkota HP, Kırkın C, Özçelik B, Victoriano M, Martorell M, Rasul Suleria HA, Alshehri MM, Chandran D, Kumar M, Cruz-Martins N, Cho WC. Chemical Composition, Biological Activity, and Health-Promoting Effects of Withania somnifera for Pharma-Food Industry Applications. J FOOD QUALITY 2021; 2021:1-14. [DOI: 10.1155/2021/8985179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
The Withania genus comes from the Solanaceae family and includes around 23 species, spread over some areas of the Mediterranean, Asia, and East Africa. Widely used in traditional medicine for thousands of years, these plants are rich in secondary metabolites, with special emphasis on steroidal lactones, named withanolides which are used as ingredients in numerous formulations for a plethora of diseases, such as asthma, diabetes, arthritis, impotence, amnesia, hypertension, anxiety, stress, cancer, neurodegenerative, and cardiovascular diseases, and many others. Among them, Withania somnifera (L.) Dunal is the most widely addressed species from a pharmacological and agroindustrial point of view. In this sense, this review provides an overview of the folk uses, phytochemical composition, and biological activity, such as antioxidant, antimicrobial, anti-inflammatory, and cytotoxic activity of W. somnifera, although more recently other species have also been increasingly investigated. In addition, their health-promoting effects, i.e., antistress, anxiolytic, adaptogenic, antirheumatoid arthritis, chemoprotective, and cardiorespiratory-enhancing abilities, along with safety and adverse effects are also discussed.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mariola Staniak
- Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, Puławy 24-100, Poland
| | - Anna Stępień
- Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, Puławy 24-100, Poland
| | - Katarzyna Czopek
- Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, Puławy 24-100, Poland
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Karl R. Matthews
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Bilge Sener
- Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Ankara 06330, Turkey
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Celale Kırkın
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Beraat Özçelik
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Bioactive Research & Innovation Food Manufacturing Industry Trade Ltd. Co., Maslak, Istanbul 34469, Turkey
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | | | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, Gandra 4585-116, Portugal
- TOXRUN–Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
18
|
Puri S, Sahal D, Sharma U. A conversation between hyphenated spectroscopic techniques and phytometabolites from medicinal plants. ANALYTICAL SCIENCE ADVANCES 2021; 2:579-593. [PMID: 38715860 PMCID: PMC10989556 DOI: 10.1002/ansa.202100021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2024]
Abstract
Medicinal plant metabolomics has emerged as a goldmine for the natural product chemists. It provides a pool of bioactive phytoconstituents leading to accelerated novel discoveries and the elucidation of a variety of biosynthetic pathways. Further, it also acts as an innovative tool for herbal medicine's scientific validation and quality assurance. This review highlights different strategies and analytical techniques employed in the practice of metabolomics. Further, it also discusses several other applications and advantages of metabolomics in the area of natural product chemistry. Additional examples of integrating metabolomics with multivariate data analysis techniques for some Indian medicinal plants are also reviewed. Recent technical advances in mass spectrometry-based hyphenated techniques, nuclear magnetic resonance-based techniques, and comprehensive hyphenated technologies for phytometabolite profiling studies have also been reviewed. Mass Spectral Imaging (MSI) has been presented as a highly promising method for high precision in situ spatiotemporal monitoring of phytometabolites. We conclude by introducing GNPS (Global Natural Products Social Molecular Networking) as an emerging platform to make social networks of related molecules, to explore data and to annotate more metabolites, and expand the networks to novel "predictive" metabolites that can be validated.
Collapse
Affiliation(s)
- Shivani Puri
- Chemical Technology Division CSIR‐IHBTPalampurHimachal Pradesh176061India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
| | - Dinkar Sahal
- Malaria Drug Discovery Research GroupInternational Centre for Genetic Engineering and BiotechnologyNew Delhi110067India
| | - Upendra Sharma
- Chemical Technology Division CSIR‐IHBTPalampurHimachal Pradesh176061India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
| |
Collapse
|
19
|
Paul S, Chakraborty S, Anand U, Dey S, Nandy S, Ghorai M, Saha SC, Patil MT, Kandimalla R, Proćków J, Dey A. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomed Pharmacother 2021; 143:112175. [PMID: 34649336 DOI: 10.1016/j.biopha.2021.112175] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Withania somnifera (L.) Dunal (Solanaceae) has been used as a traditional Rasayana herb for a long time. Traditional uses of this plant indicate its ameliorative properties against a plethora of human medical conditions, viz. hypertension, stress, diabetes, asthma, cancer etc. This review presents a comprehensive summary of the geographical distribution, traditional use, phytochemistry, and pharmacological activities of W. somnifera and its active constituents. In addition, it presents a detailed account of its presence as an active constituent in many commercial preparations with curative properties and health benefits. Clinical studies and toxicological considerations of its extracts and constituents are also elucidated. Comparative analysis of relevant in-vitro, in-vivo, and clinical investigations indicated potent bioactivity of W. somnifera extracts and phytochemicals as anti-cancer, anti-inflammatory, apoptotic, immunomodulatory, antimicrobial, anti-diabetic, hepatoprotective, hypoglycaemic, hypolipidemic, cardio-protective and spermatogenic agents. W. somnifera was found to be especially active against many neurological and psychological conditions like Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke, sleep deprivation, amyotrophic lateral sclerosis, attention deficit hyperactivity disorder, bipolar disorder, anxiety, depression, schizophrenia and obsessive-compulsive disorder. The probable mechanism of action that imparts the pharmacological potential has also been explored. However, in-depth studies are needed on the clinical use of W. somnifera against human diseases. Besides, detailed toxicological analysis is also to be performed for its safe and efficacious use in preclinical and clinical studies and as a health-promoting herb.
Collapse
Affiliation(s)
- Subhabrata Paul
- School of Biotechnology, Presidency University (2nd Campus), Kolkata 700156, West Bengal, India
| | - Shreya Chakraborty
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Swarnali Dey
- Department of Botany, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Suchismita Chatterjee Saha
- Department of Zoology, Nabadwip Vidyasagar College (Affiliated to the University of Kalyani), Nabadwip 741302, West Bengal, India
| | - Manoj Tukaram Patil
- Post Graduate Department of Botany, SNJB's KKHA Arts, SMGL Commerce and SPHJ Science College (Affiliated to Savitribai Phule Pune University), Chandwad, Nashik 423101, Maharashtra, India
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; Department of Biochemistry, Kakatiya Medical College, Warangal-506007, Telangana, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
20
|
Experimental evidence and mechanism of action of some popular neuro-nutraceutical herbs. Neurochem Int 2021; 149:105124. [PMID: 34245808 DOI: 10.1016/j.neuint.2021.105124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Brain and neuronal circuits constitute the most complex organ networks in human body. They not only control and coordinate functions of all other organs, but also represent one of the most-affected systems with stress, lifestyle and age. With global increase in aging populations, these neuropathologies have emerged as major concern for maintaining quality of life. Recent era has witnessed a surge in nutritional remediation of brain dysfunctions primarily by "nutraceuticals" that refer to functional foods and supplements with pharmacological potential. Specific dietary patterns with a balanced intake of carbohydrates, fatty acids, vitamins and micronutrients have also been ascertained to promote brain health. Dietary herbs and their phytochemicals with wide range of biological and pharmacological activities and minimal adverse effects have gained remarkable attention as neuro-nutraceuticals. Neuro-nutraceutical potentials of herbs are often expressed as effects on cognitive response, circadian rhythm, neuromodulatory, antioxidant and anti-inflammatory activities that are mediated by effects on gene expression, epigenetics, protein synthesis along with their turnover and metabolic pathways. Epidemiological and experimental evidence have implicated enormous applications of herbal supplementation in neurodegenerative and psychiatric disorders. The present review highlights the identification, experimental evidence and applications of some herbs including Bacopa monniera, Withania somnifera, Curcuma longa, Helicteres angustifolia, Undaria pinnatifida, Haematococcus pluvialis, and Vitis vinifera, as neuro-nutraceuticals.
Collapse
|
21
|
Tetali SD, Acharya S, Ankari AB, Nanakram V, Raghavendra AS. Metabolomics of Withania somnifera (L.) Dunal: Advances and applications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113469. [PMID: 33075439 DOI: 10.1016/j.jep.2020.113469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/30/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera L. (Solanaceae), commonly known as Ashwagandha or Indian ginseng, is used in Ayurveda (Indian system of traditional medicine) for vitality, cardio-protection and treating other ailments, such as neurological disorders, gout, and skin diseases. AIM OF THE REVIEW We present a critical overview of the information on the metabolomics of W. somnifera and highlight the significance of the technique for use in quality control of medicinal products. We have also pointed out the use of metabolomics to distinguish varieties and to identify best methods of cultivation, collection, as well as extraction. MATERIAL AND METHODS The relevant information on medicinal value, phytochemical studies, metabolomics of W. somnifera, and their applications were collected from a rigorous electronic search through scientific databases, including Scopus, PubMed, Web of Science and Google Scholar. Structures of selected metabolites were from the PubChem. RESULTS The pharmacological activities of W. somnifera were well documented. Roots are the most important parts of the plant used in Ayurvedic preparations. Stem and leaves also have a rich content of bioactive phytochemicals like steroidal lactones, alkaloids, and phenolic acids. Metabolomic studies revealed that metabolite profiles of W. somnifera depended on plant parts collected and the developmental stage of the plant, besides the season of sample collection and geographical location. The levels of withanolides were variable, depending on the morpho/chemotypes within the species of W. somnifera. Although studies on W. somnifera were initiated several years ago, the complexity of secondary metabolites was not realized due to the lack of adequate and fool-proof technology for phytochemical fingerprinting. Sophistications in chromatography coupled to mass spectrometry facilitated the discovery of several new metabolites. Mutually complementary techniques like LC-MS, GC-MS, HPTLC, and NMR were employed to obtain a comprehensive metabolomic profile. Subsequent data analyses and searches against spectral databases enabled the annotation of signals and dereplication of metabolites in several numbers without isolating them individually. CONCLUSIONS The present review provides a critical update of metabolomic data and the diverse application of the technique. The identification of parameters for standardization and quality control of herbal products is essential to facilitate mandatory checks for the purity of formulation. Such studies would enable us to identify the best geographical location of plants and the time of collection. We recommend the use of metabolomic analysis of herbal products based on W. somnifera for quality control as well as the discovery of novel bioactive compounds.
Collapse
Affiliation(s)
- Sarada D Tetali
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India.
| | - Satyabrata Acharya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India
| | - Aditya B Ankari
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India
| | - Vadthyavath Nanakram
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India.
| |
Collapse
|
22
|
Mukherjee PK, Banerjee S, Biswas S, Das B, Kar A, Katiyar CK. Withania somnifera (L.) Dunal - Modern perspectives of an ancient Rasayana from Ayurveda. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113157. [PMID: 32783987 DOI: 10.1016/j.jep.2020.113157] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal, commonly known as Ashwagandha, is an important medicinal plant that has been used in Ayurvedic and indigenous medicine for more than 3000 years. According to Charaka Samhita, Susruta Samhita and other ancient texts, Ashwagandha is known as Balya (increases strength), Brusya (sexual performance enhancer), vajikari (spermatogenic), Kamarupini (libido-enhancing), Pustida (nourishing). AIM OF THE REVIEW This review article documented and critically assessed W. somnifera regarding its ethnopharmacology, traditional use, botanical description, phytochemicals present, pharmacological activities, clinical trials, and marketed formulations. MATERIALS AND METHODS The sources of information used in the study are traditional Ayurvedic books like Charaka Samhita, Susruta Samhita, Astanga Hridaya etc, government reports, dissertations, books, research articles and databases like Science-Direct, SciFinder, Web of Science, PubMed, Wiley Online Library, and ACS Publications on Ashwagandha and Withania somnifera (L.) Dunal. RESULTS Traditional uses of Ashwagandha in Ayurveda are very prominent in several texts where formulations with various dosage forms have been mentioned in Charaka Samhita, Susruta Samhita, Astanga Hridaya, different nighantus etc. The drugs were identified based on their composition containing Ashwagandha as one of the major ingredients and their medicinal uses. Phytochemical studies on W. somnifera revealed the presence of important chemical constituents such as flavonoids, phenolic acids, alkaloids, saponins, tannins, and withanolides. The phytochemicals showed various pharmacological activities like anti-cancer, immunomodulatory, cardioprotective, neuroprotective, anti-aging, anti-stress/adaptogenic and anti-diabetic. Various clinical trials show that the plant extract and its bioactive compounds are used in the prevention and treatment of many diseases, such as arthritis, impotence, amnesia, anxiety, cancer, neurodegenerative and cardiovascular diseases, and others. CONCLUSIONS Pharmacological data reviewed here revealed that W. somnifera is a potential source for the treatment of a wide range of diseases especially anxiety and other CNS disorders. From its ancient use to its modern application it has been proven to be non-toxic and effective clinically for human health and wellness. W. somnifera based herbal formulation has been marketed in the form of supplement, extract, capsule, powder etc. This review will be helpful to correlate the mechanism of action with the phytochemical profile of this well-known plant from Ayurveda.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India; Institute of Bioresources and Sustainable Development, A National Institute Under Dept. of Biotechnology, Govt. of India, Imphal, 795004, India.
| | - Subhadip Banerjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| | - Sayan Biswas
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| | - Amit Kar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| | - C K Katiyar
- Health Care Division, Emami Limited 13, BT Road, Kolkata, 700056, India.
| |
Collapse
|
23
|
Afewerky HK, Ayodeji AE, Tiamiyu BB, Orege JI, Okeke ES, Oyejobi AO, Bate PNN, Adeyemi SB. Critical review of the Withania somnifera (L.) Dunal: ethnobotany, pharmacological efficacy, and commercialization significance in Africa. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:176. [PMID: 34697529 PMCID: PMC8529567 DOI: 10.1186/s42269-021-00635-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Withania somnifera (L.) Dunal (W. somnifera) is a herb commonly known by its English name as Winter Cherry. Africa is indigenous to many medicinal plants and natural products. However, there is inadequate documentation of medicinal plants, including W. somnifera, in Africa. There is, therefore, a need for a comprehensive compilation of research outcomes of this reviewed plant as used in traditional medicine in different regions of Africa. METHODOLOGY Scientific articles and publications were scooped and sourced from high-impact factor journals and filtered with relevant keywords on W. somnifera. Scientific databases, including GBIF, PubMed, NCBI, Google Scholar, Research Gate, Science Direct, SciFinder, and Web of Science, were accessed to identify the most influential articles and recent breakthroughs published on the contexts of ethnography, ethnomedicinal uses, phytochemistry, pharmacology, and commercialization of W. somnifera. RESULTS This critical review covers the W. somnifera ethnography, phytochemistry, and ethnomedicinal usage to demonstrate the use of the plant in Africa and elsewhere to prevent or alleviate several pathophysiological conditions, including cardiovascular, neurodegenerative, reproductive impotence, as well as other chronic diseases. CONCLUSION W. somnifera is reportedly safe for administration in ethnomedicine as several research outcomes confirmed its safety status. The significance of commercializing this plant in Africa for drug development is herein thoroughly covered to provide the much-needed highlights towards its cultivations economic benefit to Africa.
Collapse
Affiliation(s)
- Henok Kessete Afewerky
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- School of Allied Health Professions, Asmara College of Health Sciences, 00291 Asmara, Eritrea
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
| | - Ayeni Emmanuel Ayodeji
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Pharmacognosy and Drug Development, Ahmadu Bello University Zaria, PMB 1044, Kaduna, 800211 Nigeria
| | - Bashir Bolaji Tiamiyu
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, 240001 Nigeria
| | - Joshua Iseoluwa Orege
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Industrial Chemistry, Ekiti State University, PMB 5363, Ado-Ekiti, 362001 Nigeria
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Biochemistry, FBS and Natural Science Unit, SGS, University of Nigeria, Nsukka, 410001 Nigeria
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Aanuoluwapo Opeyemi Oyejobi
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Petuel Ndip Ndip Bate
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Guangzhou Institute of Biomedicine and Health, Guangzhou, 510530 China
| | - Sherif Babatunde Adeyemi
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, 240001 Nigeria
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli-Mahuva Road, Bardoli, Surat, Gujarat 394350 India
| |
Collapse
|
24
|
Speers AB, Cabey KA, Soumyanath A, Wright KM. Effects of Withania somnifera (Ashwagandha) on Stress and the Stress- Related Neuropsychiatric Disorders Anxiety, Depression, and Insomnia. Curr Neuropharmacol 2021; 19:1468-1495. [PMID: 34254920 PMCID: PMC8762185 DOI: 10.2174/1570159x19666210712151556] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Withania somnifera (WS), also known as Ashwagandha, is commonly used in Ayurveda and other traditional medicine systems. WS has seen an increase in worldwide usage due to its reputation as an adaptogen. This popularity has elicited increased scientific study of its biological effects, including a potential application for neuropsychiatric and neurodegenerative disorders. OBJECTIVE This review aims to provide a comprehensive summary of preclinical and clinical studies examining the neuropsychiatric effects of WS, specifically its application in stress, anxiety, depression, and insomnia. METHODS Reports of human trials and animal studies of WS were collected primarily from the PubMed, Scopus, and Google Scholar databases. RESULTS WS root and leaf extracts exhibited noteworthy anti-stress and anti-anxiety activity in animal and human studies. WS also improved symptoms of depression and insomnia, though fewer studies investigated these applications. WS may alleviate these conditions predominantly through modulation of the hypothalamic-pituitary-adrenal and sympathetic-adrenal-medullary axes, as well as through GABAergic and serotonergic pathways. While some studies link specific withanolide components to its neuropsychiatric benefits, there is evidence for the presence of additional, as yet unidentified, active compounds in WS. CONCLUSION While benefits were seen in the reviewed studies, significant variability in the WS extracts examined prevents a consensus on the optimum WS preparation or dosage for treating neuropsychiatric conditions. WS generally appears safe for human use; however, it will be important to investigate potential herb-drug interactions involving WS if used alongside pharmaceutical interventions. Further elucidation of active compounds of WS is also needed.
Collapse
Affiliation(s)
| | | | - Amala Soumyanath
- Address correspondence to these authors at the Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA; Tel/Fax: +1-503-494-6882, +1-503-494-7499; E-mails: ;
| | - Kirsten M. Wright
- Address correspondence to these authors at the Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA; Tel/Fax: +1-503-494-6882, +1-503-494-7499; E-mails: ;
| |
Collapse
|
25
|
Rosa A, Maccioni D, Maxia A. Fatty acid and triacylglycerol composition of seed and pericarp oils of the medicinal crop Withania somnifera (L.) Dunal cultivated in Sardinia (Italy). Nat Prod Res 2020; 36:2129-2134. [PMID: 33107337 DOI: 10.1080/14786419.2020.1839454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We studied the chemical composition and the nutritional properties of fixed oils extracted from seeds and pericarps of the medicinal plant Whitania somnifera. W. somnifera wild germplasm was collected in Sardinia (Italy) and cultivated in Campidano subregion (Southern Sardinia). The main fatty acids of seed oil were 18:2 n-6 (53%, 73.6 mg/g of dry weight), 18:1 n-9 (21%, 29.3 mg/g of dry weight), 16:0 (19%), and 18:0 (4%). Trilinolein and dilinolein derivatives represented the main seed oil triacylglycerols. Linoleic (40%, 67.7 mg/g of dry weight), oleic (29%, 48.7 mg/g of dry weight), palmitic (22%), stearic (4%) and α-linolenic (3%), were the main fatty acids in pericarp oil, with higher total level of monounsaturated fatty acids than seed oil, while monolinolein and dilinolein derivatives represented the main triacylglycerols. The results of this study qualify Sardinian W. somnifera berries as an interesting source of oils with nutritional properties.
Collapse
Affiliation(s)
- Antonella Rosa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Delia Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Andrea Maxia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
26
|
Mishra SK, Khan MH, Misra S, Dixit VK, Gupta S, Tiwari S, Chandra Gupta S, Chauhan PS. Drought tolerant Ochrobactrum sp. inoculation performs multiple roles in maintaining the homeostasis in Zea mays L. subjected to deficit water stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:1-14. [PMID: 32097873 DOI: 10.1016/j.plaphy.2020.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 05/01/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) improve plant health under various biotic and abiotic stresses. However, the underlying mechanisms of the protective effects of PGPR in deficit water stress (WS) remain less explored. This study aimed to characterize the role of Ochrobactrum sp. NBRISH6 inoculation on maize (Zea mays "Maharaja") under WS conditions using multiple approaches such as physiological, anatomical, metabolic, and molecular. The effect of NBRISH6 inoculation using maize as a host plant was characterized under greenhouse conditions in deficit water stress. Results from this study demonstrated that NBRISH6 significantly lowered the expression of genes involved in the abscisic acid cycle, deficit water stress-response, osmotic stress, and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and polyphenol oxidase). Phytohormones, i.e. indole acetic acid (IAA) and salicylic acid (SA) levels, intercellular CO2 concentration, metabolites such as simple sugars, amino acids, aliphatic hydrocarbons, and the number of shrunken pith cells modulated in maize roots inoculated with NBRISH6. The NBRISH6 inoculation also improved the plant vegetative properties (root length, 33.80%; shoot length, 20.68%; root dry weight, 39.21%; shoot dry weight, 61.95%), shoot nutrients, xylem cells, root hairs, vapor pressure deficit (75%), intrinsic water-use efficiency (41.67%), photosynthesis rate (83.33%), and total chlorophyll (16.15%) as compared to the respective stress controls. This study provides valuable insights into mechanistic functions of PGPR in WS amelioration and promoting plant physiological response.
Collapse
Affiliation(s)
- Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammad Haneef Khan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Sankalp Misra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vijay Kant Dixit
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Swati Gupta
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shalini Tiwari
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Sateesh Chandra Gupta
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
27
|
Valentino G, Graziani V, D’Abrosca B, Pacifico S, Fiorentino A, Scognamiglio M. NMR-Based Plant Metabolomics in Nutraceutical Research: An Overview. Molecules 2020; 25:E1444. [PMID: 32210071 PMCID: PMC7145309 DOI: 10.3390/molecules25061444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Few topics are able to channel the interest of researchers, the public, and industries, like nutraceuticals. The ever-increasing demand of new compounds or new sources of known active compounds, along with the need of a better knowledge about their effectiveness, mode of action, safety, etc., led to a significant effort towards the development of analytical approaches able to answer the many questions related to this topic. Therefore, the application of cutting edges approaches to this area has been observed. Among these approaches, metabolomics is a key player. Herewith, the applications of NMR-based metabolomics to nutraceutical research are discussed: after a brief overview of the analytical workflow, the use of NMR-based metabolomics to the search for new compounds or new sources of known nutraceuticals are reviewed. Then, possible applications for quality control and nutraceutical optimization are suggested. Finally, the use of NMR-based metabolomics to study the impact of nutraceuticals on human metabolism is discussed.
Collapse
Affiliation(s)
- Giovanna Valentino
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
| | - Vittoria Graziani
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, 17165 Stockholm, Sweden;
| | - Brigida D’Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
| | - Antonio Fiorentino
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Monica Scognamiglio
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
| |
Collapse
|
28
|
Esteki M, Shahsavari Z, Simal-Gandara J. Gas Chromatographic Fingerprinting Coupled to Chemometrics for Food Authentication. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1649691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- M. Esteki
- Department of Chemistry, University of Zanjan, Zanjan, Iran
| | - Z. Shahsavari
- Department of Chemistry, University of Zanjan, Zanjan, Iran
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo – Ourense Campus, Ourense, Spain
| |
Collapse
|
29
|
Zhou S, Allard PM, Wolfrum C, Ke C, Tang C, Ye Y, Wolfender JL. Identification of chemotypes in bitter melon by metabolomics: a plant with potential benefit for management of diabetes in traditional Chinese medicine. Metabolomics 2019; 15:104. [PMID: 31321563 DOI: 10.1007/s11306-019-1565-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/06/2019] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Bitter melon (Momordica charantia, Cucurbitaceae) is a popular edible medicinal plant, which has been used as a botanical dietary supplement for the treatment of diabetes and obesity in Chinese folk medicine. Previously, our team has proved that cucurbitanes triterpenoid were involved in bitter melon's anti-diabetic effects as well as on increasing energy expenditure. The triterpenoids composition can however be influenced by changes of varieties or habitats. OBJECTIVES To clarify the significance of bioactive metabolites diversity among different bitter melons and to provide a guideline for selection of bitter melon varieties, an exploratory study was carried out using a UHPLC-HRMS based metabolomic study to identify chemotypes. METHODS Metabolites of 55 seed samples of bitter melon collected in different parts of China were profiled by UHPLC-HRMS. The profiling data were analysed with multivariate (MVA) statistical methods. Principle component analysis (PCA) and hierarchical cluster analysis (HCA) were applied for sample differentiation. Marker compounds were identified by comparing spectroscopic data with isolated compounds, and additional triterpenes were putatively identified by propagating annotations through a molecular network (MN) generated from UHPLC-HRMS & MS/MS metabolite profiling. RESULTS PCA and HCA provided a good discrimination between bitter melon samples from various origins in China. This study revealed for the first time the existence of two chemotypes of bitter melon. Marker compounds of those two chemotypes were identified at different MSI levels. The combined results of MN and MVA demonstrated that the two chemotypes mainly differ in their richness in cucurbitane versus oleanane triterpenoid glycosides (CTGs vs. OTGs). CONCLUSION Our finding revealed a clear chemotype distribution of bioactive components across bitter melon varieties. While bioactivities of individual CTGs and OTGs still need to be investigated in more depth, our results could help in future the selection of bitter melon varieties with optimised metabolites profile for an improved management of diabetes with this popular edible Chinese folk medicine.
Collapse
Affiliation(s)
- Shuaizhen Zhou
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU - Rue Michel-Servet 1, CH-1206, Geneva 4, Switzerland
- State Key Laboratory of Drug Research, & SIMM/CUHK Joint Research Laboratory of Promoting of Traditional Chinese Medicines, Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Zhangjiang High-Tech Park, Shanghai, 201203, People's Republic of China
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU - Rue Michel-Servet 1, CH-1206, Geneva 4, Switzerland
| | - Christian Wolfrum
- Swiss Federal Institute of Technology, ETH Zürich, Institute of Food Nutrition and Health, Schorenstr. 16, 8603, Schwerzenbach, Switzerland
| | - Changqiang Ke
- State Key Laboratory of Drug Research, & SIMM/CUHK Joint Research Laboratory of Promoting of Traditional Chinese Medicines, Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Zhangjiang High-Tech Park, Shanghai, 201203, People's Republic of China
| | - Chunping Tang
- State Key Laboratory of Drug Research, & SIMM/CUHK Joint Research Laboratory of Promoting of Traditional Chinese Medicines, Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Zhangjiang High-Tech Park, Shanghai, 201203, People's Republic of China
| | - Yang Ye
- State Key Laboratory of Drug Research, & SIMM/CUHK Joint Research Laboratory of Promoting of Traditional Chinese Medicines, Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Zhangjiang High-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU - Rue Michel-Servet 1, CH-1206, Geneva 4, Switzerland.
| |
Collapse
|
30
|
Tripathi T, Bhatia A, Singh S, Sarvendra K, Khan AR, Sidhu OP, Roy R. Metabolite Profiling of Commiphora wightii (Guggul) with Respect to Seasons. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aim of the study was to undertake comprehensive metabolic profiling of plant parts of Commiphora wightii during two contrasting seasons i.e. summer and winter; compared seasonal metabolic variations; and assess antioxidant activity of fractions for commercial applications. Leaves, young stems and gum-resin extracts from summer and winter seasons were analyzed using GC-MS, HPLC and NMR spectroscopy. The antioxidant activity on each set was determined by DPPH free radical scavenging assay. Complete metabolic profiling from two contrasting seasons identified one hundred and four major known and unknown metabolites. Also, two alkylated phenols, 2,4-di- tert-butyl phenol and 3-(3,5-di- tert-butyl-4-hydroxyphenyl) propanoic acid not reported earlier from this taxon were isolated from the vegetative part. Comparative analysis of seasonal metabolic profiles of leaves, young stems and gum-resin revealed significant variations in concentrations of several metabolites. Multivariate principal component analysis (PCA) showed significant qualitative and quantitative variations in the polar (glycine, quinic acid and myo-inositol) and non-polar metabolites (alkylated phenols, guggulsterones and α-tocopherol) between the two seasons. Variation amongst metabolites such as myo-inositol, quinic acid α- tocopherol and alkylated phenols that are important for nutraceutical industry in the two contrasting seasons is a useful finding. These metabolites are of medicinal and nutraceutical importance and are commonly used in nutraceuticals and dietary supplement industry. DPPH radical scavenging activity (IC50 values) of polar and non-polar extracts varied significantly between summer and winter seasons. The antioxidant activity can be attributed to major polar metabolite, quinic acid biosynthesized in excess during winter, and to non-polar metabolites like alkylated phenols and α-tocopherol present during the summer season. The study shall be useful for medicinal, nutraceutical and dietary supplement industry for selection of polar or non-polar extracts from a particular season for obtaining targeted products with optimized functionality.
Collapse
Affiliation(s)
- Tusha Tripathi
- CSIR–National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, UP, India
- Department of Chemistry, Integral University, Lucknow-226 026, UP, India
| | - Anil Bhatia
- CSIR–National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, UP, India
- Present address, MU Metabolomics Center, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Suruchi Singh
- Centre of Biomedical Research, formerly known as Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226 014, UP, India
| | - Kunwar Sarvendra
- CSIR–National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, UP, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow-226 026, UP, India
| | - Om P. Sidhu
- CSIR–National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, UP, India
| | - Raja Roy
- Centre of Biomedical Research, formerly known as Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226 014, UP, India
| |
Collapse
|
31
|
Lou-Bonafonte JM, Martínez-Beamonte R, Sanclemente T, Surra JC, Herrera-Marcos LV, Sanchez-Marco J, Arnal C, Osada J. Current Insights into the Biological Action of Squalene. Mol Nutr Food Res 2018; 62:e1800136. [PMID: 29883523 DOI: 10.1002/mnfr.201800136] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/08/2018] [Indexed: 01/24/2023]
Abstract
Squalene is a triterpenic compound found in a large number of plants and other sources with a long tradition of research since it was first reported in 1926. Herein a systematic review of studies concerning squalene published in the last 8 years is presented. These studies have provided further support for its antioxidant, anti-inflammatory, and anti-atherosclerotic properties in vivo and in vitro. Moreover, an antineoplastic effect in nutrigenetic-type treatments, which depends on the failing metabolic pathway of tumors, has also been reported. The bioavailability of squalene in cell cultures, animal models, and in humans has been well established, and further progress has been made in regard to the intracellular transport of this lipophilic molecule. Squalene accumulates in the liver and decreases hepatic cholesterol and triglycerides, with these actions being exerted via a complex network of changes in gene expression at both transcriptional and post-transcriptional levels. Its presence in different biological fluids has also been studied. The combination of squalene with other bioactive compounds has been shown to enhance its pleiotropic properties and might lead to the formulation of functional foods and nutraceuticals to control oxidative stress and, therefore, numerous age-related diseases in human and veterinary medicine.
Collapse
Affiliation(s)
- José M Lou-Bonafonte
- Departamento de Farmacología y Fisiología, Facultad de Ciencias de la Salud y del Deporte, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, E-22002, Spain.,Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain
| | - Roberto Martínez-Beamonte
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.,Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, E-22071, Spain
| | - Teresa Sanclemente
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, E-22071, Spain
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.,Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, E-22071, Spain
| | - Luis V Herrera-Marcos
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain
| | - Javier Sanchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.,Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain
| | - Jesús Osada
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain
| |
Collapse
|
32
|
Gupta S, Jain R, Kachhwaha S, Kothari S. Nutritional and medicinal applications of Moringa oleifera Lam.—Review of current status and future possibilities. J Herb Med 2018. [DOI: 10.1016/j.hermed.2017.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Bhatia A, Tripathi T, Singh S, Bisht H, Behl HM, Roy R, Sidhu OP. Comprehensive metabolite profiling in distinct chemotypes of Commiphora wightii. Nat Prod Res 2018; 33:17-23. [PMID: 29393680 DOI: 10.1080/14786419.2018.1431629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Commiphora wightii (Arn.) Bhandari, known as guggul, produces a medicinally important gum resin which is used extensively by Ayurvedic physicians to treat various ailments. However, most of the studies on C. wightii have been limited to its gum resin. Comprehensive metabolic profiling of leaves, stem and gum resin samples was undertaken to analyse aqueous and non-aqueous metabolites from three distinct chemotypes (NBRI-101, NBRI-102 and NBRI-103) shortlisted from different agro-climatic zones. GC-MS, HPLC and NMR spectroscopy were used for comprehensive metabolomics. Multivariate analysis showed characteristic variation in quinic and citric acids, myo-inositol and glycine (aqueous metabolites) and 2,6-di-tert-butyl-phenol, trans-farnesol and guggulsterones (non-aqueous metabolites) amongst the three chemotypes. Quinic acid, citric acid and myo-ionositol were detected in substantial quantities from leaves and stem samples which provide opportunities for novel nutraceutical and pharmaceutical formulations. Quinic acid, from the leaves, was identified as a marker metabolite for early selection of high guggulsterones-yielding cultivars.
Collapse
Affiliation(s)
- Anil Bhatia
- a CSIR-National Botanical Research Institute , Lucknow , India.,b MU Metabolomics Center, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia , MO , USA
| | - Tusha Tripathi
- a CSIR-National Botanical Research Institute , Lucknow , India
| | - Suruchi Singh
- c Centre of Biomedical Research, Formerly Known as Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus , Lucknow , India
| | - Hema Bisht
- a CSIR-National Botanical Research Institute , Lucknow , India
| | - Hari M Behl
- a CSIR-National Botanical Research Institute , Lucknow , India.,d BFT Biotech , Newark , CA , USA
| | - Raja Roy
- c Centre of Biomedical Research, Formerly Known as Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus , Lucknow , India
| | - Om P Sidhu
- a CSIR-National Botanical Research Institute , Lucknow , India
| |
Collapse
|
34
|
Dey A, Chatterjee SS, Kumar V. Triethylene glycol-like effects of Ashwagandha ( Withania somnifera (L.) Dunal) root extract devoid of withanolides in stressed mice. Ayu 2018; 39:230-238. [PMID: 31367146 PMCID: PMC6639818 DOI: 10.4103/ayu.ayu_219_16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The objective of the study is to compare stress resistance-promoting effect of triethylene glycol (TEG) and root extract of Ashwagandha (Withania somnifera) i.e. withanolide-free root extract of Withania somnifera (WFWS). Materials and Methods Mice groups treated orally with 10 mg/kg TEG or WFWS (3.3, 10, 33.3, or 100 mg/kg) for 12 consecutive days were subjected to foot shock stress-triggered hyperthermia test on the 1st, 5th, 7th and 10th day and to marble-burying test on the following 2 days. Effects of treatment on stress-triggered alteration in body weight, core temperature, blood glucose, insulin and cortisol level were quantified and statistically analyzed. Results WFWS doses up to 10 mg/kg/day were as effective as TEG in affording protection against stress-triggered alteration in body weight, core temperature and marble-burying behavior. Protection against stress-triggered alteration in blood glucose and insulin level, as well as antidepressants or anxiolytic-like activities in the behavioral test, were observed in the higher two WFWS doses (33.3 and 100 mg/kg) treated groups only. Conclusion Ashwagandha metabolites other than withanolides contribute to its stress resistance increasing effects. The observations suggest that modulation of physiological functions of gut microbiota may be involved in the mode of action of Withania somnifera root extracts.
Collapse
Affiliation(s)
- Amitabha Dey
- Department of Pharmaceutical Engineering and Technology (Formerly Department of Pharmaceutics), Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Shyam Sunder Chatterjee
- Stettiner Strasse 1, 76139 Karlsruhe, Germany (Retired Head of Pharmacology Research Laboratories, Dr. Willmar Schwabe GmbH & Co)
| | - Vikas Kumar
- Department of Pharmaceutical Engineering and Technology (Formerly Department of Pharmaceutics), Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
35
|
Cui MC, Chen SJ, Wang HH, Li ZH, Chen HJ, Chen Y, Zhou HB, Li X, Chen JW. Metabolic profiling investigation of Fritillaria thunbergii Miq. by gas chromatography–mass spectrometry. J Food Drug Anal 2018; 26:337-347. [PMID: 29389572 PMCID: PMC9332650 DOI: 10.1016/j.jfda.2016.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/24/2016] [Accepted: 10/30/2016] [Indexed: 11/26/2022] Open
Abstract
Thunberg fritillary bulb (the dry bulbs of Fritillaria thunbergii Miq.), a traditional Chinese Medicine, is widely applied as an expectorant and antitussive. In this investigation, the primary metabolites of bulbs, flowers, leaves, and stems of F. thunbergii were analyzed by gas chromatography–mass spectrometry. Principal component analysis, partial least squares-discriminate analysis, orthogonal projection to latent structures-discriminate analysis, and heat map analysis showed that there were dissimilar metabolites, and a negative correlation between amino acids and saccharides in different analytes. Furthermore, carbodiimide, tryptophan, glucose-6-phosphate, xylose, 2-piperidinecarboxylic acid, monoamidomalonic acid, phenylalanine, and histidine were found to play an important role in the plant metabolism net of F. thunbergii.
Collapse
|
36
|
Gul I, Nasrullah N, Nissar U, Saifi M, Abdin MZ. Development of DNA and GC-MS Fingerprints for Authentication and Quality Control of Piper nigrum L. and Its Adulterant Carica papaya L. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1088-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Wang M, Gu D, Li H, Wang Q, Kang J, Chu T, Guo H, Yang Y, Tian J. Rapid prediction and identification of lipase inhibitors in volatile oil from Pinus massoniana L. needles. PHYTOCHEMISTRY 2017; 141:114-120. [PMID: 28609696 DOI: 10.1016/j.phytochem.2017.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/15/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
A facile method based on gas chromatography-mass spectrometry (GC-MS) and molecular docking was established to analyze, identify, and predict lipase inhibitors in volatile oil from Pinus massoniana L. needles (PMLN). The volatile oil, with an IC50 value of 15.25 ± 0.06 μg/mL, exhibited potential inhibitory activity against lipase in vitro. In total, 33 compounds were identified from the volatile oil through GC-MS analysis. The major compounds in the volatile oil were β-pinene (39.24%), α-pinene (14.68%), germacrene D (9.08%), caryophyllene (6.94%), α-terpineol (5.39%), β-phellandrene (4.82%), and D-limonene (3.93%). The identified compounds were individually docked with lipase as the target through molecular docking. Among the compounds, longifolene characterized by preferable binding energy and the good inhibition constant exhibited potential lipase inhibitory activity. The IC50 value of longifolene was 25.10 ± 0.49 μM, indicating that this compound is the active ingredient responsible for the lipase inhibitory activity of PMLN volatile oil.
Collapse
Affiliation(s)
- Miao Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dongyu Gu
- School of Marine Science and Environment Engineering, Dalian Ocean University, Dalian 116023, China.
| | - Haoquan Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qi Wang
- School of Marine Science and Environment Engineering, Dalian Ocean University, Dalian 116023, China
| | - Jie Kang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Tingting Chu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hong Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
38
|
Kumar A, Maurya AK, Chand G, Agnihotri VK. Comparative metabolic profiling of Costus speciosus leaves and rhizomes using NMR, GC-MS and UPLC/ESI-MS/MS. Nat Prod Res 2017; 32:826-833. [PMID: 28814124 DOI: 10.1080/14786419.2017.1365069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Costus speciosus had been used in oriental systems of medicines, to treat diverse ailments. The present study was focused on NMR, GC-MS and UPLC/ESI-MS/MS-based metabolic profiling of C. speciosus. This metabolic study resulted in the identification of 91 and quantification of 69 metabolites. Caffeic acid derivatives previously unreported in C. speciosus were also identified. High quantity of steroidal saponins namely methyl protogracillin (297.97 ± 0.07 mg/g dried wt.) and dioscin (158.72 ± 0.27 mg/g dried wt.) were observed in butanol fraction of rhizomes. Health care metabolites including caffeic acid (37.88 ± 0.04 mg/g dried wt.) and trehalose (75.12 ± 0.08 mg/g dried wt.) were also detected in ethyl acetate and aqueous fractions of rhizomes, respectively. Metabolites of nutraceutical and biological significance including eremanthine (5.14 ± 0.68%, peak area), tocopherols (~22%), sterols (~25%) were also identified from hexane fractions of rhizomes and leaves using GC-MS. The analytical techniques used had successfully differentiated metabolites composition among leaves and rhizomes.
Collapse
Affiliation(s)
- Ashish Kumar
- a Academy of Scientific and Innovative Research , CSIR- Institute of Himalayan Bioresource Technology , Palampur , India.,b Natural Product Chemistry and Process Development Division , CSIR-Institute of Himalayan Bioresource Technology , Palampur , India
| | - Antim K Maurya
- b Natural Product Chemistry and Process Development Division , CSIR-Institute of Himalayan Bioresource Technology , Palampur , India
| | - Gopi Chand
- c Biodiversity Division , CSIR-Institute of Himalayan Bioresource Technology , Palampur , India
| | - Vijai K Agnihotri
- a Academy of Scientific and Innovative Research , CSIR- Institute of Himalayan Bioresource Technology , Palampur , India.,b Natural Product Chemistry and Process Development Division , CSIR-Institute of Himalayan Bioresource Technology , Palampur , India
| |
Collapse
|
39
|
Moghaddam M, Farhadi N, Ranjbar M. Variability in essential oil content and composition of Ocimum ciliatum accessions from Iran: evidence for three chemotypes. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1352599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Moghaddam
- Department of Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nasrin Farhadi
- Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
40
|
Pandey G, Gupta SS, Bhatia A, Sidhu OP, Rawat AKS, Rao CV. Grilling enhances antidiarrheal activity of Terminalia bellerica Roxb. fruits. JOURNAL OF ETHNOPHARMACOLOGY 2017; 202:63-66. [PMID: 28025164 DOI: 10.1016/j.jep.2016.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/01/2016] [Accepted: 12/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia bellerica Roxb. fruits are rich in a variety of biologically active ingredients. Tharu and Buksa tribes of Udham Singh Nagar, Uttarakhand, India use grilled fruits of Terminalia bellerica as an effective cure for diarrhea AIM OF THE STUDY: We validated the ethnobotanical claim by comparing the antidiarrheal effect of grilled fruits (GF) with dried fruits (DF). MATERIALS AND METHODS The 50% ethanolic extracts of GF and DF were successively fractionated; the antioxidant and bacterial inhibition activity were studied using DPPH free radical scavenging, anti-lipid peroxidation and broth dilution method respectively. Difference in metabolites of ethyl acetate fractions of GF and DF was analyzed using GC-MS, gallic acid content was determined through HPTLC. Further the in-vivo antidiarrheal effect of ethyl acetate fractions of DF and GF was studied on castor oil induced diarrhea model. RESULTS The ethyl acetate fractions showed potential DPPH free radical scavenging (IC50 11.13µg/ml in DF and 8.56µg/ml in GF), anti-lipid peroxidation and antibacterial activity. The non-targeted metabolic profiling showed higher content of tartaric acid, valeric acid, gallic acid, succinic acid, oxalic acid, malonic acid, malic acid, 1,2,3 trisbenzene, uridine and 11-eicosenoic acid in GF. The HPTLC results indicated that gallic acid content was 2.8 (±0.14) and 4.92 (±0.28) mg/g while ellagic acid content was 4.7 (±0.32) and 4.45 (±0.45) mg/g dry powder in DF and GF respectively. According to in vivo antidiarrheal activity DF and GF (100mg/kg oral) inhibited diarrhea by 41.87% and 71.72% respectively. CONCLUSION Grilling significantly altered the levels of metabolites in T. bellerica fruits which could be responsible for its increased therapeutic potential.
Collapse
Affiliation(s)
| | | | - Anil Bhatia
- CSIR-National Botanical Research Institute, India
| | - O P Sidhu
- CSIR-National Botanical Research Institute, India
| | - A K S Rawat
- CSIR-National Botanical Research Institute, India
| | - Ch V Rao
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226 001, Uttar Pradesh, India
| |
Collapse
|
41
|
Kumari M, Shukla S, Pandey S, Giri VP, Bhatia A, Tripathi T, Kakkar P, Nautiyal CS, Mishra A. Enhanced Cellular Internalization: A Bactericidal Mechanism More Relative to Biogenic Nanoparticles than Chemical Counterparts. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4519-4533. [PMID: 28051856 DOI: 10.1021/acsami.6b15473] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Biogenic synthesis of silver nanoparticles for enhanced antimicrobial activity has gained a lot of momentum making it an urgent need to search for a suitable biocandidate which could be utilized for efficient capping and shaping of silver nanoparticles with enhanced bactericidal activity utilizing its secondary metabolites. Current work illustrates the enhancement of antimicrobial efficacy of silver nanoparticles by reducing and modifying their surface with antimicrobial metabolites of cell free filtrate of Trichoderma viride (MTCC 5661) in comparison to citrate stabilized silver nanoparticles. Nanoparticles were characterized by visual observations, UV-visible spectroscopy, zetasizer, and transmission electron microscopy (TEM). Synthesized particles were monodispersed, spherical in shape and 10-20 nm in size. Presence of metabolites on surface of biosynthesized silver nanoparticles was observed by gas chromatography-mass spectroscopy (GC-MS), energy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The antimicrobial activity of both silver nanoparticles was tested against Shigella sonnei, Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) by growth inhibition curve analysis and colony formation unit assay. Further, it was noted that internalization of biosynthesized nanoparticles inside the bacterial cell was much higher as compared to citrate stabilized particles which in turn lead to higher production of reactive oxygen species. Increase in oxidative stress caused severe damage to bacterial membrane enhancing further uptake of particles and revoking other pathways for bacterial disintegration resulting in complete and rapid death of pathogens as evidenced by fluorescein diacetate/propidium iodide dual staining and TEM. Thus, study reveals that biologically synthesized silver nanoarchitecture coated with antimicrobial metabolites of T. viride was more potent than their chemical counterpart in killing of pathogenic bacteria.
Collapse
Affiliation(s)
- Madhuree Kumari
- CSIR-National Botanical Research Institute , Rana Pratap Marg, Lucknow, 226 001, India
| | - Shatrunajay Shukla
- CSIR-Indian Institute of Toxicology Research , Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, India
| | - Shipra Pandey
- CSIR-National Botanical Research Institute , Rana Pratap Marg, Lucknow, 226 001, India
| | - Ved P Giri
- CSIR-National Botanical Research Institute , Rana Pratap Marg, Lucknow, 226 001, India
| | - Anil Bhatia
- CSIR-National Botanical Research Institute , Rana Pratap Marg, Lucknow, 226 001, India
| | - Tusha Tripathi
- CSIR-National Botanical Research Institute , Rana Pratap Marg, Lucknow, 226 001, India
| | - Poonam Kakkar
- CSIR-Indian Institute of Toxicology Research , Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, India
| | - Chandra S Nautiyal
- CSIR-National Botanical Research Institute , Rana Pratap Marg, Lucknow, 226 001, India
| | - Aradhana Mishra
- CSIR-National Botanical Research Institute , Rana Pratap Marg, Lucknow, 226 001, India
| |
Collapse
|
42
|
Pandey V, Ansari WA, Misra P, Atri N. Withania somnifera: Advances and Implementation of Molecular and Tissue Culture Techniques to Enhance Its Application. FRONTIERS IN PLANT SCIENCE 2017; 8:1390. [PMID: 28848589 PMCID: PMC5552756 DOI: 10.3389/fpls.2017.01390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/26/2017] [Indexed: 05/11/2023]
Abstract
Withania somnifera, commonly known as Ashwagandha an important medicinal plant largely used in Ayurvedic and indigenous medicine for over 3,000 years. Being a medicinal plant, dried powder, crude extract as well as purified metabolies of the plant has shown promising therapeutic properties. Withanolides are the principal metabolites, responsible for the medicinal properties of the plant. Availability and amount of particular withanolides differ with tissue type and chemotype and its importance leads to identification characterization of several genes/ enzymes related to withanolide biosynthetic pathway. The modulation in withanolides can be achieved by controlling the environmental conditions like, different tissue culture techniques, altered media compositions, use of elicitors, etc. Among all the in vitro techniques, hairy root culture proved its importance at industrial scale, which also gets benefits due to more accumulation (amount and number) of withanolides in roots tissues of W. somnifera. Use of media compostion and elicitors further enhances the amount of withanolides in hairy roots. Another important modern day technique used for accumulation of desired secondary metabolites is modulating the gene expression by altering environmental conditions (use of different media composition, elicitors, etc.) or through genetic enginnering. Knowing the significance of the gene and the key enzymatic step of the pathway, modulation in withanolide contents can be achieved upto required amount in therapeutic industry. To accomplish maximum productivity through genetic enginnering different means of Withania transformation methods have been developed to obtain maximum transformation efficiency. These standardized transformation procedues have been used to overexpress/silence desired gene in W. somnifera to understand the outcome and succeed with enhanced metabolic production for the ultimate benefit of human race.
Collapse
Affiliation(s)
- Vibha Pandey
- Department of Plant Molecular Biology, University of DelhiNew Delhi, India
| | - Waquar Akhter Ansari
- Department of Botany, Mahila Maha Vidhyalaya (MMV), Banaras Hindu UniversityVaranasi, India
| | - Pratibha Misra
- National Botanical Research Institute, Council of Scientific and Industrial ResearchLucknow, India
- *Correspondence: Pratibha Misra
| | - Neelam Atri
- Department of Botany, Mahila Maha Vidhyalaya (MMV), Banaras Hindu UniversityVaranasi, India
- Neelam Atri
| |
Collapse
|
43
|
Srivastava A, Agrawal L, Raj R, Jaidi M, Raj SK, Gupta S, Dixit R, Singh PC, Tripathi T, Sidhu OP, Singh BN, Shukla S, Chauhan PS, Kumar S. Ageratum enation virus Infection Induces Programmed Cell Death and Alters Metabolite Biosynthesis in Papaver somniferum. FRONTIERS IN PLANT SCIENCE 2017; 8:1172. [PMID: 28729873 PMCID: PMC5498505 DOI: 10.3389/fpls.2017.01172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/19/2017] [Indexed: 05/06/2023]
Abstract
A previously unknown disease which causes severe vein thickening and inward leaf curl was observed in a number of opium poppy (Papaver somniferum L.) plants. The sequence analysis of full-length viral genome and associated betasatellite reveals the occurrence of Ageratum enation virus (AEV) and Ageratum leaf curl betasatellite (ALCB), respectively. Co-infiltration of cloned agroinfectious DNAs of AEV and ALCB induces the leaf curl and vein thickening symptoms as were observed naturally. Infectivity assay confirmed this complex as the cause of disease and also satisfied the Koch's postulates. Comprehensive microscopic analysis of infiltrated plants reveals severe structural anomalies in leaf and stem tissues represented by unorganized cell architecture and vascular bundles. Moreover, the characteristic blebs and membranous vesicles formed due to the virus-induced disintegration of the plasma membrane and intracellular organelles were also present. An accelerated nuclear DNA fragmentation was observed by Comet assay and confirmed by TUNEL and Hoechst dye staining assays suggesting virus-induced programmed cell death. Virus-infection altered the biosynthesis of several important metabolites. The biosynthesis potential of morphine, thebaine, codeine, and papaverine alkaloids reduced significantly in infected plants except for noscapine whose biosynthesis was comparatively enhanced. The expression analysis of corresponding alkaloid pathway genes by real time-PCR corroborated well with the results of HPLC analysis for alkaloid perturbations. The changes in the metabolite and alkaloid contents affect the commercial value of the poppy plants.
Collapse
Affiliation(s)
- Ashish Srivastava
- Plant Molecular Virology Laboratory, Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
- Amity Institute of Virology and Immunology, Amity UniversityNoida, India
| | - Lalit Agrawal
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
| | - Rashmi Raj
- Plant Molecular Virology Laboratory, Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
| | - Meraj Jaidi
- Plant Molecular Virology Laboratory, Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
| | - Shri K. Raj
- Plant Molecular Virology Laboratory, Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
| | - Swati Gupta
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
| | - Ritu Dixit
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
| | - Poonam C. Singh
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
| | - Tusha Tripathi
- Division of Phytochemistry, Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
| | - Om P. Sidhu
- Division of Phytochemistry, Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
| | - Brahma N. Singh
- Division of Pharmacognosy and Ethnopharmacology, Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
| | - Sudhir Shukla
- Plant Breeding Laboratory, Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
| | - Puneet S. Chauhan
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
| | - Susheel Kumar
- Plant Molecular Virology Laboratory, Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
- *Correspondence: Susheel Kumar,
| |
Collapse
|
44
|
Kaul SC, Ishida Y, Tamura K, Wada T, Iitsuka T, Garg S, Kim M, Gao R, Nakai S, Okamoto Y, Terao K, Wadhwa R. Novel Methods to Generate Active Ingredients-Enriched Ashwagandha Leaves and Extracts. PLoS One 2016; 11:e0166945. [PMID: 27936030 PMCID: PMC5147857 DOI: 10.1371/journal.pone.0166945] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/06/2016] [Indexed: 12/16/2022] Open
Abstract
Ashwagandha (Withania somnifera) is an Ayurvedic herb commonly used in world-renowned traditional Indian home medicine system. Roots of Ashwagandha have been traditionally known to possess a variety of therapeutic and health promoting potentials that have not been sufficiently supported by laboratory studies. Nevertheless, most, if not all, of the preventive and therapeutic potentials have been assigned to its bioactive components, steroidal alkaloids and lactones. In contrast to the traditional use of roots, we have been exploring bioactivities in leaves of Ashwagandha. Here, we report that the leaves possess higher content of active Withanolides, Withaferin-A (Wi-A) and Withanone (Wi-N), as compared to the roots. We also established, for the first time, hydroponic cultivation of Ashwagandha and investigated the effect of various cultivation conditions on the content of Wi-A and Wi-N by chemical analysis and bioassays. We report that the Withanone/Withaferin A-rich leaves could be obtained by manipulating light condition during hydroponic cultivation. Furthermore, we recruited cyclodextrins to prepare extracts with desired ratio of Wi-N and Wi-A. Hydroponically grown Ashwagandha and its extracts with high ratio of withanolides are valuable for cancer treatment.
Collapse
Affiliation(s)
- Sunil C. Kaul
- Drug Discovery and Assets Innovation Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Yoshiyuki Ishida
- CycloChem Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, Japan
| | - Kazuya Tamura
- DAI-DAN Co., Ltd., 390 Kitanagai, Miyoshi-machi, Iruma-gun, Saitama, Japan
| | - Teruo Wada
- Osaka Prefecture University, 1-1 Nakakugakuencho, Sakai-city, Osaka, Japan
| | - Tomoko Iitsuka
- Drug Discovery and Assets Innovation Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Sukant Garg
- Drug Discovery and Assets Innovation Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
- School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Japan
| | - Mijung Kim
- Drug Discovery and Assets Innovation Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Ran Gao
- Drug Discovery and Assets Innovation Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Shoichi Nakai
- DAI-DAN Co., Ltd., 390 Kitanagai, Miyoshi-machi, Iruma-gun, Saitama, Japan
| | - Youji Okamoto
- Zuiron Private Ltd., 2-3-1 Nakajyosanjimacho, Tokushima-city, Tokushima, Japan
| | - Keiji Terao
- CycloChem Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, Japan
| | - Renu Wadhwa
- Drug Discovery and Assets Innovation Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
- School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
45
|
Comprehensive chemical profiling of Pinellia species tuber and processed Pinellia tuber by gas chromatography-mass spectrometry and liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. J Chromatogr A 2016; 1471:164-177. [PMID: 27769531 DOI: 10.1016/j.chroma.2016.10.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/19/2016] [Accepted: 10/12/2016] [Indexed: 11/20/2022]
Abstract
A comprehensive profiling method was established for the determination of various chemicals in Pinellia (P.) ternata and pedatisecta species. The profiling method comprises a fast ultrasonic extraction with various solvents, followed by GC-MS and LC-APCI-MS analysis. A total of 73 polar components as trimethylsilyl (TMS) derivatives were detected in methanol extract by GC-MS. The main components of the P. species were profiled as several kinds of fatty acids, amino acids, nucleic acids, carbohydrates, and phenolic compounds. The hexane extract was analyzed by LC-APCI-MS for the lipid profiling. A total of 35 lipid constituents [fatty acids and their esters, mono-, di-, and tri-acylglycerols] and four phytosterols were observed and tentatively characterized by LC-APCI-MS/MS. Among the phytochemicals detected in the hexane extract, triacylglycerols (TAGs) as the major component were identified by LC-APCI-MS and MS/MS. Based on the identified components, a significant difference in the chemical compositions of P. species tuber and processed P. ternata was found that the complete disappearance of TAGs and a considerable decrement of sucrose were observed in processed P. ternata. Furthermore, the degradation mechanism for TAGs in the presence of alum solution is suggested to occur during the processing P. ternata. Malic acid was found to be a characteristic compound for the classification of P. ternata and pedatisecta with different geographic origins. Based on the validated GC/MS method, twenty-four P. ternata, processed P. ternata and P. pedatisecta samples were profiled to measure the overall abundance of specific groups of compound and to identify diagnostic compounds. In addition, principal component analysis (PCA) on the GC/MS profiling data revealed a clear classification of P. species samples. In this study, the full chemical complement was for the first time reported for quality evaluation of P. species. The method can be usefully applied for phytochemical analysis of related herbal medicines.
Collapse
|
46
|
Kim SW, Gupta R, Lee SH, Min CW, Agrawal GK, Rakwal R, Kim JB, Jo IH, Park SY, Kim JK, Kim YC, Bang KH, Kim ST. An Integrated Biochemical, Proteomics, and Metabolomics Approach for Supporting Medicinal Value of Panax ginseng Fruits. FRONTIERS IN PLANT SCIENCE 2016; 7:994. [PMID: 27458475 PMCID: PMC4930952 DOI: 10.3389/fpls.2016.00994] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Panax ginseng roots are well known for their medicinal properties and have been used in Korean and Chinese traditional medicines for 1000s of years. However, the medicinal value of P. ginseng fruits remain poorly characterized. In this study, we used an integrated biochemical, proteomics, and metabolomics approach to look into the medicinal properties of ginseng fruits. DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS [2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)] assays showed higher antioxidant activities in ginseng fruits than leaves or roots. Two-dimensional gel electrophoresis (2-DE) profiling of ginseng fruit proteins (cv. Cheongsun) showed more than 400 spots wherein a total of 81 protein spots were identified by mass spectrometry using NCBInr, UniRef, and an in-house developed RNAseq (59,251 protein sequences)-based databases. Gene ontology analysis showed that most of the identified proteins were related to the hydrolase (18%), oxidoreductase (16%), and ATP binding (15%) activities. Further, a comparative proteome analysis of four cultivars of ginseng fruits (cvs. Yunpoong, Gumpoong, Chunpoong, and Cheongsun) led to the identification of 22 differentially modulated protein spots. Using gas chromatography-time of flight mass spectrometry (GC-TOF MS), 66 metabolites including amino acids, sugars, organic acids, phenolic acids, phytosterols, tocopherols, and policosanols were identified and quantified. Some of these are well known medicinal compounds and were not previously identified in ginseng. Interestingly, the concentration of almost all metabolites was higher in the Chunpoong and Gumpoong cultivars. Parallel comparison of the four cultivars also revealed higher amounts of the medicinal metabolites in Chunpoong and Gumpoong cultivars. Taken together, our results demonstrate that ginseng fruits are a rich source of medicinal compounds with potential beneficial health effects.
Collapse
Affiliation(s)
- So W. Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, MiryangSouth Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, MiryangSouth Korea
| | - Seo H. Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, MiryangSouth Korea
| | - Cheol W. Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, MiryangSouth Korea
| | - Ganesh K. Agrawal
- Research Laboratory for Biotechnology and Biochemistry, KathmanduNepal
- Global Research Arch for Developing Education Academy Private Limited, BirgunjNepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry, KathmanduNepal
- Global Research Arch for Developing Education Academy Private Limited, BirgunjNepal
- Faculty of Health and Sport Sciences and Tsukuba International Academy for Sport Studies, University of Tsukuba, IbarakiJapan
- Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, TokyoJapan
| | - Jong B. Kim
- Department of Biotechnology, College of Biomedical and Health Sciences, Konkuk University, Choong-JuSouth Korea
| | - Ick H. Jo
- Department of Herbal Crop Research, Rural Development Administration, EumseongSouth Korea
| | - Soo-Yun Park
- National Academy of Agricultural Science, Rural Development Administration, Jeollabuk-doSouth Korea
| | - Jae K. Kim
- Division of Life Sciences, Incheon National University, IncheonSouth Korea
| | - Young-Chang Kim
- Department of Herbal Crop Research, Rural Development Administration, EumseongSouth Korea
| | - Kyong H. Bang
- Department of Herbal Crop Research, Rural Development Administration, EumseongSouth Korea
| | - Sun T. Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, MiryangSouth Korea
| |
Collapse
|
47
|
de Almeida FB, Fernandes CP, Romao W, Vanini G, Costa HB, França HS, Santos MG, Carvalho JCT, Falcão DQ, Rocha L. Secondary Metabolites from Leaves of Manilkara subsericea (Mart.) Dubard. Pharmacogn Mag 2016; 11:S533-7. [PMID: 27013790 PMCID: PMC4787084 DOI: 10.4103/0973-1296.172957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Manilkara subsericea (Sapotaceae) is a species widely spread in the sandbanks of Restinga de Jurubatiba National Park (Rio de Janeiro, Brazil). It is commonly known as “maçaranduba”, “maçarandubinha” and “guracica”, being used in this locality as food, and timber. However, M. subsericea remains almost unexplored regarding its chemical constituents, including secondary metabolites from the leaves. Objective: Identify the chemical constituents from the leaves of M. subsericea. Materials and Methods: Leaves were macerated with ethanol (96% v/v), and dried crude ethanolic extract was sequentially washed with the organic solvents in order to obtain an ethyl acetate fraction. Substances from this fraction were identified by different techniques, such as negative-ion electrospray ionization Fourier and 1H and 13C nuclear magnetic resonance (NMR). Fresh leaves from M. subsericea were also submitted to hydrodistillation in order to obtain volatile substances, which were identified by gas chromatograph coupled to mass spectrometer. Results: NMR1H and 13C spectra allowed for the identification of the compounds myricetin, quercetin, and kaempferol from the ethyl acetate fraction. The negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry mass spectrum also revealed the presence in this fraction of a polyhydroxytriterpene acid (pomolic acid), and some flavonoids, such as quercitrin, and myricitrin. In all 34 volatile compounds were identified by gas chromatography-mass spectrometry, including monoterpenes, sesquiterpenes, and long chain hydrocarbons. Conclusion: This study describes the first reports concerning the phytochemical information about leaves from M. subsericea. SUMMARY Manilkara subsericea fruits proved to be a rich source of triterpenes. However, no phytochemical studies were carried out with leaves. Thus, we described identification of volatile substances from its essential oils, in addition to non-reported triterpene and flavonoids from this species.
Collapse
Affiliation(s)
- Fernanda Borges de Almeida
- Laboratório de Nanobiotecnologia Fitofarmacêutica, Colegiado de Farmácia, Universidade Federal do Amapá, Campus Universitário Marco Zero do Equador, Rodovia Juscelino Kubitschek de Oliveira, KM, 02 Bairro Zerão, CEP: 68902-280, Macapá, AP, Brazil
| | - Caio Pinho Fernandes
- Laboratório de Nanobiotecnologia Fitofarmacêutica, Colegiado de Farmácia, Universidade Federal do Amapá, Campus Universitário Marco Zero do Equador, Rodovia Juscelino Kubitschek de Oliveira, KM, 02 Bairro Zerão, CEP: 68902-280, Macapá, AP, Brazil; Programa de Pós, Graduação em Biotecnologia Vegetal, Centro de Ciências da Saúde, Bloco K, 2° Andar, Sala 032, Universidade Federal do Rio de Janeiro, UFRJ, Av. Brigadeiro Trompowski s/n, CEP: 21941-590, Ilha do Fundão, RJ, Brazil
| | - Wanderson Romao
- Laboratório de Petroleômica e Forense, Departamento de Química, Universidade Federal do Espírito Santo, CEP: 29075-910, Vitória, ES, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo, CEP: 29106-010, Vila Velha, ES, Brazil
| | - Gabriela Vanini
- Laboratório de Petroleômica e Forense, Departamento de Química, Universidade Federal do Espírito Santo, CEP: 29075-910, Vitória, ES, Brazil
| | - Helber Barcelos Costa
- Laboratório de Petroleômica e Forense, Departamento de Química, Universidade Federal do Espírito Santo, CEP: 29075-910, Vitória, ES, Brazil
| | - Hildegardo Seibert França
- Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo, CEP: 29106-010, Vila Velha, ES, Brazil
| | - Marcelo Guerra Santos
- Faculdade de Formação de Professores, UERJ, Rua: Dr. Francisco Portela, 1470, Patronato, CEP: 24435-005, São Gonçalo, Rio de Janeiro, Brazil
| | - José Carlos Tavares Carvalho
- Laboratório de Pesquisa em Fármacos, Colegiado de Farmácia, Universidade Federal do Amapá, Campus Universitário Marco Zero do Equador, Rod. Juscelino Kubitschek de Oliveira, KM-02, Bairro Zerão, CEP 68902-280 Macapá, AP, Brazil
| | - Deborah Quintanilha Falcão
- Laboratório de Tecnologia Farmacêutica, Departamento e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, UFF Rua: Mario Viana, 523, CEP: 24241-000, Santa Rosa, Niterói, Brazil
| | - Leandro Rocha
- Programa de Pós, Graduação em Biotecnologia Vegetal, Centro de Ciências da Saúde, Bloco K, 2° Andar, Sala 032, Universidade Federal do Rio de Janeiro, UFRJ, Av. Brigadeiro Trompowski s/n, CEP: 21941-590, Ilha do Fundão, RJ, Brazil; Laboratório de Tecnologia de Produtos Naturais, LTPN, Departamento e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, UFF Rua: Mario Viana, 523, CEP: 24241-000, Santa Rosa, Niterói, RJ, Brazil
| |
Collapse
|
48
|
GC-MS and LC-MS approaches for determination of tocopherols and tocotrienols in biological and food matrices. J Pharm Biomed Anal 2016; 127:156-69. [PMID: 26964480 DOI: 10.1016/j.jpba.2016.02.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/17/2016] [Accepted: 02/28/2016] [Indexed: 11/20/2022]
Abstract
Tocopherols and tocotrienols, widely described as vitamin E derivatives, have been proven to take part in a number of important biological functions. Among them, antioxidant properties had been investigated and documented in the literature. Since tocochromanols have revealed their plausible beneficial impact on several pathological processes, such as cancerogenesis or cognitive impairment diseases, there is a growing interest in quantitative determination of these compounds in biological fluids, tissues and plant organs. However, due to vitamin E chemical features, such as lipophilic and non-polar characteristics, quantitative determination of the compounds seems to be problematic. In this paper we present current analytical approaches in tocopherols and tocotrienols determination in biological and food matrices with the use of chromatographic techniques, especially gas chromatography (GC) and high performance liquid chromatography (HPLC) coupled with mass spectrometry. Derivatization techniques applied for GC-MS analysis in the case of tocol derivatives, especially silylation and acylation, are described. Significant attention is paid to ionization process of tocopherols and tocotrienols.
Collapse
|
49
|
Kumar D. Nuclear Magnetic Resonance (NMR) Spectroscopy For Metabolic Profiling of Medicinal Plants and Their Products. Crit Rev Anal Chem 2015; 46:400-12. [PMID: 26575437 DOI: 10.1080/10408347.2015.1106932] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NMR spectroscopy has multidisciplinary applications, including excellent impact in metabolomics. The analytical capacity of NMR spectroscopy provides information for easy qualitative and quantitative assessment of both endogenous and exogenous metabolites present in biological samples. The complexity of a particular metabolite and its contribution in a biological system are critically important for understanding the functional state that governs the organism's phenotypes. This review covers historical aspects of developments in the NMR field, its applications in chemical profiling, metabolomics, and quality control of plants and their derived medicines, foods, and other products. The bottlenecks of NMR in metabolic profiling are also discussed, keeping in view the future scope and further technological interventions.
Collapse
Affiliation(s)
- Dinesh Kumar
- a Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology , Palampur , India
| |
Collapse
|
50
|
Nootropic potential of Ashwagandha leaves: Beyond traditional root extracts. Neurochem Int 2015; 95:109-18. [PMID: 26361721 DOI: 10.1016/j.neuint.2015.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/14/2015] [Accepted: 09/03/2015] [Indexed: 12/31/2022]
Abstract
Rapidly increasing aging population and environmental stressors are the two main global concerns of the modern society. These have brought in light rapidly increasing incidence of a variety of pathological conditions including brain tumors, neurodegenerative & neuropsychiatric disorders, and new challenges for their treatment. The overlapping symptoms, complex etiology and lack of full understanding of the brain structure and function to-date further complicate these tasks. On the other hand, several herbal reagents with a long history of their use have been asserted to possess neurodifferentiation, neuroregenerative and neuroprotective potentials, and hence been recommended as supplement to enhance and maintain brain health and function. Although they have been claimed to function by holistic approach resulting in maintaining body homeostasis and brain health, there are not enough laboratory studies in support to these and mechanism(s) of such beneficial activities remain largely undefined. One such herb is Ashwagandha, also called "Queen of Ayurveda" for its popular use in Indian traditional home medicine because of its extensive benefits including anticancer, anti-stress and remedial potential for aging and neurodegenerative pathologies. However, active principles and underlying mechanism(s) of action remain largely unknown. Here we provide a review on the effects of Ashwagandha extracts and active principles, and underlying molecular mechanism(s) for brain pathologies. We highlight our findings on the nootropic potential of Ashwagandha leaves. The effects of Ashwagandha leaf extracts are multidimensional ranging from differentiation of neuroblastoma and glioma cells, reversal of Alzheimer and Parkinson's pathologies, protection against environmental neurotoxins and enhancement of memory.
Collapse
|